JP2002301355A - Method for withdrawing solid material from multiple- tubular reactor - Google Patents

Method for withdrawing solid material from multiple- tubular reactor

Info

Publication number
JP2002301355A
JP2002301355A JP2001398092A JP2001398092A JP2002301355A JP 2002301355 A JP2002301355 A JP 2002301355A JP 2001398092 A JP2001398092 A JP 2001398092A JP 2001398092 A JP2001398092 A JP 2001398092A JP 2002301355 A JP2002301355 A JP 2002301355A
Authority
JP
Japan
Prior art keywords
tube
reaction
suction
reaction tube
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001398092A
Other languages
Japanese (ja)
Other versions
JP4746228B2 (en
Inventor
Hiromi Yunoki
弘己 柚木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2001398092A priority Critical patent/JP4746228B2/en
Publication of JP2002301355A publication Critical patent/JP2002301355A/en
Application granted granted Critical
Publication of JP4746228B2 publication Critical patent/JP4746228B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PROBLEM TO BE SOLVED: To safely and sanitarily withdraw a solid material inside a multiple- tubular reactor. SOLUTION: This method for withdrawing a solid material 90 with which reaction tubes 20 of a multiple-tubular reactor 1 are packed, comprises: a stage (a) for inserting a suction pipe 30 connected to an evacuation/suction device 70 into each of the reaction tubes 20 through its one open end; and a stage (b) for sucking the solid material 90 within each of the reaction tubes 20, together with an air stream, through the front end of the suction pipe 30 and withdrawing the solid material 90 from the reaction tube 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多管式反応器の個
々の反応管に充填された固形物、例えば炭化水素類の接
触反応に用いられる触媒等の充填物を抜き出す方法を対
象にしている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for extracting solids filled in individual reaction tubes of a multitubular reactor, such as catalysts used for catalytic reaction of hydrocarbons. I have.

【0002】[0002]

【従来の技術】石油化学工業の分野において、管式反応
器を用いた炭化水素類の酸化反応、アンモ酸化反応、分
解反応、還元反応、改質反応等の接触反応は数多く実施
されており、 これらの反応に使用される反応器には、そ
れぞれの接触反応に適した触媒や不活性充填物が充填さ
れている。具体的には、以下の技術が知られている。特
開2000−1484号公報には、反応管にバナジウム
を必須成分とし、組成の異なる複数種の触媒を充填し
て、1,2,4,5−テトラアルキルベンゼンを接触気
相酸化して無水ピロメリット酸を製造する方法が示され
ている。
2. Description of the Related Art In the field of petrochemical industry, many catalytic reactions such as oxidation reaction, ammoxidation reaction, decomposition reaction, reduction reaction and reforming reaction of hydrocarbons using a tubular reactor are carried out. The reactors used for these reactions are packed with catalysts and inert packings suitable for the respective catalytic reactions. Specifically, the following techniques are known. Japanese Patent Application Laid-Open No. 2000-1484 discloses that a reaction tube containing vanadium as an essential component, a plurality of types of catalysts having different compositions, and catalytic vapor-phase oxidation of 1,2,4,5-tetraalkylbenzene to form anhydrous pyro A method for producing melitic acid is shown.

【0003】特開平9−323950号公報には、不活
性なラシヒリングの混合比を変えて活性を制御したモリ
ブデン、ビスマスおよび鉄を必須成分とする触媒を反応
管に充填して、イソブチレンおよび/またはt−ブチル
アルコールから選ばれる少なくとも1種を接触気相酸化
してメタクロレインを製造する方法が示されている。特
公平3−57906号公報には、不活性なアルミナペレ
ットの混合比を変えて活性を制御したリンおよびバナジ
ウムを必須成分とする触媒を反応管に充填して、n−ブ
タンを接触気相酸化して無水マレイン酸を製造する方法
が示されている。
[0003] Japanese Patent Application Laid-Open No. 9-323950 discloses that a catalyst containing molybdenum, bismuth and iron as essential components, the activity of which is controlled by changing the mixing ratio of inert Raschig rings, is charged into a reaction tube, and isobutylene and / or A method for producing methacrolein by subjecting at least one selected from t-butyl alcohol to catalytic vapor phase oxidation is disclosed. Japanese Patent Publication No. 3-57906 discloses that a catalyst containing phosphorus and vanadium as essential components, whose activity is controlled by changing the mixing ratio of inactive alumina pellets, is charged into a reaction tube, and n-butane is subjected to catalytic gas phase oxidation. To produce maleic anhydride.

【0004】特開平11−130722号公報には、モ
リブデン、ビスマスおよび鉄を必須成分とする前段触媒
の充填層とモリブデンおよびバナジウムを必須成分とす
る後段触媒の充填層の間に不活性物質充填層を設けて、
一つの多管式熱交換型反応器を用いて二段接触気相酸化
法によりプロピレンからアクリル酸を製造する方法が示
されている。これらの接触反応に使用される触媒は、一
般に、一定期間の使用において被毒、コーキング、シン
タリング等によって活性や機械的強度が低下するため、
その都度反応器から抜き出され、新しい触媒に交換され
る。
Japanese Patent Application Laid-Open No. 11-130722 discloses an inert substance-filled layer between a packed layer of a first-stage catalyst containing molybdenum, bismuth and iron as essential components and a second-stage catalyst containing molybdenum and vanadium as essential components. With
A method for producing acrylic acid from propylene by a two-stage catalytic gas phase oxidation method using one multitubular heat exchange reactor is shown. Since the catalyst used for these catalytic reactions generally decreases in activity and mechanical strength due to poisoning, caulking, sintering, etc. during use for a certain period of time,
Each time it is withdrawn from the reactor and replaced with fresh catalyst.

【0005】触媒の交換に際して、反応器内のこれら触
媒等の固形物を抜き出す方法としては、作業員が反応器
の内部に入り、反応管の下部開口部から上方に向かって
金属製などの細い棒で突き上げながら、反応管内部の固
形物を落下させる方法が採られている。また、米国特許
第5,228,484号明細書には、反応管の上端から
内部にノズルを挿入し、ノズル先端から高圧空気を吹き
出し、反応管内に充填された触媒を高圧空気でほぐした
り流動化させたりして反応管の上端まで持ち上げて反応
管の上端に設置された充満室に送り込み、充満室を真空
排気して触媒を排出する技術が示されている。
[0005] When the catalyst is replaced, a method of extracting solid materials such as the catalyst from the reactor is as follows. An operator enters the inside of the reactor and a thin metal or the like is formed upward from the lower opening of the reaction tube. A method of dropping solids inside the reaction tube while pushing up with a stick is adopted. Also, in US Pat. No. 5,228,484, a nozzle is inserted into the inside of the reaction tube from the upper end, high-pressure air is blown out from the tip of the nozzle, and the catalyst filled in the reaction tube is loosened or flowed with the high-pressure air. A technique is disclosed in which the catalyst is lifted up to the upper end of the reaction tube, sent to a filling chamber provided at the upper end of the reaction tube, and the filling chamber is evacuated to exhaust the catalyst.

【0006】[0006]

【発明が解決しようとする課題】前記した従来における
突き上げ棒を用いる固形物の抜き出し方法では、棒で突
き上げる度に反応管内部の触媒等の固形物やこれらの破
砕物が落下し、落下した固形物は床に散乱、多量の粉塵
が発生するなどして作業員にとって作業環境は劣悪であ
る。また、 これら落下物および粉塵は人体に有害な物質
である場合が多く、そのため抜き出し作業に従事する作
業員は防塵服、ゴーグル、防塵マスク、手袋等の保護具
の着用が必須となる。
In the above-mentioned conventional method of extracting solids using a push-up rod, every time the rod is pushed up, solids such as a catalyst inside the reaction tube and their crushed materials fall and fall. The work environment is inferior for workers due to scattering of objects on the floor and generation of a large amount of dust. In addition, these falling objects and dust are often harmful to the human body, and therefore, workers engaged in extraction work must wear protective equipment such as dustproof clothes, goggles, dustproof masks, and gloves.

【0007】さらに、これら接触反応に用いられる触媒
は高価な金属等を高濃度で含有している場合も多いこと
から抜き出された廃触媒は金属等の回収処理を施される
場合がある。ところが、 前記特開平11−130722
号公報に記載されているような複数種の触媒および不活
性物質が反応管に充填された反応器の場合、従来の抜き
出し方法では反応管から落下したこれら触媒および不活
性物質は混じってしまい、触媒の分別および回収には大
きな手間がかかる。工業的実施においては、通常、管式
反応器は数百から数万本にもおよぶ反応管を有してお
り、これら反応器内の触媒等固形物を従来の方法によっ
て抜き出すことは、抜き出し作業に従事する作業員への
肉体的、 精神的苦痛は大きいばかりでなく、環境にも悪
影響を及ぼすものである。
Furthermore, since the catalyst used in these catalytic reactions often contains expensive metals and the like in a high concentration, the extracted waste catalyst may be subjected to a treatment for recovering the metals and the like. However, Japanese Unexamined Patent Application Publication No. 11-130722 discloses
In the case of a reactor in which a plurality of types of catalysts and inactive substances are filled in a reaction tube as described in Japanese Patent Application Publication No. H10-157, these catalysts and inactive substances dropped from the reaction tube are mixed by a conventional extraction method, Separation and recovery of the catalyst takes a great deal of time. In industrial practice, a tubular reactor usually has hundreds to tens of thousands of reaction tubes, and withdrawing solids such as a catalyst in these reactors by a conventional method is a matter of extraction operation. Not only is the physical and emotional distress to workers engaged in employment, but also adverse for the environment.

【0008】また、前記した高圧空気を用いる方法で
は、反応管の上端に充満室を配置しているので粉塵発生
の問題は軽減されるが、高圧空気とともに触媒が流入す
る充満室と反応管上端との気密性が要求される。反応管
内に送り込まれる高圧空気ノズルが充満室を貫通して通
過するので、この貫通部分における気密性も問題にな
る。これらの気密構造が複雑になるとともに、高圧空気
の供給と真空排気との両方の機構装置が必要になるな
ど、装置が大掛かりになり、作業性もあまり良くないも
のになる。本発明の課題は、 前記従来技術の問題点を解
決して、多管式反応器内の固形物を安全かつ衛生的に効
率よく抜き出す方法を提供することである。
In the above-described method using high-pressure air, the problem of dust generation is reduced because the filling chamber is disposed at the upper end of the reaction tube. Airtightness is required. Since the high-pressure air nozzle fed into the reaction tube passes through the filling chamber, airtightness at the penetrating portion also becomes a problem. These airtight structures become complicated, and a mechanism for both supply of high-pressure air and vacuum evacuation is required. Therefore, the size of the apparatus becomes large and workability is not very good. An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for safely and hygienically and efficiently extracting solids in a multitubular reactor.

【0009】[0009]

【課題を解決するための手段】本発明は、多管式反応器
の反応管に充填された固形物を抜き出す方法であって、
前記反応管の端部より、排気吸引装置に接続される吸
引管を挿入する工程(a) と、前記反応管内の固形物を、
前記吸引管の先端から空気流とともに吸引して、反応管
から固形物を抜き出す工程(b) とを含む多管式反応器か
らの固形物抜き出し方法である。 〔多管式反応器〕通常の化学製品の製造あるいは処理技
術において使用されている多管式反応器が用いられる。
例えば、特開昭54−21966号公報、特開昭56−
108525号公報、特開昭59−39342号公報、
特開昭59−82943号公報、特開昭62−1216
44号公報、特開平5−125010号公報、特公平7
−73674号公報に開示された技術が適用できる。
SUMMARY OF THE INVENTION The present invention provides a method for extracting solids filled in a reaction tube of a multitubular reactor,
Step (a) of inserting a suction tube connected to an exhaust suction device from the end of the reaction tube, and solids in the reaction tube,
(B) drawing out solids from the reaction tube by sucking together with an air flow from the tip of the suction tube, and (b) extracting solids from the multitubular reactor. [Multi-tubular reactor] A multi-tubular reactor used in ordinary chemical product manufacturing or processing technology is used.
For example, Japanese Patent Application Laid-Open Nos.
No. 108525, JP-A-59-39342,
JP-A-59-82943, JP-A-62-1216
44, JP-A-5-125010,
The technology disclosed in JP-B-73674 can be applied.

