JP2002303714A - Method for manufacturing color filter - Google Patents

Method for manufacturing color filter

Info

Publication number
JP2002303714A
JP2002303714A JP2001104421A JP2001104421A JP2002303714A JP 2002303714 A JP2002303714 A JP 2002303714A JP 2001104421 A JP2001104421 A JP 2001104421A JP 2001104421 A JP2001104421 A JP 2001104421A JP 2002303714 A JP2002303714 A JP 2002303714A
Authority
JP
Japan
Prior art keywords
layer
color
defect
pattern
uneven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001104421A
Other languages
Japanese (ja)
Inventor
Shigeru Hirayama
茂 平山
Junichi Saito
純一 斉藤
Masayuki Kawashima
正行 川島
Hironobu Suda
廣伸 須田
Toyoji Nishimoto
豊司 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2001104421A priority Critical patent/JP2002303714A/en
Publication of JP2002303714A publication Critical patent/JP2002303714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Optical Filters (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Coloring (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Materials For Photolithography (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a color filter transferring only excellent parts of a CF(color filter) layer by accurately detecting and differentiating uneven defective parts of a release layer and coloring patterns of respective colors in single inspection of unevenness without being affected by the uneven defective parts of the release layer, in a step of manufacture of the color filter by transferring. SOLUTION: A set of a plurality of candidate uneven defective parts adjacent to each other is rated as a candidate region for the uneven defects of the release layer and the coloring patterns of the respective colors. Coordinates and areas of the candidate region for the uneven defects are compared with each other. The uneven defects under inspection are judged to be the candidate region for the uneven defects of the release layer 31 if the coordinates are adjacent to each other and differences in the areas are small and are judged to be the candidate region for the uneven defects of the coloring patterns of the respective colors 32 if the coordinates are apart from each other and differences in the areas are large. Subsequently the uneven defective parts of the coloring patterns of the respective colors are detected by comparing the luminance with an average luminance value of respective peripheral parts.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示装置(以
下LCDという)に使用されるカラーフィルタ(以下C
Fという)の製造方法に関するものであり、特に、連続
シート上に形成されたCF層を透明基材上に転写してC
Fを製造する転写方式によるCFの製造に於いて、転写
前のCF層の各色着色パターンのムラ欠陥部のみを効率
良く検出できるCFの製造方法に関する.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a color filter (hereinafter referred to as C) used for a liquid crystal display (hereinafter referred to as LCD).
F), in particular, by transferring a CF layer formed on a continuous sheet onto a transparent substrate,
The present invention relates to a method for manufacturing a CF, which can efficiently detect only an uneven defect portion of each color pattern of a CF layer before transfer in the manufacturing of a CF by a transfer method for manufacturing F.

【0002】[0002]

【従来の技術】上記LCDでカラー画像表示を行うため
に、赤(R)、緑(G)、青(B)の光の三原色の分光
特性を有するCFを用いる方法が広く採用されており、
そのCFとしては、染色法や顔料分散法、または印刷法
等によって、有機顔料や有機染料で着色された樹脂層
を、ストライプ状やマトリックス状に微細配列して、透
明基材上に設けたものが用いられている。(M.Tan
i,et al:”LCDColor Filter
s:Characteristics and Fut
ure Issues”,SID 95 SEMINA
R LECTURE(1995)等参照)しかし、染色
法のCFは、可染性の樹脂膜のパターン化工程と染色工
程を別工程で行う必要があり、また、各色の染色後に次
色染色用の防染処理も必要となるため、工程が煩瑣とな
り、自動化しにくいという欠点があった。
2. Description of the Related Art In order to display a color image on the LCD, a method of using a CF having spectral characteristics of three primary colors of red (R), green (G) and blue (B) has been widely adopted.
As the CF, a resin layer colored with an organic pigment or an organic dye by a dyeing method, a pigment dispersing method, a printing method, or the like is finely arranged in a stripe shape or a matrix shape and provided on a transparent substrate. Is used. (M. Tan
i, et al: “LCDColor Filter
s: Characteristics and Fut
ure Issues ”, SID 95 SEMINA
However, in the CF of the dyeing method, the patterning step of the dyeable resin film and the dyeing step need to be performed in separate steps. Since a dyeing treatment is also required, the steps are complicated and there is a drawback that automation is difficult.

【0003】近年、CF層となる樹脂自体に顔料等の着
色材を混入分散し、その樹脂自体も感光性樹脂化して、
CFの作成工程を簡略化することが行われている。この
方法は顔料分散方式と称され、着色材を混合分散した感
光性着色組成物をガラス等の透明基材に均一な厚さに塗
布し、露光装置でパターン露光することで露光部分と非
露光部分との溶媒に対する溶解性に差異をもたせ後、現
像と言われている選択的溶解によって、所望パターン状
のCF層を形成する方法である。この方法によれば、染
色法に比べて工程が簡便であり、自動化した生産ライン
でCFを作製し易いと言う利点がある。しかし、この方
法も、ガラス等の透明基材の一枚毎に赤(R)、緑
(G)、青(B)等の所定色数の着色層を繰り返し形成
することでCFを作製していることには変わりはなく、
まだ工程が煩瑣である。
In recent years, a coloring material such as a pigment has been mixed and dispersed in a resin itself to be a CF layer, and the resin itself has also been converted into a photosensitive resin.
It has been practiced to simplify the process of producing CF. This method is referred to as a pigment dispersion method, in which a photosensitive coloring composition in which a coloring material is mixed and dispersed is applied to a transparent substrate such as glass to a uniform thickness, and the exposed portion and the non-exposed portion are subjected to pattern exposure with an exposure device. In this method, a CF layer having a desired pattern is formed by selective dissolution called development after giving a difference in solubility in a solvent with a portion. According to this method, the steps are simpler than the dyeing method, and there is an advantage that CF can be easily produced on an automated production line. However, this method also produces CF by repeatedly forming a predetermined number of colored layers such as red (R), green (G), and blue (B) for each transparent substrate such as glass. Is no different,
The process is still complicated.

【0004】上記の煩瑣な工程から脱却し、生産効率よ
くCFを製造する方法として、ガラス等の透明基材とほ
ぼ同じ値の熱膨張係数を有する金属シート等を転写シー
ト基材とするロール状の連続した中間転写媒体(以下転
写シートと言う)を用いて、塗布工程の効率化や、ガラ
ス等の透明基材の大型化(多面付け)に伴う製造設備の
大型化を避けることが可能となる転写方式によるCFの
製造方法が提案されている。(特開平7−294717
号公報他)
As a method of producing CF with high production efficiency, which is free from the above-mentioned complicated steps, a roll-shaped sheet using a metal sheet or the like having a thermal expansion coefficient substantially equal to that of a transparent substrate such as glass as a transfer sheet substrate. It is possible to use a continuous intermediate transfer medium (hereinafter, referred to as a transfer sheet) to improve the efficiency of the coating process and to avoid the increase in the size of manufacturing equipment due to the increase in the size of a transparent substrate such as glass (multi-face mounting). There has been proposed a method of manufacturing CF by a transfer method. (JP-A-7-294717)
No.)

【0005】この転写方式の製造方法によれば、赤
(R)、緑(G)、青(B)等の所定色数を繰り返し形
成する工程は、ガラス等の透明基材の一枚毎に対してで
はなく、ロール状の連続した転写シート基材に対して、
連続して各工程の操作を行えることから、生産効率を向
上させることが可能となる。また、必要なサイズ(例え
ば、モニタ用途の20インチサイズ)のCF層を転写シ
ートとして形成後、必要とされる大型サイズ(例えば、
モニタ用途の20インチサイズを多面付けしたサイズ)
の透明基材に多面付け転写して、CFを製造することに
より、CF層のパターン化に関連する設備の小型化を図
れることから、設備費の低減や、露光時の困難さの低減
(マスク−基材間アライメント精度の維持、露光量均一
性の維持等)が可能である。
According to this transfer type manufacturing method, the step of repeatedly forming a predetermined number of colors such as red (R), green (G), and blue (B) is performed for each transparent substrate such as glass. Instead of a roll-shaped continuous transfer sheet substrate,
Since the operation of each step can be performed continuously, it is possible to improve production efficiency. Further, after forming a CF layer of a required size (for example, a 20-inch size for monitor use) as a transfer sheet, a required large size (for example,
(20 inch size for monitor use multi-faced size)
By manufacturing a CF by multi-layer transfer to a transparent base material, it is possible to reduce the size of equipment related to the patterning of the CF layer, thereby reducing equipment costs and reducing difficulty in exposure (mask) -Maintenance of alignment accuracy between base materials, uniformity of exposure dose, etc.).

【0006】しかし、これら利点の一方で、連続する金
属シート等の不透明な基材上に、順次に連続して各色着
色パターンで構成されるCF層を塗布/形成しているの
で、ガラス基板等の透明基材上にCF層を塗布/形成す
るように、製造ラインからガラス基板を抜き取って、感
光性着色組成物の欠陥検査をしたり、或いは透明フィル
ム上に塗布/形成するように、透明フィルムを途中で切
断して膜厚測定等の各種測定をすることは困難である。
特に、金属シートでは途中切断と再接続が難しいことか
ら、抜き取り測定は困難であり、さらに、不透明なので
塗布面側だけで測定、検査できる装置が必要となる。
However, on the other hand, since a CF layer composed of each color pattern is successively applied / formed on an opaque base material such as a continuous metal sheet, a glass substrate or the like is required. In order to apply / form a CF layer on a transparent base material, a glass substrate is extracted from a production line, and a defect inspection of a photosensitive coloring composition is performed, or a transparent material is applied / formed on a transparent film. It is difficult to cut the film in the middle and perform various measurements such as film thickness measurement.
In particular, since it is difficult to cut and reconnect a metal sheet in the middle, it is difficult to measure by sampling, and since it is opaque, a device that can measure and inspect only on the coated surface side is required.

【0007】また、CF層のムラ欠陥は、感光性着色組
成物の組成や分散状態等の品質、塗布時の温度や乾燥条
件、露光条件等の製造条件の不備によってCF層の面内
に部分的に現れる色濃度変化であり、このムラ欠陥はL
CDの表示品質を損なうので発生させないことが望まし
いが、発生した場合にはムラ検査によって排除する必要
がある.ガラス基板上に形成されたCF層のムラ検査で
あれば,CCDセンサで撮影したCF層の画像を,各種
画像処理によって処理してムラ欠陥を抽出し,基準と比
較して判定する方法等が提案されている。(特開平8−
159984号公報他)しかし、転写方式では連続する
金属シート等の不透明基材上のCF層を検査するので、
ガラス基板のように、抜き取って目視検査を行ったり、
上記の透過光型のムラ欠陥検査装置をそのまま適用する
のは困難である。
[0007] Further, uneven defects of the CF layer may be partially generated in the surface of the CF layer due to inadequate manufacturing conditions such as the quality of the composition and dispersion state of the photosensitive coloring composition, the temperature at the time of application, drying conditions, and exposure conditions. This is a color density change that appears in the image.
Since the display quality of a CD is impaired, it is desirable not to generate it. However, if it does occur, it is necessary to eliminate it by an unevenness inspection. In the case of a non-uniformity inspection of a CF layer formed on a glass substrate, there is a method of processing an image of the CF layer photographed by a CCD sensor through various image processings to extract a non-uniformity defect, and comparing it with a reference to determine. Proposed. (Japanese Unexamined Patent Publication No.
However, in the transfer method, a CF layer on an opaque substrate such as a continuous metal sheet is inspected.
Like a glass substrate, it can be pulled out for visual inspection,
It is difficult to apply the transmitted light type unevenness defect inspection apparatus as it is.

