JP2002294556A - Hygroscopic synthetic fiber with high whiteness, and method for producing the fiber - Google Patents

Hygroscopic synthetic fiber with high whiteness, and method for producing the fiber

Info

Publication number
JP2002294556A
JP2002294556A JP2002015168A JP2002015168A JP2002294556A JP 2002294556 A JP2002294556 A JP 2002294556A JP 2002015168 A JP2002015168 A JP 2002015168A JP 2002015168 A JP2002015168 A JP 2002015168A JP 2002294556 A JP2002294556 A JP 2002294556A
Authority
JP
Japan
Prior art keywords
fiber
treatment
whiteness
weight
synthetic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002015168A
Other languages
Japanese (ja)
Other versions
JP3698204B2 (en
Inventor
Shigeru Nakajima
中島  茂
Noriyuki Obara
則行 小原
Masao Ieno
正雄 家野
Seiichi Ochi
清一 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP2002015168A priority Critical patent/JP3698204B2/en
Publication of JP2002294556A publication Critical patent/JP2002294556A/en
Application granted granted Critical
Publication of JP3698204B2 publication Critical patent/JP3698204B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hygroscopic fiber with high whiteness, having basic properties required for the fiber, characteristics to be possessed by the hygroscopic fiber, improved whiteness and excellent color stability hardly causing color change even in a finishing step or when being used as a final product, and further to provide a method for producing the fiber. SOLUTION: This hygroscopic synthetic fiber having >=10 wt.% saturated moisture absorption at 20 deg.C in 65%RH humidity is characterized in that the whiteness of the fiber represented by the method of representation described in JIS-Z-8729 is >=85 L* and ±6 a*, and the discoloration of the fiber after 5 times laundering treated by the laundering treatment regulated by JIS-L-0217-103 is class 3-4 or more evaluated by the gray scale for staining regulated by JIS-L-0805. The method for producing the fiber is also provided. The fiber has the excellent whiteness and the color stability, and further has high hygroscopicity, flame retardancy, antimicrobial activity, deodorant properties, chemical resistance or the like. The fiber can be suitably usable in a wide field such as clothes, night clothes, bedclothes, a building material, a medical good, and an industrial material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は吸湿性合成繊維に関
する。さらに詳しくは、難燃性、抗菌性を有しながら、
加工性も優れ、かつ従来品よりもさらに白度が向上し染
色工程での晒し処理および洗濯を繰り返しても色がほと
んど変化しない色安定性に優れる高白度吸湿性合成繊維
に関する。
The present invention relates to a hygroscopic synthetic fiber. More specifically, while having flame retardant and antibacterial properties,
The present invention relates to a high whiteness hygroscopic synthetic fiber which has excellent workability, further improves whiteness as compared with conventional products, and has excellent color stability, in which the color hardly changes even after repeated exposure and washing in the dyeing process.

【0002】[0002]

【従来の技術】従来より繊維状素材による空気中の湿気
を除去する手段として、潮解性塩類を高吸水性繊維に含
浸させた特開平1−299624号公報の手段が提案さ
れている。この手段により得られた繊維は、編物・織物
・不織布等への加工が容易で吸放湿速度が速く、さらに
吸湿剤の脱落もない実用性能を備えたものではあるが、
繊維表面がヒドロゲルであるため、吸湿すると粘着性を
帯び、特に壁紙やふとん綿への適用が困難であること、
及び最近社会的ニーズとして高まりつつある難燃性や抗
菌性を満たすものではなかった。
2. Description of the Related Art Hitherto, as a means for removing moisture in the air by a fibrous material, there has been proposed a means disclosed in Japanese Patent Application Laid-Open No. Hei 1-299624 in which deliquescent salts are impregnated into superabsorbent fibers. Fibers obtained by this means are easy to process into knits, woven fabrics, non-woven fabrics, etc., have a high moisture absorption and desorption rate, and have practical performance with no loss of the moisture absorbent,
Because the fiber surface is a hydrogel, it becomes tacky when it absorbs moisture, and it is difficult to apply it especially to wallpaper and futon,
In addition, it did not satisfy flame retardancy and antibacterial properties, which have recently been increasing as social needs.

【0003】これらの問題点を解決する方法として、特
開平5−132858号公報の手段も提案されている。
しかしながら、この方法では塩型カルボキシル基の量が
4.5meq/gを超えてしまうと引張強度が0.9c
N/dtex以下となり、種々の加工に耐え得るには不
十分な繊維物性となってしまい、さらに吸湿率を高める
為の障壁となっていた。また、繊維強度0.9cN/d
tex以上の高吸湿性繊維を得る為にヒドラジン系化合
物による処理によって導入される窒素含有量の増加を
8.0重量%をこえたものにした場合、加水分解後の塩
型カルボキシル基の導入量が少なくなり、吸湿性が低く
なってしまうという問題があった。
As a method for solving these problems, a means disclosed in Japanese Patent Application Laid-Open No. 5-132858 has been proposed.
However, in this method, when the amount of the salt type carboxyl group exceeds 4.5 meq / g, the tensile strength becomes 0.9 c.
N / dtex or less, resulting in insufficient fiber physical properties to withstand various types of processing, and was a barrier for further increasing the moisture absorption rate. Further, the fiber strength is 0.9 cN / d.
When the increase in the nitrogen content introduced by the treatment with the hydrazine-based compound to obtain a highly hygroscopic fiber of tex or more exceeds 8.0% by weight, the amount of salt-type carboxyl groups introduced after hydrolysis And the hygroscopicity is reduced.

【0004】さらに、特開平5−132858号公報に
よる方法で得られる繊維は、濃いピンク色から濃い茶色
を呈する為、利用分野が限定されてしまうという欠点が
あった。この欠点を克服する手段として提案されている
特開平9−158040号公報の発明は、ヒドラジン系
化合物による架橋処理の後に酸処理Aを行うこと、アル
カリによる加水分解処理の後に酸処理Bを行うこと、を
開示し相当に白度の改善を為し得ている。しかしかかる
技術によっても、厳しい白度を要求される分野に対して
は、十分満足を与えるものではないのが現状である。特
開2000−303353号公報では白度を改善する方
法として加水分解処理を無酸素雰囲気下で行うことを開
示している。しかしながら、該方法で得られる繊維は染
色工程での酸化晒し処理や洗濯を繰り返すことにより着
色するため、色安定性に乏しいという欠点を有するのが
現状である。
Further, the fiber obtained by the method disclosed in Japanese Patent Application Laid-Open No. 5-132858 has a drawback that the field of application is limited because it exhibits a deep pink to deep brown color. The invention of Japanese Patent Application Laid-Open No. Hei 9-158040 proposed as a means for overcoming this drawback is to carry out acid treatment A after crosslinking treatment with a hydrazine-based compound, and to carry out acid treatment B after hydrolysis treatment with alkali. , And the whiteness can be considerably improved. However, even with such a technique, it is not enough to satisfy the field where severe whiteness is required. Japanese Patent Application Laid-Open No. 2000-303353 discloses that a hydrolysis treatment is performed in an oxygen-free atmosphere as a method for improving whiteness. However, the fibers obtained by this method are colored by repeating the oxidative exposure treatment and washing in the dyeing step, and thus have a disadvantage of poor color stability at present.

【0005】[0005]

【発明が解決しようとする課題】本発明は、繊維に要求
される基本物性並びに吸湿性繊維の有すべき特性を維持
しながら、かかる従来の吸湿性繊維が抱える色が不安定
であるという欠点を改良した繊維並びにかかる繊維の製
造方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has a disadvantage that the conventional hygroscopic fiber has an unstable color while maintaining the basic physical properties required of the fiber and the properties required of the hygroscopic fiber. It is an object of the present invention to provide a fiber in which is improved and a method for producing such a fiber.

【0006】[0006]

【課題を解決するための手段】上述した本発明の目的
は、20℃65%RHにおける飽和吸湿率が10重量%
以上である吸湿性合成繊維(以下、単に吸湿性繊維とも
いう)であって、該繊維の白度がJIS−Z−8729
に記載の表示方法において、L*85以上、a*±6の
範囲内であり、且つJIS−L0217−103法(洗
剤は花王株式会社製アタック使用)で洗濯処理した洗濯
5回後の繊維の変色がJIS−L0805汚染用グレー
スケールで評価して3−4級以上であることを特徴とす
る高白度吸湿性合成繊維(以下、単に高白度吸湿性繊維
ともいう)により達成することが出来る。
The object of the present invention is to achieve a saturated moisture absorption at 10% by weight at 20 ° C. and 65% RH.
The above hygroscopic synthetic fiber (hereinafter, also simply referred to as hygroscopic fiber), wherein the whiteness of the fiber is JIS-Z-8729.
In the display method described in the above, L * 85 or more, a * ± 6 within the range, and the fiber after washing 5 times after washing treatment by the JIS-L0217-103 method (the detergent is used by Kao Corporation) It can be achieved by a high whiteness hygroscopic synthetic fiber (hereinafter, also referred to simply as a high whiteness hygroscopic fiber) characterized in that the discoloration is grade 3 or higher as evaluated by JIS-L0805 contamination gray scale. I can do it.

【0007】さらに、高白度吸湿性合成繊維の飽和吸水
率が300重量%未満、好ましくは200重量%以下、
より好ましくは150重量%以下であること、高白度吸
湿性合成繊維が、共重合成分として(メタ)アクリル酸
エステル化合物が5重量%未満であるアクリロニトリル
系重合体からなるアクリル系繊維に、ヒドラジン系化合
物による架橋導入処理、加水分解、還元処理を施したも
のであること、洗濯5回後の繊維の白度がJIS−Z−
8729に記載の表示方法において、L*85以上、a
*±6の範囲内であることにより、好適に達成すること
ができる。
Further, the high whiteness hygroscopic synthetic fiber has a saturated water absorption of less than 300% by weight, preferably 200% by weight or less,
More preferably, the content is 150% by weight or less, and the high-whiteness hygroscopic synthetic fiber is an acrylazine-based acrylic fiber comprising an acrylonitrile-based polymer containing less than 5% by weight of a (meth) acrylate compound as a copolymerization component. That the fiber has been subjected to cross-linking treatment, hydrolysis, and reduction treatment with a base compound, and that the whiteness of the fiber after five washes is JIS-Z-
8729, wherein L * 85 or more, a
* It can be suitably achieved by being within the range of ± 6.