【0010】一般的に、反応管は縦方向に配置されたも
のが使用されるが、横方向に配置されたものや、特開平
9−141083号公報に開示されているように斜めに
配置されたものでもよい。反応管の材質については特に
制限はなく、ステンレス製、カーボンスチール製など通
常接触反応に用いられる材質が採用できる。反応管の内
径Dは、10mm〜60mm、好ましくは15mm〜5
0mm、より好ましくは20mm〜40mmである。反
応管は、一般的には全長にわたって直線状で同径のもの
であるが、湾曲しているものや軸方向で径が変化するも
のなども使用される。
In general, the reaction tubes used are arranged vertically, but those arranged horizontally or obliquely as disclosed in Japanese Patent Application Laid-Open No. Hei 9-141083. May be used. There is no particular limitation on the material of the reaction tube, and materials commonly used for contact reactions, such as stainless steel and carbon steel, can be employed. The inner diameter D of the reaction tube is 10 mm to 60 mm, preferably 15 mm to 5 mm.
0 mm, more preferably 20 mm to 40 mm. The reaction tube is generally linear and has the same diameter over the entire length, but a tube having a curved shape or a diameter varying in the axial direction is also used.

【0011】〔反 応〕多管式反応器で、反応管に触媒
等の固形物を充填して実施する反応であれば、通常の接
触反応その他の化学的処理反応に適用できる。前記した
特開2000−1484号公報、特開平9−32395
0号公報、特公平3−57906号公報、特開平11−
130722号公報に開示された反応に適用することが
できる。反応流体は、ガス、溶液、エマルジョンなど、
通常の多管式反応器で使用される形態のものが用いられ
る。
[Reaction] If the reaction is carried out in a multitubular reactor by filling a reaction tube with a solid substance such as a catalyst, the reaction can be applied to a usual contact reaction and other chemical treatment reactions. JP-A-2000-1484 and JP-A-9-32395 described above.
0, Japanese Patent Publication No. 3-57906,
It can be applied to the reaction disclosed in 130722. The reaction fluid is gas, solution, emulsion, etc.
The form used in a usual multitubular reactor is used.

【0012】〔固形物〕反応管内の固形物としては、多
管式反応器を用いた各種反応において利用される固形物
および各種反応を行った際に反応管内で生成した付着物
等であれば、特に限定されない。具体的には、各種接触
反応用触媒、不活性物質および炭化物等の付着物質が挙
げられる。接触反応用触媒としては、炭化水素類の酸化
反応、アンモ酸化反応、分解反応、還元反応、改質反応
等に一般的に用いられる触媒であるが、 これに限定され
るものではない。
[Solids] The solids in the reaction tube include solids used in various reactions using a multitubular reactor and deposits formed in the reaction tube when various reactions are performed. Is not particularly limited. Specific examples include various types of catalysts for catalytic reactions, inert substances, and adhering substances such as carbides. The catalyst for the catalytic reaction is a catalyst generally used for an oxidation reaction, an ammoxidation reaction, a decomposition reaction, a reduction reaction, a reforming reaction, and the like of hydrocarbons, but is not limited thereto.

【0013】不活性物質は、触媒を管式反応器に充填す
るにあたり触媒を支持するための支持体、反応流体の加
熱材または冷却材、あるいは触媒の活性制御を目的とし
た希釈材として使用され、各種接触反応(原料および目
的生成物)に対して不活性な物質を言う。例えばアルミ
ナ、シリカ、シリカアルミナ、炭化珪素、窒化珪素、ス
テアタイト等の各種セラミックスやカーボンスチール、
ステンレス等の各種金属製充填物である。触媒や不活性
物質あるいは反応管内壁に付着している物質としては、
反応流体中に微量に含まれる不純物や炭化物等の接触反
応による生成物および触媒成分からの飛散・昇華物等の
堆積物がある。
The inert substance is used as a support for supporting the catalyst when filling the catalyst into the tubular reactor, a heating or cooling material for the reaction fluid, or a diluent for controlling the activity of the catalyst. , A substance which is inert to various catalytic reactions (raw materials and target products). For example, various ceramics such as alumina, silica, silica alumina, silicon carbide, silicon nitride, steatite and carbon steel,
Various metallic fillers such as stainless steel. As a catalyst, an inert substance, or a substance attached to the inner wall of the reaction tube,
There are products produced by contact reaction of trace amounts of impurities and carbides contained in the reaction fluid, and deposits such as scattering and sublimation from the catalyst components.

【0014】触媒や不活性物質は、通常、粒塊状の形態
で使用される。粒形状については特に限定はなく、球
形、円柱状、リング状、不定形状などのいずれでもよ
い。抜き出される固形物の粒径に関しては、例えば、固
形物が球状または円柱状の場合はその直径を、リング状
の場合はその外径を粒径とする。固形物の粒径Sと反応
管内径Dとの比S/Dは、0.5以下、好ましくは0.
45以下、より好ましくは0.4以下である。但し、上
記比率が0.5より大きい固形物であっても、吸引管の
先端で0.5以下に小さく砕くことができる場合は、こ
の限りではない。
The catalyst and the inert substance are usually used in a granular form. The grain shape is not particularly limited, and may be any of a spherical shape, a cylindrical shape, a ring shape, an irregular shape, and the like. Regarding the particle size of the solid material to be extracted, for example, when the solid material is spherical or cylindrical, the diameter is defined as the diameter, and when the solid is ring-shaped, the outer diameter is defined as the particle size. The ratio S / D between the particle size S of the solid and the inner diameter D of the reaction tube is 0.5 or less, preferably 0.1%.
It is 45 or less, more preferably 0.4 or less. However, even if the above ratio is a solid matter larger than 0.5, this is not limited to the case where the solid matter can be crushed to 0.5 or less at the tip of the suction tube.

【0015】〔吸引管〕吸引管は、抜き出し作業に従事
する作業員が握りやすく、 作業性が良いことから、通
常、断面形状が円形のものが使用されるが、楕円形や多
角形なども採用でき、反応管の断面形状に合わせて、適
宜選択すればよい。吸引管は、剛性が高く変形し難いも
のであってもよいし、可撓性があって湾曲できるもので
あってもよい。但し、排気吸引時の負圧によって潰れな
い程度の形状維持性を有するものが好ましい。吸引管の
材質については、ポリエチレン製のものが適度にたわむ
ことから作業性が良く使いやすいが、ポリプロピレン、
テフロン(登録商標)、ポリ塩化ビニルなどの樹脂製や
ステンレスや炭素鋼などの金属製のものも使用でき、こ
れら複数の材料層を積層したり継ぎ合わせたりして使用
することもできる。
[Suction tube] The suction tube is generally of a circular cross section because it is easy for an operator engaged in withdrawing work to grasp and has good workability. What is necessary is just to select suitably according to the cross-sectional shape of a reaction tube. The suction tube may have high rigidity and is hardly deformed, or may have flexibility and can be bent. However, it is preferable to use a material having such a shape maintaining property as not to be crushed by a negative pressure at the time of exhaust suction. As for the material of the suction tube, the material made of polyethylene is easy to use because it bends moderately, but it is easy to use.
A resin material such as Teflon (registered trademark) or polyvinyl chloride or a metal material such as stainless steel or carbon steel can be used, and a plurality of these material layers can be laminated or spliced.

【0016】吸引管のうち、反応器の反応管に挿入され
る部分と、反応管の外部に延びる部分とで材質や形状構
造を違えることもできる。さらには、反応管に挿入され
る部分のうち先端部分と後方部分とで材質や形状構造を
違えることもできる。吸引管の管壁の厚みTは、材質や
要求性能によっても異なるが、通常はT≦5mm、好ま
しくは1mm≦T≦3mm、より好ましくは1mm≦T
≦2mmである。 〔排気吸引装置〕吸引管には、先端の開口から空気流と
ともに固形物を吸引するために排気吸引装置が接続され
る。
The material and shape of the suction tube may be different between a portion inserted into the reaction tube of the reactor and a portion extending outside the reaction tube. Further, the material and the shape structure may be different between the tip portion and the rear portion of the portion inserted into the reaction tube. The thickness T of the tube wall of the suction tube varies depending on the material and the required performance, but is usually T ≦ 5 mm, preferably 1 mm ≦ T ≦ 3 mm, and more preferably 1 mm ≦ T.
≦ 2 mm. [Exhaust Suction Apparatus] An exhaust suction apparatus is connected to the suction pipe for sucking solids together with airflow from the opening at the tip.

【0017】排気吸引装置の構造あるいは仕様として
は、一般に用いられる排気吸引装置と同様のものが用い
られる。排気吸引装置には、モータやエンジンなどの動
力源で駆動される排気ポンプを備えている。排気ポンプ
の機構や構造は、一般に用いられる排気ポンプと同様の
ものが採用できる。吸引管は排気吸引装置の吸気口に接
続される。吸引管を直接に排気吸引装置に接続してもよ
いし、吸引管と排気吸引装置との間を配管で連結してお
くこともできる。吸引管と排気ポンプとの間には、空気
流と固形物とを分離して固形物だけを捕集するためのト
ラップを設けることができる。空気流と抜き出される固
形物との分離方法は特に限定はなく、一般に固形物の分
級に利用される重力式、遠心式、慣性式の分級器や適当
な目開きのフィルターを用いることができる。
The structure and specifications of the exhaust suction device are the same as those of a generally used exhaust suction device. The exhaust suction device includes an exhaust pump driven by a power source such as a motor or an engine. As the mechanism and structure of the exhaust pump, those similar to the generally used exhaust pump can be adopted. The suction pipe is connected to the suction port of the exhaust suction device. The suction pipe may be directly connected to the exhaust suction apparatus, or the suction pipe and the exhaust suction apparatus may be connected by a pipe. A trap may be provided between the suction pipe and the exhaust pump to separate the air flow from the solid matter and collect only the solid matter. There is no particular limitation on the method of separating the solid matter extracted from the air flow, and a gravity type, centrifugal type, inertial classifier or a filter having a suitable aperture generally used for classification of the solid matter can be used. .

【0018】また、 トラップで捕集できなかった微粉等
が排気ポンプへ混入するのを防止するために、適当な目
開きのバグフィルターやサイクロン等の捕集装置を前記
トラップと排気ポンプとの間に設置するのが望ましい。
排気吸引装置の能力、すなわち吸気量は、抜き出そうと
する固形物の大きさ、比重、容器内への触媒等の固形物
の付着度合い、吸引管の耐圧(吸引管の内部が減圧にな
ってもつぶれない)、配管抵抗、固形物の抜き出し速度
(反応管1本当たりの固形物抜き出し所要時間)などを
総合的に判断して適当な能力の装置を使用すればよい。
In order to prevent the fine powder and the like that could not be collected by the trap from being mixed into the exhaust pump, a collecting device such as a bag filter or a cyclone having an appropriate opening is provided between the trap and the exhaust pump. It is desirable to install in.
The capacity of the exhaust suction device, that is, the amount of intake air, depends on the size and specific gravity of the solid material to be extracted, the degree of adhesion of the solid material such as catalyst to the container, the pressure resistance of the suction pipe (the pressure inside the suction pipe is reduced. It is possible to use a device having an appropriate capacity after comprehensively judging the pipe resistance, the pipe resistance, the speed of extracting solids (the time required for extracting solids per reaction tube), and the like.