【0008】加えて,転写方式では,剥離層上にCF層
が形成されており、従来の反射型のムラ欠陥検査装置に
いては、一回の測定では,剥離層のムラ欠陥をCF層の
ムラ欠陥として誤検出し易いので、剥離層の形成時とC
F層の形成時の二回の測定を行い、離層形成時のムラ欠
陥検査データを記録し、CF層のムラ欠陥検査データか
ら差し引くことで両者を分離する作業が必要であった。
この作業には剥離層形成工程とCF層形成工程の両方に
反射型のムラ欠陥検査装置を要するのが、この作業なし
では画面内で良品のCF層部分をムラ欠陥を有する不良
のCF層部分として誤認識し、透明基材に転写すること
はないので生産効率を低下させる一因となる。
In addition, in the transfer method, a CF layer is formed on the release layer, and in a conventional reflection type non-uniform defect inspection apparatus, a single measurement removes the non-uniform defect in the release layer. It is easy to mistakenly detect it as a non-uniform defect.
It was necessary to perform two measurements at the time of forming the F layer, record the mura defect inspection data at the time of forming the delamination, and separate them by subtracting from the mura defect inspection data of the CF layer.
This work requires a reflection type non-uniformity defect inspection apparatus for both the peeling layer forming step and the CF layer forming step. Without this operation, a non-defective CF layer part having a non-uniform defect in a screen is replaced with a non-defective CF layer part. It is not recognized as erroneous and is not transferred to the transparent substrate, which is one of the causes of lowering the production efficiency.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記問題に
対処するためになされたものであり、その課題とすると
ころは、転写方式CFの利点である生産効率の高さ、小
型の製造設備による設備費の低さ、及びこれらが相乗し
た低コスト性を生かすため、転写シート上に塗布される
剥離層のムラ欠陥部に影響されることなく、一回のムラ
検査でCF層の各色着色パターンのムラ欠陥部を正しく
検出し、良好なCF層部分のみを転写し、得られるCF
の品質を一定のものとするカラーフィルタの製造方法を
提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to address the above problems, and has as its object the advantages of the transfer system CF, such as high production efficiency and small production equipment. To take advantage of the low equipment cost and the low cost of the combination of these factors, the CF layer can be colored in a single spot inspection without being affected by the spot defect of the release layer applied on the transfer sheet. An uneven defect portion of a pattern is correctly detected, and only a good CF layer portion is transferred to obtain a CF.
It is an object of the present invention to provide a method for manufacturing a color filter which can keep the quality of a color filter constant.

【0010】[0010]

【課題を解決するための手段】本発明は、連続したシー
ト状基材上に基材接着性の剥離層、該剥離層上に複数色
の着色パターンからなるカラーフィルタ層が設けられた
転写シートの、画面単位の領域内でムラ欠陥部が検出さ
れないカラーフィルタ層部分のみを、接着剤層を介して
画面単位の透明基材上、若しくは薄膜トランジスタ基板
上に転写してカラーフィルタを製造する工程に於いて、
一回のムラ検査で、剥離層のムラ欠陥部とカラーフィル
タ層の各色着色パターンのムラ欠陥部との弁別した検出
を剥離層のムラ欠陥部に影響されずに正確に行う際に、
(a)照明されたカラーフィルタ層の反射光画像を画像
撮影装置で撮影し、反射光画像から得られた画像輝度デ
ータを記憶し、(b)画像輝度データを画面単位毎に各
色の画像輝度分布データとし、画像輝度分布データから
計算して得られた閾値と比較し、ムラを検出して剥離層
及び各色着色パターンのムラ欠陥候補部とし、その座
標、面積、輝度値を記憶し、(c)剥離層及び各色着色
パターンのムラ欠陥候補部が複数隣接している集合を剥
離層及び各色着色パターンのムラ欠陥候補領域とし、そ
の座標、面積、平均輝度値を記憶し、(d)各色毎の剥
離層及び各色着色パターンのムラ欠陥候補領域の座標、
面積を相互に比較し、各色毎の剥離層及び各色着色パタ
ーンのムラ欠陥候補領域が相互に近傍座標、僅少面積差
ならば、その剥離層及び各色着色パターンのムラ欠陥候
補領域を剥離層のムラ欠陥候補領域と判断し、各色毎の
剥離層及び各色着色パターンのムラ欠陥候補領域が相互
に離れた座標、大面積差ならば、その剥離層及び各色着
色パターンのムラ欠陥候補領域を各色着色パターンのム
ラ欠陥候補領域と判断し、剥離層及び各色着色パターン
のムラ欠陥候補領域を剥離層のムラ欠陥候補領域と各色
着色パターンのムラ欠陥候補領域とに弁別して、記憶
し、(e)弁別した各色着色パターンのムラ欠陥候補領
域の平均輝度値と、該ムラ欠陥候補領域の周辺部の平均
輝度値とを比較することで各色着色パターンのムラ欠陥
部として検出し、剥離層のムラ欠陥部の有無に関わら
ず、画面単位の領域内で各色着色パターンのムラ欠陥部
が検出されないカラーフィルタ層部分のみを転写するこ
とを特徴とするカラーフィルタの製造方法である。
According to the present invention, there is provided a transfer sheet comprising a continuous sheet-like base material, a base material-adhesive release layer, and a color filter layer comprising a plurality of colored patterns provided on the release layer. In the step of transferring only the color filter layer portion in which the unevenness defect portion is not detected in the area of the screen unit to a transparent base material of the screen unit or a thin film transistor substrate via an adhesive layer to manufacture a color filter. In
In one non-uniformity inspection, when accurately detecting the non-uniformity defect portion of the peeling layer and the non-uniformity defect portion of each color coloring pattern of the color filter layer without being affected by the non-uniformity defect portion of the release layer,
(A) The reflected light image of the illuminated color filter layer is photographed by an image photographing device, and the image luminance data obtained from the reflected light image is stored. (B) The image luminance data is converted to the image luminance of each color for each screen unit. The distribution data is compared with a threshold value calculated from the image luminance distribution data, the non-uniformity is detected, the non-uniformity defect candidate part of the peeling layer and the colored pattern is stored, and its coordinates, area, and luminance value are stored. c) A set in which a plurality of peeling layers and non-uniformity defect candidate portions of each color coloring pattern are adjacent to each other is defined as a non-uniformity defect candidate region of the peeling layer and each color coloring pattern, and its coordinates, area, and average luminance value are stored. The coordinates of the peeling layer and the irregularity defect candidate area of each color coloring pattern,
The areas are compared with each other, and if the peeling layer for each color and the mura defect candidate area of each color pattern are in close proximity to each other, and if there is a small area difference, the peel layer and the mura defect candidate area of each color pattern will be compared with the peel layer unevenness. Judgment as a defect candidate area, if the peeling layer of each color and the mura defect candidate area of each color coloring pattern are far away from each other in coordinates and a large area difference, the peeling layer and the mura defect candidate area of each color coloring pattern are converted to each color coloring pattern. , And discriminated the peeling layer and the mura defect candidate area of each color coloring pattern into the mura defect candidate area of the peeling layer and the mura defect candidate area of each color coloring pattern, and stored (e). By comparing the average luminance value of the non-uniformity defect candidate area of each color coloring pattern with the average luminance value of the peripheral part of the non-uniformity defect candidate area, it is detected as the non-uniform defect part of each color coloring pattern. Or without mura defects of the layer, a method of manufacturing a color filter, wherein the uneven defective portion of each color colored pattern in the area of the screen unit to transfer only the color filter layer portions that are not detected.

【0011】本発明は、連続したシート状基材上に基材
接着性の剥離層、該剥離層上に複数色の着色パターンか
らなるカラーフィルタ層が設けられた転写シートの、画
面単位の領域内でムラ欠陥部が検出されないカラーフィ
ルタ層部分のみを、接着剤層を介して画面単位の透明基
材上、若しくは薄膜トランジスタ基板上に転写してカラ
ーフィルタを製造する工程に於いて、一回のムラ検査
で、剥離層のムラ欠陥部とカラーフィルタ層の各色着色
パターンのムラ欠陥部との弁別した検出を剥離層のムラ
欠陥部に影響されずに正確に行う際に、(a)カラーフ
ィルタ層を照明する光源と画像撮影装置とを複数使用
し、転写シートの法線からの角度、及び、若しくは、転
写シートの送り方向からの角度が異なる位置に複数の光
源を配置し、正反射位置、及び、乱反射位置に複数の画
像撮影装置を配置し、(b)複数の各光源毎に、異なる
波長強度分布と偏光状態とを組み合わせて剥離層のムラ
欠陥候補部の検出を低減させ、カラーフィルタ層の各色
着色パターンのムラ欠陥候補部の検出を最適化し、剥離
層のムラ欠陥部の有無に関わらず、画面単位の領域内で
各色着色パターンのムラ欠陥部が検出されないカラーフ
ィルタ層部分のみを転写することを特徴とするカラーフ
ィルタの製造方法である。
The present invention is directed to a transfer sheet in which a release layer having a substrate adhesive property is provided on a continuous sheet-like base material and a color filter layer comprising a plurality of colored patterns is provided on the release layer. In the process of transferring only the color filter layer portion in which the unevenness defect portion is not detected within the screen unit on a transparent base material or a thin film transistor substrate via an adhesive layer to manufacture a color filter, In the unevenness inspection, when accurately detecting the unevenness defect portion of the peeling layer and the unevenness defect portion of each color pattern of the color filter layer without being affected by the unevenness defect portion of the peeling layer, (a) the color filter Using a plurality of light sources for illuminating the layer and a plurality of image capturing devices, disposing a plurality of light sources at different angles from the normal line of the transfer sheet and / or from the direction in which the transfer sheet is fed, and setting the regular reflection position And (b) combining a different wavelength intensity distribution and a different polarization state for each of the plurality of light sources to reduce the detection of a candidate for a non-uniformity defect in the peeling layer, and Optimizes the detection of uneven defect candidate portions of each color coloring pattern of the filter layer, regardless of the presence or absence of the uneven defect portion of the peeling layer, only the color filter layer portion where no uneven defect portion of each color coloring pattern is detected within the area of each screen And a method for manufacturing a color filter.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。図1は、本発明における転写シート
の一実施例を示す断面図である。図1に示すように、転
写シート(10)は、連続したシート状基材(1)上に
下引き層(12)、剥離層(2)、及びCF層(7)が
順次形成されたものである。(3)、(4)、(5)、
(6)は、CF層(7)を構成する各々着色パターン
(赤)、着色パターン(緑)、着色パターン(青)、着
色パターン(黒)を示している。また、図2は、本発明
における転写方式CFの一実施例を示す断面図である。
図2に示すように、転写方式CF(11)は、透明基材
(9)上に接着剤層(8)、及びCF層(7)が形成さ
れたものである。
Embodiments of the present invention will be described below in detail. FIG. 1 is a sectional view showing one embodiment of the transfer sheet according to the present invention. As shown in FIG. 1, a transfer sheet (10) is a sheet in which an undercoat layer (12), a release layer (2), and a CF layer (7) are sequentially formed on a continuous sheet-like substrate (1). It is. (3), (4), (5),
(6) shows a colored pattern (red), a colored pattern (green), a colored pattern (blue), and a colored pattern (black) constituting the CF layer (7). FIG. 2 is a cross-sectional view showing an embodiment of the transfer system CF according to the present invention.
As shown in FIG. 2, the transfer system CF (11) has a structure in which an adhesive layer (8) and a CF layer (7) are formed on a transparent substrate (9).

【0013】本発明における転写方式CFを製造する方
法は、(1)連続したシート状基材上に基材接着性の剥
離層を設ける工程、(2)剥離層上に現像可能な感光性
着色組成物を塗布し、乾燥させる工程、(3)乾燥させ
た感光性着色組成物に、一定の間隔と形状となるパター
ンを持った露光用フォトマスクを通して感光性着色組成
物の感光波長で露光する工程、(4)露光により露光部
と非露光部とで現像溶媒に対する溶解差を生じた感光性
着色組成物を現像で選択的溶解させて所望のパターン形
状とし、必要に応じて加熱乾燥を行う工程、(5)必要
な色数に応じて(2)から(4)を繰り返し、着色パタ
ーン間に黒色パターンが形成された任意の大きさのCF
層を設けた転写シートを形成する工程、(6)転写シー
ト上で、LCDの画面単位に形成されたCF層のムラ検
査を行い、ムラ欠陥部が検出されて不良と判断されたC
F層部を記録し、転写装置に欠陥情報を伝達する工程、
(7)転写シート上のムラ検査で良好と判断されたCF
層部分を、透明基材とを液状の接着剤層を中間に介して
転写装置上にて重ね合わせた後、接着剤層が任意の厚さ
となるよう加圧密着し、光照射による硬化を行い、転写
シートを剥離してCF層を透明基材上に転写形成する工
程、(8)未硬化部の接着剤層を現像除去し、加熱硬化
させる工程、の以上(1)〜(8)の工程によって転写
方式CFを製造する方法である。
The method of producing the transfer CF according to the present invention comprises the steps of (1) providing a release layer having a substrate adhesive property on a continuous sheet-like substrate, and (2) developing photosensitive color on the release layer. Applying and drying the composition, and (3) exposing the dried photosensitive coloring composition at a photosensitive wavelength of the photosensitive coloring composition through an exposure photomask having a pattern having a certain interval and shape. Step (4) The photosensitive coloring composition having a difference in dissolution in a developing solvent between an exposed portion and a non-exposed portion due to exposure is selectively dissolved by development to obtain a desired pattern shape, and is heated and dried as necessary. Step (5) Repeat steps (2) to (4) according to the required number of colors to obtain a CF of any size in which a black pattern is formed between the colored patterns.
A step of forming a transfer sheet provided with a layer, (6) a non-uniformity inspection of a CF layer formed for each screen of the LCD is performed on the transfer sheet, and a non-uniform defect portion is detected and C is determined to be defective.
Recording the F layer portion and transmitting defect information to a transfer device;
(7) CF determined to be good in the unevenness inspection on the transfer sheet
After laminating the layer portion on a transfer device with a transparent base material and a liquid adhesive layer in between, the adhesive layer is pressed and adhered to an arbitrary thickness and cured by light irradiation. (1) to (8), a step of peeling off the transfer sheet to transfer and form the CF layer on the transparent substrate, and (8) a step of developing and removing the uncured portion of the adhesive layer and curing by heating. This is a method of manufacturing a transfer method CF by a process.