【0008】また、共重合成分として(メタ)アクリル
酸エステル化合物が5重量%未満であるアクリロニトリ
ル系重合体からなるアクリル系繊維に、ヒドラジン系化
合物による架橋導入処理、加水分解、還元処理を施すこ
とを特徴とする高白度吸湿性合成繊維の製造方法により
好適に達成されるが、架橋導入処理と加水分解処理の間
に酸処理を施す製造方法であればさらによりよく達成さ
れる。
In addition, an acrylic fiber composed of an acrylonitrile-based polymer containing less than 5% by weight of a (meth) acrylate compound as a copolymer component is subjected to a crosslinking introduction treatment, a hydrolysis and a reduction treatment with a hydrazine-based compound. The method can be suitably achieved by a method for producing a high-whiteness hygroscopic synthetic fiber characterized by the general formula (1), but it can be achieved even more favorably by a production method in which an acid treatment is performed between the crosslinking introduction treatment and the hydrolysis treatment.

【0009】さらに、(1)共重合成分として(メタ)
アクリル酸エステル化合物が5重量%未満であるアクリ
ロニトリル系重合体からなるアクリル系繊維をヒドラジ
ン系化合物処理して、架橋の導入と1.0〜10.0重
量%の窒素含有量の増加を行わしめ、(2)アルカリ性
金属塩水溶液処理して、CN基を加水分解した金属塩型
カルボキシル基を4.0〜10.0meq/g生成せし
め、(3)ハイドロサルファイト塩、チオ硫酸塩、亜硫
酸塩、亜硝酸塩、二酸化チオ尿素、アスコルビン酸塩、
ヒドラジン系化合物からなる群より選ばれた還元処理剤
で還元処理する高白度吸湿性合成繊維の製造方法によ
り、好適に達成される。なお、上述と同様に、(1)の
後(2)に先立って酸処理を施す、という方法も当然に
採用し得る。
Furthermore, (1) (meth) as a copolymer component
An acrylic fiber composed of an acrylonitrile-based polymer containing less than 5% by weight of an acrylate compound is treated with a hydrazine-based compound to introduce crosslinking and increase the nitrogen content by 1.0 to 10.0% by weight. , (2) an alkali metal salt aqueous solution treatment to produce a metal salt type carboxyl group having a hydrolyzed CN group of 4.0 to 10.0 meq / g, (3) hydrosulfite salt, thiosulfate, sulfite , Nitrite, thiourea dioxide, ascorbate,
It is suitably achieved by a method for producing a high whiteness hygroscopic synthetic fiber that is subjected to a reduction treatment with a reduction treatment agent selected from the group consisting of hydrazine compounds. Note that, similarly to the above, a method of performing an acid treatment after (1) and before (2) can be naturally employed.

【0010】また、還元処理後にさらに酸処理を施し、
該金属塩型カルボキシル基をH型化し、Li、Na、
K、Ca、Mg、Ba、Alから選ばれる金属塩による
処理により、該H型カルボキシル基の一部を金属塩型化
(以下、塩型調整処理と略称する)してH型/金属塩型
のモル比を90/10〜0/100に調整する高白度吸
湿性合成繊維の製造方法により、より好適に達成され
る。
Further, after the reduction treatment, an acid treatment is further performed,
The metal salt type carboxyl group is converted to H-type, and Li, Na,
By treatment with a metal salt selected from K, Ca, Mg, Ba, and Al, a part of the H-type carboxyl group is converted into a metal salt form (hereinafter abbreviated as a salt form adjusting treatment) to form an H-form / metal salt form. Is more preferably achieved by a method for producing a high whiteness hygroscopic synthetic fiber in which the molar ratio is adjusted to 90/10 to 0/100.

【0011】[0011]

【発明の実施の形態】以下、本発明を詳述する。本発明
に採用する吸湿性繊維は20℃65%RHにおける飽和
吸湿率が10重量%以上である必要がある。さらに、本
発明の高白度吸湿性繊維の白度はJIS−Z−8729
に記載の表示方法において、L*85以上、a*±6の
範囲内である必要がある。L*が85未満、a*が±6
の範囲外である場合には、もはや白度に優れているとは
いえない。なお、好ましくはL*が86以上、a*が±
4の範囲内である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. It is necessary that the moisture-absorbing fiber used in the present invention has a saturated moisture absorption at 10 ° C. and 65% RH of 10% by weight or more. Furthermore, the whiteness of the high whiteness hygroscopic fiber of the present invention is JIS-Z-8729.
In the display method described in 1 above, L * 85 or more and a * ± 6 must be within the range. L * is less than 85, a * is ± 6
If it is out of the range, it can no longer be said that the whiteness is excellent. Preferably, L * is 86 or more and a * is ±
4 is within the range.

【0012】また、本発明の高白度吸湿性繊維は、洗濯
処理においても、その白度の変色が極めて少ない点、即
ち洗濯耐久性に優れている点に特徴があり、具体的に
は、JIS−L0217−103法(洗剤は花王株式会
社製アタック使用)で洗濯処理した洗濯5回後の繊維の
変色がJIS−L0805汚染用グレースケールで評価
して3−4級以上のものである。なお、洗濯処理後であ
っても、繊維の白度がJIS−Z−8729に記載の表
示方法において、L*85以上、a*±6の範囲内、好
ましくはL*が86以上、a*が±5の範囲内であるこ
とが望ましい。また、衣料用途で最も疎まれるのは、赤
みであり、このことから、赤みを表すパラメーターであ
るa*の値の、洗濯前後における差(Δa*)が0.7以
下、好ましくは0.6以下であることが望ましい。
Further, the high-whiteness hygroscopic fiber of the present invention is characterized in that the whiteness of the fiber is extremely small even in the washing treatment, that is, the washing durability is excellent. The discoloration of the fibers after washing five times by the JIS-L0217-103 method (the detergent used is an attack manufactured by Kao Corporation) is 3-4 or higher as evaluated by JIS-L0805 contamination gray scale. In addition, even after the washing treatment, the whiteness of the fiber is in the range of L * 85 or more and a * ± 6 in the display method described in JIS-Z-8729, preferably L * is 86 or more and a * Is desirably within the range of ± 5. Redness is the most sparse in clothing use, and the difference (Δa *) between the value of a *, which is a parameter representing redness, before and after washing is 0.7 or less, preferably 0.6. It is desirable that:

【0013】本発明の高白度吸湿性繊維の飽和吸水率
は、300重量%未満であることが好ましい。飽和吸水
率が300重量%以上の場合には、吸水した際繊維表面
がべとつくため、特に衣料用途では好ましくない。
The saturated water absorption of the high-whiteness hygroscopic fiber of the present invention is preferably less than 300% by weight. If the saturated water absorption is 300% by weight or more, the fiber surface becomes sticky when water is absorbed, which is not preferable particularly for use in clothing.

【0014】なお、高白度吸湿性繊維としては、染色工
程の酸化晒し等の処理においても、その白色度が低下し
ないことが望ましく、具体的には、過酸化水素濃度0.
5重量%、NaOHによるpH10、浴比1/50、8
0℃、60分の条件で晒し処理した過酸化水素晒し後の
繊維の変色(晒し耐久性)がJIS−L0805汚染用
グレースケールで評価して3級以上、繊維を飽和吸水量
を超える水の共存下80℃16時間放置した後の変色
(放置安定性)がJIS−L0805汚染用グレースケ
ールで評価して3−4級以上であることが好ましい。
It is desirable that the high-whiteness hygroscopic fiber does not decrease its whiteness even in a treatment such as oxidative exposure in the dyeing step.
5% by weight, pH 10 with NaOH, bath ratio 1/50, 8
Discoloration (exposure durability) of the fiber after exposure to hydrogen peroxide exposed at 0 ° C. for 60 minutes is evaluated as JIS-L0805 for gray scale for contamination, class 3 or higher, and water exceeding the saturated water absorption of the fiber. It is preferable that the discoloration (standing stability) after standing at 80 ° C. for 16 hours in the coexistence is 3-4 or higher as evaluated by JIS-L0805 contamination gray scale.

【0015】ここで、晒し耐久性の値(級)は、NaO
HによりpH10に調節した過酸化水素0.5重量%の
水溶液中に、繊維試料と水溶液の浴比が1/50となる
よう繊維試料を投入し、80℃で、60分間晒し処理し
た繊維の、晒し処理前の繊維試料の色からの変色の程度
をJIS−L0805汚染用グレースケールで評価する
ことによって得られたものである。
Here, the value (grade) of the exposure durability is NaO
A fiber sample was put into an aqueous solution of 0.5% by weight of hydrogen peroxide adjusted to pH 10 with H so that the bath ratio between the fiber sample and the aqueous solution was 1/50, and the fiber was exposed and treated at 80 ° C. for 60 minutes. This was obtained by evaluating the degree of discoloration from the color of the fiber sample before the bleaching treatment using a gray scale for JIS-L0805 contamination.

【0016】また、放置安定性の値(級)は試料繊維を
純水に浸漬し、十分含水させた後取出し、80℃におい
ても飽和吸水量を超える水が維持できるに十分な量の水
を保持させたまま、容器の半分以上が空間となるよう容
器に密閉して、80℃に調整した恒温機に入れ、16時
間後取出し、脱水、乾燥した繊維の、処理前の繊維試料
からの変色の程度をJIS−L0805汚染用グレース
ケールで評価することによって得られたものである。な
お、飽和吸水量とは、十分含水した繊維の遠心脱水後
(160G×5分間)の重量から、同じ試料繊維の乾燥
(105℃×16時間)後の重量を引いた量である。ま
た、飽和吸水率は、飽和吸水量を試料繊維の乾燥(10
5℃×16時間)後の重量で除した値を%で表したもの
である。
The storage stability value (grade) is determined by immersing the sample fiber in pure water, taking out the water sufficiently, and taking out the fiber. Even at 80 ° C., a sufficient amount of water to maintain water exceeding the saturated water absorption is maintained. While holding the container, it is sealed in a container so that more than half of the container is a space, placed in a thermostat adjusted to 80 ° C., taken out after 16 hours, dehydrated, and dried fiber is discolored from the fiber sample before treatment. Was obtained by evaluating the degree of JIS-L0805 gray scale for contamination. Note that the saturated water absorption is an amount obtained by subtracting the weight of the same sample fiber after drying (105 ° C. × 16 hours) from the weight after centrifugal dehydration (160 G × 5 minutes) of a sufficiently hydrated fiber. The saturated water absorption is determined by measuring the saturated water absorption by drying the sample fiber (10
The value divided by the weight after (5 ° C. × 16 hours) is expressed in%.

【0017】かかる、高白度吸湿性繊維の製造方法とし
ては、共重合成分として(メタ)アクリル酸エステル化
合物が5重量%未満であるアクリロニトリル系重合体か
らなるアクリル系繊維に、ヒドラジン系化合物による架
橋導入処理、加水分解、還元処理を施すことを特徴とす
る高白度吸湿性繊維の製造方法が推奨される。以下該方
法について詳述する。
As a method for producing such a high-whiteness hygroscopic fiber, an acrylic fiber composed of an acrylonitrile-based polymer containing less than 5% by weight of a (meth) acrylate compound as a copolymer component is prepared by adding a hydrazine-based compound to an acrylic fiber composed of an acrylonitrile-based polymer. A method for producing a high whiteness hygroscopic fiber, which is characterized by performing a crosslinking introduction treatment, a hydrolysis treatment and a reduction treatment, is recommended. Hereinafter, the method will be described in detail.