【0019】排気吸引装置には、クーラーやサイレンサ
ーを設けて、環境への悪影響を軽減することができる。 〔固形物の抜き出し〕反応管が縦方向に配置された多管
式反応器の場合、吸引管の挿入位置は反応管の上端開口
部または下端開口部のいずれからでもよく、反応器の構
造等を考慮して作業性の良い方法を採用すればよい。一
般的には、反応管上端開口部から挿入するほうが作業姿
勢が楽になるなど作業性はよい。吸引管の先端を反応管
の何れかの開口部から挿入し、吸引管の先端から反応管
内の空気を吸い込むと空気流が発生する。反応管の先端
を反応管内の固形物に近づけると、固形物は反応管の先
端部分の空気流によって吸引管内に運ばれて反応管から
抜き出される。反応管の先端部分には、反応管の外部の
空気が、主に反応管の内壁と吸引管の外壁との隙間を通
って順次補給される。固形物の吸引とともに吸引管の先
端を徐々に反応管の内部に向かって挿入することで、反
応管内の固形物を順次抜き出すことができる。
The exhaust suction device may be provided with a cooler or a silencer to reduce adverse effects on the environment. [Discharge of solids] In the case of a multi-tube reactor in which the reaction tubes are arranged vertically, the insertion position of the suction tube may be either from the upper opening or the lower opening of the reaction tube, and the structure of the reactor, etc. In consideration of the above, a method with good workability may be adopted. Generally, the workability is good, for example, the work posture is easier when inserted from the upper end opening of the reaction tube. When the tip of the suction tube is inserted through one of the openings of the reaction tube, and air in the reaction tube is sucked from the tip of the suction tube, an air flow is generated. When the tip of the reaction tube approaches the solid in the reaction tube, the solid is carried into the suction tube by the airflow at the tip of the reaction tube and is extracted from the reaction tube. At the tip of the reaction tube, air outside the reaction tube is sequentially supplied mainly through the gap between the inner wall of the reaction tube and the outer wall of the suction tube. By gradually inserting the tip of the suction tube toward the inside of the reaction tube together with the suction of the solid, the solid in the reaction tube can be sequentially extracted.

【0020】このとき、吸引管の先端と固形物との間隔
が大きすぎると、固形物の抜き出し速度が低下したり、
場合によっては固形物を抜き出せなくなる。また、固形
物と吸引管先端の間隔が極端に小さすぎたり、反応管内
壁と吸引管の外壁との隙間が小さい場合も固形物の抜き
出し速度は低下する。つまり、吸引管への空気の補給を
効率よく行い、かつ、固形物が吸引管の先端の空気流内
または近傍に位置するように吸引管の先端部分の位置を
操作することにより、固形物の抜き出し速度が向上す
る。例えば、吸引管の外径を工夫して反応管内壁と吸引
管の間に適度な隙間をあけ、さらに、吸引管の先端を適
当な形状に加工することで、そのような効果が得られ
る。
At this time, if the distance between the tip of the suction tube and the solid is too large, the speed of withdrawing the solid is reduced,
In some cases, solids cannot be extracted. Also, if the distance between the solid and the tip of the suction tube is extremely small, or if the gap between the inner wall of the reaction tube and the outer wall of the suction tube is small, the speed at which the solid is extracted decreases. In other words, by efficiently supplying air to the suction pipe, and by manipulating the position of the tip of the suction pipe so that the solid is located in or near the airflow at the tip of the suction pipe, the solid substance is removed. The extraction speed is improved. For example, such an effect can be obtained by devising the outer diameter of the suction tube to provide an appropriate gap between the inner wall of the reaction tube and the suction tube, and further processing the tip of the suction tube into an appropriate shape.

【0021】〔吸引管の先端〕反応管内壁と反応管の内
部に挿入される吸引管先端との隙間、すなわち、反応管
内径Dと吸引管先端の外径d1の比率が、固形物の抜き
出し速度に大きな影響を及ぼす。具体的には、0.7≦
1/D≦0.95、好ましくは0.72≦d1/D≦
0.9、より好ましくは0.75≦d1/D≦0.85
であると効率よく抜き出し作業が行える。前記d1/D
が小さいほど、反応管の内壁と吸引管との隙間が大きく
なり、反応管の外部の空気は吸引管の先端に効率よく補
給されるが、吸引管の内側の開口面積は小さくなる。d
1/Dが小さすぎると、抜き出される固形物量が少なく
なるばかりでなく、固形物が吸引管内に詰まりやすくな
ってしまう。d1/Dが大きすぎると、反応管の内壁と
吸引管の隙間が小さくなるため、反応管の外部から吸い
込まれる空気が少なくなり、固形物が抜き出し難くなる
とともに、吸引管を反応管に差し込み難くなったり、反
応管内壁と吸引管の摩擦抵抗が大きくなって吸引管を反
応管内部に挿入し難くなる。
[Tip of Suction Tube] The gap between the inner wall of the reaction tube and the tip of the suction tube inserted into the reaction tube, ie, the ratio of the inner diameter D of the reaction tube to the outer diameter d 1 of the suction tube tip is determined by the solid material. It has a great effect on the extraction speed. Specifically, 0.7 ≦
d 1 /D≦0.95, preferably 0.72 ≦ d 1 / D ≦
0.9, more preferably 0.75 ≦ d 1 /D≦0.85
In this case, the extraction operation can be performed efficiently. D 1 / D
The smaller the is, the larger the gap between the inner wall of the reaction tube and the suction tube, the more efficiently air outside the reaction tube is supplied to the tip of the suction tube, but the smaller the opening area inside the suction tube. d
If 1 / D is too small, not only the amount of solids extracted is reduced, but also the solids are liable to be clogged in the suction tube. If d 1 / D is too large, the gap between the inner wall of the reaction tube and the suction tube becomes small, so that the air sucked from the outside of the reaction tube becomes small, it becomes difficult to extract solids, and the suction tube is inserted into the reaction tube. It becomes difficult or the frictional resistance between the inner wall of the reaction tube and the suction tube increases, making it difficult to insert the suction tube into the reaction tube.

【0022】また、固形物の粒径Sと吸引管の内径d2
との比d2/Sも、固形物の抜き出し速度に大きな影響
を及ぼす。具体的には、d2/S≧2.5、好ましくは
2/S≧2.7、より好ましくはd2/S≧3である。
但し、このときに、d2はd1−d2×2<0を満足しな
ければならない。前記d2/Sが小さすぎると、吸引管
内部に固形物が吸引され難くなったり、吸引管の内部に
固形物が詰まりやすくなるなど、作業効率が著しく低下
する。反応管内に挿入する吸引管の先端形状について
は、固形物の形状やサイズ、反応管への付着状態、固形
物の抜き出し速度を考慮して適宜選択すればよい。吸引
管の先端部分の空気流を効率よく固形物の抜き出しに利
用できる形状を選択すれば、固形物が空気流と共に抜き
出し易くなり、固形物の抜き出し速度が向上して好まし
い。
The particle size S of the solid and the inner diameter d 2 of the suction tube
The ratio d 2 / S also has a large effect on the speed of extracting solids. Specifically, d 2 /S≧2.5, preferably d 2 /S≧2.7, and more preferably d 2 / S ≧ 3.
However, at this time, d 2 must satisfy d 1 −d 2 × 2 <0. If the value of d 2 / S is too small, the work efficiency is significantly reduced, for example, solids are hardly sucked into the suction tube or solids are easily clogged in the suction tube. The tip shape of the suction tube inserted into the reaction tube may be appropriately selected in consideration of the shape and size of the solid, the state of attachment to the reaction tube, and the speed of withdrawing the solid. It is preferable to select a shape in which the air flow at the tip of the suction tube can be efficiently used for extracting the solid material, since the solid material can be easily extracted together with the air flow, and the speed of extracting the solid material is improved.

【0023】例えば、円筒状の吸引管を使用する場合、
吸引管の管軸方向と直交する面で水平に切断された円形
端面を有するものであってもよいし、吸引管の管軸方向
と直交する面に対して一定の角度θで傾斜している楕円
端面を有するものであってもよい。効率よく反応管内の
固形物を抜き出すには、傾斜角度θと固形物の抜き出し
速度との関係を考慮する必要がある。そこで、本発明者
は吸引管先端の傾斜角度θと固形物の抜き出し速度との
関係について検討を行った。その結果、図1に示すよう
に、θ=0から傾斜角度を大きくしていくに従って固形
物の抜き出し速度は増加するが、ある傾斜角度θx以上
になると、固形物の抜き出し速度は減少する傾向がある
ことが分かった。
For example, when a cylindrical suction tube is used,
The suction pipe may have a circular end face that is cut horizontally on a plane perpendicular to the pipe axis direction, or may be inclined at a certain angle θ with respect to a plane perpendicular to the pipe axis direction of the suction pipe. It may have an elliptical end face. In order to efficiently extract solids from the reaction tube, it is necessary to consider the relationship between the inclination angle θ and the solids extraction speed. Then, the present inventor examined the relationship between the inclination angle θ of the tip of the suction tube and the speed of extracting solids. As a result, as shown in FIG. 1, as the inclination angle is increased from θ = 0, the solid material extraction speed increases, but when the inclination angle exceeds a certain inclination angle θx, the solid material extraction speed tends to decrease. I found it.

【0024】もちろん、抜き出し速度が最大となる傾斜
角度θxは、排気吸引装置の吸気量や反応管内の固形物
の大きさ、前記したd1/Dにより変化するが、吸引管
先端の傾斜角度θをむやみに大きくしすぎると固形物の
抜き出し速度は低下する。本発明者は、前記検討の結
果、固形物の抜き出しに適した吸引管先端の傾斜角度θ
としては、0°≦θ≦70°であり、好ましくは0°≦
θ≦60°であり、より好ましくは0°≦θ≦50°で
あることを見出した。吸引管の先端には管軸方向と直交
する面よりも凹んだ凹入部を備えてもよい。凹入部の形
状として、クサビ形のような矩形状のものなどが挙げら
れる。
Of course, the inclination angle θx at which the extraction speed becomes maximum varies depending on the intake amount of the exhaust suction device, the size of the solid matter in the reaction tube, and d 1 / D described above. If it is excessively large, the speed at which solids are withdrawn decreases. As a result of the above examination, the present inventor has found that the inclination angle θ of the tip of the suction tube suitable for extracting solid matter is
As 0 ° ≦ θ ≦ 70 °, preferably 0 ° ≦
θ ≦ 60 °, more preferably 0 ° ≦ θ ≦ 50 °. The distal end of the suction tube may be provided with a recessed portion that is recessed from a plane perpendicular to the tube axis direction. Examples of the shape of the concave portion include a rectangular shape such as a wedge shape.

【0025】端面が傾斜していたり凹入部を有していれ
ば、固形物と吸引管の先端の間には適度な隙間が形成さ
れることから、吸引管先端部分の空気流を効率よく固形
物の抜き出しに利用でき、常に安定した空気流を保つこ
とができ、結果として固形物の抜き出し速度が向上す
る。吸引管の先端外周に凸部を備えておくことができ
る。この凸部は、吸引管の外面と反応管の内壁面との間
に一定の間隔を維持するのに有効である。吸引管の剛性
や耐変形性を向上する作用もある。凸部の配置形状とし
て、吸引管の周方向に断続的に配置しておけば、吸引管
と反応管との間の隙間を通る空気流を阻害することが少
ない。凸部を螺旋状に配置しておくこともできる。
If the end face is inclined or has a concave portion, an appropriate gap is formed between the solid and the tip of the suction pipe, so that the air flow at the tip of the suction pipe can be efficiently reduced. It can be used for extracting material and can always maintain a stable air flow, and as a result, the speed of extracting solid material is improved. A protrusion may be provided on the outer periphery of the distal end of the suction tube. This convex portion is effective in maintaining a constant distance between the outer surface of the suction tube and the inner wall surface of the reaction tube. It also has the effect of improving the rigidity and deformation resistance of the suction tube. If the projections are arranged intermittently in the circumferential direction of the suction pipe, the air flow passing through the gap between the suction pipe and the reaction tube is less likely to be hindered. The convex portions may be spirally arranged.

【0026】吸引管の先端には、後方部分とは別部材
で、ステンレスやカーボンスチールなどの金属製や樹脂
製等のアダプターを接続して用いても良い。例えば、固
形物が吸引管の内径よりも大きい場合や固形物が反応管
内壁に強固に付着している場合、ポリエチレン製等の比
較的軟らかい材質の吸引管を用いると抜き出しにくくな
るが、金属製等の硬い材質で加工されたアダプターを吸
引管の先端に備えていると、アダプターの先端で固形物
を細かく砕きながら抜き出しを行えることから、抜き出
し効率が向上するという効果が得られる。抜き出し工程
で、固形物は吸引管内を空気流と共に高速で移動するた
め、使用する吸引管およびそれに付属する配管や排気吸
引装置の材質によっては摩擦により静電気を帯びるもの
もある。抜き出される固形物によっては静電気により発
火もしくは爆発する危険もあることから、安全上、適所
にアースを接続することが好ましい。
At the tip of the suction tube, an adapter made of a metal such as stainless steel or carbon steel or a resin may be connected as a member separate from the rear portion. For example, when the solid material is larger than the inner diameter of the suction tube, or when the solid material is firmly attached to the inner wall of the reaction tube, it is difficult to remove the material using a suction tube made of a relatively soft material such as polyethylene. If an adapter made of a hard material such as is provided at the end of the suction tube, the solid can be finely crushed at the end of the adapter to perform extraction, so that the effect of improving extraction efficiency can be obtained. In the extraction process, the solids move at high speed in the suction pipe together with the air flow, and therefore, depending on the material of the suction pipe used and the pipes and exhaust suction device attached thereto, some of the solid matter may be charged with static electricity by friction. Since there is a danger of ignition or explosion due to static electricity depending on the solid matter extracted, it is preferable to connect a ground to an appropriate place for safety.

【0027】なお、 抜き出す固形物が脆く粉塵の発生が
著しい場合、または、酸素との接触により触媒や触媒上
に付着した物質が自然発火する危険のある場合は、抜き
出し作業を実施する前に、水や各種添加物を混合した鉱
油、界面活性物質等の薬剤で固形物を湿潤処理してもよ
い。具体的には、特開昭50−140369号公報、特
開昭59−73038号公報に示された技術が適用でき
る。また、非通気性の板材を反応器内に敷設してもよ
い。具体的には、特開昭61−35842号公報に示さ
れた技術が適用できる。 〔作用および効果〕排気吸引装置に直接または間接に接
続される抜き出し用の吸引管を用いて、吸引管の先端を
反応管の何れかの開口部から挿入して、固形物を空気流
と共に吸引して抜き出せば、作業場所での粉塵の発生が
なくなり、 極めて良好な作業環境で抜き出し作業が行え
る。また、抜き出し用吸引管の材質、外径、先端形状な
どを適切に設定することで抜き出し作業の効率が向上
し、固形物の抜き出し時間の短縮も可能となる。
If the solid to be extracted is brittle and dust is remarkable, or if there is a danger of spontaneous ignition of the catalyst or substances adhering to the catalyst due to contact with oxygen, before the extraction operation is performed, The solid material may be wet-treated with a chemical such as water, a mineral oil mixed with various additives, or a surfactant. Specifically, the techniques disclosed in JP-A-50-140369 and JP-A-59-73038 can be applied. Further, a non-breathable plate may be laid in the reactor. Specifically, the technique disclosed in JP-A-61-35842 can be applied. [Operation and effect] Using a suction tube for extraction directly or indirectly connected to the exhaust suction device, insert the tip of the suction tube from any opening of the reaction tube, and suck solids together with the air flow. Then, no dust is generated in the work place, and the extraction work can be performed in an extremely favorable working environment. In addition, by appropriately setting the material, outer diameter, tip shape, and the like of the suction pipe for extraction, the efficiency of the extraction operation is improved, and the time for extracting solids can be reduced.

【0028】更には、 固形物を反応管の上端側の開口部
から抜き出す場合、吸引管の先端を反応管開口部から所
望の位置まで挿入することで、反応管内の不要な固形物
のみを選択的に抜き出せ、抜き出した触媒の分離・回収
も容易になる。例えば、特開平11−130722号公
報に記載されているような、反応管の管軸方向に複数個
に分割された反応帯にそれぞれ種類の異なる触媒や不活
性物質を充填して反応を行う反応器において、上部の反
応帯に充填されている触媒のみを抜き出すことができ
る。具体的には、従来の方法では反応管下部から抜き出
すため、抜き出す必要のない下部反応帯に充填されてい
る触媒までも抜き出さなければならないが、本発明によ
る抜き出し方法を用いれば、吸引管の先端を反応管の所
望の位置まで挿入する事で反応管の上部反応帯に充填さ
れている触媒のみを選択的に抜き出すことができる。
Further, when extracting solids from the opening on the upper end side of the reaction tube, by inserting the tip of the suction tube from the opening of the reaction tube to a desired position, only unnecessary solids in the reaction tube are selected. The extracted catalyst can be easily separated and recovered. For example, as described in Japanese Patent Application Laid-Open No. H11-130722, a reaction in which different types of catalysts and inert materials are filled in a plurality of reaction zones divided in a tube axis direction of a reaction tube to perform a reaction. In the reactor, only the catalyst packed in the upper reaction zone can be extracted. Specifically, in the conventional method, since the catalyst is extracted from the lower portion of the reaction tube, it is necessary to extract even the catalyst filled in the lower reaction zone which does not need to be extracted. By inserting the tip to a desired position in the reaction tube, only the catalyst filled in the upper reaction zone of the reaction tube can be selectively extracted.

【0029】本発明の抜き出し方法は、触媒等充填物の
交換時に多管式反応器から劣化した触媒等の固形物を抜
き出す際に利用されるばかりでなく、多管式反応器の反
応管に新しい触媒や不活性物質を充填する際における充
填物の充填量を調整する作業にも利用できる。多管式反
応器を用いた接触反応の工業的実施において触媒や不活
性物質を反応管に充填する場合、各反応管に充填される
触媒等の充填量(充填層高)および充填による各反応管
の圧力損失は、理想的には均一であることが好ましいこ
とは当業者なら当然認識している。
The extraction method of the present invention is used not only for extracting solid matter such as a deteriorated catalyst from a multitubular reactor at the time of replacement of a filler such as a catalyst, but also for removing a reaction tube of the multitubular reactor. It can also be used for adjusting the filling amount of the filler when filling a new catalyst or an inert substance. When a catalyst or an inert substance is filled in a reaction tube in the industrial implementation of a catalytic reaction using a multitubular reactor, the amount of catalyst (filled bed height) filled in each reaction tube and each reaction due to the filling. One skilled in the art will appreciate that the pressure loss in the tube is preferably ideally uniform.

【0030】反応管に触媒等を充填する際に触媒等の質
量や体積を予め正確に測っておけば、充填後の各反応管
内における触媒等の充填層高および圧力損失は一定にな
るはずである。しかしながら、実際には触媒等の形状や
粒径等に多少の差があることや、充填時における触媒等
の充填速度が必ずしも一定でないこと等の理由から、各
反応管における充填層高や圧力損失にばらつきが生じ
る。このように、反応管の数が数百から数万本にもおよ
ぶ多管式反応器において、触媒等の固形物の充填層高お
よび圧力損失を全ての反応管において均一になるように
充填することは非常な努力を要する。
If the mass and volume of the catalyst and the like are accurately measured before filling the reaction tube with the catalyst and the like, the packed bed height and pressure loss of the catalyst and the like in each reaction tube after the filling should be constant. is there. However, in practice, the packed bed height and pressure loss in each reaction tube are different because there are slight differences in the shape and particle size of the catalyst and the like, and the filling speed of the catalyst and the like at the time of filling is not always constant. Will vary. As described above, in a multi-tube reactor having hundreds to tens of thousands of reaction tubes, the height of the packed bed of solids such as a catalyst and the pressure loss are packed so as to be uniform in all the reaction tubes. That takes a lot of effort.

【0031】そこで、現実的には触媒性能や機器の能力
を考慮して、これら充填層高および圧力損失は予め決め
られた基準値の範囲内に入るように調整される。この
際、充填後に基準値をはずれ、触媒充填層高が高くなっ
たり圧力損失が高くなった反応管については充填物を抜
き出し、再度充填をやり直すといった作業を行う。この
際、充填した触媒を一部抜き出す方法として本発明の抜
き出し方法を利用すると、充填した全ての触媒を抜き出
す必要が無く、効率的に充填層高や圧力損失の調整作業
を実施できる。
Therefore, in practice, the packed bed height and the pressure loss are adjusted so as to fall within the range of a predetermined reference value in consideration of the catalyst performance and the performance of the equipment. At this time, after the filling, the reference value is deviated from the reference value, and the reaction tube in which the height of the catalyst packed bed is increased or the pressure loss is increased is taken out of the packed material, and the filling is performed again. At this time, if the extraction method of the present invention is used as a method for extracting a part of the filled catalyst, it is not necessary to extract all the filled catalyst, and the work of adjusting the height of the packed bed and the pressure loss can be efficiently performed.

【0032】[0032]

【発明の実施の形態】次に本発明の実施形態について詳
細に説明する。 〔多管式反応器〕図2に示すように、多管式反応器10
は、垂直方向に立設された多数の反応管20を備えてい
る。反応器10の上下端には反応流体の出入口12、1
4が設けられている。反応器10の出入口12、14
は、反応流体の供給設備や前工程の処理設備、次工程の
処理設備などと配管接続されているが、図示を省略して
いる。また、反応器10には、反応流体を加温したり冷
却したりする温度調整装置や、反応の進行を監視するセ
ンサ装置など、通常の反応器10と同様の機構設備を備
えておくことができる。
Next, embodiments of the present invention will be described in detail. [Multitubular reactor] As shown in FIG.
Is provided with a number of reaction tubes 20 erected in the vertical direction. The upper and lower ends of the reactor 10 have inlets and outlets 12 and 1 for the reaction fluid.
4 are provided. Doors 12, 14 of reactor 10
Are connected to the supply equipment of the reaction fluid, the processing equipment of the preceding step, the processing equipment of the next step, and the like, but are not shown. Further, the reactor 10 may be provided with the same mechanical equipment as the normal reactor 10, such as a temperature controller for heating and cooling the reaction fluid and a sensor device for monitoring the progress of the reaction. it can.

【0033】図3に示すように、反応管20には、固形
物として粒塊状の触媒90が充填されており、反応管2
0を通過する反応流体が触媒90と接触することで触媒
作用を受けて所定の反応を起こしたあと、反応器10よ
り排出される。反応器10の稼働を続けることで、触媒
90の物性が変化したり触媒90の表面に副生物が付着
したりして、触媒90の機能が低下すると、触媒90を
反応管20から取り出して、新しい触媒90が再充填さ
れる。 〔触媒の抜き出し〕反応器10から反応流体を排出した
り反応器10の内部を洗浄したりしたあと、反応管20
の内部から触媒90を抜き出す作業を行う。
As shown in FIG. 3, the reaction tube 20 is filled with a granular catalyst 90 as a solid material.
After the reaction fluid passing through 0 comes into contact with the catalyst 90 and is catalyzed to cause a predetermined reaction, the reaction fluid is discharged from the reactor 10. When the operation of the reactor 10 is continued, the physical properties of the catalyst 90 change or by-products adhere to the surface of the catalyst 90, and when the function of the catalyst 90 is reduced, the catalyst 90 is taken out from the reaction tube 20, The fresh catalyst 90 is recharged. [Removal of catalyst] After discharging the reaction fluid from the reactor 10 or cleaning the inside of the reactor 10, the reaction tube 20
The operation of extracting the catalyst 90 from the inside is performed.

【0034】図2に示すように、作業員Mが、反応管2
0の上端が開口して並んでいる作業床に上がり、吸引管
30の先端を反応管20の上端に配置し、反応管20に
吸引管30を挿入していく。吸引管30は、反応器10
の出入口12から反応器10の任意の場所に設けられて
いるマンホールを通して外部に延び、配管32を経て反
応器10の外に設置された固形物トラップ装置40に接
続されている。固形物トラップ装置40は、空気流から
固形物である触媒90だけを分離する。固形物トラップ
装置40は、さらに配管32を介して、バグフィルター
50、クーラー60、排気ポンプ70、サイレンサー8
0に接続されている。排気ポンプ70は、モータ等で駆
動される真空ポンプであり、配管32内の空気を強制排
気して空気流を発生させる。吸引管30による固形物の
抜き出し、固形物トラップ装置40による空気流からの
固形物の分離回収を行うという基本的な機能は、排気ポ
ンプ70だけでも達成できる。しかし、バクフィルター
50、クーラー60、サイレンサー80を備えているこ
とで、環境汚染の防止、作業環境の改善に有効である。
具体的には、バグフィルター50は、固形物トラップ装
置40では捕捉できなかった微小な粉塵を空気流から捕
捉して回収することができる。クーラー60は、配管3
2内の空気を冷却でき、過熱した排気が放出されるのを
防ぐ。配管32内の空気流がそれほど高温でなければク
ーラー60は無くても構わない。サイレンサー80は、
配管32内の空気流が発生する騒音を軽減することがで
きる。
As shown in FIG. 2, the worker M
The upper end of the suction pipe 30 rises to the work floor where the upper end of the suction pipe 30 is opened, and the tip of the suction pipe 30 is arranged at the upper end of the reaction pipe 20, and the suction pipe 30 is inserted into the reaction pipe 20. The suction tube 30 is connected to the reactor 10
From the inlet / outlet 12 of the reactor 10 to the outside through a manhole provided at an arbitrary position of the reactor 10, and is connected to a solid trap device 40 installed outside the reactor 10 via a pipe 32. The solids trap device 40 separates only the solid catalyst 90 from the air stream. The solid matter trap device 40 further includes a bag filter 50, a cooler 60, an exhaust pump 70, a silencer 8 via a pipe 32.
Connected to 0. The exhaust pump 70 is a vacuum pump driven by a motor or the like, and forcibly exhausts the air in the pipe 32 to generate an air flow. The basic function of extracting solids by the suction pipe 30 and separating and recovering solids from the airflow by the solid trapping device 40 can be achieved only by the exhaust pump 70. However, the provision of the back filter 50, the cooler 60, and the silencer 80 is effective in preventing environmental pollution and improving the working environment.
Specifically, the bag filter 50 can capture and collect the fine dust that could not be captured by the solid matter trapping device 40 from the airflow. Cooler 60 is connected to piping 3
The air inside 2 can be cooled, and the overheated exhaust is prevented from being released. If the air flow in the pipe 32 is not so high, the cooler 60 may be omitted. The silencer 80
The noise generated by the airflow in the pipe 32 can be reduced.

【0035】固形物トラップ装置40で空気流と分離回
収された固形物90は、通常の手段で廃棄したり有用資
源を回収したり再利用したりすることができる。例え
ば、固形物90が触媒の場合には、含有する金属類を分
離回収する処理に送ることができる。 〔抜き出し作業〕図2において、配管32を介して固形
物トラップ装置40に接続された吸引管30の一端を、
反応器10の内部に引き込み、反応管20の上端に吸引
管30の先端を配置する。
The solids 90 separated and recovered from the air stream by the solids trapping device 40 can be discarded by a usual means, and useful resources can be recovered and reused. For example, when the solid 90 is a catalyst, it can be sent to a process for separating and recovering the contained metals. [Withdrawal work] In FIG. 2, one end of the suction pipe 30 connected to the solid trap device 40 via the pipe 32 is
It is drawn into the inside of the reactor 10, and the tip of the suction tube 30 is arranged at the upper end of the reaction tube 20.

【0036】図3に詳しく示すように、吸引管30の先
端から空気を吸い込む。吸引管30の先端を、反応管2
0の内部に充填された固形物90の上に配置すると、吸
引管30に吸い込まれる空気の流れに引かれて固形物9
0も吸引管30に吸い込まれる。吸引管30に吸い込ま
れた固形物90は、前記した配管32を経て固形物トラ
ップ装置40に送り込まれ、空気流と分離されて回収さ
れる。吸引管30の先端で固形物90を吸い込むと、吸
い込まれた固形物90の分だけ反応管20内の固形物9
0の上端と吸引管30の先端との距離が離れるので、吸
引管30の先端を固形物90の上端に近づけるように反
応管20に挿入していく。
As shown in detail in FIG. 3, air is sucked from the distal end of the suction tube 30. Connect the tip of the suction tube 30 to the reaction tube 2
0, the solids 90 are drawn by the flow of the air sucked into the suction pipe 30 when the solids 90 are placed on the solids 90 filled in the inside of the solids 9.
0 is also sucked into the suction tube 30. The solid matter 90 sucked into the suction pipe 30 is sent to the solid matter trapping device 40 via the above-described pipe 32, and is separated from the air flow and collected. When the solids 90 are sucked at the tip of the suction tube 30, the solids 9 in the reaction tube 20 correspond to the sucked solids 90.
Since the distance between the upper end of the suction tube 30 and the upper end of the suction tube 30 is large, the distal end of the suction tube 30 is inserted into the reaction tube 20 so as to approach the upper end of the solid 90.

【0037】この動作を継続しておこなえば、反応管2
0の全長にわたって充填された固形物90を抜き出すこ
とができる。また、吸引管30を反応管20の途中まで
挿入した状態でそれ以上の挿入を停止すれば、その位置
における吸引管30の先端位置よりも少し下までの固形
物90が抜き出され、それよりも下の固形物90は充填
されたまま残ることになる。このとき、吸引管30の先
端の挿入深さを調節すれば、反応管20に残る固形物9
0の充填層高を任意に調整することが可能になる。な
お、吸引管30の外径は、反応管20の内壁と吸引管3
0の外壁との間に反応管20の外の空気が吸引管30の
先端部分に効率よく補給できる程度の隙間があくように
設定されている。
If this operation is continued, the reaction tube 2
The solids 90 filled over the entire length of 0 can be withdrawn. If the further insertion is stopped with the suction tube 30 inserted halfway through the reaction tube 20, the solids 90 slightly below the distal end position of the suction tube 30 at that position are extracted, and The solids 90 below will remain filled. At this time, if the insertion depth of the tip of the suction tube 30 is adjusted, the solids 9 remaining in the reaction tube 20 can be adjusted.
It becomes possible to arbitrarily adjust the height of the packed bed of 0. The outer diameter of the suction tube 30 is equal to the inner wall of the reaction tube 20 and the suction tube 3.
The gap is set such that air outside the reaction tube 20 can be efficiently supplied to the distal end portion of the suction tube 30 between itself and the outer wall of the suction tube 30.

【0038】〔吸引管の先端構造〕図4は、吸引管の先
端構造が異なる数種の具体例を示している。図4(a)
は、吸引管30の先端が、管軸方向と直交する水平面で
切断された円形端面を有している。図4(b) は、吸引管
30の先端が、管軸方向と直交する水平面に対して傾斜
角度θで傾斜し、楕円形端面を有している。図4(a) に
比べて、実質的な開口面積が広くなり、かつ、固形物9
0と吸引管30の先端に適度な隙間を形成することで、
空気流とともに固形物90が吸い込まれ易くなる。吸引
管30の先端に当接した固形物90が傾斜に沿って移動
しながら吸引管30に吸い込まれることで、固形物90
が端面に当接したまま開口を塞いでしまうことが防げ
る。
FIG. 4 shows several specific examples in which the tip structure of the suction tube is different. Fig. 4 (a)
Has a circular end face in which the distal end of the suction pipe 30 is cut along a horizontal plane orthogonal to the pipe axis direction. In FIG. 4B, the tip of the suction tube 30 is inclined at an inclination angle θ with respect to a horizontal plane orthogonal to the tube axis direction, and has an elliptical end surface. As compared with FIG. 4 (a), the substantial opening area is increased and the solid material 9
By forming an appropriate gap between 0 and the tip of the suction tube 30,
The solids 90 are easily sucked in with the air flow. The solid matter 90 contacting the tip of the suction pipe 30 is sucked into the suction pipe 30 while moving along the slope, so that the solid matter 90
Can be prevented from closing the opening while contacting the end surface.

【0039】図4(c) は、吸引管30の先端で直径方向
で対向する2個所に、先端が開いたU字形をなす凹入部
34を設けている。上記図4(b) の構造と同様、先端の
実質的な開口面積が大きくなり、固形物90と吸引管3
0の先端に適度な隙間を形成する。複数の凹入部34を
備えていることで、一方の凹入部34が固形物90で一
時的に塞がれても、他方の凹入部34からは空気流およ
び固形物90を吸い込むことができる。また、一方の凹
入部34を塞ぐ固形物90が他方の凹入部34を通過す
る空気流や固形物90の力で動かされて、吸引管30に
吸い込まれるので、固形物90の詰まりが解消される作
用も生じる。
In FIG. 4C, a U-shaped recessed portion 34 having an open end is provided at two diametrically opposed ends of the suction tube 30. Similar to the structure shown in FIG. 4B, the substantial opening area at the tip is increased, and the solid 90 and the suction pipe 3 are removed.
An appropriate gap is formed at the leading end of the zero. The provision of the plurality of recesses 34 allows the airflow and the solids 90 to be sucked in from the other recess 34 even when one of the recesses 34 is temporarily closed by the solid 90. In addition, since the solids 90 that block one of the recesses 34 are moved by the airflow or the force of the solids 90 passing through the other recess 34 and are sucked into the suction pipe 30, the clogging of the solids 90 is eliminated. Action also occurs.

【0040】図4(d) は、三角形のクサビ状をなす凹入
部34が周方向に並んでいる。多数の凹入部34を備え
ることで、周方向で均等に効率良く吸い込み作用を発揮
することができる。反応管20の内部に固着した固形物
90を、凹入部34の間の尖った先端で突き崩して吸い
込み易くすることもできる。図4(e) は、細長い矩形の
凹入部34が周方向に並んでいる。吸引管30の先端面
が固形物90の塊で塞がれても、外側面に十分な大きさ
の開口が確保できる。この場合、凹入部34の幅を固形
物90の粒径より大きい程度に設定しておけば、凹入部
34からの固形物90の吸い込みが良好に行える。
In FIG. 4D, triangular wedge-shaped concave portions 34 are arranged in the circumferential direction. By providing a large number of recessed portions 34, the suction action can be exerted uniformly and efficiently in the circumferential direction. The solid matter 90 fixed inside the reaction tube 20 can be broken down with a sharp tip between the recessed parts 34 to facilitate suction. In FIG. 4 (e), elongated rectangular recesses 34 are arranged in the circumferential direction. Even if the distal end surface of the suction tube 30 is closed with a lump of the solid matter 90, a sufficiently large opening can be secured on the outer surface. In this case, if the width of the recess 34 is set to be larger than the particle size of the solid 90, the suction of the solid 90 from the recess 34 can be performed well.

【0041】図4(f) は、吸引管30の外周面に螺旋状
の凸部36を一定の長さ分だけ設けている。凸部36の
外周端が反応管20の内壁に当接することで、反応管2
0と吸引管30との間に空気流が通過する隙間を確実に
設けることができ、吸引管の先端に効率よく空気を補給
できる。凸部36が吸引管30の全周にわたって配置さ
れていても、螺旋状の凸部36であれば、螺旋に沿って
空気が流通できるため、凸部36の部分で空気流が遮断
される問題がない。 〔固形物の充填量調整〕図5は、吸引管30を利用し
て、反応管20に充填する固形物90の充填層高(量)
を調整する方法を示している。
In FIG. 4F, a spiral convex portion 36 is provided on the outer peripheral surface of the suction tube 30 by a predetermined length. When the outer peripheral end of the convex portion 36 abuts on the inner wall of the reaction tube 20, the reaction tube 2
A gap through which the air flow passes can be reliably provided between the suction pipe 30 and the suction pipe 30, and air can be efficiently supplied to the tip of the suction pipe. Even if the convex portion 36 is arranged over the entire circumference of the suction tube 30, if the spiral convex portion 36 is used, air can flow along the spiral, and the air flow is interrupted at the convex portion 36. There is no. [Adjustment of Filling Amount of Solid] FIG. 5 shows the height (amount) of the packed layer of the solid 90 filled in the reaction tube 20 using the suction tube 30.
FIG.

【0042】(a) は、反応管20aに固形物90が適正
な量で充填された状態を示している。<MID>線が適
正な充填量の高さ位置を表している。<MAX>線から
<MIN>線の間が、許容できる充填層高の範囲であ
る。(b) は、固形物90の充填後に充填層高が高くなり
すぎた状況を示している。固形物90の充填層高が<M
AX>線を超えている。そこで、(c) に示すように、反
応管20bの上端から吸引管30を差し込んで、吸引管
30の先端から固形物90を抜き出す。(d) に示すよう
に、吸引管30の先端を、<MAX>線よりも下で<M
IN>線よりは下がらない位置、出来るだけ<MID>
線に近い位置まで挿入すれば、反応管20b内に残る固
形物90の上端位置は、<MID>線を中心にして<M
AX>線と<MIN>線との間の位置に確実に設定され
ることになる。
(A) shows a state in which the reaction tube 20a is filled with the solid matter 90 in an appropriate amount. The <MID> line indicates the height position of the proper filling amount. The range between the <MAX> line and the <MIN> line is an allowable range of the filling layer height. (b) shows a situation in which the height of the packed bed has become too high after the solid 90 is filled. The height of the packed bed of the solid material 90 is <M
AX> line is exceeded. Then, as shown in (c), the suction tube 30 is inserted from the upper end of the reaction tube 20b, and the solid matter 90 is extracted from the tip of the suction tube 30. As shown in (d), the tip of the suction tube 30 is set to <M> below the <MAX> line.
Position that does not fall below the IN> line, as much as possible <MID>
If it is inserted to a position close to the line, the upper end position of the solid matter 90 remaining in the reaction tube 20b will be <MID> around the <MID> line.
AX> line and <MIN> line are surely set.

【0043】なお、予め、<MAX>線、<MID>
線、<MIN>線から反応管20bの上端までの距離を
測定または算出しておけば、その距離に合わせて、反応
管20bに対する吸引管30の差し込み量を調節すれば
よい。吸引管30の外周に、<MAX>、<MID>、
<MIN>に対応する指示線を表示しておけば、この指
示線を目安にして作業が行い易い。吸引管30の外周で
<MID>に対応する位置に突起状のストッパを設けて
おいて、ストッパが反応管20bの上端開口に引っ掛か
る位置まで吸引管30を挿入すれば、吸引管30の挿入
深さを簡単かつ確実に設定できる。
Note that the <MAX> line, <MID>
If the distance from the <MIN> line to the upper end of the reaction tube 20b is measured or calculated, the insertion amount of the suction tube 30 into the reaction tube 20b may be adjusted according to the distance. <MAX>, <MID>,
If an instruction line corresponding to <MIN> is displayed, work can be easily performed using the instruction line as a guide. If a protrusion-shaped stopper is provided at a position corresponding to <MID> on the outer periphery of the suction tube 30 and the stopper is inserted to a position where the stopper is hooked on the upper end opening of the reaction tube 20b, the insertion depth of the suction tube 30 is reduced. Can be set easily and reliably.

【0044】また、反応管に固形物90を充填した後の
圧力損失についても、許容範囲が存在する。固形物90
を充填後に圧力損失が上限値よりも高くなりすぎた反応
管20については、上記した充填層高の下限値、すなわ
ち<MIN>線を下限として固形物90を吸引にて抜き
出し、圧力損失が基準値内に入るように調整すればよ
い。 〔特定層の固形物のみの抜き出し〕図6に示す実施形態
は、反応管20から特定層の固形物90だけを抜き出す
方法を示している。
There is also an allowable range of pressure loss after filling the reaction tube with the solids 90. Solids 90
With respect to the reaction tube 20 in which the pressure loss becomes higher than the upper limit after filling the solid, the solid 90 is drawn out by suction with the lower limit of the height of the packed bed, that is, the <MIN> line as the lower limit. It may be adjusted to be within the value. [Extraction of Solids Only in Specific Layer] The embodiment shown in FIG. 6 shows a method of extracting only solids 90 in the specific layer from the reaction tube 20.

【0045】反応管20には、下から順に、触媒90
c、隔離用の不活性物質90b、触媒90aが充填され
ている。触媒90cは、反応管20の下端から高さCま
で充填され、その上に、不活性物質90bが高さBで充
填され、一番上に触媒90aが高さAで充填されてい
る。このような充填構造は、反応流体を順次接触させ、
それぞれの触媒90a、90cによる反応を連続的に行
わせる反応方法に適用される。不活性物質90bは、各
種金属やセラミックスあるいは樹脂製で、リング状や球
状などの形状をなし、触媒90aと90cを確実に隔離
しておくとともに、反応流体の加熱または冷却をする働
きがある。
The catalyst 90 is placed in the reaction tube 20 in order from the bottom.
c, an inert substance 90b for isolation and a catalyst 90a are filled. The catalyst 90c is filled from the lower end of the reaction tube 20 to a height C, on which an inert substance 90b is filled at a height B, and the catalyst 90a is filled at a height A at the top. Such a filling structure makes the reaction fluids come into contact sequentially,
The present invention is applied to a reaction method in which reactions by the respective catalysts 90a and 90c are continuously performed. The inert substance 90b is made of various metals, ceramics, or resins, and has a shape such as a ring or a sphere, and functions to reliably separate the catalysts 90a and 90c and to heat or cool the reaction fluid.

【0046】このような反応管20から、活性が低下し
たりした触媒90aだけを抜き出す作業を行う。吸引管
30を、反応管20の上端に配置して吸引を行う。反応
管20の上部に充填された触媒90aが空気とともに吸
引管30内に吸い込まれて抜き出される。吸引管30の
先端を、反応管20の深さAよりも少し上の位置まで挿
入すれば、触媒90aの全部が抜き出されるとともに、
不活性物質90bおよび触媒90cは反応管20内に残
ったままになる。その後、反応管20に新たな触媒90
aあるいは再生処理された触媒90aを充填すれば、所
望の反応処理を再開することができる。
An operation of extracting only the catalyst 90a whose activity has been reduced from such a reaction tube 20 is performed. The suction tube 30 is arranged at the upper end of the reaction tube 20 to perform suction. The catalyst 90a filled in the upper part of the reaction tube 20 is sucked into the suction tube 30 together with the air and extracted. If the tip of the suction tube 30 is inserted to a position slightly higher than the depth A of the reaction tube 20, the entire catalyst 90a is extracted, and
The inert substance 90b and the catalyst 90c remain in the reaction tube 20. Thereafter, a new catalyst 90 is added to the reaction tube 20.
a or the regenerated catalyst 90a, the desired reaction process can be resumed.

【0047】前記した触媒90aの抜き出し工程のあと
で、触媒90cを残して不活性物質90bだけを抜き出
せば、不活性物質90bの交換を行うことができる。こ
の場合、触媒90aの抜き出しが完了した段階で、固形
物トラップ装置40から触媒90aを回収して取り除い
ておけば、次の段階で固形物トラップ装置40には不活
性物質90bだけが回収される。さらに、触媒90cを
抜き出すときには、固形物トラップ装置40に回収され
た不活性物質90bを取り出してから、触媒90cの抜
き出しを行えば、固形物トラップ装置40には触媒90
cだけが回収される。
After the above-described step of extracting the catalyst 90a, if only the inert substance 90b is extracted while leaving the catalyst 90c, the replacement of the inert substance 90b can be performed. In this case, if the catalyst 90a is recovered and removed from the solid substance trap device 40 at the stage when the removal of the catalyst 90a is completed, only the inert substance 90b is recovered in the solid substance trap device 40 in the next stage. . Furthermore, when extracting the catalyst 90c, the inert substance 90b collected in the solid substance trap device 40 is taken out, and then the catalyst 90c is withdrawn.
Only c is collected.

【0048】この方法では、種類の異なる固形物90
a、90bおよび90cを、それぞれ別個に分別して回
収できる。
In this method, different types of solids 90 are used.
a, 90b and 90c can be separately separated and collected.

【0049】[0049]

【実施例】以下、本発明の一実施例として、多管式熱交
換型反応器から酸化反応に供した触媒等固形物を抜き出
す例を挙げて本発明の実施の形態を具体的に説明する
が、本発明はこれに限定されない。なお、 本実施例にお
ける平均抜き出し所要時間および粉塵発生量はそれぞれ
次の通り定義する。 平均抜き出し所要時間: 1本の反応管から全固形物を抜き出すのに要した時間の
平均(秒) 粉塵量: 100本の反応管から全ての固形物を抜き出した後に、
作業員が着用していた防塵マスクに付着していた粉塵量
(mg) 粉塵量 =(反応管100本の抜き出し作業終了後の防
塵マスクの乾燥重量)−(作業前の防塵マスクの乾燥重
量) −実施例1− 特開平4−210937号公報の実施例1に記載の方法
に準じて、メタクロレインからメタクリル酸を製造する
反応を実施した。なお、反応管の数は10000本であ
り、反応管の長さは3000mmであった。
Embodiments of the present invention will be specifically described below as an example of the present invention, in which a solid material such as a catalyst subjected to an oxidation reaction is extracted from a multitubular heat exchange reactor. However, the present invention is not limited to this. The average time required for extraction and the amount of dust generated in this embodiment are defined as follows. Average extraction time: Average time required to extract all solids from one reaction tube (seconds) Dust amount: After all solids were extracted from 100 reaction tubes,
Amount of dust adhering to the dust mask worn by the worker (mg) Dust amount = (dry weight of dust mask after extracting 100 reaction tubes)-(dry weight of dust mask before operation) -Example 1- A reaction for producing methacrylic acid from methacrolein was carried out according to the method described in Example 1 of JP-A-4-210937. The number of the reaction tubes was 10,000, and the length of the reaction tubes was 3000 mm.

【0050】上記反応を8000時間継続した後、反応
管を冷却し、以下の抜き出し作業を行った。 (抜き出し作業)外径21mm、内径18mmのポリエ
チレン製チューブからなる吸引管の一方の端部を、固形
物トラップ装置を介して吸気量3.0m3/min、到
達真空度19600Paの能力を持つ排気ポンプが連結
された排気吸引装置に接続した。反応管に挿入する側の
吸引管先端は、図4(a) に示す水平端面形状に加工して
おいた。
After the reaction was continued for 8000 hours, the reaction tube was cooled, and the following extraction operation was performed. (Withdrawal work) One end of a suction tube made of a polyethylene tube having an outer diameter of 21 mm and an inner diameter of 18 mm was exhausted through a solid trap device through a solid substance trapping device, having a suction volume of 3.0 m 3 / min and an ultimate vacuum of 19,600 Pa. The pump was connected to an exhaust suction device connected. The tip of the suction tube on the side to be inserted into the reaction tube was processed into a horizontal end face shape as shown in FIG.

【0051】抜き出し用の吸引管を反応管上部開口部か
ら反応管下部に向かって徐々に挿入し、空気と共に反応
管内部に充填されている触媒を全て抜き出した。この抜
き出し作業を合計100本の反応管について実施した。
平均抜き出し所要時間は22秒だった。また、 粉塵量は
91mgであった。 −比較例1− 実施例1において、以下のような抜き出し作業をおこな
った以外は実施例1と同様に反応管100本について抜
き出し作業を行った。
An extraction suction tube was gradually inserted from the upper opening of the reaction tube toward the lower portion of the reaction tube, and all the catalyst filled in the reaction tube together with air was extracted. This extraction operation was performed for a total of 100 reaction tubes.
The average extraction time was 22 seconds. The amount of dust was 91 mg. -Comparative example 1- In Example 1, the extraction operation was performed on 100 reaction tubes in the same manner as in Example 1 except that the extraction operation described below was performed.

【0052】(抜き出し作業)4mm×2mm角、長さ
4500mmのピアノ線を用意した。該ピアノ線の一方
の端部を反応管下部開口部から挿入し、反応管上部に向
かって突き上げながら反応管内の全ての触媒等固形物を
徐々に落下させて抜き出した。抜き出し作業実施中は粉
塵の発生が非常に多く、また落下物から身体を保護する
ために、作業員は防塵マスクのみならず綿製の頭巾、防
塵服、ヘルメット、ゴーグルおよび手袋を装着して当該
作業を行った。平均抜き出し所要時間は40秒、粉塵量
は1594mgであった。 −実施例2− 実施例1において、外径18.5mm、内径15mmの
ポリエチレン製チューブからなる吸引管を用いた以外
は、実施例1と同様に反応管100本について抜き出し
作業を行った。
(Pull Out Work) A piano wire of 4 mm × 2 mm square and 4500 mm long was prepared. One end of the piano wire was inserted from the lower opening of the reaction tube, and all the solids such as the catalyst in the reaction tube were gradually dropped and pulled out while being pushed up toward the upper portion of the reaction tube. During the extraction work, dust is generated very much, and in order to protect the body from falling objects, workers wear not only a dust mask but also a cotton hood, dust clothes, helmet, goggles and gloves. Did the work. The average time required for extraction was 40 seconds, and the amount of dust was 1594 mg. -Example 2 With the exception of using a suction tube made of a polyethylene tube having an outer diameter of 18.5 mm and an inner diameter of 15 mm in Example 1, 100 reaction tubes were extracted in the same manner as in Example 1.

【0053】平均抜き出し所要時間は30秒、粉塵量は
87mgであった。 −実施例3− 実施例1において、外径23mm、内径18mmのポリ
エチレン製チューブからなる吸引管を用いた以外は、実
施例1と同様に反応管100本について抜き出し作業を
行った。平均抜き出し所要時間は28秒、粉塵量は87
mgであった。 −実施例4− 実施例1において、外径17mm、内径15mmのポリ
エチレン製チューブからなる吸引管を用いた以外は、実
施例1と同様に反応管100本について抜き出し作業を
行った。
The average time required for extraction was 30 seconds, and the amount of dust was 87 mg. -Example 3-An extraction operation was performed on 100 reaction tubes in the same manner as in Example 1 except that a suction tube formed of a polyethylene tube having an outer diameter of 23 mm and an inner diameter of 18 mm was used. The average extraction time is 28 seconds and the amount of dust is 87
mg. -Example 4 With the exception that a suction tube made of a polyethylene tube having an outer diameter of 17 mm and an inner diameter of 15 mm was used in Example 1, extraction was performed on 100 reaction tubes in the same manner as in Example 1.

【0054】平均抜き出し所要時間は42秒、粉塵量は
80mgであった。 −実施例5− 実施例1において、外径24.5mm、内径18mmの
ポリエチレン製チューブからなる吸引管を用いた以外
は、実施例1と同様に反応管100本について抜き出し
作業を行った。平均抜き出し所要時間は40秒、粉塵量
は77mgであった。 −実施例6− 実施例1において、外径21mm、内径14mmのポリ
エチレン製チューブからなる吸引管を用いた以外は、実
施例1と同様に反応管100本について抜き出し作業を
行った。
The average time required for extraction was 42 seconds, and the amount of dust was 80 mg. -Example 5- The same operation as in Example 1 was performed except that a suction tube formed of a polyethylene tube having an outer diameter of 24.5 mm and an inner diameter of 18 mm was used. The average time required for extraction was 40 seconds, and the amount of dust was 77 mg. -Example 6-The same operation as in Example 1 was performed, except that a suction tube made of a polyethylene tube having an outer diameter of 21 mm and an inner diameter of 14 mm was used, and extraction was performed on 100 reaction tubes.

【0055】平均抜き出し所要時間は33秒、粉塵量は
85mgであった。 −実施例7− 実施例1において、外径21mm、内径12mmのポリ
エチレン製チューブからなる吸引管を用いた以外は、実
施例1と同様に反応管100本について抜き出し作業を
行った。平均抜き出し所要時間は58秒、粉塵量は93
mgであった。 −実施例8− 実施例1において、反応管に挿入する側の吸引管先端
を、図4(b) に示す傾斜端面(傾斜角θ= 45°)に加
工した抜き出し用の吸引管を用いた以外は、実施例1と
同様に反応管100本について抜き出し作業を行った。
The average time required for extraction was 33 seconds, and the amount of dust was 85 mg. -Example 7-The same operation as in Example 1 was performed, except that a suction tube made of a polyethylene tube having an outer diameter of 21 mm and an inner diameter of 12 mm was used, and extraction was performed on 100 reaction tubes. The average extraction time is 58 seconds and the amount of dust is 93
mg. -Example 8-In Example 1, a suction tube for extraction was used in which the tip of the suction tube on the side to be inserted into the reaction tube was machined to the inclined end surface (inclination angle θ = 45 °) shown in FIG. Except for the above, extraction operation was performed on 100 reaction tubes in the same manner as in Example 1.

【0056】平均抜き出し所要時間は18秒、粉塵量は
90mgであった。 −実施例9− 実施例1において、反応管に挿入する側の吸引管先端
を、図4(b) に示す傾斜端面(傾斜角θ= 65°)に加
工した抜き出し用の吸引管を用いた以外は、実施例1と
同様に反応管100本について抜き出し作業を行った。
平均抜き出し所要時間は25秒、粉塵量は84mgであ
った。 −実施例10− 実施例1において、反応管に挿入する側の吸引管先端
を、図4(b) に示す傾斜端面(傾斜角θ= 75°)に加
工した抜き出し用の吸引管を用いた以外は、実施例1と
同様に反応管100本について抜き出し作業を行った。
The average time required for extraction was 18 seconds, and the amount of dust was 90 mg. -Example 9-In Example 1, a suction tube for extraction was used in which the tip of the suction tube to be inserted into the reaction tube was machined to the inclined end surface (inclination angle θ = 65 °) shown in FIG. Except for the above, extraction operation was performed on 100 reaction tubes in the same manner as in Example 1.
The average extraction time was 25 seconds, and the amount of dust was 84 mg. -Example 10-In Example 1, a suction pipe for extraction was used in which the tip of the suction pipe on the side to be inserted into the reaction tube was machined to the inclined end face (inclination angle θ = 75 °) shown in FIG. Except for the above, extraction operation was performed on 100 reaction tubes in the same manner as in Example 1.

【0057】平均抜き出し所要時間は44秒、粉塵量は
80mgであった。 −実施例11− 実施例1において、抜き出し用の吸引管のうち反応管に
挿入する側に、図4(c) に示す凹入部34付きの端面形
状に加工したアダプターを接続した以外は、実施例1と
同様に反応管100本について抜き出し作業を行った。
アダプターはステンレス製の外径19mm、内径17m
mのものを使用した。平均抜き出し所要時間は18秒、
粉塵量は83mgであった。 −実施例12− 特開平11−130722号公報の実施例1に記載の方
法に準じて、プロピレンからアクリル酸を製造する反応
を実施した。なお、反応管の数は10000本であっ
た。また、前段触媒は外径6mm、高さ6mmの円柱状
のものを使用した。
The average withdrawal time was 44 seconds and the amount of dust was 80 mg. -Example 11-The same procedure as in Example 1 was performed except that an adapter processed into an end face shape with a concave portion 34 shown in FIG. The extraction operation was performed on 100 reaction tubes in the same manner as in Example 1.
The adapter is made of stainless steel, outer diameter 19mm, inner diameter 17m
m. The average extraction time is 18 seconds,
The amount of dust was 83 mg. -Example 12-A reaction for producing acrylic acid from propylene was performed according to the method described in Example 1 of JP-A-11-130722. The number of reaction tubes was 10,000. The pre-catalyst used was a cylindrical catalyst having an outer diameter of 6 mm and a height of 6 mm.

【0058】上記反応を8000時間継続した後、反応
管を冷却し、以下の抜き出し作業を行った。 (抜き出し作業)実施例8と同じ吸引装置および抜き出
し用吸引管を用い、吸引管の先端を反応管上部開口部か
ら反応管下部に向かって2500mm挿入して後段触媒
のみを抜き出した。吸引装置と吸引管の間に設置された
固形物トラップ装置から後段触媒を取り出したところ、
後段触媒中にラシヒリングはわずか0.1wt%しか混
入しておらず、後段触媒だけを選択的に回収することが
できた。次いで吸引管の先端を反応管上部開口部から3
200mm挿入してラシヒリングのみを抜き出した。固
形物トラップ装置からラシヒリングを取り出したとこ
ろ、ラシヒリング中には前段触媒はわずか0.2wt%
しか混入していなかった。
After the reaction was continued for 8000 hours, the reaction tube was cooled, and the following extraction operation was performed. (Withdrawal operation) Using the same suction device and suction tube as in Example 8, the tip of the suction tube was inserted 2500 mm from the upper opening of the reaction tube toward the lower portion of the reaction tube, and only the latter-stage catalyst was extracted. When the latter stage catalyst was taken out from the solid trap device installed between the suction device and the suction pipe,
Only 0.1 wt% of Raschig ring was mixed in the latter catalyst, and only the latter catalyst could be selectively recovered. Then, the tip of the suction tube was moved 3 times
Only the Raschig ring was extracted by inserting 200 mm. When the Raschig ring was taken out from the solid trap device, the pre-catalyst was only 0.2 wt% during the Raschig ring.
Was mixed.

【0059】このように、当該発明の方法によると、前
段触媒を抜き出すことなく後段触媒のみを抜き出すこと
ができ、さらには各反応帯に充填された触媒等充填物を
ほぼ完全に選択的に抜き出すことができることから、反
応管より抜き出した触媒等の分別、回収および再使用が
容易となる。 −実施例13− 実施例12における多管式反応器の空の反応管に、実施
例12の前段触媒を層高2800mm充填した。次い
で、上記ラシヒリングを充填したところ、ラシヒリング
の目標充填層高である700mmに対し、実際の層高は
820mmであった。
As described above, according to the method of the present invention, only the second-stage catalyst can be extracted without extracting the first-stage catalyst, and further, the catalyst and the like packed in each reaction zone are almost completely selectively extracted. Therefore, it is easy to separate, recover, and reuse the catalyst and the like extracted from the reaction tube. -Example 13-An empty reaction tube of the multitubular reactor in Example 12 was filled with the pre-stage catalyst of Example 12 at a bed height of 2800 mm. Next, when the Raschig rings were filled, the actual layer height was 820 mm against the target packed layer height of 700 mm for Raschig rings.

【0060】そこで、実施例8の吸引管および吸引装置
を用いて、吸引管の先端を反応管上部開口部から250
0mmの位置まで挿入して、充填したラシヒリングの上
部120mm分を抜き出し、ラシヒリングの充填層高を
700mmとした。この方法に対して、比較例1のよう
な従来の方法では、既に充填した前段触媒までも抜き出
して再度充填を実施しなければならず、作業効率が非常
に悪いことが分かる。
Therefore, using the suction tube and the suction device of the eighth embodiment, the tip of the suction tube is moved 250 mm from the upper opening of the reaction tube.
It was inserted to the position of 0 mm, and the upper 120 mm of the filled Raschig ring was extracted, and the height of the packed layer of the Raschig ring was set to 700 mm. In contrast to this method, in the conventional method such as Comparative Example 1, it is necessary to extract even the pre-filled pre-catalyst and re-fill it, and it is understood that the working efficiency is very poor.

【0061】[0061]

【発明の効果】本発明によれば、反応器内の固形物の抜
き出しに当たり、以下の効果が達成できる。 (a)粉塵の発生が少なく、安全かつ衛生的な作業環境
で抜き出し作業を実施できる。 (b)抜き出し作業にかかる時間が短縮される。また、
反応管の上部開口部から抜き出す場合には、 (c)反応管の任意の位置までの固形物の抜き出しが可
能である。
According to the present invention, the following effects can be achieved in extracting solids from the reactor. (A) The extraction operation can be performed in a safe and sanitary working environment with less generation of dust. (B) The time required for the extraction operation is reduced. Also,
When extracting from the upper opening of the reaction tube, (c) it is possible to extract solid matter to an arbitrary position in the reaction tube.

【0062】(d)抜き出した触媒等の分別・回収・再
利用が容易である。従って、本発明の方法は管式反応器
内の固形物の抜き出し方法として極めて有用な方法であ
る。
(D) It is easy to separate, recover and reuse the extracted catalyst and the like. Therefore, the method of the present invention is a very useful method for extracting solids from a tubular reactor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 吸引管先端の傾斜角度と固形物抜き出し速度
の関係を示すグラフ
FIG. 1 is a graph showing the relationship between the inclination angle of the tip of a suction pipe and the speed of extracting solids.

【図2】 本発明の実施形態を表す全体構成図FIG. 2 is an overall configuration diagram showing an embodiment of the present invention.

【図3】 反応管からの固形物の抜き出し工程を示す概
略断面図
FIG. 3 is a schematic cross-sectional view showing a step of extracting solids from a reaction tube.

【図4】 吸引ノズルの構造例を示す斜視図FIG. 4 is a perspective view showing a structural example of a suction nozzle.

【図5】 抜き出し量の調整方法を説明する模式的断面
FIG. 5 is a schematic cross-sectional view for explaining a method of adjusting the extraction amount.

【図6】 特定層の固形物だけを抜き出す方法を示す模
式的断面図
FIG. 6 is a schematic cross-sectional view showing a method of extracting only a solid material in a specific layer.

【符号の説明】[Explanation of symbols]

10 反応器 12、14 出入口 20 反応管 30 吸引管 32 配管 34 凹入部 36 凸部 40 固形物トラップ装置 70 排気ポンプ 90 固形物 DESCRIPTION OF SYMBOLS 10 Reactor 12, 14 Entrance / exit 20 Reaction tube 30 Suction tube 32 Piping 34 Depressed part 36 Convex part 40 Solid trap device 70 Exhaust pump 90 Solid

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】多管式反応器の反応管に充填された固形物
を抜き出す方法であって、 前記反応管の端部より、排気吸引装置に接続される吸引
管を挿入する工程(a)と、 前記反応管内の固形物を、前記吸引管の先端から空気流
とともに吸引して、反応管から固形物を抜き出す工程
(b) とを含む多管式反応器からの固形物抜き出し方法。
1. A method for extracting solids filled in a reaction tube of a multitubular reactor, wherein a suction tube connected to an exhaust suction device is inserted from an end of the reaction tube (a). Sucking the solids in the reaction tube together with the airflow from the tip of the suction tube, and extracting the solids from the reaction tube
(b) a method for extracting solid matter from a multitubular reactor.
【請求項2】前記工程(b) のあとで、前記吸引管で抜き
出した固形物を空気流から分離して回収する工程(c) を
さらに含む請求項1に記載の多管式反応器からの固形物
抜き出し方法。
2. The method according to claim 1, further comprising, after the step (b), a step (c) of separating and recovering a solid extracted from the suction pipe from an air stream. Method of removing solids.
【請求項3】前記工程(a) が、前記反応管の上端より前
記吸引管を挿入する請求項1または2に記載の多管式反
応器からの固形物抜き出し方法。
3. The method according to claim 1, wherein in the step (a), the suction tube is inserted from an upper end of the reaction tube.
JP2001398092A 2001-01-25 2001-12-27 Method for extracting solid matter from a multi-tube reactor Expired - Lifetime JP4746228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001398092A JP4746228B2 (en) 2001-01-25 2001-12-27 Method for extracting solid matter from a multi-tube reactor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001017065 2001-01-25
JP2001-17065 2001-01-25
JP2001017065 2001-01-25
JP2001398092A JP4746228B2 (en) 2001-01-25 2001-12-27 Method for extracting solid matter from a multi-tube reactor

Publications (2)

Publication Number Publication Date
JP2002301355A true JP2002301355A (en) 2002-10-15
JP4746228B2 JP4746228B2 (en) 2011-08-10

Family

ID=26608296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001398092A Expired - Lifetime JP4746228B2 (en) 2001-01-25 2001-12-27 Method for extracting solid matter from a multi-tube reactor

Country Status (1)

Country Link
JP (1) JP4746228B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006159197A (en) * 2006-02-09 2006-06-22 Sumitomo Chemical Co Ltd Filling method for catalyst
JP2008024644A (en) * 2006-07-20 2008-02-07 Nippon Shokubai Co Ltd Fixed bed reaction apparatus and use thereof
JP2008222598A (en) * 2007-03-09 2008-09-25 Nippon Shokubai Co Ltd Fixed bed reactor and its use
JP2008246470A (en) * 2007-03-01 2008-10-16 Rohm & Haas Co Device and method for dislodging and extracting solid material from tube
JP2013036773A (en) * 2011-08-04 2013-02-21 Hitachi-Ge Nuclear Energy Ltd Ceramic catalyst suction apparatus
WO2020153127A1 (en) * 2019-01-25 2020-07-30 株式会社日本触媒 Nozzle, device for extracting solid matter, system for extracting solid matter, and method for extracting solid matter

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006159197A (en) * 2006-02-09 2006-06-22 Sumitomo Chemical Co Ltd Filling method for catalyst
JP2008024644A (en) * 2006-07-20 2008-02-07 Nippon Shokubai Co Ltd Fixed bed reaction apparatus and use thereof
JP2008246470A (en) * 2007-03-01 2008-10-16 Rohm & Haas Co Device and method for dislodging and extracting solid material from tube
KR100967585B1 (en) 2007-03-01 2010-07-05 롬 앤드 하아스 컴패니 Apparatus and method for dislodging and extracting solid materials from tubes
JP2008222598A (en) * 2007-03-09 2008-09-25 Nippon Shokubai Co Ltd Fixed bed reactor and its use
JP2013036773A (en) * 2011-08-04 2013-02-21 Hitachi-Ge Nuclear Energy Ltd Ceramic catalyst suction apparatus
WO2020153127A1 (en) * 2019-01-25 2020-07-30 株式会社日本触媒 Nozzle, device for extracting solid matter, system for extracting solid matter, and method for extracting solid matter
KR20210096253A (en) * 2019-01-25 2021-08-04 가부시기가이샤 닛뽕쇼꾸바이 Nozzle, solid material extraction device, solid material extraction system, and solid material extraction method
CN113316483A (en) * 2019-01-25 2021-08-27 株式会社日本触媒 Nozzle, solid matter extraction device, solid matter extraction system, and solid matter extraction method
JPWO2020153127A1 (en) * 2019-01-25 2021-11-11 株式会社日本触媒 Nozzle, solid matter extraction device, solid matter extraction system, and solid matter extraction method
JP7236470B2 (en) 2019-01-25 2023-03-09 株式会社日本触媒 Nozzle, solids extraction device, solids extraction system, and solids extraction method
KR102625804B1 (en) * 2019-01-25 2024-01-16 가부시기가이샤 닛뽕쇼꾸바이 Nozzle, solids discharge device, solids discharge system, and solids discharge method

Also Published As

Publication number Publication date
JP4746228B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
US6723171B2 (en) Process for extracting solid material from shell-and-tube reactor
JP5091715B2 (en) Apparatus and method for removing and extracting solids from tubes
JP2015511172A (en) Waste gas purification method and equipment in steel vacuum treatment process
JP2002301355A (en) Method for withdrawing solid material from multiple- tubular reactor
KR20170001639A (en) Method for completely emptying a catalytic reactor
US20120259131A1 (en) Phthalic anhydride process
EP3228612B1 (en) Method for purifying easily polymerizable substance
WO2020174976A1 (en) Method for producing titanium powder, method for producing sponge titanium, titanium powder and gas collection device
JP6499882B2 (en) Continuous fixed bed catalytic reactor and gas reforming method using the same
JP6385351B2 (en) Improved internal cyclone for fluidized bed reactors.
JP4151896B2 (en) Exhaust gas treatment facility and exhaust gas treatment method
US4994241A (en) Catalyst recovery through and process for unloading multi-tube reactors with maximum dust containment
JP2015531682A5 (en)
JPH05212232A (en) Dry collecting method of solid particles from solid particle-containing gas fluid
JPH05301040A (en) Method for washing heat exchanger for reactor
JPH10279611A (en) Vapor-phase polymerizer
JP4899972B2 (en) How to identify a badly packed reaction tube
CA2004307A1 (en) Tube cleaning process
RU2397140C2 (en) Device for catching of nanopowders
US6051182A (en) Apparatus and process for the direct reduction of iron oxides
EP3950114A1 (en) Granulated substance loading method
JP4465957B2 (en) Method of filling catalyst while removing powdered and disintegrated catalyst
JPH10249121A (en) Gas-solid separator
JPH04180568A (en) Dust collector for cvd device
JPS61114710A (en) Method and apparatus for regenerating particulate filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4746228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term