【0014】本発明は、連続的に転写方式CFが製造さ
れる工程の内、CF層の形成工程後に剥離層のムラ欠陥
部と、CF層の各色着色パターンのムラ欠陥部とを弁別
して検出し、剥離層のムラ欠陥部の有無に関わらず、画
面単位の領域内でムラ欠陥部が検出されない良好なカラ
ーフィルタ層部分のみを転写する製造方法であることを
特徴とする。上記ムラ検査は、転写シート上に形成され
たCF層のムラ欠陥部のみを正確に検出する目的で行わ
れる。塗布等の製造工程内条件によって剥離層に内在す
るムラ欠陥部をCF層の上から検出/抽出可能な、後述
するムラ欠陥検査装置を使用することで、本来は画面単
位でムラ欠陥部のないCF層でありながら、剥離層のム
ラ欠陥部の影響によって不良、すなわち、ムラ欠陥部の
有るCF層とされることを防止して、剥離層のムラ検査
用のムラ欠陥検査装置を使用せずに生産効率を向上さ
せ、良好な品質のCFを安定に製造することが可能とな
る。
According to the present invention, in the process of continuously producing the transfer type CF, after the step of forming the CF layer, the uneven defect portion of the release layer and the uneven defect portion of each color coloring pattern of the CF layer are discriminated and detected. Further, the method is characterized in that the method is a method of transferring only a good color filter layer portion in which no unevenness defect portion is detected in an area of each screen regardless of the presence or absence of the unevenness defect portion of the release layer. The unevenness inspection is performed for the purpose of accurately detecting only the unevenness defective portion of the CF layer formed on the transfer sheet. By using a later-described unevenness defect inspection apparatus capable of detecting / extracting an unevenness defect portion existing in the peeling layer from above the CF layer depending on conditions in a manufacturing process such as coating, there is essentially no unevenness defect portion for each screen. Despite being a CF layer, it is prevented from being defective due to the influence of the uneven defect portion of the release layer, that is, it is prevented from being a CF layer having the uneven defect portion. Thus, it is possible to improve the production efficiency and to stably produce good quality CF.

【0015】本発明におけるムラ検査によれば、剥離層
のムラ欠陥候補領域がCF層の各色着色パターンのムラ
検査に影響を及ぼし、CF層の複数色に渡りムラ欠陥候
補領域として近傍の領域に集中して位置相関性が現れる
ので、剥離層のムラ欠陥候補領域として判断することが
可能である。位置相関性の有無の判断は、各色毎のムラ
欠陥候補領域の周辺に、他色のムラ欠陥候補領域が入る
よう判断領域の大きさの設定と、各色間のムラ欠陥候補
領域の連続性とを考慮して行えば良く、CF層のムラ欠
陥候補領域をのみを効率良く抽出することを可能にす
る.この時、CF層の各色着色パターンは、各々の塗
布、現像等の製造条件が異なっており、同一露光用フォ
トマスクに傷、ゴミや汚れ等が有る場合を除き各色着色
パターンの同じ位置にムラ欠陥部を生じる可能性は非常
に低いので、上記の方法によって各色着色パターンでの
ムラ欠陥候補領域の位置相関性から剥離層のムラ欠陥候
補領域と区別することが可能である。
According to the unevenness inspection in the present invention, the unevenness defect candidate region of the peeling layer affects the unevenness inspection of each color pattern of the CF layer, and the unevenness candidate region over a plurality of colors of the CF layer is located in the nearby region as the unevenness defect candidate region. Since the position correlation is concentrated and appears, it can be determined as a candidate region for the unevenness defect of the peeled layer. The determination of the presence / absence of the positional correlation is performed by setting the size of the determination region so that the non-uniformity defect candidate region of another color is located around the non-uniformity defect candidate region of each color, and determining the continuity of the non-uniformity defect candidate region between the colors. In this case, it is possible to efficiently extract only the non-uniform defect candidate area of the CF layer. At this time, the manufacturing conditions such as coating and development are different for each color coloring pattern of the CF layer, and unevenness is formed at the same position of each color coloring pattern unless the same exposure photomask has scratches, dust, dirt, and the like. Since the possibility of generating a defective portion is very low, it is possible to distinguish from the uneven defect candidate region of the peeling layer from the positional correlation of the uneven defect candidate region in each color coloring pattern by the above method.

【0016】請求項2に係る発明は、CF層を照明する
光源と画像撮影装置とを複数使用し、転写シートの法線
からの角度、及び、若しくは、転写シートの送り方向と
の角度が異なる位置に複数の光源を配置し、正反射位
置、及び、乱反射位置に複数の画像撮影装置を配置し、
使用する複数の各光源毎に異なる波長強度分布と偏光状
態とを組み合わせて行うことを特徴とする。CF層の各
色着色パターンのムラ欠陥候補部を検出する最適条件
は、各色毎に異なるが、この各色毎に異なる最適条件
と、剥離層のムラ欠陥候補部の検出を低減可能とする条
件とを満たすように、光源と画像撮影装置の条件を選定
し、CF層の各色着色パターンのムラ欠陥候補部の検出
を最適化させる。
According to a second aspect of the present invention, a plurality of light sources for illuminating the CF layer and a plurality of image photographing devices are used, and an angle from a normal line of the transfer sheet and / or an angle from a feed direction of the transfer sheet are different. Place a plurality of light sources in the position, specular reflection position, and place a plurality of image capturing devices in the diffuse reflection position,
The method is characterized in that different wavelength intensity distributions and polarization states are combined for each of a plurality of light sources to be used. Optimum conditions for detecting the mura defect candidate portion of each color coloring pattern of the CF layer are different for each color. However, the optimum conditions which differ for each color and the conditions which can reduce the detection of the mura defect candidate portion for the peeling layer are as follows. The conditions of the light source and the image capturing apparatus are selected so as to satisfy the conditions, and the detection of the uneven defect candidate portion of each color pattern of the CF layer is optimized.

【0017】特に、剥離層が特定色に着色している場合
は、CF層中の近似色に影響が出易いので、光源の波長
分布と偏光状態、照明角度を選定し、CF層の色濃度情
報が剥離層よりも強くなる条件下でムラ検査を行いCF
層のムラ欠陥候補部の抽出の誤検出の低減を可能とする
ものである。以上から得られたCF層のムラ欠陥情報を
転写装置に伝達し、良好と判断された画面単位のCF層
のみを透明基板などに転写することで、良好なCFを効
率良く製造することが可能となる。
In particular, when the release layer is colored in a specific color, the approximate color in the CF layer is likely to be affected. Therefore, the wavelength distribution of the light source, the polarization state, and the illumination angle are selected, and the color density of the CF layer is determined. A non-uniformity inspection is performed under the condition that the information is stronger than that of the release layer, and CF
It is intended to reduce the erroneous detection of the extraction of the uneven defect candidate portion of the layer. By transmitting the unevenness defect information of the CF layer obtained from the above to the transfer device and transferring only the CF layer of a screen unit determined to be good to a transparent substrate or the like, a good CF can be efficiently manufactured. Becomes

【0018】図3は、本発明において用いられるムラ欠
陥検査装置の一実施例の概念を示す説明図である。この
ムラ欠陥検査装置(20)は、CCDラインセンサやC
CDカメラ等による画像撮影装置(22)と、ハロゲン
ランプ、キセノンランプ等の発光体、投影光学系、若し
くは、光ファイバによる伝送光学系、必要に応じて波長
強度分布を変化させる光学フィルタや、偏光状態を変化
させる偏光フィルタを組み合わせた光源(21)と、画
像撮影装置(22)からの画像を加工してCF層の各色
着色パターンに含まれるムラが強調された加工画像を生
成する画像処理手段と、加工画像を演算処理してムラ欠
陥部を検出する演算処理手段と、記録された各色毎のム
ラ欠陥部の大きさ、位置相関を求め、CF層のムラ欠陥
部を剥離層のムラ欠陥部と弁別する演算処理手段と、検
出されたCF層のムラ欠陥部の位置を記録し転写装置
(図示せず)に伝送する伝送手段とを備えた演算装置
(23)で構成されたものである。
FIG. 3 is an explanatory view showing the concept of an embodiment of an unevenness defect inspection apparatus used in the present invention. This unevenness defect inspection device (20) is a CCD line sensor or C
An image capturing device (22) using a CD camera or the like, a light emitting body such as a halogen lamp or a xenon lamp, a projection optical system, or a transmission optical system using an optical fiber, an optical filter that changes a wavelength intensity distribution as necessary, An image processing means for processing an image from a light source (21) combined with a polarizing filter for changing a state and an image capturing device (22) to generate a processed image in which unevenness included in each color coloring pattern of a CF layer is enhanced. And an arithmetic processing means for arithmetically processing the processed image to detect a non-uniform defect portion, obtaining the size and positional correlation of the non-uniform defect portion for each recorded color, and replacing the non-uniform defect portion in the CF layer with the non-uniform defect in the peeling layer. An arithmetic processing unit (23) including an arithmetic processing unit for discriminating the position of the uneven defect portion of the CF layer and a transmitting unit for transmitting the detected position of the unevenness defect portion of the CF layer to a transfer device (not shown). Than it is.

【0019】画像撮影装置(22)に使用するCCDラ
インセンサやCCDカメラは、CF層を撮影する際、セ
ンサ上に投影される周期的な各色着色パターンの各色画
素の大きさがセンサの受光素子ピッチよりも十分に大き
くなるように高精細なものを使用することが望ましく、
さらに、高速で高精度の画像撮影が可能なように高速、
高感度で低ノイズなものの使用が望ましい。
In a CCD line sensor or a CCD camera used in the image photographing device (22), when photographing a CF layer, the size of each color pixel of a periodic colored pattern projected on the sensor is determined by the light receiving element of the sensor. It is desirable to use a high-definition thing that is sufficiently larger than the pitch,
In addition, high-speed, high-speed image capture is possible,
It is desirable to use one with high sensitivity and low noise.

【0020】光源(21)は、画像撮影装置(22)の
感度と速度、画像撮影装置、及び光源の転写シートとの
角度、剥離層の着色とCF層の反射率、使用する光学フ
ィルタ等を考慮して発光体の種類と光強度、光学系を選
定する。特に、画像撮影装置及び光源が乱反射位置にあ
って、剥離層が着色されており、光学フィルタを使用す
る場合には、画像撮影装置に入射する光量が少なくなる
ので光強度の高い発光体を選定する必要がある。加え
て、剥離層の着色がCF層の色に近似している場合に
は、両者を分離しやすい波長分布を有する光学フィルタ
を使用することでムラ欠陥部の検出精度を向上させるこ
とが可能である。この際、必要に応じて、偏光フィルタ
を使用することにより着色した剥離層とCF層の画像を
分離し易くすると共に、CF層の表面反射を低減させて
ムラ欠陥部の検出をし易くすることも可能である。
The light source (21) includes the sensitivity and speed of the image photographing device (22), the angle of the image photographing device and the light source with the transfer sheet, the coloring of the peeling layer and the reflectance of the CF layer, the optical filter to be used, and the like. The type, light intensity, and optical system of the luminous body are selected in consideration of the above. In particular, when the image capturing device and the light source are in the irregular reflection position, the peeling layer is colored, and when an optical filter is used, a light emitter with a high light intensity is selected because the amount of light incident on the image capturing device is small. There is a need to. In addition, when the color of the peeling layer is similar to the color of the CF layer, it is possible to improve the detection accuracy of the uneven defect portion by using an optical filter having a wavelength distribution that can easily separate the two. is there. At this time, if necessary, a polarizing filter is used to facilitate separation of the colored release layer and the image of the CF layer, and to reduce the surface reflection of the CF layer to facilitate detection of the uneven defect portion. Is also possible.