【0018】出発アクリル系繊維(以下、アクリロニト
リル系繊維と呼ぶこともある)としてはアクリロニトリ
ル(以下、ANという)を40重量%以上、好ましくは
50重量%以上含有するAN系重合体により形成された
繊維であり、短繊維、トウ、糸、編織物、不織布等いず
れの形態のものでも良く、また、製造工程中途品、廃繊
維などでも構わない。AN系重合体は、AN単独重合
体、ANと他の単量体との共重合体のいずれでも良い
が、ANと共重合する単量体として(メタ)アクリル酸
エステル化合物は最も好ましくは使用を避けたいが、や
むを得ず用いる場合は、5重量%未満さらに好ましくは
4.0重量%以下である必要がある。尚、(メタ)を付
した表記は、アクリル酸エステル,メタアクリル酸エス
テルの双方を表わしている。また、5重量%未満であれ
ば共重合成分としてもかまわない該エステル化合物とし
ては、例えば、(メタ)アクリル酸メチル、(メタ)ア
クリル酸エチル、(メタ)アクリル酸ブチル、(メタ)
アクリル酸ジメチルアミノエチル、(メタ)アクリル酸
ジエチルアミノエチル等が挙げられる。それ以外の共重
合成分としてはメタリルスルホン酸、p−スチレンスル
ホン酸等のスルホン酸基含有単量体及びその塩;スチレ
ン、酢酸ビニル等の単量体等、ANと共重合可能な単量体
であれば特に限定されないが、酢酸ビニルに代表される
ビニルエステル系化合物を5〜20重量%共重合させる
ことが望ましい。かかるビニルエステルとしては酢酸ビ
ニル、プロピオン酸ビニル、酪酸ビニル等が挙げられ
る。
The starting acrylic fiber (hereinafter sometimes referred to as acrylonitrile fiber) is formed of an AN polymer containing acrylonitrile (hereinafter, referred to as AN) in an amount of 40% by weight or more, preferably 50% by weight or more. The fibers may be in any form such as short fibers, tows, yarns, knitted fabrics and nonwoven fabrics, and may be in-process products or waste fibers. The AN-based polymer may be any of an AN homopolymer and a copolymer of AN and another monomer, and a (meth) acrylate compound is most preferably used as a monomer to be copolymerized with AN. However, if it is unavoidable to use it, it must be less than 5% by weight, more preferably 4.0% by weight or less. The notation with (meth) indicates both acrylate and methacrylate. Examples of the ester compound which may be used as a copolymer component if it is less than 5% by weight include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylate, and the like.
Examples thereof include dimethylaminoethyl acrylate and diethylaminoethyl (meth) acrylate. Other copolymerizable components include sulfonic acid group-containing monomers such as methallyl sulfonic acid and p-styrene sulfonic acid and salts thereof; monomers such as styrene and vinyl acetate and the like which are copolymerizable with AN. It is not particularly limited as long as it is a compound, but it is desirable to copolymerize 5 to 20% by weight of a vinyl ester compound represented by vinyl acetate. Such vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, and the like.

【0019】該アクリル系繊維は、ヒドラジン系化合物
により架橋導入処理を施され、アクリル系繊維の溶剤で
は最早溶解されないものとなるという意味で架橋が形成
され、同時に結果として窒素含有量の増加が起きるが、
その手段は特に限定されるものではない。この処理によ
る窒素含有量の増加が1.0〜10重量%に調整し得る
手段が好ましいが、窒素含有量の増加が0.1〜1.0
重量%であっても、本発明繊維の高白度吸湿性繊維が得
られる手段である限り採用し得る。なお、窒素含有量の
増加が1.0〜10重量%に調整し得る手段としては、
ヒドラジン系化合物の濃度5〜60重量%の水溶液中、
温度50〜120℃で5時間以内で処理する手段が工業
的に好ましい。尚、窒素含有量の増加を低率に抑えるに
は、反応工学の教える処に従い、これらの条件をよりマ
イルドな方向にすればよい。ここで、窒素含有量の増加
とは原料アクリル系繊維の窒素含有量とヒドラジン系化
合物による架橋が導入されたアクリル系繊維の窒素含有
量との差をいう。
The acrylic fiber is subjected to a cross-linking treatment with a hydrazine-based compound, and a cross-link is formed in the sense that the acrylic fiber is no longer dissolved in a solvent for the acrylic fiber, and at the same time, the nitrogen content increases. But,
The means is not particularly limited. A means capable of adjusting the increase in the nitrogen content by this treatment to 1.0 to 10% by weight is preferable, but the increase in the nitrogen content is preferably 0.1 to 1.0% by weight.
Even if it is weight%, it can be adopted as long as it is a means for obtaining the high whiteness hygroscopic fiber of the fiber of the present invention. The means by which the increase in nitrogen content can be adjusted to 1.0 to 10% by weight includes
In an aqueous solution of a hydrazine compound having a concentration of 5 to 60% by weight,
Means of treating at a temperature of 50 to 120 ° C. within 5 hours is industrially preferable. In order to suppress the increase in the nitrogen content at a low rate, these conditions may be set in a milder direction according to the teaching of reaction engineering. Here, an increase in the nitrogen content refers to a difference between the nitrogen content of the raw acrylic fiber and the nitrogen content of the acrylic fiber into which the crosslinking with the hydrazine compound has been introduced.

【0020】ここに使用するヒドラジン系化合物として
は、特に限定されるものでなく、水加ヒドラジン、硫酸
ヒドラジン、塩酸ヒドラジン、臭素酸ヒドラジン、ヒド
ラジンカーボネート等、この他エチレンジアミン、硫酸
グアニジン、塩酸グアニジン、リン酸グアニジン、メラ
ミン等のアミノ基を複数含有する化合物が例示される。
The hydrazine compound used herein is not particularly limited, and may be, for example, hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, hydrazine bromate, hydrazine carbonate, etc., as well as ethylenediamine, guanidine sulfate, guanidine hydrochloride, phosphorus Compounds having a plurality of amino groups such as guanidine acid and melamine are exemplified.

【0021】かかるヒドラジン系化合物による架橋導入
処理工程を経た繊維は、酸処理を施しても良い。この処
理は、繊維の色安定性の向上に寄与がある。ここに使用
する酸としては、硝酸、硫酸、塩酸等の鉱酸の水溶液、
有機酸等が挙げられるが特に限定されない。この処理の
前に架橋導入処理で残留したヒドラジン系化合物は、十
分に除去しておく。該酸処理の条件としては、特に限定
されないが、大概酸濃度5〜20重量%、好ましくは7
〜15重量%の水溶液に、温度50〜120℃で0.5
〜10時間被処理繊維を浸漬するといった例が挙げられ
る。
The fiber which has been subjected to the cross-linking treatment with a hydrazine compound may be subjected to an acid treatment. This treatment contributes to improving the color stability of the fiber. Examples of the acid used here include aqueous solutions of mineral acids such as nitric acid, sulfuric acid, and hydrochloric acid,
Examples thereof include organic acids, but are not particularly limited. Before this treatment, the hydrazine-based compound remaining in the crosslinking introduction treatment is sufficiently removed. The conditions for the acid treatment are not particularly limited, but are generally 5 to 20% by weight, preferably 7 to 7% by weight.
0.5 to 15 wt% aqueous solution at a temperature of 50 to 120 ° C.
Examples of immersing the fiber to be treated for up to 10 hours are given.

【0022】ヒドラジン系化合物による架橋導入処理工
程を経た繊維、或いはさらに酸処理を経た繊維は、続い
てアルカリ性金属塩水溶液により加水分解される。この
処理により、アクリル系繊維のヒドラジン系化合物処理
による架橋導入処理に関与せずに残留しているCN基、及
び架橋処理工程後酸処理を施した場合には残留している
CN基と一部酸処理で加水分解されたCONH基の加水分解
が進められる。これらの基は加水分解によりカルボキシ
ル基を形成するが、使用している薬剤がアルカリ性金属
塩であるので、結局金属塩型カルボキシル基を生成して
いる。ここで使用するアルカリ性金属塩としては、アル
カリ金属水酸化物、アルカリ土類金属水酸化物、アルカ
リ金属炭酸塩等が挙げられる。使用するアルカリ性金属
塩の濃度は特に限定されないが、1〜10重量%さらに
好ましくは1〜5重量%の水溶液中、温度50〜120
度で1〜10時間以内で処理する手段が工業的、繊維物
性的にも好ましい。
The fiber which has undergone the cross-linking treatment step with a hydrazine-based compound, or the fiber which has been further subjected to an acid treatment, is subsequently hydrolyzed with an aqueous alkali metal salt solution. By this treatment, the CN group remaining without being involved in the cross-linking introduction treatment of the acrylic fiber by the hydrazine-based compound treatment, and remaining when an acid treatment is performed after the crosslinking treatment step
The hydrolysis of the CN group and the CONH 2 group partially hydrolyzed by the acid treatment proceeds. These groups form a carboxyl group by hydrolysis, but since the drug used is an alkaline metal salt, a metal salt-type carboxyl group is eventually formed. Examples of the alkaline metal salt used here include an alkali metal hydroxide, an alkaline earth metal hydroxide, and an alkali metal carbonate. The concentration of the alkaline metal salt to be used is not particularly limited, but is preferably 1 to 10% by weight, more preferably 1 to 5% by weight in an aqueous solution at a temperature of 50 to 120%.
Means of treating within 1 to 10 hours at a time is preferable in terms of industrial and fiber properties.

【0023】ここで金属塩の種類即ちカルボキシル基の
塩型としては、Li,Na,K等のアルカリ金属、M
g,Ca,Ba等のアルカリ土類金属を挙げることが出
来る。加水分解を進める程度即ち金属塩型カルボキシル
基の生成量は4〜10meq/gに制御すべきであり、
これは上述した処理の際の薬剤の濃度や温度,処理時間
の組合せで容易に行うことができる。尚、かかる加水分
解工程を経た繊維は、CN基が残留していてもいなくて
もよい。CN基が残留していれば、その反応性を利用し
て、さらなる機能を付与する可能性がある。
Here, the kind of the metal salt, that is, the salt type of the carboxyl group includes alkali metals such as Li, Na and K, M
Alkaline earth metals such as g, Ca and Ba can be mentioned. The extent to which hydrolysis proceeds, that is, the amount of metal salt-type carboxyl groups to be formed, should be controlled to 4 to 10 meq / g,
This can be easily performed by a combination of the drug concentration, temperature, and processing time in the above-described processing. The fibers that have undergone such a hydrolysis step may or may not have CN groups remaining. If CN groups remain, their reactivity may be used to provide additional functions.

【0024】次いで行なわれる還元処理において使用す
る還元処理剤としてはハイドロサルファイト塩、チオ硫
酸塩、亜硫酸塩、亜硝酸塩、二酸化チオ尿素、アスコル
ビン酸塩、ヒドラジン系化合物からなる群より選ばれた
1種類または2種類以上を組み合わせた薬剤が好適に使
用できる。該還元処理の条件としては、特に限定されな
いが、概ね薬剤濃度0.5〜5重量%の水溶液に、温度
50℃〜120℃で30分間〜5時間被処理繊維を浸漬
するといった例が挙げられる。なお、該還元処理は前述
の加水分解時に同時に行ってもよいし、加水分解後に行
なってもよい。
The reducing agent used in the subsequent reduction treatment is selected from the group consisting of hydrosulfite salts, thiosulfates, sulfites, nitrites, thiourea dioxide, ascorbate, and hydrazine compounds. Drugs of a kind or a combination of two or more kinds can be suitably used. The conditions for the reduction treatment are not particularly limited, and examples include immersing the fiber to be treated in an aqueous solution having a drug concentration of approximately 0.5 to 5% by weight at a temperature of 50 ° C to 120 ° C for 30 minutes to 5 hours. . The reduction treatment may be performed simultaneously with the above-mentioned hydrolysis or after the hydrolysis.

【0025】かくして、本発明の高白度吸湿性繊維が得
られるが、より色を安定化させるため、前述の還元処理
工程を経た繊維に、酸処理を施し、該金属塩型カルボキ
シル基をH型化し、Li、Na、K、Ca、Mg、B
a、Alから選ばれる金属塩処理により、該H型カルボ
キシル基の一部を金属塩型化(塩型調整処理)してH型
/金属塩型のモル比を90/10〜0/100に調整す
ることが好ましい。
Thus, the high-whiteness hygroscopic fiber of the present invention is obtained. In order to further stabilize the color, the fiber which has been subjected to the above-mentioned reduction treatment step is subjected to an acid treatment to convert the metal salt type carboxyl group into H. Mold, Li, Na, K, Ca, Mg, B
a, by treating with a metal salt selected from Al, a part of the H-type carboxyl group is converted into a metal salt form (salt-type adjusting treatment) to make the molar ratio of H-type / metal salt form 90/10 to 0/100. Adjustment is preferred.

【0026】ここに酸処理に使用する酸としては、硝
酸、硫酸、塩酸等の鉱酸の水溶液、有機酸等が挙げられ
るが特に限定されない。該酸処理の条件としては、特に
限定されないが、大概酸濃度1〜10重量%、好ましく
は2〜10重量%の水溶液に、温度50〜120℃で2
〜10時間被処理繊維を浸漬するといった例が挙げられ
る。
Examples of the acid used for the acid treatment include aqueous solutions of mineral acids such as nitric acid, sulfuric acid, and hydrochloric acid, and organic acids, but are not particularly limited. The conditions of the acid treatment are not particularly limited, but are generally in an aqueous solution having an acid concentration of 1 to 10% by weight, preferably 2 to 10% by weight, at a temperature of 50 to 120 ° C.
Examples of immersing the fiber to be treated for up to 10 hours are given.

【0027】また塩型調整処理に採用される金属塩の金
属種類としては、Li、Na、K、Ca、Mg、Ba、
Alから選ばれるが、Na、K、Ca、Mg等が特に推
奨される。又塩の種類としては、これらの金属の水溶性
塩であれば良く、例えば水酸化物,ハロゲン化物,硝酸
塩,硫酸塩,炭酸塩等が挙げられる。具体的には、夫々
の金属で代表的なものとして、Na塩としてはNaO
H、NaCO、K塩としてはKOH、Ca塩として
はCa(OH)、Ca(NO、CaClが好
適である。
The metal type of the metal salt used in the salt type adjustment treatment includes Li, Na, K, Ca, Mg, Ba,
Although selected from Al, Na, K, Ca, Mg and the like are particularly recommended. The type of salt may be any water-soluble salt of these metals, such as hydroxide, halide, nitrate, sulfate, carbonate and the like. Specifically, a typical example of each metal is NaO as NaO.
H, Na 2 CO 3 , K salts are preferred as K salts, and Ca (OH) 2 , Ca (NO 3 ) 2 , and CaCl 2 are preferred as Ca salts.

【0028】カルボキシル基のH型/金属塩型モル比は
上述した範囲内であるが、繊維に与えようとする機能に
より、金属の種類と共に適宜設定する。塩型調整処理の
具体的な実施にあたっては、処理槽に金属塩の0.2〜
30重量%の水溶液を準備し、20℃〜80℃において
0.25〜5Hr程度被処理繊維を浸漬する、あるいは
該水溶液を噴霧する等の方法がある。上述の比率に制御
するには、緩衝剤共存下での塩型調整処理が好ましい。
緩衝剤としてはpH緩衝域が5.0〜9.2のものが好
適である。また、金属塩型カルボキシル基の金属塩の種
類は1種類に限定されるわけではなく、2種類以上が混
在してもかまわない。
The H-type / metal salt molar ratio of the carboxyl group is within the above-mentioned range, but is appropriately set together with the type of metal depending on the function to be imparted to the fiber. In the concrete implementation of the salt type adjustment treatment, 0.2 to
There is a method of preparing a 30% by weight aqueous solution and dipping the fiber to be treated at 20 ° C. to 80 ° C. for about 0.25 to 5 hours, or spraying the aqueous solution. In order to control the above ratio, a salt type adjustment treatment in the presence of a buffer is preferable.
As the buffer, those having a pH buffer range of 5.0 to 9.2 are preferable. Further, the kind of the metal salt of the metal salt type carboxyl group is not limited to one kind, and two or more kinds may be mixed.

【0029】以上説明した本発明の高白度吸湿性繊維
は、吸湿性,難燃性,抗菌性を有しながら、加工性も優
れ、かつ従来品よりもさらに白度が向上し色安定性にも
優れた吸湿性繊維である。
The high whiteness hygroscopic fiber of the present invention described above has excellent absorbability, flame retardancy and antibacterial properties, is excellent in processability, and has improved whiteness and color stability compared to conventional products. Also excellent hygroscopic fiber.

【0030】又、塩型調整処理をCa,Mg,Ba等の
金属塩化合物の如き水溶解度が低い物質で行う場合に
は、該工程においてH型カルボキシル基からH型/金属
塩型のモル比を、金属塩型を高める方向にするのに幾分
難がある。かかる場合には、酸処理の後で塩型調整処理
の前処理として、酸処理工程においてH型化されている
カルボキシル基を、苛性ソーダあるいは苛性カリ等の水
溶液で該カルボキシル基の示すpHを調整即ち中和処理
(pH=5〜11位)しておくことが推奨される。かか
る処方により、中和処理後のカルボキシル基はH型とN
a又はK型が共存する状態になっているので、次の塩型
調整処理はCa等とNa又はKとの交換となって容易に
進行するので、提起した難点が解消する。
When the salt type adjusting treatment is carried out with a substance having low water solubility such as a metal salt compound such as Ca, Mg, Ba, etc., the molar ratio of H type / metal salt type is changed from H type carboxyl group to H type carboxyl group in this step. Has some difficulty in increasing the metal salt form. In such a case, as a pretreatment after the acid treatment and as a pretreatment of the salt form adjustment treatment, the pH of the carboxyl group converted into the H-form in the acid treatment step is adjusted with an aqueous solution of caustic soda or potassium hydroxide, that is, the pH of the carboxyl group is adjusted, that is, the pH is adjusted. It is recommended to perform a sum treatment (pH = 5th to 11th). With such a formulation, the carboxyl group after neutralization treatment is H-type and N-type.
Since the a or K type coexists, the next salt type adjustment process easily proceeds by exchanging Ca or the like with Na or K, and the difficulties raised are solved.

【0031】なお、出発原料であるアクリル系繊維の製
造手段は特に限定されるものではなく、通常の衣料用繊
維の製造に採用される手段を用いることができる。ま
た、このような繊維を出発繊維として用いる事が好まし
いが、必ずしも最終工程まで済んでいる必要はなく、ア
クリル系繊維製造工程途中のものであっても、あるいは
最終繊維に紡績加工等を施した後のものでも良い。中で
も出発アクリル系繊維として、アクリル系繊維の製造工
程途中である延伸後熱処理前の繊維(AN系重合体の紡
糸原液を常法に従って紡糸し、延伸配向され、乾燥緻密
化、湿熱緩和処理等の熱処理の施されてない繊維、中で
も湿式又は乾/湿式紡糸、延伸後の水膨潤ゲル状繊維:
水膨潤度 30〜150%)を使用すると、処理液中へ
の繊維の分散性、繊維中への処理液の浸透性などが改善
され、以て架橋結合の導入や加水分解反応が均一かつ速
やかに行われるので望ましい。
The means for producing the acrylic fiber, which is the starting material, is not particularly limited, and any means used for producing ordinary fibers for clothing can be used. Further, it is preferable to use such a fiber as a starting fiber, but it is not always necessary to finish the final step, and even if an acrylic fiber is being produced, or the final fiber is subjected to spinning or the like. The later one may be used. Above all, as the starting acrylic fiber, a fiber before drawing and heat treatment after drawing in the middle of the acrylic fiber manufacturing process (an original spinning solution of an AN polymer is spun according to a conventional method, drawn and oriented, dried and densified, wet heat relaxation treatment, etc. Fibers not subjected to heat treatment, especially water-swollen gel-like fibers after wet or dry / wet spinning and drawing:
When the water swelling degree is 30 to 150%), the dispersibility of the fibers in the treatment liquid and the permeability of the treatment liquid into the fibers are improved, so that the introduction of cross-linking and the hydrolysis reaction are uniform and rapid. This is desirable.

【0032】なお、これらの出発アクリル系繊維を、攪
拌機能、温度制御機能を備えた容器内に充填し、前述の
工程を順次実施する、あるいは複数の容器を並べて連続
的に実施する等の手段をとることが、装置上、安全性、
均一処理性等の諸点から望ましい。かかる装置としては
染色機が例示される。
These starting acrylic fibers are filled in a container having a stirring function and a temperature control function, and the above-described steps are sequentially performed, or a plurality of containers are arranged and continuously performed. Taking safety on equipment,
It is desirable from various points such as uniform processing property. As such an apparatus, a dyeing machine is exemplified.