【0021】ムラ欠陥部の検出を行うための画像処理と
演算処理は、画像撮影装置から得られた画像データの記
憶、画像データへの各種画像処理、及び基準濃度との比
較によるムラ画像領域抽出、位置相関によるCF層のム
ラ欠陥を弁別する演算処理等であり、ワークステーショ
ン等の中央演算処理装置(CPU)、制御装置、及び制
御用の各種ソフトウエアによって実現される。転写方式
CFの製造において、剥離層及びCF層の塗布方法や現
像方法等によって、ムラ欠陥の種類が変化する場合にも
画像処理と演算処理用のソフトウェアを変更することに
よって、ムラ欠陥部の検出精度が変わらないように対応
することが可能である。
Image processing and arithmetic processing for detecting the uneven defect portion include storing image data obtained from the image photographing apparatus, performing various image processing on the image data, and extracting an uneven image area by comparison with a reference density. And arithmetic processing for discriminating unevenness defects in the CF layer due to positional correlation, and is realized by a central processing unit (CPU) such as a workstation, a control device, and various control software. In the production of the transfer method CF, even when the type of the mura defect changes due to the coating method and the developing method of the release layer and the CF layer, the software for image processing and arithmetic processing is changed to detect the mura defect part. It is possible to respond so that the accuracy does not change.

【0022】本発明における転写シートのシート状基材
(1)は、剥離層の形成や感光性着色組成物の塗布、加
熱や転写等のCF製造工程における耐久性を有すると共
に、転写工程での寸法精度を維持する上から、透明基材
と近似した熱膨張率であることが望ましく、さらに、洗
浄等の再生工程で再利用できることがコスト面から望ま
しい。上記の条件を満足するシート状基材としては、鉄
〜ニッケル合金、例えば、42合金(ニッケル42重量
%、残部鉄)、アンバー(ニッケル36重量%、マンガ
ン微量、残部鉄)等が適当である。これらの金属板また
は金属箔は、各工程内での取り扱い性から板厚は0.1
5mm以下、望ましくは0.06mm〜0.09mmで
ある。
The sheet-like substrate (1) of the transfer sheet according to the present invention has durability in a CF production process such as formation of a release layer, application of a photosensitive coloring composition, heating and transfer, and also has a high durability in the transfer process. From the viewpoint of maintaining the dimensional accuracy, it is desirable that the thermal expansion coefficient is close to that of the transparent base material, and it is desirable that the thermal expansion coefficient can be reused in a regeneration step such as washing in terms of cost. As the sheet-like base material satisfying the above conditions, an iron-nickel alloy, for example, 42 alloy (nickel 42% by weight, balance iron), amber (nickel 36% by weight, manganese trace amount, balance iron) and the like are suitable. . These metal plates or metal foils have a thickness of 0.1 due to the ease of handling in each step.
It is 5 mm or less, preferably 0.06 mm to 0.09 mm.

【0023】離形層(2)は、CF層の形成に用いる感
光性着色組成物の有機溶剤に耐性を有する高分子膜であ
り、シート状基材との良好な密着性を有すると共に、C
F層の形成工程でCF層を剥離させない密着性と、透明
基材への転写工程に於いてはCF層との密着力が転写さ
れる接着剤層へ接着力よりも低く設定されていることが
必要である。また、弾性と柔軟性を有することが,転写
適性から望ましく、また、ムラ欠陥部を低減させるため
には,塗布性と乾燥性の良好なことが望ましい。具体的
には、水溶性樹脂としてカゼイン、ポリビニルアルコー
ル、ヒドロキシエチルセルロース等が挙げられる。剥離
層の膜厚としては、10μm以上100μm以下が好ま
しい。剥離層に、色相や透明度を考慮して選定した酸化
亜鉛や酸化チタン等の白色顔料や着色顔料、染料を、混
合/分散して用いることで剥離層としてのムラ欠陥部の
検出を低減させることが可能である。
The release layer (2) is a polymer film having resistance to an organic solvent of the photosensitive coloring composition used for forming the CF layer, and has good adhesion to a sheet-like substrate and
Adhesiveness that does not peel off the CF layer in the step of forming the F layer, and that in the step of transferring to the transparent substrate, the adhesive force with the CF layer is set lower than the adhesive force to the adhesive layer to be transferred. is necessary. Further, it is desirable to have elasticity and flexibility from the viewpoint of transferability, and it is desirable to have good coating properties and drying properties in order to reduce unevenness defects. Specifically, examples of the water-soluble resin include casein, polyvinyl alcohol, and hydroxyethyl cellulose. The thickness of the release layer is preferably from 10 μm to 100 μm. Reduce the detection of uneven defect portions as a release layer by mixing / dispersing white pigments such as zinc oxide and titanium oxide, coloring pigments, and dyes selected in consideration of hue and transparency in the release layer. Is possible.

【0024】CF層を形成する感光性着色組成物として
は、必要な複数色の顔料若しくは染料、アルカリ可溶性
樹脂、エチレン性不飽和基を有する光重合性化合物、光
重合開始剤を構成成分とするものを用いることができ
る。
The photosensitive coloring composition for forming the CF layer comprises, as constituents, pigments or dyes of necessary colors, an alkali-soluble resin, a photopolymerizable compound having an ethylenically unsaturated group, and a photopolymerization initiator. Can be used.

【0025】着色剤は、CFとして必要な各色、赤色、
緑色、青色、黒色各々の色調を有する顔料や染料を適宜
選定して、顔料便覧等に記載された公知の顔料が使用可
能である。これらはCF用顔料として必要な分光特性内
で適切な透明度と着色力を有し、耐熱性等の耐久性を兼
ね備えていることが望ましく、また、感光性着色組成物
としても適切な粘度特性や塗工適性等が発現するよう、
樹脂分等との相性を考慮して選定する。
Coloring agents include each color required for CF, red,
Known pigments described in Pigment Handbook and the like can be used by appropriately selecting pigments and dyes having respective colors of green, blue and black. It is desirable that these have appropriate transparency and coloring power within the spectral characteristics required for CF pigments, and also have durability such as heat resistance, and also have appropriate viscosity characteristics and photosensitive coloring compositions. To develop coating suitability, etc.
Select in consideration of compatibility with the resin content.

【0026】本発明に使用可能なアルカリ可溶性樹脂と
しては、(メタ)アクリル酸を含む(メタ)アクリル系
樹脂、ロジン系樹脂あるいはマレイン酸系樹脂等が用い
られ、現像液として炭酸ソーダ、苛性ソーダ等の水溶液
やジメチルベンジルアミン、トリエタノールアミン等の
有機アルカリを使用する。
As the alkali-soluble resin usable in the present invention, a (meth) acrylic resin containing (meth) acrylic acid, a rosin resin, a maleic acid resin, or the like is used. As a developing solution, sodium carbonate, caustic soda, or the like is used. And an organic alkali such as dimethylbenzylamine and triethanolamine.

【0027】光重合性化合物は、フリーラジカル付加重
合が可能な、または架橋可能なエチレン性不飽和基を有
する化合物であって、1以上のエチレン性不飽和基、例
えば、ビニル基またはアリル基を有するモノマー、オリ
ゴマー、または末端または側鎖にエチレン性不飽和基を
有するポリマーである。
The photopolymerizable compound is a compound having an ethylenically unsaturated group capable of undergoing free radical addition polymerization or crosslinkable, and having one or more ethylenically unsaturated groups, for example, a vinyl group or an allyl group. A monomer, oligomer, or polymer having an ethylenically unsaturated group at the terminal or side chain.

【0028】光重合開始剤としては、アセトフェノン系
光開始剤、ベンゾイン系、ベンゾフェノン系光開始剤、
チオキサンソン系光開始剤、トリアジン系光開始剤及び
カルバゾール系光開始剤、イミダゾール系光開始剤等の
公知の化合物等を用いることが可能である。
Examples of the photopolymerization initiator include acetophenone-based photoinitiators, benzoin-based and benzophenone-based photoinitiators,
Known compounds such as a thioxanthone-based photoinitiator, a triazine-based photoinitiator, a carbazole-based photoinitiator, and an imidazole-based photoinitiator can be used.

【0029】上記で述べた、顔料若しくは染料の着色
剤、アルカリ可溶性樹脂、重合性化合物、光重合開始剤
を構成成分としている感光性着色組成物は、使用する着
色剤の光学特性や混合比率、分散状態にもよるが、要求
される光学特性に合致するように1μm〜10μm程度
に形成される。この時、各色の膜厚が近似した値になる
よう設定する事がCF表面の平坦性が向上して望まし
い。
As described above, the photosensitive coloring composition containing a pigment or dye coloring agent, an alkali-soluble resin, a polymerizable compound, and a photopolymerization initiator as constituents can be used in combination with the optical characteristics and mixing ratio of the coloring agent used. Although it depends on the dispersion state, it is formed to have a thickness of about 1 μm to 10 μm so as to meet required optical characteristics. At this time, it is desirable to set the film thickness of each color to an approximate value because the flatness of the CF surface is improved.

【0030】感光性着色組成物や剥離層の製造で着色顔
料を分散する手段として、三本ロールミル、二本ロール
ミル、サンドミル、ニーダー等の各種分散手段を使用で
きる。また、適宜、各種界面活性剤、顔料の誘導体等の
分散助剤を添加しても良い。
Various means such as a three-roll mill, a two-roll mill, a sand mill, and a kneader can be used as a means for dispersing the color pigment in the production of the photosensitive coloring composition and the release layer. In addition, various surfactants and dispersing aids such as pigment derivatives may be appropriately added.

【0031】上記シート状基材上に剥離層、及び感光性
着色組成物を塗布する手段としては、混合/分散された
各々の塗布液の粘度特性に合致する塗布方法を選択して
行えば良く、高粘度の場合はロールコート法、リップコ
ータ法等で、低粘度の場合にはスプレーコート法、ダイ
コート法、グラビアコート法等、塗布平坦性が良好な方
法を選択して用いれば良い。
As a means for applying the release layer and the photosensitive coloring composition on the sheet-like base material, a coating method that matches the viscosity characteristics of each of the mixed / dispersed coating liquids may be selected. If the viscosity is high, a method with good coating flatness such as a roll coating method or a lip coater method may be used, and if the viscosity is low, a method having good coating flatness such as a spray coating method, a die coating method, a gravure coating method may be used.

【0032】転写シート上に形成されたCF層を透明基
材に転写する際に使用する接着剤は、重合性のエチレン
性不飽和基と、アルカリ可溶性樹脂と、希釈モノマー
と、光増感剤、及び添加剤から構成されるものが望まし
く、透明基材への接着性と、CF層を転写シートから転
写させる接着力とを両立させる接着力特性と未硬化部分
がアルカリ現像可能な特性を有していることが必要であ
る。
The adhesive used when transferring the CF layer formed on the transfer sheet to a transparent substrate is a polymerizable ethylenically unsaturated group, an alkali-soluble resin, a diluting monomer, a photosensitizer, , And an additive are desirable, and have an adhesive force characteristic for achieving both the adhesiveness to the transparent substrate and the adhesive force for transferring the CF layer from the transfer sheet, and a characteristic that the uncured portion can be alkali-developed. It is necessary to do.