【0033】本発明の、高白度吸湿性繊維を製造する他
の方法としては、アクリル系繊維に、上述してきたヒド
ラジン系化合物による架橋導入処理、加水分解、還元処
理、酸処理を施し、更に還元処理、酸処理を繰り返す方
法が挙げられる。還元処理、酸処理を繰り返すことによ
り、白度及び色安定性が向上し、L*85以上、a*±
6の範囲内であり、且つ洗濯耐久性が3−4級以上とい
う高白度吸湿性繊維が得られる。本方法によると、アク
リル系繊維を形成するアクリロニトリル系重合体の共重
合成分として、(メタ)アクリル酸エステル化合物が5
重量%以上であっても、本発明の高白度吸湿性繊維を得
ることが出来るが、還元処理、酸処理を繰り返すことが
必要であることから、繊維物性が低下したり、生産コス
トが高くなったりするため、上述した本発明が推奨する
製造方法を採用する方が有利である。
As another method for producing the high-whiteness hygroscopic fiber of the present invention, the acrylic fiber is subjected to the above-mentioned cross-linking treatment with a hydrazine-based compound, hydrolysis, reduction treatment, and acid treatment. A method in which the reduction treatment and the acid treatment are repeated is exemplified. By repeating the reduction treatment and the acid treatment, whiteness and color stability are improved, and L * 85 or more, a * ±
6, and a high whiteness hygroscopic fiber having a washing durability of 3-4 class or higher can be obtained. According to this method, the (meth) acrylate compound is a copolymer component of the acrylonitrile-based polymer forming the acrylic fiber.
Even when the content is not less than 10% by weight, the high whiteness hygroscopic fiber of the present invention can be obtained, but since the reduction treatment and the acid treatment need to be repeated, the fiber physical properties are reduced and the production cost is high. Therefore, it is more advantageous to adopt the above-described manufacturing method recommended by the present invention.

【0034】本発明の繊維は、繊維加工に耐える強伸度
を備え、色安定性に優れた高白度吸湿性繊維であり、吸
湿に伴って発熱も起こる。又、窒素を含有した架橋構造
や高い吸湿率に起因すると思われる難燃性、抗菌性、消
臭性、耐薬品性等も備えている。このため、本発明の繊
維は下着、肌着、ランジェリー、パジャマ、乳児用製
品、ガードル、ブラジャー、手袋、靴下、タイツ、レオ
タード、トランクス等衣料品全般、セーター、トレーナ
ー、ポロシャツ、スーツ、スポーツウェア、マフラー、
等の中外衣料用途、ハンカチ、タオル、カーテン、布団
地、布団、枕、クッション、ぬいぐるみ等の中綿、詰め
綿、シーツ、毛布、パッド等の寝装寝具、カーペット、
マット、サポーター、芯地、靴の中敷き、インソール、
スリッパ、壁紙等の建材、メディカル分野への用途等に
好適に適用される。
The fiber of the present invention is a high whiteness hygroscopic fiber having a high elongation to withstand fiber processing and excellent color stability, and generates heat as moisture is absorbed. It also has flame retardancy, antibacterial properties, deodorant properties, chemical resistance, and the like, which are considered to be caused by a nitrogen-containing crosslinked structure and a high moisture absorption rate. For this reason, the fiber of the present invention is used for general clothing such as underwear, underwear, lingerie, pajamas, baby products, girdle, bra, gloves, socks, tights, leotards, trunks, sweaters, sweatshirts, polo shirts, suits, sportswear, and mufflers. ,
For middle and foreign clothing, handkerchiefs, towels, curtains, futons, futons, pillows, cushions, plush toys, bedding, packing, sheets, blankets, pads, etc.
Mats, supporters, interlining, insoles, insoles,
It is suitably applied to building materials such as slippers and wallpapers, and applications to the medical field.

【0035】[0035]

【作用】以上詳述した、本発明の高白度吸湿性繊維が、
優れた白度及び色安定性を有する理由は、十分解明する
に至っていないが、概ね次のように考えられる。即ち、
ヒドラジン系化合物により架橋構造を導入される際に、
原料であるアクリル系繊維が共重合成分として(メタ)
アクリル酸エステル化合物を5重量%以上含む場合は該
共重合成分のカルボニル炭素の部分にヒドラジン系化合
物が反応することにより結果的に架橋構造に酸素分子を
含む結合が導入され発色しやすく、即ち色安定性が劣る
こととなるが、本発明が推奨する製造方法では該結合の
生成を原料段階で抑制したために発色が抑えられ、過酸
化水素晒し処理や洗濯繰り返し等の処理によっても発色
しにくいと推定される。また、(メタ)アクリル酸エス
テル化合物を5重量%以上含む場合であっても、還元処
理、酸処理を繰り返すことにより、過酸化水素晒し処理
や洗濯繰り返し等の処理によっても、発色する分子構造
に変化しにくい安定した分子構造を持つためであると推
定される。
The high-whiteness hygroscopic fiber of the present invention described in detail above
Although the reason for having excellent whiteness and color stability has not been sufficiently elucidated, it is generally considered as follows. That is,
When a crosslinked structure is introduced by a hydrazine compound,
Acrylic fiber as raw material is used as copolymer component (meth)
When the acrylate compound is contained in an amount of 5% by weight or more, the hydrazine-based compound reacts with the carbonyl carbon portion of the copolymer component, and as a result, a bond containing an oxygen molecule is introduced into the crosslinked structure, so that the color is easily formed. Although the stability is inferior, in the production method recommended by the present invention, color formation is suppressed because the formation of the bond is suppressed at the raw material stage, and it is difficult to develop color even by treatment such as hydrogen peroxide exposure treatment or washing repeatedly. Presumed. Even when the (meth) acrylic acid ester compound is contained in an amount of 5% by weight or more, the reduction and acid treatments are repeated to form a molecular structure that develops a color even by treatments such as hydrogen peroxide exposure treatment and repeated washing. It is presumed that this is because it has a stable molecular structure that does not easily change.

【0036】[0036]

【実施例】以下実施例により本発明を具体的に説明す
る。実施例中の部及び百分率は、断りのない限り重量基
準で示す。なお、金属塩型カルボキシル基量、白度およ
び吸湿率は以下の方法により求めた。
The present invention will be described in detail with reference to the following examples. Parts and percentages in the examples are on a weight basis unless otherwise specified. The metal salt type carboxyl group content, whiteness and moisture absorption were determined by the following methods.

【0037】(1)金属塩型カルボキシル基量(meq
/g) 十分乾燥した加水分解後の繊維約1gを精秤し(X
g)、これに200mlの水を加えた後、50℃に加温
しながら1mol/l塩酸水溶液を添加してpH2に
し、次いで0.1mol/l苛性ソーダ水溶液で常法に
従って滴定曲線を求めた。該滴定曲線からカルボキシル
基に消費された苛性ソーダ水溶液消費量(Yml)を求
め、次式によってカルボキシル基量(meq/g)を算
出した。 (カルボキシル基量)=0.1Y/X 別途、上述のカルボキシル基量測定操作中の1mol/
l塩酸水溶液の添加によるpH2への調整をすることな
く同様に滴定曲線を求めH型カルボキシル基量(meq
/g)を求めた。これらの結果から次式により金属塩型
カルボキシル基量を算出した。 (金属塩型カルボキシル基量)=(カルボキシル基量)
−(H型カルボキシル基量)
(1) Metal salt type carboxyl group content (meq
/ G) About 1 g of sufficiently dried fiber after hydrolysis is precisely weighed (X
g), 200 ml of water was added thereto, and a 1 mol / l aqueous hydrochloric acid solution was added thereto while heating at 50 ° C. to adjust the pH to 2, and then a titration curve was obtained with a 0.1 mol / l aqueous sodium hydroxide solution according to a conventional method. From the titration curve, the consumption amount (Yml) of the aqueous solution of caustic soda consumed by the carboxyl groups was determined, and the carboxyl group amount (meq / g) was calculated by the following equation. (Amount of carboxyl group) = 0.1 Y / X Separately, 1 mol /
Similarly, the titration curve was determined without adjusting the pH to 2 by adding an aqueous hydrochloric acid solution, and the amount of H-type carboxyl group (meq
/ G). From these results, the amount of metal salt-type carboxyl groups was calculated by the following equation. (Amount of metal salt type carboxyl group) = (Amount of carboxyl group)
-(H-type carboxyl group amount)

【0038】(2)白度 カード機にて解繊した試料繊維4.0gを回転式測色セ
ル(35mlの透明円筒セル)に充填し、東京電色社製
色差計TC−1500MC−88型(D65光源)に
て、60回/分の割合で回転させながら測色した。この
測定を3回繰返し、L*、a*の値(平均値)を求め
た。 (3)吸湿率(%) 試料繊維約5.0gを熱風乾燥機で105℃、16時間
乾燥して重量を測定する(W1g)。次に試料を温度2
0℃で65%RHの恒湿槽に24時間入れておく。この
ようにして吸湿した試料の重量を測定する(W2g)。
以上の測定結果から、次式によって算出した。 (吸湿率 %)={(W2−W1)/W1}×100
(2) Whiteness 4.0 g of a sample fiber defibrated by a card machine was filled in a rotary colorimetric cell (35 ml transparent cylindrical cell), and a color difference meter TC-1500MC-88 manufactured by Tokyo Denshoku Co., Ltd. was used. (D65 light source) The color was measured while rotating at a rate of 60 times / minute. This measurement was repeated three times, and the values of L * and a * (average values) were determined. (3) Moisture Absorption (%) About 5.0 g of the sample fiber was dried at 105 ° C. for 16 hours with a hot air drier, and the weight was measured (W1 g). Next, the sample was heated to temperature 2
Place in a constant humidity bath at 0 ° C. and 65% RH for 24 hours. The weight of the sample thus absorbed is measured (W2 g).
From the above measurement results, it was calculated by the following equation. (Moisture absorption%) = {(W2-W1) / W1} × 100

【0039】実施例1、比較例1 AN96重量%、アクリル酸メチル(以下、MAとい
う)4重量%からなるAN系重合体(30℃ジメチルホ
ルムアミド中での極限粘度[η]:1.2)10部を4
8%のロダンソーダ水溶液90部に溶解した紡糸原液
を、常法に従って紡糸、延伸(全延伸倍率;10倍)し
た後、乾球/湿球=120℃/60℃の雰囲気下で乾
燥、湿熱処理して単繊維繊度1.7dtexの原料繊維
を得た。
Example 1, Comparative Example 1 AN polymer comprising 96% by weight of AN and 4% by weight of methyl acrylate (hereinafter referred to as MA) (intrinsic viscosity [η] in dimethylformamide at 30 ° C .: 1.2) 10 copies to 4
After spinning and stretching (total stretching ratio: 10 times) a spinning stock solution dissolved in 90 parts of an 8% aqueous solution of rodin soda, drying and wet heat treatment are performed under an atmosphere of dry bulb / wet bulb = 120 ° C./60° C. Thus, a raw fiber having a single fiber fineness of 1.7 dtex was obtained.

【0040】該原料繊維に、水加ヒドラジンの20重量
%水溶液中で、98℃×5Hr架橋導入処理を行った。
本処理により、架橋が導入され、窒素含有量が増加す
る。なお、窒素増加量は、原料繊維と架橋導入処理後の
繊維を元素分析にて窒素含有量を求め、その差から算出
した。次に、苛性ソーダの3重量%水溶液中で、90℃
×2Hr加水分解処理を行い、純水で洗浄した。この処
理により、繊維にNa型カルボキシル基が5.5meq
/g生成していた。
The raw material fiber was subjected to a crosslinking introduction treatment at 98 ° C. for 5 hours in a 20% by weight aqueous solution of hydrazine hydrate.
This treatment introduces crosslinking and increases the nitrogen content. The nitrogen increase was calculated from the difference between the nitrogen content of the raw fiber and the fiber after the cross-linking treatment by elemental analysis. Next, in a 3% by weight aqueous solution of caustic soda, 90 ° C.
A × 2Hr hydrolysis treatment was performed, and the resultant was washed with pure water. By this treatment, 5.5 meq of Na-type carboxyl groups are added to the fiber.
/ G.

【0041】該加水分解後の繊維を、ハイドロサルファ
イトナトリウム塩(以下、SHSという)の1重量%水
溶液中で、90℃×2Hr還元処理を行い、純水で洗浄
した。続いて、硝酸の3重量%水溶液中、90℃×2H
r酸処理を行った。これにより5.5meq/g生成し
ていたNa型カルボキシル基は全量がH型カルボキシル
基になっていた。該酸処理後の繊維を、純水中に投入
し、濃度48%の苛性ソーダ水溶液をH型カルボキシル
基に対し、Na中和度70モル%になる様に添加し、6
0℃×3Hr塩型調整処理を行った。
The hydrolyzed fiber was subjected to a reduction treatment at 90 ° C. for 2 hours in a 1% by weight aqueous solution of hydrosulfite sodium salt (hereinafter referred to as SHS) and washed with pure water. Subsequently, in a 3% by weight aqueous solution of nitric acid, 90 ° C. × 2H
r Acid treatment was performed. As a result, the total amount of the Na-type carboxyl groups generated at 5.5 meq / g was H-type carboxyl groups. The fiber after the acid treatment is put into pure water, and a 48% aqueous solution of caustic soda is added to the H-type carboxyl group so that the degree of Na neutralization is 70 mol%.
A 0 ° C. × 3 Hr salt type adjustment treatment was performed.

【0042】以上の工程を経た繊維を、水洗、油剤付
与、脱水、乾燥し実施例1の高白度吸湿性繊維を得た。
得られた繊維の吸湿率、白度、色安定性を調べ、塩型カ
ルボキシル基量、窒素増加量などと共に表1に示した。
また、比較例1は、AN94重量%、MA6重量%から
なるAN系重合体を用いた以外は実施例1と同様にして
得られた吸湿性繊維である。
The fiber having undergone the above steps was washed with water, applied with an oil agent, dehydrated and dried to obtain the high whiteness hygroscopic fiber of Example 1.
The moisture absorption, whiteness, and color stability of the obtained fiber were examined, and the results are shown in Table 1 together with the amount of salt-type carboxyl groups and the amount of increase in nitrogen.
Comparative Example 1 is a hygroscopic fiber obtained in the same manner as in Example 1 except that an AN-based polymer composed of 94% by weight of AN and 6% by weight of MA was used.

【0043】実施例2、3 塩型調整処理を苛性カリで行った以外は、実施例1と同
様にして実施例2の高白度吸湿性繊維を得た。また、実
施例3は、実施例1の繊維を塩化カルシウム水溶液で処
理して、Na型カルボキシル基をCa型カルボキシル基
としたものである。これらの繊維の特性も表1に併記し
た。
Examples 2 and 3 High whiteness hygroscopic fibers of Example 2 were obtained in the same manner as in Example 1 except that the salt type adjustment treatment was performed with caustic potash. In Example 3, the fiber of Example 1 was treated with an aqueous solution of calcium chloride to convert the Na-type carboxyl group into a Ca-type carboxyl group. The properties of these fibers are also shown in Table 1.

【0044】実施例4、5 還元処理剤を表1に記載した薬剤に変更した以外は、実
施例1と同様にして、実施例4及び5の高白度吸湿性繊
維を得た。これらの繊維の特性も表1に併記した。な
お、表中水加ヒドラジンをHH、チオ硫酸ナトリウムを
STSと表記した。
Examples 4 and 5 High whiteness hygroscopic fibers of Examples 4 and 5 were obtained in the same manner as in Example 1 except that the reducing agent was changed to the chemical listed in Table 1. The properties of these fibers are also shown in Table 1. In the table, hydrated hydrazine is represented by HH, and sodium thiosulfate is represented by STS.

【0045】実施例6 還元処理剤としてチオ硫酸ナトリウムを採用し、H型カ
ルボキシル基量とCa塩型カルボキシル基量のモル比が
50/50となるよう塩型調整処理条件を変更した以外
は実施例1と同様にして、実施例6の高白度吸湿性繊維
を得た。ここで塩型調整処理は、Na中和度50モル%
になる条件にて処理した後、塩化カルシウム水溶液で処
理して、Na型カルボキシル基をCa型カルボキシル基
とした。これらの繊維の特性も表1に併記した。
Example 6 The procedure was carried out except that sodium thiosulfate was used as the reducing agent and the salt-type adjusting treatment conditions were changed so that the molar ratio between the amount of H-type carboxyl groups and the amount of Ca salt-type carboxyl groups was 50/50. In the same manner as in Example 1, the high whiteness hygroscopic fiber of Example 6 was obtained. Here, the salt type adjustment treatment is performed with a Na neutralization degree of 50 mol%.
After the treatment under the following conditions, the mixture was treated with an aqueous calcium chloride solution to convert the Na-type carboxyl group into a Ca-type carboxyl group. The properties of these fibers are also shown in Table 1.

【0046】実施例7、8 水加ヒドラジンによる架橋導入処理工程を経た繊維を、
加水分解する前に10重量%の硝酸水溶液中、90℃で
2時間酸処理した以外は実施例1と同様にして、実施例
7の高白度吸湿性繊維を得た。実施例8の繊維は、実施
例7の繊維を実施例3に記載の方法を用いてCa型カル
ボキシル基としたものである。これらの繊維の特性も表
1に併記した。
Examples 7 and 8 Fibers which had been subjected to a cross-linking treatment with hydrazine hydrate were
A high whiteness hygroscopic fiber of Example 7 was obtained in the same manner as in Example 1, except that an acid treatment was performed in a 10% by weight aqueous nitric acid solution at 90 ° C. for 2 hours before hydrolysis. The fiber of Example 8 is obtained by converting the fiber of Example 7 into a Ca-type carboxyl group using the method described in Example 3. The properties of these fibers are also shown in Table 1.

【0047】[0047]

【表1】 [Table 1]

【0048】実施例1の高白度吸湿性繊維は35%の吸
湿率を示し、白度もL*88.4、a*0.99と良好
であった。また、晒し耐久性、洗濯耐久性および放置安
定性もそれぞれ3−4級、4−5級、4−5級と色安定
性に優れた繊維であった。実施例1と金属塩の種類が異
なる実施例2、3は、実施例1に比べ、吸湿率が若干低
下するものの、白度、色安定性は実施例1繊維と遜色の
ない結果であった。実施例1と還元処理剤の種類が異な
る実施例4、5は、実施例1に比べ、若干、白度及び色
安定性が劣るが、使用可能なレベルであった。カルシウ
ム塩型カルボキシル基を有し、H型カルボキシル基のモ
ル比が50モル%と高い実施例6の吸湿率は20%であ
り、吸湿率、白度、色安定性共に、使用可能なレベルで
あった。架橋導入処理工程を経た繊維を、加水分解する
前に酸処理した実施例7、8は実施例1、3に比べ、白
度は大差ないものの、色安定性がさらに高いものであっ
た。一方、比較例1はアクリル酸エステル化合物である
MAを6重量%含む原料繊維を使用した。白度は良好で
あったが、晒し耐久性、洗濯耐久性および放置安定性
は、それぞれ2級、3級、3級と色安定性が劣り加工段
階あるいは最終製品としての使用段階で問題となるレベ
ルであった。
The high-whiteness hygroscopic fiber of Example 1 showed a moisture absorption of 35%, and the whiteness was also good as L * 88.4 and a * 0.99. In addition, the fibers exhibited excellent exposure stability, washing durability, and standing stability of 3-4 class, 4-5 class, and 4-5 class, respectively. In Examples 2 and 3 in which the type of metal salt was different from that in Example 1, although the moisture absorption was slightly lower than that in Example 1, the whiteness and the color stability were the same as those of Example 1 fiber. . In Examples 4 and 5, in which the type of the reducing agent was different from that in Example 1, the whiteness and the color stability were slightly inferior to Example 1, but at a usable level. Example 6 has a calcium salt-type carboxyl group and the molar ratio of the H-type carboxyl group is as high as 50 mol%. The moisture absorption of Example 6 is 20%, and the moisture absorption, whiteness, and color stability are at usable levels. there were. In Examples 7 and 8 in which the fiber that had undergone the cross-linking introduction treatment was subjected to an acid treatment before hydrolysis, the whiteness was not much different from Examples 1 and 3, but the color stability was still higher. On the other hand, in Comparative Example 1, a raw material fiber containing 6% by weight of MA as an acrylate compound was used. Although the whiteness was good, the bleaching durability, washing durability and shelf stability were inferior in color stability to 2nd, 3rd and 3rd grades, respectively, and were inferior in the processing stage or the final product use stage. Level.

【0049】実施例9、10 還元処理剤として二酸化チオ尿素(以下、UTOとい
う)を採用し、AN系重合体の組成を表2に記載したよ
うに変更した以外は実施例1と同様にして、実施例9、
10の高白度吸湿性繊維を得た。この繊維の特性も表2
に併記した。なお、表中、酢酸ビニルをVACと略称し
た。
Examples 9 and 10 In the same manner as in Example 1 except that thiourea dioxide (hereinafter referred to as UTO) was used as a reducing agent and the composition of the AN polymer was changed as shown in Table 2. , Example 9,
A high whiteness hygroscopic fiber of 10 was obtained. Table 2 shows the properties of this fiber.
It was also described in. In the table, vinyl acetate is abbreviated as VAC.