【0033】[0033]

【実施例】以下に、本発明の実施例を挙げて詳細に説明
する。 <実施例1> (工程1)[剥離層形成] 連続したシート状基材として、0.11mmの圧延42
合金(ニッケル42重量%、残部鉄)板を選定し、下記
組成からなる剥離層塗液を調製し、ダイコータで塗布
後、温風乾燥して膜厚30μmの剥離層が形成された転
写シート製作した。 <剥離層塗液の組成> デスモヘン651 (バイエル社製) 1.2重量部 デスモジュールN−75(バイエル社製) 1.0重量部 フッ素系界面活性剤フロラードFC−170 (住友スリーエム(株)製) 0.005重量部
The present invention will be described below in detail with reference to examples. <Example 1> (Step 1) [Formation of release layer] As a continuous sheet-like base material, 0.11 mm roll 42 was used.
An alloy (nickel 42% by weight, balance iron) plate was selected, a release layer coating solution having the following composition was prepared, applied with a die coater, and dried with warm air to produce a transfer sheet having a 30 μm-thick release layer. did. <Composition of release layer coating liquid> Desmohen 651 (manufactured by Bayer) 1.2 parts by weight Desmodur N-75 (manufactured by Bayer) 1.0 part by weight Fluorinated surfactant Florard FC-170 (Sumitomo 3M Ltd.) 0.005 parts by weight

【0034】 (工程2)[感光性着色組成物の調製] <アルカリ可溶性樹脂> メタクリル酸ブチル 55重量部 メタクリル酸メチル 20重量部 2−ヒドロキシエチルメタクリレート 15重量部 アクリル酸メチル 10重量部 を、シクロヘキサノンを溶媒として共重合させ、アルカ
リ可溶性樹脂が40重量部、溶媒が60重量部の比率に
なるよう調製した。
(Step 2) [Preparation of photosensitive coloring composition] <Alkali-soluble resin> butyl methacrylate 55 parts by weight methyl methacrylate 20 parts by weight 2-hydroxyethyl methacrylate 15 parts by weight Methyl acrylate 10 parts by weight with cyclohexanone Was used as a solvent to prepare an alkali-soluble resin in a ratio of 40 parts by weight and a solvent in a ratio of 60 parts by weight.

【0035】 <感光性着色組成物> アルカリ可溶性樹脂 10重量部 多官能オリゴエステルアクリレート ジペンタエリスリトールヘキサアクリレート 5重量部 光重合開始剤 トリクロロメチルS−トリアジン 0.5重量部 希釈溶剤 シクロヘサキノン 45重量部 着色顔料(各色) 5重量部 各色顔料は、以下のカラーインデックス(C.I.)ナ
ンバーで示されたものを使用する。 赤色:C.I.赤色顔料177 緑色:C.I.緑色顔料36及びC.I.黄色顔料139 (9重量部:1重量部) 青色:C.I.青色顔料15 黒色:C.I.黒色顔料7 上記の各組成物を混合した後、ビーズミル分散機で練肉
して、顔料が十分に分散された良好な分光特性を有する
各色の感光性着色組成物を調製した。
<Photosensitive coloring composition> Alkali-soluble resin 10 parts by weight Polyfunctional oligoester acrylate dipentaerythritol hexaacrylate 5 parts by weight Photopolymerization initiator trichloromethyl S-triazine 0.5 parts by weight Diluent solvent cyclohesaquinone 45 parts by weight Coloring Pigment (each color) 5 parts by weight For each color pigment, the one indicated by the following color index (CI) number is used. Red: C.I. I. Red pigment 177 Green: C.I. I. Green pigment 36 and C.I. I. Yellow pigment 139 (9 parts by weight: 1 part by weight) Blue: C.I. I. Blue pigment 15 Black: C.I. I. Black Pigment 7 After mixing each of the above compositions, the mixture was kneaded with a bead mill disperser to prepare a photosensitive coloring composition of each color having good spectral characteristics in which the pigment was sufficiently dispersed.

【0036】(工程3)[CF層の形成] まず、黒色の感光性着色組成物を、剥離層が形成された
連続するシート状(ロール状に巻き取った物)の基材を
巻き出し、均一な膜面となるようにダイコータで塗布し
た後、70℃20分間相当の静置乾燥となるよう調整さ
れた乾燥炉を通過させ、黒色の感光性着色組成物層を形
成した。
(Step 3) [Formation of CF Layer] First, a black photosensitive coloring composition is unwound from a continuous sheet-shaped (rolled-up) base material on which a release layer is formed. After coating with a die coater so as to form a uniform film surface, the film was passed through a drying oven adjusted to a still drying equivalent to 70 ° C. for 20 minutes to form a black photosensitive coloring composition layer.

【0037】塗布直後に、事前に黒色の感光性着色組成
物の膜厚−透過率で校正してあるクラボウ社製KG−1
10を使用し、剥離層の影響を受けない赤外線波長域を
選定して測定した。前記剥離層塗液の塗布層の膜厚測定
と同様に、膜厚測定装置を移動ステージ上に設けて移動
させながら測定し、測定値をダイコータの塗布条件の制
御に使用した。得られた黒色の感光性着色組成物の塗布
層の厚みは約1.5μmで全面一様な膜厚を有し、表面
状態は平滑であった。
Immediately after coating, KG-1 manufactured by Kurabo Industries, which has been calibrated in advance with the thickness-transmittance of the black photosensitive coloring composition.
Using No. 10, an infrared wavelength range not affected by the release layer was selected and measured. As in the measurement of the film thickness of the coating layer of the release layer coating solution, the film thickness measuring device was provided on a moving stage and measured while moving, and the measured value was used for controlling the coating conditions of the die coater. The thickness of the coating layer of the obtained black photosensitive coloring composition was about 1.5 μm, the entire surface had a uniform thickness, and the surface state was smooth.

【0038】次に、縦240μm×幅80μmの開口部
と線幅6μmの枠部分の繰り返しパターンが、黒色パタ
ーン(ブラックマトリクス)となるよう形成されたマス
クを、上記感光性着色組成物層に近接させ、超高圧水銀
灯により露光量400mJ/cm2 の条件で露光し
た。露光後、温度20℃のアルカリ現像液を噴出圧力
1.47×105 Paでスプレー現像を30秒行い、
未露光部位の感光性着色組成物層を除去した。現像処理
後の転写シートを水切り、乾燥させた後、150℃20
分間相当の加熱硬膜処理をした。硬膜後のパターン化さ
れた感光性着色組成物層の厚みは約1.3μmであっ
た。
Next, a mask formed so that a repetitive pattern of an opening having a length of 240 μm × a width of 80 μm and a frame portion having a line width of 6 μm becomes a black pattern (black matrix) is placed close to the photosensitive coloring composition layer. Then, exposure was performed using an ultra-high pressure mercury lamp under the conditions of an exposure amount of 400 mJ / cm 2. After the exposure, spray development was performed for 30 seconds at an ejection pressure of 1.47 × 105 Pa with an alkali developing solution at a temperature of 20 ° C.
The unexposed portions of the photosensitive coloring composition layer were removed. After the transfer sheet after development processing is drained and dried,
The film was heated and hardened for a minute. The thickness of the patterned photosensitive coloring composition layer after hardening was about 1.3 μm.

【0039】同様にして製作された赤色、緑色、青色の
各色感光性着色組成物を、順次、ブラックマトリクスが
形成されたシート状基材上へ、塗布、乾燥、露光、加熱
の各処理を行いCF層を形成した。この時、各色の乾燥
後の膜厚を光ビームを集光させたフィルメトリックス社
製のF20膜厚測定装置で測定し、塗布条件を制御して
設計値の膜厚を得た。
The red, green, and blue photosensitive coloring compositions produced in the same manner are sequentially coated, dried, exposed, and heated on a sheet substrate on which a black matrix is formed. A CF layer was formed. At this time, the film thickness of each color after drying was measured with an F20 film thickness measuring device manufactured by Filmetrics Inc., which focused the light beam, and the coating conditions were controlled to obtain a designed film thickness.

【0040】(工程4)[ムラ検査工程] 転写シート上に形成されたCF層を、ライン状の細い照
明光となるよう形成されている光ファイバを通したキセ
ノンランプ光で照明し、CCDラインセンサからなる画
像撮影装置でCF画像を取り込んで記憶させた後、以下
の手順でムラ検査を行い剥離層のムラ欠陥部に影響され
ないように、CF層のムラ欠陥部を検出した。検出され
たCF層のムラ欠陥部の位置を記録し、画面単位内にC
F層のムラ欠陥部のあるCF層部分は、次の転写工程で
転写されないよう処置した。
(Step 4) [Mura Inspection Step] The CF layer formed on the transfer sheet is illuminated with a xenon lamp light passing through an optical fiber formed into thin linear illumination light, and a CCD line is formed. After the CF image was captured and stored by an image capturing device including a sensor, the unevenness inspection was performed in the following procedure to detect the unevenness defective portion of the CF layer so as not to be affected by the unevenness defective portion of the peeling layer. The position of the detected uneven defect portion of the CF layer is recorded, and C
The CF layer portion having the uneven defect portion of the F layer was treated so as not to be transferred in the next transfer step.

【0041】ステップ1;画像撮像装置より出力される
画像輝度データを記憶 画像撮影装置で撮像されたCF画像の画像輝度データを
補助記憶装置に記憶させる。記憶される画像輝度データ
は、R、G、Bの各色各画素毎に輝度データを持つ。こ
こで、色をc、画素座標を(x,y)、各色の各画素で
の輝度データをD(c,x,y)と表す事にする。
Step 1: Storing image luminance data output from the image capturing device Image luminance data of the CF image captured by the image capturing device is stored in the auxiliary storage device. The stored image luminance data has luminance data for each pixel of each color of R, G, and B. Here, the color is represented by c, the pixel coordinates are represented by (x, y), and the luminance data of each pixel of each color is represented by D (c, x, y).

【0042】ステップ2;画像輝度分布データ作成 補助記憶装置に記憶されたCF画像の画像輝度データか
ら、各色毎、各画素の輝値度の度数を計算して度数分布
を求め、各色毎の画像輝度分布データを得る。
Step 2: Creation of image brightness distribution data From the image brightness data of the CF image stored in the auxiliary storage device, the frequency of the brightness value of each pixel is calculated by calculating the frequency of each pixel, and the frequency distribution is obtained. Obtain brightness distribution data.

【0043】ステップ3;最頻輝度値、最大輝度値、最
小輝度値の算出 画像輝度分布データから、各色での最頻輝度値(Dmi
d)、最大輝度値(Dmax)、最小輝度値(Dmi
n)を算出する。Dmid、Dmaxは、連続した画像
輝度分布データに基づくヒストグラムの両端であり、こ
れから外れた画像ノイズ及び異常部と思われる特異点
(Dout)は最大及び最小輝度値とは認知しない事を
前提とする。また、最頻輝度値(Dmid)は最も出現
度数の大きな輝度値を意味する。図5に、画像輝度分布
データからのDmid、Dmax、Dmin、Dout
の事例を示す。
Step 3: Calculation of mode luminance value, maximum luminance value and minimum luminance value From the image luminance distribution data, the mode luminance value (Dmi
d), maximum luminance value (Dmax), minimum luminance value (Dmi)
n) is calculated. Dmid and Dmax are both ends of a histogram based on continuous image luminance distribution data, and it is assumed that image noise and singular points (Dout) deemed to be abnormal parts deviating therefrom are not recognized as maximum and minimum luminance values. . The mode luminance value (Dmid) means a luminance value with the highest frequency of appearance. FIG. 5 shows Dmid, Dmax, Dmin, and Dout from the image luminance distribution data.
Here is an example.

【0044】ステップ4;剥離層及び着色パターンのム
ラ欠陥候補部の検出処理 輝度データD(c,x,y)を2値化し、各色における
画素を正常部とムラ欠陥候補部に2分する。この時、2
値化した輝度データをD’(c,x,y)とし、D’
(c,x,y)=0を正常部、D’(c,x,y)=1
をムラ欠陥候補部と定義する。また、A=|Dmin−
Dmax|と定義し、予め3つの判定定数K、α、βを
設定しておく。Kは規格階調数と呼ばれ、DminとD
maxの間の階調数を、この規格階調数に再設定するた
めの定数である。αとβ(α<β)は、輝度閾値と呼ば
れ、AとKによって規格化された輝度データD(c,
x,y)を2値化するための閾値である。
Step 4: Detection processing of the unevenness defect candidate portion of the peeling layer and the colored pattern The luminance data D (c, x, y) is binarized, and the pixel of each color is divided into a normal portion and an unevenness defect candidate portion. At this time, 2
Valued luminance data is defined as D '(c, x, y), and D'
(C, x, y) = 0 is the normal part, and D '(c, x, y) = 1
Is defined as an uneven defect candidate part. A = | Dmin-
Dmax |, and three determination constants K, α, and β are set in advance. K is called a standard gradation number, and Dmin and D
It is a constant for resetting the number of gradations between max to this standard number of gradations. α and β (α <β) are called luminance thresholds, and luminance data D (c,
x, y).