【0050】実施例11 窒素増加量が表2に示した量となるよう架橋導入処理条
件の水加ヒドラジン濃度及び処理時間を調整し、塩型調
整処理をNa型カルボキシル基が30モル%となる条件
に変更した以外は実施例10と同様にして、実施例11
の高白度吸湿性繊維を得た。この繊維の特性も表2に併
記した。
Example 11 The hydrazine hydrate concentration and the treatment time under the cross-linking treatment conditions were adjusted so that the amount of increase in nitrogen became the amount shown in Table 2, and the salt-type adjustment treatment was carried out so that the Na-type carboxyl group was 30 mol%. Example 11 was repeated in the same manner as in Example 10 except that the conditions were changed.
High whiteness hygroscopic fiber was obtained. The properties of this fiber are also shown in Table 2.

【0051】実施例12、13 還元処理剤としてUTOを採用し、窒素増加量が表2に
記載した量となるよう、架橋導入処理条件の水加ヒドラ
ジン濃度及び処理時間を調整した以外は実施例1と同様
にして、実施例12、13の高白度吸湿性繊維を得た。
これらの繊維の特性も表2に併記した。
Examples 12 and 13 The procedure of Examples 12 and 13 was repeated except that UTO was used as the reducing agent and that the hydrazine hydrate concentration and the treatment time under the crosslinking introduction treatment conditions were adjusted so that the amount of increase in nitrogen was as shown in Table 2. In the same manner as in Example 1, high whiteness hygroscopic fibers of Examples 12 and 13 were obtained.
The properties of these fibers are also shown in Table 2.

【0052】[0052]

【表2】 [Table 2]

【0053】実施例9はアクリル酸エステル化合物を含
まず、VACを10重量%含む原料アクリル系繊維を使
用し、還元剤としてUTOを使用しているが、吸湿率は
35%と高く、白度はL*87.6、a*0.91と優
れたものであり、洗濯耐久性、晒し耐久性および放置安
定性もそれぞれ4−5級、4級、4−5級と色安定性に
優れた繊維であった。実施例10はMAを2重量%含む
原料アクリル系繊維を使用しているが、高い吸湿率を持
ち、高い白度と優れた色安定性を維持していた。実施例
11は塩型調整処理でNa型カルボキシル基を30モル
%としたものであり、吸湿率が24%となったが、優れ
た白度と色安定性を維持していた。実施例12、13は
還元剤としてUTOを採用し、窒素増加量がそれぞれ
2、9重量%であり、金属塩型カルボキシル基量は8.
5、4.2meq/gであった。これらは優れた白度と
色安定性を維持していた。
In Example 9, a raw material acrylic fiber containing no acrylate compound and containing 10% by weight of VAC was used, and UTO was used as a reducing agent. The moisture absorption was as high as 35%, and the whiteness was high. Is excellent in L * 87.6 and a * 0.91, and also has excellent color stability such as washing durability, exposure durability and shelf stability of 4-5 class, 4th class and 4-5 class, respectively. Fiber. In Example 10, although the raw acrylic fiber containing 2% by weight of MA was used, it had a high moisture absorption, and maintained high whiteness and excellent color stability. In Example 11, the Na type carboxyl group was adjusted to 30 mol% by the salt type adjustment treatment, and the moisture absorption became 24%, but excellent whiteness and color stability were maintained. In Examples 12 and 13, UTO was used as the reducing agent, the amount of increase in nitrogen was 2.9% by weight, respectively, and the amount of metal salt-type carboxyl groups was 8.8.
5, 4.2 meq / g. These maintained excellent whiteness and color stability.

【0054】実施例14 還元処理後の酸処理及び塩型調整処理を行わない以外は
実施例9と同様にして、実施例14の高白度吸湿性繊維
を得た。この繊維の特性は表3に示した。
Example 14 A high whiteness hygroscopic fiber of Example 14 was obtained in the same manner as in Example 9 except that the acid treatment and the salt type adjustment treatment after the reduction treatment were not performed. The properties of this fiber are shown in Table 3.

【0055】実施例15 水加ヒドラジンによる架橋導入処理工程を経た繊維を、
10重量%の硝酸水溶液中、90℃で2時間酸処理を施
す以外は実施例14と同様にして、実施例15の高白度
吸湿性繊維を得た。これらの繊維の特性も表3に併記し
た。
Example 15 A fiber which had been subjected to a cross-linking treatment process using hydrated hydrazine was
A high whiteness hygroscopic fiber of Example 15 was obtained in the same manner as in Example 14, except that acid treatment was performed in a 10% by weight aqueous nitric acid solution at 90 ° C for 2 hours. The properties of these fibers are also shown in Table 3.

【0056】比較例2 AN系重合体の組成をAN/MA=93/7とし、還元
処理後の酸処理及び塩型調整処理を行わない以外は実施
例1と同様にし、比較例2の吸湿性繊維を得た。
Comparative Example 2 The same procedure as in Example 1 was carried out except that the composition of the AN-based polymer was set to AN / MA = 93/7, and the acid treatment and the salt type adjustment treatment after the reduction treatment were not carried out. A synthetic fiber was obtained.

【0057】比較例3、4 窒素増加量が表3に示した量となるよう架橋導入処理条
件の水加ヒドラジン濃度及び処理時間を調整し、表3に
示した還元処理剤を用いた以外は比較例2と同様にし
て、比較例3、4の繊維を得た。この繊維の特性も表3
に併記した。
Comparative Examples 3 and 4 The hydrazine hydrate concentration and the treatment time under the cross-linking treatment conditions were adjusted so that the amount of increase in nitrogen became the amount shown in Table 3, and the reduction treatment agent shown in Table 3 was used. In the same manner as in Comparative Example 2, fibers of Comparative Examples 3 and 4 were obtained. Table 3 shows the properties of this fiber.
It was also described in.

【0058】比較例5 還元処理、酸処理及び塩型調整処理を行わなかった以外
は実施例1と同様にして、比較例5の吸湿性繊維を得
た。この繊維の特性も表3に併記した。
Comparative Example 5 A hygroscopic fiber of Comparative Example 5 was obtained in the same manner as in Example 1 except that the reduction treatment, the acid treatment and the salt type adjustment treatment were not performed. The properties of this fiber are also shown in Table 3.

【0059】実施例16、比較例6 AN系重合体の組成をAN/MA=94/6とした以外
は実施例7と同様にし、比較例6の吸湿性繊維を得た。
塩型調整処理を行なわない以外は比較例6と同様にして
得られた繊維を、再度SHSの1重量%水溶液中で、9
0℃×2Hr還元処理を行い、純水で洗浄し、続いて、
硝酸の3重量%水溶液中、90℃×2Hr酸処理を行
い、さらに、塩型調整処理を行って実施例16の高白度
吸放湿繊維を得た。これらの繊維の特性も表3に併記し
た。
Example 16 and Comparative Example 6 A hygroscopic fiber of Comparative Example 6 was obtained in the same manner as in Example 7 except that the composition of the AN polymer was changed to AN / MA = 94/6.
The fiber obtained in the same manner as in Comparative Example 6 except that the salt type adjustment treatment was not performed, was again subjected to 9% aqueous solution of SHS in 9% by weight.
Perform a 0 ° C. × 2 hr reduction treatment, wash with pure water,
In a 3% by weight aqueous solution of nitric acid, an acid treatment at 90 ° C. for 2 hours was performed, and a salt type adjustment treatment was further performed to obtain a high whiteness moisture absorbing / releasing fiber of Example 16. The properties of these fibers are also shown in Table 3.

【0060】[0060]

【表3】 [Table 3]

【0061】実施例14の高白度吸湿性繊維の吸湿率は
42%を示し、L*87.3、a*1.18と十分な白
度を有していた。色安定性は、実施例9に比べ若干劣る
ものの、洗濯耐久性4級、晒し耐久性3級、放置安定性
3−4級と十分な性能を有していた。実施例15の繊維
は実施例14と同様に優れた吸湿率および白度を示し、
さらに色安定性では洗濯耐久性4級、晒し耐久性3−4
級、放置安定性4級と実施例14よりも優れた安定性を
有していた。実施例16の繊維は、MAが6重量%である
が、還元処理、酸処理を繰り返すことで、(メタ)アク
リル酸エステル化合物が5重量%未満である他の実施例
と同様に優れた白度及び色安定性を有していた。
The moisture absorption of the high-whiteness hygroscopic fiber of Example 14 was 42%, and had a sufficient whiteness of L * 87.3 and a * 1.18. Although the color stability was slightly inferior to that of Example 9, the washing durability was 4th grade, the exposure durability was 3rd grade, and the storage stability was 3-4th grade. The fiber of Example 15 shows excellent moisture absorption and whiteness as in Example 14,
In addition, color stability is 4th in washing durability, 3-4 bleaching durability.
Grade, storage stability 4th grade, and better stability than Example 14. The fiber of Example 16 had 6% by weight of MA. However, by repeating the reduction treatment and the acid treatment, the (meth) acrylate compound was less than 5% by weight. It had degree and color stability.

【0062】比較例2及び3の繊維は良好な白度を示し
たものの繊維の色安定性にきわめて劣り、さらに比較例
3は吸湿時のハンドリング性が悪く実用的には採用が困
難な結果となった。また、比較例4の繊維は、吸湿率が
10%と低く、しかも、L*84.1、a*8.23で
高白度とはいい難いものであった。比較例5では還元処
理を省略しているため赤色に着色していた。比較例6の
繊維は、実施例16に比べ還元処理、酸処理を繰り返し
ていないため、白度は良好であったものの、色安定性に
劣るものであった。
The fibers of Comparative Examples 2 and 3 exhibited good whiteness but were extremely inferior in color stability of the fibers, and Comparative Example 3 had poor handling properties at the time of absorbing moisture and were difficult to employ in practice. became. Further, the fiber of Comparative Example 4 had a low moisture absorption of 10%, and was L * 84.1 and a * 8.23, which was not very high in whiteness. Comparative Example 5 was colored red because the reduction treatment was omitted. Since the fiber of Comparative Example 6 did not repeat the reduction treatment and the acid treatment as compared with Example 16, the whiteness was good, but the color stability was poor.