【0045】以下の数式(1)、又は数式(2)から2
値化を行う。数式(1)では、K(D(c,x,y)−
Dmin)/Aによって、輝度データD(c,x,y)
を規格化する。数式(2)では、K(D(c,x,y)
−(2Dmid−Dmax))/Aによって輝度データ
D(c,x,y)を規格化する。
From the following equation (1) or equation (2), 2
Perform value conversion. In equation (1), K (D (c, x, y)-
Dmin) / A, the luminance data D (c, x, y)
Is standardized. In equation (2), K (D (c, x, y)
-(2Dmid-Dmax)) / A is used to normalize the luminance data D (c, x, y).

【0046】 |Dmin−Dmid|≦|Dmax−Dmid|の場合 K(D(c,x,y)−Dmin)/A<α ならば、D’(c,x,y) =1 α≦K(D(c,x,y)−Dmin)/A≦β ならば、D’(c,x,y) =0 K(D(c,x,y)−Dmin)/A>β ならば、D’(c,x,y) =1 ・・・・・・・(1)When | Dmin−Dmid | ≦ | Dmax−Dmid | If K (D (c, x, y) −Dmin) / A <α, then D ′ (c, x, y) = 1 α ≦ K If (D (c, x, y) −Dmin) / A ≦ β, then D ′ (c, x, y) = 0 K (D (c, x, y) −Dmin) / A> β, D ′ (c, x, y) = 1 (1)

【0047】 |Dmin−Dmid|>|Dmax−Dmid|の場合 K(D(c,x,y)−(2Dmid−Dmax))/A<α ならば、D ’(c,x,y)=1 α≦K(D(c,x,y)−(2Dmid−Dmax))/A≦β ならば、D ’(c,x,y)=0 K(D(c,x,y)−(2Dmid−Dmax))/A>β ならば、D '((c,x,y)=1 ・・・・・・・(2)If | Dmin-Dmid |> | Dmax-Dmid | If K (D (c, x, y)-(2Dmid-Dmax)) / A <α, then D '(c, x, y) = If 1α ≦ K (D (c, x, y) − (2Dmid−Dmax)) / A ≦ β, then D ′ (c, x, y) = 0 K (D (c, x, y) − ( If 2Dmid−Dmax)) / A> β, D ′ ((c, x, y) = 1 (2)

【0048】ステップ5;ラベリング 画像輝度データを、各色毎に画素単位で剥離層及び着色
パターンの正常部とムラ欠陥候補部とに分離したが、ム
ラ欠陥という領域をもった面欠陥候補部として認識され
ていない。そこで、D’(c,x,y)=1が隣接して
いる複数のムラ欠陥候補部を、1つの面として認識する
ためラベリングする。この時、ラベリングした複数のム
ラ欠陥候補部からなる集合を、ムラ欠陥候補領域とす
る。そして、ラベル番号=n(nは自然数)と設定した
ムラ欠陥候補領域に対してD’’(c,x,y,n)を
数式(3)で定義する。 D’’(c,x,y,n)=D(c,x,y)・・・(3) 図6は、剥離層及び着色パターンのムラ欠陥候補領域
(35)、(36)の概念を示す説明図である。
Step 5: Labeling The image luminance data is separated into a normal part and a non-uniform defect candidate part of the peeling layer and the colored pattern on a pixel basis for each color, but is recognized as a surface defect candidate part having an area called a non-uniform defect. It has not been. Therefore, a plurality of non-uniform defect candidate portions adjacent to each other with D ′ (c, x, y) = 1 are labeled so as to be recognized as one surface. At this time, a set composed of a plurality of labeled non-uniform defect candidates is defined as a non-uniform defect candidate area. Then, D ″ (c, x, y, n) is defined by equation (3) for the mura defect candidate area set as label number = n (n is a natural number). D '' (c, x, y, n) = D (c, x, y) (3) FIG. 6 shows the concept of the peeling layer and the color pattern uneven defect candidate areas (35) and (36). FIG.

【0049】ステップ6;ムラ欠陥候補領域の座標、面
積、平均輝度値の算出 D’’(c,x,y,n)から、ラベル番号=nのムラ
欠陥候補領域の座標(Xn,Yn)、面積Sn、平均輝
度値(Dn)を数式(4)、(5)、(6)に従って各
色毎に算出する。
Step 6: Calculation of coordinates, area, and average luminance value of the mura defect candidate area From D ″ (c, x, y, n), the coordinates (Xn, Yn) of the mura defect candidate area with label number = n , Area Sn, and average luminance value (Dn) are calculated for each color according to equations (4), (5), and (6).

【0050】 (Xn,Yn)=(Xnmin+(Xnmax−Xnmin)/2, Ynmin+(Ynmax−Ynmin)/2) ・・・・・・・・(4) ここで、Xnmaxはラベル番号=nのムラ欠陥候補領
域内での画像輝度データの最大X座標、Xnminは同
領域内での画像輝度データの最小X座標、Ynmaxは
ラベル番号=nのムラ欠陥候補領域内での画像輝度デー
タの最大Y座標、Ynminは同領域内での画像輝度デ
ータの最小Y座標である。
(Xn, Yn) = (Xnmin + (Xnmax−Xnmin) / 2, Ynmin + (Ynmax−Ynmin) / 2) (4) Here, Xnmax is the unevenness of the label number = n. The maximum X coordinate of the image luminance data in the defect candidate area, Xnmin is the minimum X coordinate of the image luminance data in the area, and Ynmax is the maximum Y coordinate of the image luminance data in the uneven defect candidate area with label number = n. , Ynmin are the minimum Y coordinates of the image luminance data in the same area.

【0051】 Sn=N ・・・・・・・・(5) ここで,Nはラベル番号=nのムラ欠陥候補領域内での
画像輝度データの数である.
Sn = N (5) where N is the number of pieces of image luminance data in the non-uniformity defect candidate area with label number = n.

【0052】 <Dn>=(ΣD’’(c,x,y,n))/N ・・・・・・・・(6) ここで,Σはラベル番号=nのムラ欠陥候補領域内での
画像輝度データの和である.
<Dn> = (ΣD ″ (c, x, y, n)) / N (6) where Σ is within the unevenness defect candidate area with label number = n. This is the sum of the image luminance data.

【0053】ステップ7;ムラ欠陥候補領域周辺部の平
均輝度値の算出 ムラ欠陥候補領域内でX方向に隣接するムラ欠陥候補部
がm個あった場合、その両端から領域外のX方向に2m
個の画素をムラ欠陥候補領域周辺部とし、そこにおける
画像輝度データD(c,x,y)から、<Dn>と同様
にして,ムラ欠陥候補領域周辺部の平均輝度値<Dno
ut>を各色ごとに算出する。
Step 7: Calculation of Average Brightness Value in the Peripheral Region of Uneven Defect Candidate Area If there are m ununiform defect candidate sections adjacent in the X direction in the uneven defect candidate area, 2 m from both ends in the X direction outside the area.
The number of pixels is defined as the periphery of the mura defect candidate area, and from the image luminance data D (c, x, y) there, similarly to <Dn>, the average luminance value of the mura defect candidate area peripheral area <Dno
ut> is calculated for each color.

【0054】ステップ8;剥離層のムラ欠陥と各色着色
パターンのムラ欠陥との弁別 色毎にムラ欠陥候補領域の座標(Xn,Yn)とSnを
比較し2色以上で、 |(Xn,Yn)R−(Xl,Yl)GorB|<φ×着色パターンのピッチ (X,Y) &|SnR−SlGorB|<ψ ・・・・・・・・(7) ならば、剥離層のムラ欠陥としてラベルを削除する。こ
こで、φとψは、ムラ欠陥検査装置の特性と、CF層設
定値、剥離層設定値によって影響される判定係数であ
る。これら条件の組み合わせによっては3色のムラ欠陥
候補領域の抽出が同じにならないので2色での比較で判
定する。また、画像撮影装置と光源の条件、光学フィル
タ等を適宜組み合わせて変更することによって弁別精度
を向上させることが望ましい。
Step 8: Distinguishing Uneven Defects in the Release Layer from Uneven Defects in the Colored Patterns The coordinates (Xn, Yn) and the Sn of the uneven defect candidate area are compared for each color, and | (Xn, Yn) ) R− (Xl, Yl) GorB | <φ × Pitch of colored pattern (X, Y) & | SnR−S1GorB | <ψ (7) Delete a label. Here, φ and ψ are determination coefficients influenced by the characteristics of the unevenness defect inspection apparatus and the CF layer set value and the peeling layer set value. Depending on the combination of these conditions, the extraction of the three-color unevenness defect candidate areas does not become the same, so the determination is made by comparing two colors. It is also desirable to improve the discrimination accuracy by appropriately combining and changing the conditions of the image capturing device and the light source, the optical filter, and the like.

【0055】図4は、剥離層のムラ欠陥と各色着色パタ
ーンのムラ欠陥の弁別を示す説明図である。剥離層のム
ラ欠陥(31)は、各色の略同一座標に略同一面積で、
また、各色着色パターンのムラ欠陥(32)は、各色が
各々異なる座標に異なる面積で示されている。
FIG. 4 is an explanatory diagram showing the discrimination between the mura defect of the peeling layer and the mura defect of each color coloring pattern. The unevenness defect (31) of the peeling layer has substantially the same area at substantially the same coordinates of each color,
The unevenness defect (32) of each color pattern is indicated by different coordinates and different areas of each color.

【0056】ステップ9;各色着色パターンのムラ欠陥
部の検出 ステップ8で弁別された各色ごとの、Sn、<Dn>、
<Dnout>からムラ欠陥部を下記の数式(8)の判
断基準に従って検出する。ラベル番号=nの各色着色パ
ターンのムラ欠陥候補領域について、Sn>δ& |<D
n>−<Dnout> |>γならば、 D’’(c,x,y,n)=D(c,x,y)=n ・・・・・・各色着色パターンのムラ欠陥部 Sn≦δ or |<Dn>−<Dnout> |≦γならば、 D’’(c,x,y,n)=D(c,x,y)=0 ・・・・・・各色着色パターンの正常部 ・・・・・・・・(8) に再設定する。ここで、δはムラ欠陥面積閾値、γはム
ラ欠陥輝度閾値で予め定められた定数である。以上の再
設定から、D(c,x,y)>0の部分が各色着色パタ
ーンのムラ欠陥部と検出する。
Step 9: Detection of Uneven Defects of Each Colored Pattern Sn, <Dn>,
An uneven defect portion is detected from <Dnout> according to the criterion of the following equation (8). For the uneven defect candidate area of each color coloring pattern with label number = n, Sn> δ & | <D
If n>-<Dnout>|> γ, then D ″ (c, x, y, n) = D (c, x, y) = n: Uneven defect portion of each color coloring pattern Sn ≦ If δ or | <Dn> − <Dnout> | ≦ γ, then D ″ (c, x, y, n) = D (c, x, y) = 0... Set again to (8). Here, δ is an unevenness defect area threshold, and γ is an unevenness defect luminance threshold and a predetermined constant. From the above resetting, a portion where D (c, x, y)> 0 is detected as an uneven defect portion of each color coloring pattern.

【0057】ステップ10;検査終了判断 転写シート上のCF層の画面単位について、ムラ検査が
終了したのであれば、ステップ11に進む。他方、未検
査の画面単位があればステップ1に戻る。
Step 10: Judgment of Inspection End If the unevenness inspection has been completed for each screen unit of the CF layer on the transfer sheet, the process proceeds to step 11. On the other hand, if there is an untested screen unit, the process returns to step 1.

【0058】ステップ11;判定結果の保存. 各色毎に検出されたCF層の各色着色パターンのムラ欠
陥部の座標、面積、平均輝度値を補助記憶装置に保存
し、転写時の画面単位内にムラ欠陥部が存在する場合は
転写を実施しない画面単位として転写装置に伝送する。
Step 11: Saving the judgment result. The coordinates, area, and average luminance value of the uneven defect portion of each color pattern of the CF layer detected for each color are stored in the auxiliary storage device, and the transfer is performed if the uneven defect portion exists in the screen unit at the time of transfer. Not transmitted to the transfer device as a screen unit.

【0059】 (工程5)[接着剤工程] ブチルメタクリレート 3重量部 アロニックスM−305(東亞合成化学工業(株)製) 2重量部 アロニックスM−400(東亞合成化学工業(株)製) 5重量部 光重合開始剤イルガギュアー907 (チバガイギー社製) 0.2重量部 を混合して製作された光硬化型接着剤を、上記CF層が
形成された転写シート上に、ロールコーターで3μmの
厚さに塗布し接着剤層を形成した。
(Step 5) [Adhesive Step] Butyl methacrylate 3 parts by weight Aronix M-305 (Toagosei Chemical Industry Co., Ltd.) 2 parts by weight Aronix M-400 (Toagosei Chemical Industry Co., Ltd.) 5 parts by weight Part of a photopolymerization initiator Irgaguer 907 (manufactured by Ciba Geigy) 0.2 parts by weight of the photocurable adhesive was mixed on a transfer sheet on which the CF layer was formed with a roll coater to a thickness of 3 μm. To form an adhesive layer.

【0060】(工程6)[転写工程] 転写装置にて、上記CF層の上に接着剤層が形成された
転写シートの内、CF層にムラ欠陥部のないCF層を1
737ガラス基材(米国コーニング社製)の所定の位置
と貼り合わせ、加圧ローラで転写シートを扱って接着剤
層を1μmの厚さにした後、露光装置でCF層の着色パ
ターン1cmの周囲まで金属マスクを介在させて紫外光
で600mJ/cm2 の露光を行い接着剤層を光硬化
させた。さらに、剥離部で転写シートと1737ガラス
基材とを剥離させ、CF層を光硬化させた接着剤層に転
写させた。その後、ガラス基材を高圧スプレーでアルカ
リ溶液で現像し、未硬化の接着剤層を除去して、異物や
ムラ欠陥の見られない平坦性が良好で色特性仕様を満た
した転写方式CFを得た。
(Step 6) [Transfer Step] Using a transfer device, one of the transfer sheets having the adhesive layer formed on the CF layer was replaced with one CF layer having no unevenness defect in the CF layer.
After bonding to a predetermined position on a 737 glass substrate (manufactured by Corning Incorporated, USA), handling the transfer sheet with a pressure roller to reduce the thickness of the adhesive layer to 1 μm, and surrounding the colored pattern of the CF layer by 1 cm with an exposure device. Exposure was performed at 600 mJ / cm 2 with ultraviolet light through a metal mask until the adhesive layer was photo-cured. Further, the transfer sheet and the 1737 glass substrate were peeled off at the peeling portion, and the CF layer was transferred to the photocured adhesive layer. Thereafter, the glass substrate is developed with an alkali solution using a high-pressure spray, and the uncured adhesive layer is removed to obtain a transfer system CF that has good flatness and color specification without any foreign matter or uneven defect. Was.

【0061】[0061]

【発明の効果】本発明は、転写してカラーフィルタを製
造する工程に於いて、一回のムラ検査で、剥離層のムラ
欠陥部とカラーフィルタ層の各色着色パターンのムラ欠
陥部との弁別した検出を剥離層のムラ欠陥部に影響され
ずに正確に行う際に、カラーフィルタ層の画像輝度デー
タを画像輝度分布データとし、閾値と比較し剥離層及び
各色着色パターンのムラ欠陥候補部とし、ムラ欠陥候補
部が複数隣接している集合を剥離層及び各色着色パター
ンのムラ欠陥候補領域とし、各色毎のムラ欠陥候補領域
の座標、面積を相互に比較し、相互に近傍座標、僅少面
積差ならば、その剥離層及び各色着色パターンのムラ欠
陥候補領域を剥離層のムラ欠陥候補領域と判断し、相互
に離れた座標、大面積差ならば、その剥離層及び各色着
色パターンのムラ欠陥候補領域を各色着色パターンのム
ラ欠陥候補領域と判断して弁別し、各色着色パターンの
ムラ欠陥候補領域の平均輝度値と周辺部の平均輝度値と
を比較して各色着色パターンのムラ欠陥部として検出
し、剥離層のムラ欠陥部の有無に関わらず、各色着色パ
ターンのムラ欠陥部が検出されないカラーフィルタ層部
分のみを転写するカラーフィルタの製造方法であるの
で、一回のムラ検査でCF層の各色着色パターンのムラ
欠陥部を正しく検出し、良好なCF層部分のみを転写
し、得られるCFの品質を一定のものとするカラーフィ
ルタの製造方法となる。従って、転写方式CFの利点で
ある生産効率の高さ、小型の製造設備による設備費の低
さ、及びこれらが相乗した低コスト性を生かされる。
According to the present invention, in the step of transferring and manufacturing a color filter, a single unevenness inspection discriminates an unevenness defective portion of the peeling layer from an unevenness defective portion of each color pattern of the color filter layer. When the detected detection is accurately performed without being affected by the unevenness defect portion of the peeling layer, the image brightness data of the color filter layer is used as image brightness distribution data, and compared with a threshold value to determine the unevenness defect candidate portion of the peeling layer and each color coloring pattern. A set in which a plurality of non-uniform defect candidate portions are adjacent to each other is regarded as a non-uniform defect candidate region of a peeling layer and a coloring pattern of each color, and the coordinates and area of the non-uniform defect candidate region of each color are compared with each other. If there is a difference, the peeling layer and the mura defect candidate area of each color coloring pattern are determined to be a mura defect candidate area of the peeling layer. The defect candidate area is judged and discriminated as a non-uniform defect candidate area of each color-colored pattern, and the average luminance value of the non-uniform defect candidate area of each color-colored pattern is compared with the average luminance value of the peripheral area, and the non-uniform defect part of each color-colored pattern is compared. This is a method for manufacturing a color filter that transfers only the color filter layer portion where no uneven defect portion of each color coloring pattern is detected regardless of the presence or absence of the uneven defect portion of the peeling layer. The present invention provides a method of manufacturing a color filter that correctly detects an uneven defect portion of each color coloring pattern of a layer, transfers only a good CF layer portion, and maintains a constant quality of obtained CF. Therefore, the advantages of the transfer type CF, such as high production efficiency, low equipment cost due to small manufacturing equipment, and low cost, which are synergistic, can be utilized.

【0062】また、本発明は、転写してカラーフィルタ
を製造する工程に於いて、一回のムラ検査で、剥離層の
ムラ欠陥部とカラーフィルタ層の各色着色パターンのム
ラ欠陥部との弁別した検出を剥離層のムラ欠陥部に影響
されずに正確に行う際に、カラーフィルタ層を照明する
光源と画像撮影装置とを複数使用し、転写シートの法線
からの角度が異なる位置に複数の光源を配置し、正反射
位置、乱反射位置に複数の画像撮影装置を配置し、複数
の各光源毎に、異なる波長強度分布と偏光状態とを組み
合わせて剥離層のムラ欠陥候補部の検出を低減させ、カ
ラーフィルタ層の各色着色パターンのムラ欠陥候補部の
検出を最適化し、剥離層のムラ欠陥部の有無に関わら
ず、各色着色パターンのムラ欠陥部が検出されないカラ
ーフィルタ層部分のみを転写するカラーフィルタの製造
方法であるので、一回のムラ検査でCF層の各色着色パ
ターンのムラ欠陥部を正しく検出し、良好なCF層部分
のみを転写し、得られるCFの品質を一定のものとする
カラーフィルタの製造方法となる。従って、転写方式C
Fの利点である生産効率の高さ、小型の製造設備による
設備費の低さ、及びこれらが相乗した低コスト性を生か
される。
Further, in the present invention, in the step of transferring and manufacturing a color filter, a single unevenness inspection discriminates an unevenness defective portion of a peeling layer from an unevenness defective portion of each color pattern of a color filter layer. In order to accurately perform the detection without being affected by the unevenness defect portion of the release layer, a plurality of light sources illuminating the color filter layer and an image capturing device are used, and a plurality of light sources are provided at different positions from the normal line of the transfer sheet. Are arranged, and a plurality of image capturing devices are arranged at the regular reflection position and the irregular reflection position, and for each of the plurality of light sources, different wavelength intensity distributions and polarization states are combined to detect the uneven defect candidate portion of the peeling layer. Optimizing the detection of the candidate for the non-uniformity defect of each color pattern of the color filter layer, regardless of the presence or absence of the non-uniform defect part of the release layer, of the color filter layer part where the non-uniform defect part of each color pattern is not detected This is a method of manufacturing a color filter that transfers color, so that a single non-uniformity inspection correctly detects uneven defect portions of each color coloring pattern of the CF layer, transfers only a good CF layer portion, and keeps the quality of the obtained CF constant. This is a method of manufacturing a color filter. Therefore, the transfer method C
The advantages of F, such as high production efficiency, low equipment cost due to small manufacturing equipment, and low cost, which are synergistic, are utilized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における転写シートの一実施例を示す断
面図である。
FIG. 1 is a cross-sectional view showing one embodiment of a transfer sheet according to the present invention.

【図2】本発明における転写方式CFの一実施例を示す
断面図である。
FIG. 2 is a cross-sectional view illustrating an embodiment of a transfer method CF according to the present invention.

【図3】本発明において用いられるムラ欠陥検査装置の
一実施例の概念を示す説明図である。
FIG. 3 is an explanatory view showing the concept of an embodiment of an unevenness defect inspection apparatus used in the present invention.

【図4】剥離層のムラ欠陥と各色着色パターンのムラ欠
陥の弁別を示す説明図である。
FIG. 4 is an explanatory diagram illustrating discrimination between a mura defect of a peeling layer and a mura defect of each color coloring pattern.

【図5】画像輝度分布データからのDmid、Dma
x、Dmin、Doutの事例を示す説明図である。
FIG. 5 shows Dmid and Dma from image luminance distribution data.
It is explanatory drawing which shows the case of x, Dmin, Dout.

【図6】剥離層及び着色パターンのムラ欠陥候補領域の
概念を示す説明図である。
FIG. 6 is an explanatory diagram illustrating the concept of a peeling layer and a candidate region for unevenness of a colored pattern.

【符号の説明】[Explanation of symbols]

1・・・シート状基材 2・・・剥離層 3・・・着色パターン(赤) 4・・・着色パターン(緑) 5・・・着色パターン(青) 6・・・着色パターン(黒) 7・・・CF層 8・・・接着剤層 9・・・透明基材 10・・転写シート 11・・転写方式CF 12・・下引き層 20・・ムラ欠陥検査装置 21・・光源 22・・画像撮影装置 23・・演算装置 31・・剥離層のムラ欠陥部 32・・CF層の各色着色パターンのムラ欠陥部 35、36・・ムラ欠陥候補領域 DESCRIPTION OF SYMBOLS 1 ... Sheet-like base material 2 ... Release layer 3 ... Color pattern (red) 4 ... Color pattern (green) 5 ... Color pattern (blue) 6 ... Color pattern (black) 7 CF layer 8 Adhesive layer 9 Transparent substrate 10 Transfer sheet 11 Transfer method CF 12 Undercoat layer 20 Irregular defect inspection device 21 Light source 22 -Image capturing device 23-Arithmetic device 31-Uneven defect portion of peeling layer 32-Uneven defect portion of each color coloring pattern of CF layer 35, 36-Uneven defect candidate area

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 21/88 G01N 21/88 Z 2H091 G02F 1/13 101 G02F 1/13 101 2H096 1/1335 505 1/1335 505 4H057 G03F 7/004 G03F 7/004 7/16 7/16 7/26 501 7/26 501 (72)発明者 須田 廣伸 東京都台東区台東1丁目5番1号 凸版印 刷株式会社内 (72)発明者 西本 豊司 東京都台東区台東1丁目5番1号 凸版印 刷株式会社内 Fターム(参考) 2G051 AA41 AA90 AB20 BA01 BA11 BB17 CA03 CA07 CB01 CC07 EA11 EA12 EA14 EB01 EC02 EC03 FA01 2G086 EE05 2H025 AA04 AA17 AA18 AB13 BJ10 EA08 2H048 BA11 BA43 BA64 BB02 BB42 2H088 FA11 HA01 HA12 HA18 HA28 MA20 2H091 FA02Y FA07X FA41Z LA30 2H096 AA28 CA09 CA16 LA17 LA30 4H057 AA02 DA02 DA34 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01N 21/88 G01N 21/88 Z 2H091 G02F 1/13 101 G02F 1/13 101 2H096 1/1335 505 1 / 1335 505 4H057 G03F 7/004 G03F 7/004 7/16 7/16 7/26 501 7/26 501 (72) Inventor Hironobu Suda 1-5-1, Taito, Taito-ku, Tokyo Letterpress Printing Co., Ltd. (72) Inventor Toyoji Nishimoto 1-5-1, Taito, Taito-ku, Tokyo F-term in Toppan Printing Co., Ltd. (reference) 2G051 AA41 AA90 AB20 BA01 BA11 BB17 CA03 CA07 CB01 CC07 EA11 EA12 EA14 EB01 EC02 EC03 FA01 2G086 EE05 2H025 AA04 AA17 AA18 AB13 BJ10 EA08 2H048 BA11 BA43 BA64 BB02 BB42 2H088 FA11 HA01 HA12 HA18 HA28 MA20 2H091 FA02Y FA07X FA41Z LA30 2H096 AA28 CA09 CA16 LA 17 LA30 4H057 AA02 DA02 DA34

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】連続したシート状基材上に基材接着性の剥
離層、該剥離層上に複数色の着色パターンからなるカラ
ーフィルタ層が設けられた転写シートの、画面単位の領
域内でムラ欠陥部が検出されないカラーフィルタ層部分
のみを、接着剤層を介して画面単位の透明基材上、若し
くは薄膜トランジスタ基板上に転写してカラーフィルタ
を製造する工程に於いて、一回のムラ検査で、剥離層の
ムラ欠陥部とカラーフィルタ層の各色着色パターンのム
ラ欠陥部との弁別した検出を剥離層のムラ欠陥部に影響
されずに正確に行う際に、(a)照明されたカラーフィ
ルタ層の反射光画像を画像撮影装置で撮影し、反射光画
像から得られた画像輝度データを記憶し、(b)画像輝
度データを画面単位毎に各色の画像輝度分布データと
し、画像輝度分布データから計算して得られた閾値と比
較し、ムラを検出して剥離層及び各色着色パターンのム
ラ欠陥候補部とし、その座標、面積、輝度値を記憶し、
(c)剥離層及び各色着色パターンのムラ欠陥候補部が
複数隣接している集合を剥離層及び各色着色パターンの
ムラ欠陥候補領域とし、その座標、面積、平均輝度値を
記憶し、(d)各色毎の剥離層及び各色着色パターンの
ムラ欠陥候補領域の座標、面積を相互に比較し、各色毎
の剥離層及び各色着色パターンのムラ欠陥候補領域が相
互に近傍座標、僅少面積差ならば、その剥離層及び各色
着色パターンのムラ欠陥候補領域を剥離層のムラ欠陥候
補領域と判断し、各色毎の剥離層及び各色着色パターン
のムラ欠陥候補領域が相互に離れた座標、大面積差なら
ば、その剥離層及び各色着色パターンのムラ欠陥候補領
域を各色着色パターンのムラ欠陥候補領域と判断し、剥
離層及び各色着色パターンのムラ欠陥候補領域を剥離層
のムラ欠陥候補領域と各色着色パターンのムラ欠陥候補
領域とに弁別して、記憶し、(e)弁別した各色着色パ
ターンのムラ欠陥候補領域の平均輝度値と、該ムラ欠陥
候補領域の周辺部の平均輝度値とを比較することで各色
着色パターンのムラ欠陥部として検出し、剥離層のムラ
欠陥部の有無に関わらず、画面単位の領域内で各色着色
パターンのムラ欠陥部が検出されないカラーフィルタ層
部分のみを転写することを特徴とするカラーフィルタの
製造方法。
1. A transfer sheet having a substrate adhesive release layer on a continuous sheet-like substrate and a color filter layer comprising a plurality of colored patterns on the release layer, in a region of a screen unit. In the process of transferring a color filter layer portion in which no unevenness defect portion is detected to a transparent substrate for each screen or a thin film transistor substrate via an adhesive layer to manufacture a color filter, a single unevenness inspection is performed. In order to accurately detect the uneven defect portion of the peeling layer from the uneven defect portion of each color pattern of the color filter layer without being affected by the uneven defect portion of the peeling layer, (a) illuminated color The reflected light image of the filter layer is photographed by an image photographing device, and image luminance data obtained from the reflected light image is stored. (B) The image luminance data is used as image luminance distribution data of each color for each screen unit, De It is compared with the threshold value obtained by calculation from the data, to detect irregularities and the release layer and the unevenness defect candidate part for each color colored pattern, and stores the coordinates, area, a luminance value,
(C) A set in which a plurality of peeling layers and uneven defect candidate portions of each color pattern are adjacent to each other is set as a peel layer and uneven defect candidate area of each color pattern, and their coordinates, area, and average luminance value are stored. The coordinates of the peeling layer for each color and the unevenness defect candidate region of each color coloring pattern are compared with each other, and the peeling layer for each color and the unevenness defect candidate region of each color coloring pattern are close coordinates to each other, if there is a small area difference, The peel layer and the uneven defect candidate area of each color coloring pattern are determined as the uneven defect candidate area of the peel layer, and if the peel layer of each color and the uneven defect candidate area of each color coloring pattern are far away from each other, a large area difference. The release layer and the mura defect candidate area of each color pattern are determined as the mura defect candidate areas of each color pattern, and the release layer and the mura defect candidate area of each color pattern are determined as the mura defect candidate area of the release layer. And (e) the average luminance value of the non-uniform defect candidate area of each color-colored pattern and the average luminance value of the peripheral part of the non-uniform defect candidate area. By comparison, it is detected as a non-uniform defect of each color pattern, and only the color filter layer portion where no non-uniform defect of each color pattern is detected in the area of each screen is transferred regardless of the presence or absence of the non-uniform defect in the peeling layer. A method of manufacturing a color filter.
【請求項2】連続したシート状基材上に基材接着性の剥
離層、該剥離層上に複数色の着色パターンからなるカラ
ーフィルタ層が設けられた転写シートの、画面単位の領
域内でムラ欠陥部が検出されないカラーフィルタ層部分
のみを、接着剤層を介して画面単位の透明基材上、若し
くは薄膜トランジスタ基板上に転写してカラーフィルタ
を製造する工程に於いて、一回のムラ検査で、剥離層の
ムラ欠陥部とカラーフィルタ層の各色着色パターンのム
ラ欠陥部との弁別した検出を剥離層のムラ欠陥部に影響
されずに正確に行う際に、(a)カラーフィルタ層を照
明する光源と画像撮影装置とを複数使用し、転写シート
の法線からの角度、及び、若しくは、転写シートの送り
方向からの角度が異なる位置に複数の光源を配置し、正
反射位置、及び、乱反射位置に複数の画像撮影装置を配
置し、(b)複数の各光源毎に、異なる波長強度分布と
偏光状態とを組み合わせて剥離層のムラ欠陥候補部の検
出を低減させ、カラーフィルタ層の各色着色パターンの
ムラ欠陥候補部の検出を最適化し、剥離層のムラ欠陥部
の有無に関わらず、画面単位の領域内で各色着色パター
ンのムラ欠陥部が検出されないカラーフィルタ層部分の
みを転写することを特徴とするカラーフィルタの製造方
法。
2. A transfer sheet having a substrate-adhesive release layer on a continuous sheet-like substrate and a color filter layer comprising a plurality of color patterns on the release layer, in a region of a screen unit. In the process of transferring a color filter layer portion in which no unevenness defect portion is detected to a transparent substrate for each screen or a thin film transistor substrate via an adhesive layer to manufacture a color filter, a single unevenness inspection is performed. In order to accurately detect the uneven defect portion of the peeling layer and the uneven defect portion of each color pattern of the color filter layer without being affected by the uneven defect portion of the peel layer, (a) the color filter layer Using a plurality of light sources and image capturing devices to be illuminated, an angle from the normal line of the transfer sheet, and or, a plurality of light sources are arranged at different angles from the feed direction of the transfer sheet, specular reflection position, and , A plurality of image photographing devices are arranged at the reflection position, and (b) a combination of different wavelength intensity distributions and polarization states is reduced for each of the plurality of light sources to reduce the detection of a candidate for a non-uniformity defect in the peeling layer. Optimizing the detection of the uneven defect candidate portion of each color coloring pattern, and transferring only the color filter layer portion where no uneven defect portion of each color coloring pattern is detected within the area of each screen regardless of the presence or absence of the uneven defect portion of the peeling layer. A method for manufacturing a color filter, comprising:
JP2001104421A 2001-04-03 2001-04-03 Method for manufacturing color filter Pending JP2002303714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001104421A JP2002303714A (en) 2001-04-03 2001-04-03 Method for manufacturing color filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001104421A JP2002303714A (en) 2001-04-03 2001-04-03 Method for manufacturing color filter

Publications (1)

Publication Number Publication Date
JP2002303714A true JP2002303714A (en) 2002-10-18

Family

ID=18957280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001104421A Pending JP2002303714A (en) 2001-04-03 2001-04-03 Method for manufacturing color filter

Country Status (1)

Country Link
JP (1) JP2002303714A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096302A (en) * 2006-10-12 2008-04-24 Yokogawa Electric Corp Defect inspection device
CN100458522C (en) * 2004-06-16 2009-02-04 大日本印刷株式会社 Color filter and its manufacture
JP2017090720A (en) * 2015-11-11 2017-05-25 株式会社有沢製作所 Colored photosensitive resin composition
JP2018062662A (en) * 2017-11-28 2018-04-19 株式会社有沢製作所 Coloring photosensitive resin composition
CN113588222A (en) * 2021-09-26 2021-11-02 武汉精创电子技术有限公司 Ink color consistency detection device and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100458522C (en) * 2004-06-16 2009-02-04 大日本印刷株式会社 Color filter and its manufacture
JP2008096302A (en) * 2006-10-12 2008-04-24 Yokogawa Electric Corp Defect inspection device
JP2017090720A (en) * 2015-11-11 2017-05-25 株式会社有沢製作所 Colored photosensitive resin composition
JP2018062662A (en) * 2017-11-28 2018-04-19 株式会社有沢製作所 Coloring photosensitive resin composition
CN113588222A (en) * 2021-09-26 2021-11-02 武汉精创电子技术有限公司 Ink color consistency detection device and method
CN113588222B (en) * 2021-09-26 2022-01-11 武汉精创电子技术有限公司 Ink color consistency detection device and method

Similar Documents

Publication Publication Date Title
TWI303640B (en) Alkali-soluble maleimide copolymer and liquid crystal display comprising the same
TW200912517A (en) Method of testing a photomask, method of manufacturing a photomask, method of manufacturing electronic parts, test mask and test mask set
JPH09139407A (en) Process flaw inspection method of semiconductor element
JP2002303714A (en) Method for manufacturing color filter
JP2001356209A (en) Method for producing color filter
JPH10104825A (en) Photosensitive solution for forming colored image, production of color filter using same and color filter
JPH10142101A (en) Method for inspecting pigmented film
JP2005305743A (en) Method and equipment for forming pattern, manufacturing method of organic el element and color filter, and organic el element and color filter
JP4720287B2 (en) Coating unevenness inspection method and program thereof
JP2006337952A (en) Manufacturing method of color filter
JP2004317898A (en) Colored composition for producing black matrix, photosensitive transfer material, black matrix and its manufacturing method, color filter, liquid crystal display element, and black matrix substrate
JP2002022919A (en) Method for manufacturing color filter
US5783339A (en) Method for preparing a color filter
JP3881070B2 (en) Photosensitive coloring composition and color filter
KR100925275B1 (en) A phosphor inspector of Plasma Display Panel and the same method
JP2001215322A (en) Transfer sheet for color filter
JP2993772B2 (en) Common defect inspection method for color filters
JPH08194112A (en) Apparatus for producing color sample
JPH10281932A (en) Inspection device for color filter substrate
JP2001215323A (en) Method of producing color filter
JP4617953B2 (en) Application unevenness detection method
JP2005128026A (en) Apparatus for inspecting color sample
JP2006275704A (en) Film thickness irregularity detection method
JP4267846B2 (en) Production method of photosensitive transfer material and color filter.
JP2009063298A (en) Visual inspection method of color filter