【0063】[0063]

【発明の効果】従来、吸湿性繊維については特開200
0−303353号公報の技術により得られるものが、
吸湿性能と白度のバランスのとれたものとされてきた
が、本発明の出現により、吸湿性能を維持し、且つ染色
工程での晒しや最終製品での繰り返し洗濯をおこなって
も色変化の起こらない、即ち色安定性に優れた繊維の提
供が可能となった。本発明による繊維は用途が限定され
ることなく、好適に使用できるものである。なお、本発
明繊維の製造において、一旦特定のカルボキシル基の
「金属塩型」及び特定のH型/金属塩型の「モル比」に
調整された製品繊維も、要求があれば該製品繊維とは異
なる「モル比」あるいは「金属塩型」に再調整できるこ
とも工業的な利点である。
Conventionally, hygroscopic fibers are disclosed in JP-A-200
What is obtained by the technique of 0-303353 is
Although it has been considered that moisture absorption performance and whiteness are well-balanced, with the advent of the present invention, the color change occurs even when the moisture absorption performance is maintained and the exposure in the dyeing process and the repeated washing with the final product are performed. No, that is, a fiber having excellent color stability can be provided. The fiber according to the present invention can be suitably used without any limitation in use. In the production of the fiber of the present invention, the product fiber once adjusted to the “metal salt type” of the specific carboxyl group and the “molar ratio” of the specific H type / metal salt type may be combined with the product fiber if required. It is also an industrial advantage that it can be readjusted to a different "molar ratio" or "metal salt type".

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4L031 AA17 AB03 AB04 BA11 BA17 BA36 CA01 CA03 DA08 4L033 AA05 AB01 AC07 AC15 BA49 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4L031 AA17 AB03 AB04 BA11 BA17 BA36 CA01 CA03 DA08 4L033 AA05 AB01 AC07 AC15 BA49

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 20℃65%RHにおける飽和吸湿率が
10重量%以上である吸湿性合成繊維であって、該繊維
の白度がJIS−Z−8729に記載の表示方法におい
て、L*85以上、a*±6の範囲内であり、且つJI
S−L0217−103法で洗濯処理した洗濯5回後の
繊維の変色がJIS−L0805汚染用グレースケール
で評価して3−4級以上であることを特徴とする高白度
吸湿性合成繊維。
1. A hygroscopic synthetic fiber having a saturated moisture absorption of 10% by weight or more at 20 ° C. and 65% RH, wherein the whiteness of the fiber is L * 85 in the display method described in JIS-Z-8729. Above, within the range of a * ± 6 and JI
A high whiteness hygroscopic synthetic fiber characterized in that the discoloration of the fiber after washing five times, which has been subjected to the washing treatment by the S-L0217-103 method, is grade 3 or higher as evaluated by JIS-L0805 contamination gray scale.
【請求項2】 高白度吸湿性合成繊維の飽和吸水率が3
00重量%未満であることを特徴とする請求項1記載の
高白度吸湿性合成繊維。
2. A high whiteness hygroscopic synthetic fiber having a saturated water absorption of 3
The high-whiteness hygroscopic synthetic fiber according to claim 1, wherein the content is less than 00% by weight.
【請求項3】 高白度吸湿性合成繊維が、共重合成分と
して(メタ)アクリル酸エステル化合物が5重量%未満
であるアクリロニトリル系重合体からなるアクリル系繊
維に、ヒドラジン系化合物による架橋導入処理、加水分
解、還元処理を施したものであることを特徴とする請求
項1又は2に記載の高白度吸湿性合成繊維。
3. A cross-linking treatment of a high whiteness hygroscopic synthetic fiber with a hydrazine compound into an acrylic fiber made of an acrylonitrile polymer having a (meth) acrylate compound content of less than 5% by weight as a copolymer component. The high-whiteness hygroscopic synthetic fiber according to claim 1 or 2, which has been subjected to hydrolysis, reduction treatment.
【請求項4】 洗濯5回後の繊維の白度がJIS−Z−
8729に記載の表示方法において、L*85以上、a
*±6の範囲内であることを特徴とする請求項1から3
のいずれかに記載の高白度吸湿性合成繊維。
4. The fiber whiteness after washing 5 times is JIS-Z-
8729, wherein L * 85 or more, a
4. The method according to claim 1, wherein the distance is within a range of ± 6.
The high-whiteness hygroscopic synthetic fiber according to any one of the above.
【請求項5】 共重合成分として(メタ)アクリル酸エ
ステル化合物が5重量%未満であるアクリロニトリル系
重合体からなるアクリル系繊維に、ヒドラジン系化合物
による架橋導入処理、加水分解、還元処理を施すことを
特徴とする高白度吸湿性合成繊維の製造方法。
5. An acrylic fiber comprising an acrylonitrile-based polymer containing less than 5% by weight of a (meth) acrylate compound as a copolymerization component, is subjected to a crosslinking introduction treatment, a hydrolysis and a reduction treatment with a hydrazine-based compound. A method for producing a high whiteness hygroscopic synthetic fiber, characterized by comprising:
【請求項6】 (1)共重合成分として(メタ)アクリ
ル酸エステル化合物が5重量%未満であるアクリロニト
リル系重合体からなるアクリル系繊維をヒドラジン系化
合物処理して、架橋の導入と1.0〜10.0重量%の
窒素含有量の増加を行わしめ、(2)アルカリ性金属塩
水溶液処理して、CN基を加水分解した金属塩型カルボ
キシル基を4.0〜10.0meq/g生成せしめ、
(3)ハイドロサルファイト塩、チオ硫酸塩、亜硫酸
塩、亜硝酸塩、二酸化チオ尿素、アスコルビン酸塩、ヒ
ドラジン系化合物からなる群より選ばれた還元処理剤で
還元処理することを特徴とする高白度吸湿性合成繊維の
製造方法。
6. An acrylic fiber composed of an acrylonitrile-based polymer containing less than 5% by weight of a (meth) acrylate compound as a copolymerization component is treated with a hydrazine-based compound to introduce a crosslink. (2) Treatment with an aqueous alkali metal salt solution to produce 4.0 to 10.0 meq / g of a metal salt type carboxyl group having a CN group hydrolyzed. ,
(3) High whiteness characterized by being reduced with a reducing agent selected from the group consisting of hydrosulfite salts, thiosulfates, sulfites, nitrites, thiourea dioxide, ascorbate, and hydrazine compounds. Method for producing a hygroscopic synthetic fiber.
【請求項7】 還元処理後にさらに酸処理を施し、該金
属塩型カルボキシル基をH型化し、Li、Na、K、C
a、Mg、Ba、Alから選ばれる金属塩による処理に
より、該H型カルボキシル基の一部を金属塩型化してH
型/金属塩型のモル比を90/10〜0/100に調整
することを特徴とする請求項5または6に記載の高白度
吸湿性合成繊維の製造方法。
7. After the reduction treatment, an acid treatment is further performed to convert the metal salt-type carboxyl group into an H-type, and form Li, Na, K, C
a, a part of the H-type carboxyl group is converted to a metal salt form by treatment with a metal salt selected from a, Mg, Ba, and Al.
The method for producing a high whiteness hygroscopic synthetic fiber according to claim 5 or 6, wherein the molar ratio of the mold / metal salt type is adjusted to 90/10 to 0/100.
JP2002015168A 2001-01-26 2002-01-24 High whiteness hygroscopic synthetic fiber and method for producing the fiber Expired - Fee Related JP3698204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002015168A JP3698204B2 (en) 2001-01-26 2002-01-24 High whiteness hygroscopic synthetic fiber and method for producing the fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-17856 2001-01-26
JP2001017856 2001-01-26
JP2002015168A JP3698204B2 (en) 2001-01-26 2002-01-24 High whiteness hygroscopic synthetic fiber and method for producing the fiber

Publications (2)

Publication Number Publication Date
JP2002294556A true JP2002294556A (en) 2002-10-09
JP3698204B2 JP3698204B2 (en) 2005-09-21

Family

ID=26608326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002015168A Expired - Fee Related JP3698204B2 (en) 2001-01-26 2002-01-24 High whiteness hygroscopic synthetic fiber and method for producing the fiber

Country Status (1)

Country Link
JP (1) JP3698204B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052186A (en) * 2002-07-24 2004-02-19 Japan Exlan Co Ltd Fluffed cloth
WO2010029664A1 (en) 2008-09-10 2010-03-18 日本エクスラン工業株式会社 Crosslinked acrylate-based fibers and the production thereof
JP2010216050A (en) * 2009-03-19 2010-09-30 Japan Exlan Co Ltd High brightness crosslinked acrylate-based fiber having color fastness and method for producing the same
JP2010216051A (en) * 2009-03-19 2010-09-30 Japan Exlan Co Ltd High-brightness crosslinked acrylate-based fiber having color fastness and method for producing the same
JP2012077431A (en) * 2010-09-08 2012-04-19 Japan Exlan Co Ltd Heat insulating fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052186A (en) * 2002-07-24 2004-02-19 Japan Exlan Co Ltd Fluffed cloth
WO2010029664A1 (en) 2008-09-10 2010-03-18 日本エクスラン工業株式会社 Crosslinked acrylate-based fibers and the production thereof
JP2010216050A (en) * 2009-03-19 2010-09-30 Japan Exlan Co Ltd High brightness crosslinked acrylate-based fiber having color fastness and method for producing the same
JP2010216051A (en) * 2009-03-19 2010-09-30 Japan Exlan Co Ltd High-brightness crosslinked acrylate-based fiber having color fastness and method for producing the same
JP2012077431A (en) * 2010-09-08 2012-04-19 Japan Exlan Co Ltd Heat insulating fiber

Also Published As

Publication number Publication date
JP3698204B2 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
TWI481753B (en) An antistatic acrylic fiber and a making method thereof
KR100866842B1 (en) Black fiber highly moisture-absorbing and desorbing
JPWO2018047344A1 (en) Modified acrylonitrile-based fiber, method for producing the fiber, and fiber structure containing the fiber
KR100891410B1 (en) Fiber structure having high whiteness and high moisture-absorbing and releasing property, and method for production thereof
KR100794086B1 (en) High-whiteness hygroscopic fiber and process for its production
JP2002294556A (en) Hygroscopic synthetic fiber with high whiteness, and method for producing the fiber
JP3196577B2 (en) pH buffering hygroscopic acrylic fiber and method for producing the same
JP7177986B2 (en) Shrinkable, moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP5141914B2 (en) High whiteness discoloration-resistant cross-linked acrylate fiber and process for producing the same
JP4058678B2 (en) Material
JP4058679B2 (en) Sanitary materials
JP4032295B2 (en) uniform
JP4032296B2 (en) Sports clothing
JP2004052187A (en) Hygroscopic underwear
JP2003278079A (en) Cross-linked acrylate-based fiber dyeable by reactive dye, fiber structure and method for producing the same
JP4258829B2 (en) Standing fabric
JP4058677B2 (en) Fiber structure
JP7187911B2 (en) Hygroscopic acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP3997478B2 (en) Thermal insulation product
JP2004238756A (en) Black-based moisture absorbing and releasing textile product
JP2019157329A (en) Crimpable moisture-absorptive acrylonitrile-based fiber, method of producing the fiber and fiber structure containing the fiber
JPH11349771A (en) Acrylic resin modifier
JPH11302489A (en) Modifier for acrylic resin

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050628

R150 Certificate of patent or registration of utility model

Ref document number: 3698204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees