JP4058678B2 - Material - Google Patents

Material Download PDF

Info

Publication number
JP4058678B2
JP4058678B2 JP2002206361A JP2002206361A JP4058678B2 JP 4058678 B2 JP4058678 B2 JP 4058678B2 JP 2002206361 A JP2002206361 A JP 2002206361A JP 2002206361 A JP2002206361 A JP 2002206361A JP 4058678 B2 JP4058678 B2 JP 4058678B2
Authority
JP
Japan
Prior art keywords
fiber
treatment
whiteness
weight
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002206361A
Other languages
Japanese (ja)
Other versions
JP2004044043A (en
Inventor
中島  茂
美弘 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2002206361A priority Critical patent/JP4058678B2/en
Publication of JP2004044043A publication Critical patent/JP2004044043A/en
Application granted granted Critical
Publication of JP4058678B2 publication Critical patent/JP4058678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Woven Fabrics (AREA)
  • Bedding Items (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は吸湿性合成繊維からなる資材に関する。さらに詳しくは、難燃性、抗菌性を有しながら、加工性も優れ、かつ従来品よりもさらに白度が向上し染色工程での晒し処理および洗濯を繰り返しても色がほとんど変化しない色安定性に優れる高白度吸湿性合成繊維からなる資材特にシーツ、布団側地、レースカーテン、シートカバー、貼付材、壁紙、靴側地、芯地、タオル、パフ、低密度織物などに関する。
【0002】
【従来の技術】
綿に代表される天然繊維は、その風合いや、むれ感がない等の着心地の良さが好まれている。この快適な着用感の主たる要因は、天然繊維が適度な吸湿性を有することにある。このような優れた特性からその用途は寝装を代表とする生活資材として多方面へ広がっている。しかし暴露や洗濯の繰り返しによる黄変に対して白度を維持する為には漂白洗濯をする必要があり、それが繊維を劣化させたり、残留漂白剤による肌荒れが起きやすくなってしまうという問題を抱えている。
【0003】
また羊毛製品は資材で求められる高白度を得ることが困難であるばかりでなく、洗濯を繰り返すことで綿と同様に白度が低下してくるという問題があり、資材としては余り採用されていない。
【0004】
一方、合成繊維、特にコストが低いポリエステルは各種の耐久性に優れるた資材用途に多用されているが、吸湿性が低いため肌に触れる用途での使用においてはムレによる不快感が顕著であり、その改善が望まれている。また肌に触れない用途、たとえばカーテンや壁紙では調湿機能が求められてきており、合成繊維の中では比較的吸湿性に優れているナイロンでも公定水分率は4〜5%程度であり、依然ムレ感は解消されていない。
【0005】
また、繊維の吸湿性を改善する為に様々な検討がされてきた。繊維状素材による空気中の湿気を除去する手段として、潮解性塩類を高吸水性繊維に含浸させた特開平1−299624号公報の手段が提案されている。この手段により得られた繊維は、編物・織物・不織布等への加工が容易で吸放湿速度が速く、さらに吸湿剤の脱落もない実用性能を備えたものではあるが、繊維表面がヒドロゲルであるため、吸湿すると粘着性を帯び、特に壁紙やふとん綿への適用が困難であること、及び最近社会的ニーズとして高まりつつある難燃性や抗菌性を満たすものではなかった。
【0006】
これらの問題点を解決する方法として、特開平5−132858号公報の手段も提案されている。しかしながら、この方法では塩型カルボキシル基の量が4.5meq/gを超えてしまうと引張強度が0.9cN/dtex以下となり、種々の加工に耐え得るには不十分な繊維物性となってしまい、さらに吸湿率を高める為の障壁となっていた。また、繊維強度0.9cN/dtex以上の高吸湿性繊維を得る為にヒドラジン系化合物による処理によって導入される窒素含有量の増加を8.0重量%をこえたものにした場合、加水分解後の塩型カルボキシル基の導入量が少なくなり、吸湿性が低くなってしまうという問題があった。
【0007】
さらに、特開平5−132858号公報による方法で得られる繊維は、濃いピンク色から濃い茶色を呈する為、利用分野が限定されてしまうという欠点があった。この欠点を克服する手段として提案されている特開平9−158040号公報の発明は、ヒドラジン系化合物による架橋処理の後に酸処理Aを行うこと、アルカリによる加水分解処理の後に酸処理Bを行うこと、を開示し相当に白度の改善を為し得ている。しかしかかる技術によっても、厳しい白度を要求される分野に対しては、十分満足を与えるものではないのが現状である。特開2000−303353号公報では白度を改善する方法として加水分解処理を無酸素雰囲気下で行うことを開示している。しかしながら、該方法で得られる繊維は染色工程での酸化晒し処理や洗濯を繰り返すことにより着色するため、色安定性に乏しいという欠点を有するのが現状である。
【0008】
【発明が解決しようとする課題】
本発明は、繊維に要求される基本物性並びに吸湿性繊維の有すべき特性を維持しながら、かかる従来の吸湿性繊維が抱える色が不安定であるという欠点を改良した繊維を少なくとも一部に用いた資材を提供することを目的とする。
【0009】
【課題を解決するための手段】
即ち本発明は、下記の構成からなる。
1. 20℃65%RHにおける飽和吸湿率が10重量%以上、白度がJIS−Z−8729に記載の表示方法において、L*85以上、a*±6の範囲内であり、且つJIS−L0217−103法で洗濯処理した洗濯5回後の繊維の白度がJIS−Z−8729に記載の表示方法において、L*85以上、a*±6の範囲内である高白度吸湿性合成繊維を少なくとも一部に有し、高白度吸湿性合成繊維が、共重合成分として(メタ)アクリル酸エステル化合物が5重量%未満であるアクリロニトリル系重合体からなるアクリル系繊維に、ヒドラジン系化合物による架橋導入処理、加水分解、還元処理を施したものであることを特徴とする資材。
2. 高白度吸湿性合成繊維の飽和吸水率が300重量%以下であることを特徴とする上記第1記載の資材。
. 高白度吸湿性合成繊維の洗濯5回後の変色がJIS−L0805汚染用グレースケールで評価して3−4級以上であることを特徴とする上記第1又は第2に記載の資材。
4. 資材がシーツ、布団側地、レースカーテン、シートカバー、貼付材、壁紙、靴側地、芯地、タオル、パフ、または低密度織物のいずれかであることを特徴とする上記第1〜3のいずれかに記載の資材。
【0010】
以下、本発明を詳述する。
本発明の資材の少なくとも一部に採用する吸湿性繊維は20℃65%RHにおける飽和吸湿率が10重量%以上であることが好ましい。さらに、本発明の高白度吸湿性繊維の白度はJIS−Z−8729に記載の表示方法において、L*85以上、a*±6の範囲内であることが好ましい。さらに好ましくはL*が86以上、a*が±4の範囲内である。
【0011】
また、本発明の資材の少なくとも一部に採用する高白度吸湿性繊維は、洗濯処理においても、その白度の変色が極めて少ない点、即ち洗濯耐久性に優れている点に特徴があり、具体的には、JIS−L0217−103法(洗剤は花王株式会社製アタック使用)で洗濯処理した洗濯5回後の繊維の白度がJIS−Z−8729に記載の表示方法において、L*85以上、a*±6の範囲内、好ましくはL*が86以上、a*が±5の範囲内であることが好ましい。また、洗濯5回後の変色がJIS−L0805汚染用グレースケールで評価して3−4級以上のものであることが好ましい。なお、洗濯処理後であっても、また、衣料用途で最も疎まれるのは、赤みであり、このことから、赤みを表すパラメーターであるa*の値の、洗濯前後における差(Δa*)が0.7以下であることが好ましく、さらに好ましくは0.6以下である。なお、本発明の資材の洗濯耐久性は、JIS−L0844−B法に準拠して測定した。
【0012】
本発明の資材の少なくとも一部に採用する高白度吸湿性繊維の飽和吸水率は、300重量%以下であることが好ましい。飽和吸水率が300重量%を超える場合には、吸水した際繊維表面がべとつくため、特に布団側地用途では好ましくない。
【0013】
なお、資材の少なくとも一部に採用する高白度吸湿性繊維としては、染色工程の酸化晒し等の処理においても、その白色度が低下しないことが望ましく、具体的には、過酸化水素濃度0.5重量%、NaOHによるpH10、浴比1/50、80℃、60分の条件で晒し処理した過酸化水素晒し後の繊維の変色(晒し耐久性)がJIS−L0805汚染用グレースケールで評価して3級以上、繊維を飽和吸水量を超える水の共存下80℃16時間放置した後の変色(放置安定性)がJIS−L0805汚染用グレースケールで評価して3−4級以上であることが好ましい。
【0014】
ここで、晒し耐久性の値(級)は、NaOHによりpH10に調節した過酸化水素0.5重量%の水溶液中に、繊維試料と水溶液の浴比が1/50となるよう繊維試料を投入し、80℃で、60分間晒し処理した繊維の、晒し処理前の繊維試料の色からの変色の程度をJIS−L0805汚染用グレースケールで評価することによって得られたものである。
【0015】
また、放置安定性の値(級)は試料繊維を純水に浸漬し、十分含水させた後取出し、80℃においても飽和吸水量を超える水が維持できるに十分な量の水を保持させたまま、容器の半分以上が空間となるよう容器に密閉して、80℃に調整した恒温機に入れ、16時間後取出し、脱水、乾燥した繊維の、処理前の繊維試料からの変色の程度をJIS−L0805汚染用グレースケールで評価することによって得られたものである。
なお、飽和吸水量とは、十分含水した繊維の遠心脱水後(160G×5分間)の重量から、同じ試料繊維の乾燥(105℃×16時間)後の重量を引いた量である。また、飽和吸水率は、飽和吸水量を試料繊維の乾燥(105℃×16時間)後の重量で除した値を%で表したものである。
【0016】
かかる、本発明の資材の少なくとも一部に採用する高白度吸湿性繊維の製造方法としては、共重合成分として(メタ)アクリル酸エステル化合物が5重量%未満であるアクリロニトリル系重合体からなるアクリル系繊維に、ヒドラジン系化合物による架橋導入処理、加水分解、還元処理を施すことを特徴とする高白度吸湿性繊維の製造方法が推奨される。以下該方法について詳述する。
【0017】
出発アクリル系繊維(以下、アクリロニトリル系繊維と呼ぶこともある)としてはアクリロニトリル(以下、ANという)を40重量%以上、好ましくは50重量%以上含有するAN系重合体により形成された繊維であり、短繊維、トウ、糸、編織物、不織布等いずれの形態のものでも良く、また、製造工程中途品、廃繊維などでも構わない。AN系重合体は、AN単独重合体、ANと他の単量体との共重合体のいずれでも良いが、ANと共重合する単量体として(メタ)アクリル酸エステル化合物は最も好ましくは使用を避けたいが、やむを得ず用いる場合は、5重量%未満さらに好ましくは4.0重量%以下である必要がある。尚、(メタ)を付した表記は、アクリル酸エステル,メタアクリル酸エステルの双方を表わしている。また、5重量%未満であれば共重合成分としてもかまわない該エステル化合物としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル等が挙げられる。それ以外の共重合成分としてはメタリルスルホン酸、p−スチレンスルホン酸等のスルホン酸基含有単量体及びその塩;スチレン、酢酸ビニル等の単量体等、ANと共重合可能な単量体であれば特に限定されないが、酢酸ビニルに代表されるビニルエステル系化合物を5〜20重量%共重合させることが望ましい。かかるビニルエステルとしては酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等が挙げられる。
【0018】
該アクリル系繊維は、ヒドラジン系化合物により架橋導入処理を施され、アクリル系繊維の溶剤では最早溶解されないものとなるという意味で架橋が形成され、同時に結果として窒素含有量の増加が起きるが、その手段は特に限定されるものではない。この処理による窒素含有量の増加が1.0〜10重量%に調整し得る手段が好ましいが、窒素含有量の増加が0.1〜1.0重量%であっても、本発明の資材の少なくとも一部に採用する高白度吸湿性繊維が得られる手段である限り採用し得る。なお、窒素含有量の増加が1.0〜10重量%に調整し得る手段としては、ヒドラジン系化合物の濃度5〜60重量%の水溶液中、温度50〜120℃で5時間以内で処理する手段が工業的に好ましい。尚、窒素含有量の増加を低率に抑えるには、反応工学の教える処に従い、これらの条件をよりマイルドな方向にすればよい。ここで、窒素含有量の増加とは原料アクリル系繊維の窒素含有量とヒドラジン系化合物による架橋が導入されたアクリル系繊維の窒素含有量との差をいう。
【0019】
ここに使用するヒドラジン系化合物としては、特に限定されるものでなく、水加ヒドラジン、硫酸ヒドラジン、塩酸ヒドラジン、臭素酸ヒドラジン、ヒドラジンカーボネート等、この他エチレンジアミン、硫酸グアニジン、塩酸グアニジン、リン酸グアニジン、メラミン等のアミノ基を複数含有する化合物が例示される。
【0020】
かかるヒドラジン系化合物による架橋導入処理工程を経た繊維は、酸処理を施しても良い。この処理は、繊維の色安定性の向上に寄与がある。ここに使用する酸としては、硝酸、硫酸、塩酸等の鉱酸の水溶液、有機酸等が挙げられるが特に限定されない。この処理の前に架橋導入処理で残留したヒドラジン系化合物は、十分に除去しておく。該酸処理の条件としては、特に限定されないが、大概酸濃度5〜20重量%、好ましくは7〜15重量%の水溶液に、温度50〜120℃で0.5〜10時間被処理繊維を浸漬するといった例が挙げられる。
【0021】
ヒドラジン系化合物による架橋導入処理工程を経た繊維、或いはさらに酸処理を経た繊維は、続いてアルカリ性金属塩水溶液により加水分解される。この処理により、アクリル系繊維のヒドラジン系化合物処理による架橋導入処理に関与せずに残留しているCN基、及び架橋処理工程後酸処理を施した場合には残留しているCN基と一部酸処理で加水分解されたCONH基の加水分解が進められる。これらの基は加水分解によりカルボキシル基を形成するが、使用している薬剤がアルカリ性金属塩であるので、結局金属塩型カルボキシル基を生成している。ここで使用するアルカリ性金属塩としては、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属炭酸塩等が挙げられる。使用するアルカリ性金属塩の濃度は特に限定されないが、1〜10重量%さらに好ましくは1〜5重量%の水溶液中、温度50〜120度で1〜10時間以内で処理する手段が工業的、繊維物性的にも好ましい。
【0022】
ここで金属塩の種類即ちカルボキシル基の塩型としては、Li,Na,K等のアルカリ金属、Mg,Ca,Ba等のアルカリ土類金属を挙げることが出来る。加水分解を進める程度即ち金属塩型カルボキシル基の生成量は4〜10meq/gに制御すべきであり、これは上述した処理の際の薬剤の濃度や温度,処理時間の組合せで容易に行うことができる。尚、かかる加水分解工程を経た繊維は、CN基が残留していてもいなくてもよい。CN基が残留していれば、その反応性を利用して、さらなる機能を付与する可能性がある。
【0023】
次いで行なわれる還元処理において使用する還元処理剤としてはハイドロサルファイト塩、チオ硫酸塩、亜硫酸塩、亜硝酸塩、二酸化チオ尿素、アスコルビン酸塩、ヒドラジン系化合物からなる群より選ばれた1種類または2種類以上を組み合わせた薬剤が好適に使用できる。該還元処理の条件としては、特に限定されないが、概ね薬剤濃度0.5〜5重量%の水溶液に、温度50℃〜120℃で30分間〜5時間被処理繊維を浸漬するといった例が挙げられる。なお、該還元処理は前述の加水分解時に同時に行ってもよいし、加水分解後に行なってもよい。
【0024】
かくして、本発明の資材の少なくとも一部に採用する高白度吸湿性繊維が得られるが、より色を安定化させるため、前述の還元処理工程を経た繊維に、酸処理を施し、該金属塩型カルボキシル基をH型化し、Li、Na、K、Ca、Mg、Ba、Alから選ばれる金属塩処理により、該H型カルボキシル基の一部を金属塩型化(塩型調整処理)してH型/金属塩型のモル比を90/10〜0/100に調整することが好ましい。
【0025】
ここに酸処理に使用する酸としては、硝酸、硫酸、塩酸等の鉱酸の水溶液、有機酸等が挙げられるが特に限定されない。該酸処理の条件としては、特に限定されないが、大概酸濃度1〜10重量%、好ましくは2〜10重量%の水溶液に、温度50〜120℃で2〜10時間被処理繊維を浸漬するといった例が挙げられる。
【0026】
また塩型調整処理に採用される金属塩の金属種類としては、Li、Na、K、Ca、Mg、Ba、Alから選ばれるが、Na、K、Ca、Mg等が特に推奨される。又塩の種類としては、これらの金属の水溶性塩であれば良く、例えば水酸化物,ハロゲン化物,硝酸塩,硫酸塩,炭酸塩等が挙げられる。具体的には、夫々の金属で代表的なものとして、Na塩としてはNaOH、NaCO、K塩としてはKOH、Ca塩としてはCa(OH)、Ca(NO、CaClが好適である。
【0027】
カルボキシル基のH型/金属塩型モル比は上述した範囲内であるが、繊維に与えようとする機能により、金属の種類と共に適宜設定する。塩型調整処理の具体的な実施にあたっては、処理槽に金属塩の0.2〜30重量%の水溶液を準備し、20℃〜80℃において0.25〜5Hr程度被処理繊維を浸漬する、あるいは該水溶液を噴霧する等の方法がある。上述の比率に制御するには、緩衝剤共存下での塩型調整処理が好ましい。緩衝剤としてはpH緩衝域が5.0〜9.2のものが好適である。また、金属塩型カルボキシル基の金属塩の種類は1種類に限定されるわけではなく、2種類以上が混在してもかまわない。
【0028】
以上説明した本発明の資材の少なくとも一部に採用する高白度吸湿性繊維は、吸湿性,難燃性,抗菌性を有しながら、加工性も優れ、かつ従来品よりもさらに白度が向上し色安定性にも優れた吸湿性繊維である。
【0029】
また、塩型調整処理をCa,Mg,Ba等の金属塩化合物の如き水溶解度が低い物質で行う場合には、該工程においてH型カルボキシル基からH型/金属塩型のモル比を、金属塩型を高める方向にするのに幾分難がある。かかる場合には、酸処理の後で塩型調整処理の前処理として、酸処理工程においてH型化されているカルボキシル基を、苛性ソーダあるいは苛性カリ等の水溶液で該カルボキシル基の示すpHを調整即ち中和処理(pH=5〜11位)しておくことが推奨される。かかる処方により、中和処理後のカルボキシル基はH型とNa又はK型が共存する状態になっているので、次の塩型調整処理はCa等とNa又はKとの交換となって容易に進行するので、提起した難点が解消する。
【0030】
なお、出発原料であるアクリル系繊維の製造手段は特に限定されるものではなく、通常の衣料用繊維の製造に採用される手段を用いることができる。また、このような繊維を出発繊維として用いる事が好ましいが、必ずしも最終工程まで済んでいる必要はなく、アクリル系繊維製造工程途中のものであっても、あるいは最終繊維に紡績加工等を施した後のものでも良い。中でも出発アクリル系繊維として、アクリル系繊維の製造工程途中である延伸後熱処理前の繊維(AN系重合体の紡糸原液を常法に従って紡糸し、延伸配向され、乾燥緻密化、湿熱緩和処理等の熱処理の施されてない繊維、中でも湿式又は乾/湿式紡糸、延伸後の水膨潤ゲル状繊維:水膨潤度 30〜150%)を使用すると、処理液中への繊維の分散性、繊維中への処理液の浸透性などが改善され、以て架橋結合の導入や加水分解反応が均一かつ速やかに行われるので望ましい。
【0031】
なお、これらの出発アクリル系繊維を、攪拌機能、温度制御機能を備えた容器内に充填し、前述の工程を順次実施する、あるいは複数の容器を並べて連続的に実施する等の手段をとることが、装置上、安全性、均一処理性等の諸点から望ましい。かかる装置としては染色機が例示される。
【0032】
本発明の、資材の少なくとも一部に採用する高白度吸湿性繊維を製造する他の方法としては、アクリル系繊維に、上述してきたヒドラジン系化合物による架橋導入処理、加水分解、還元処理、酸処理を施し、更に還元処理、酸処理を繰り返す方法が挙げられる。還元処理、酸処理を繰り返すことにより、白度及び色安定性が向上し、L*85以上、a*±6の範囲内であり、且つ洗濯耐久性が3−4級以上という高白度吸湿性繊維が得られる。本方法によると、アクリル系繊維を形成するアクリロニトリル系重合体の共重合成分として、(メタ)アクリル酸エステル化合物が5重量%以上であっても、本発明の資材の少なくとも一部に採用する高白度吸湿性繊維を得ることが出来るが、還元処理、酸処理を繰り返すことが必要であることから、繊維物性が低下したり、生産コストが高くなったりするため、上述した本発明が推奨する製造方法を採用する方が有利である。
【0033】
本発明の資材の少なくとも一部に採用する繊維は、繊維加工に耐える強伸度を備え、色安定性に優れた高白度吸湿性繊維であり、吸湿に伴って発熱も起こる。又、窒素を含有した架橋構造や高い吸湿率に起因すると思われる難燃性、抗菌性、消臭性、耐薬品性等も備えている。
【0034】
本発明の資材は上記のような高白度吸湿性合成繊維を少なくとも一部に含んでいれば良い。必要に応じて他の繊維と混用して用いられることも好ましい。混紡、精紡交撚、コアヤーン、均一混合複合紡績、合撚、混繊、交編、交織などの方法で他のステープル繊維やフィラメント繊維との混用が可能である。但し、ポリエステル繊維等疎水性繊維と混用する場合、あまりに該高白度吸湿性合成繊維の含有率が小さいと吸湿性が乏しくなるため、少なくとも5重量%以上、より好ましくは10重量%以上含有させておくのが好ましい。また、本発明の資材は不織布であっても構わない。もちろん、該高白度吸湿性合成繊維100%で紡績、製編織してもよいし、不織布としても構わない。
【0035】
本発明の資材は該高白度吸湿性合成繊維を少なくとも一部に用いたものであり、白色を必要色とする資材全般に対して好適に使用でき、シーツ、布団側地、レースカーテン、シートカバー、貼付材、壁紙、靴側地、芯地、タオル、パフ、低密度織物などに好適に用いられる。
【0036】
以上詳述した、本発明の資材の少なくとも一部に採用する高白度吸湿性繊維が、優れた白度及び色安定性を有する理由は、十分解明するに至っていないが、概ね次のように考えられる。即ち、ヒドラジン系化合物により架橋構造を導入される際に、原料であるアクリル系繊維が共重合成分として(メタ)アクリル酸エステル化合物を5重量%以上含む場合は該共重合成分のカルボニル炭素の部分にヒドラジン系化合物が反応することにより結果的に架橋構造に酸素分子を含む結合が導入され発色しやすく、即ち色安定性が劣ることとなるが、本発明が推奨する製造方法では該結合の生成を原料段階で抑制したために発色が抑えられ、過酸化水素晒し処理や洗濯繰り返し等の処理によっても発色しにくいと推定される。また、(メタ)アクリル酸エステル化合物を5重量%以上含む場合であっても、還元処理、酸処理を繰り返すことにより、過酸化水素晒し処理や洗濯繰り返し等の処理によっても、発色する分子構造に変化しにくい安定した分子構造を持つためであると推定される。
【0037】
【実施例】
以下実施例により本発明を具体的に説明する。実施例中の部及び百分率は、断りのない限り重量基準で示す。なお、金属塩型カルボキシル基量、白度および吸湿率は以下の方法により求めた。
【0038】
(1)金属塩型カルボキシル基量(meq/g)
十分乾燥した加水分解後の繊維約1gを精秤し(Xg)、これに200mlの水を加えた後、50℃に加温しながら1mol/l塩酸水溶液を添加してpH2にし、次いで0.1mol/l苛性ソーダ水溶液で常法に従って滴定曲線を求めた。該滴定曲線からカルボキシル基に消費された苛性ソーダ水溶液消費量(Yml)を求め、次式によってカルボキシル基量(meq/g)を算出した。
(カルボキシル基量)=0.1Y/X
別途、上述のカルボキシル基量測定操作中の1mol/l塩酸水溶液の添加によるpH2への調整をすることなく同様に滴定曲線を求めH型カルボキシル基量(meq/g)を求めた。これらの結果から次式により金属塩型カルボキシル基量を算出した。
(金属塩型カルボキシル基量)=(カルボキシル基量)−(H型カルボキシル基量)
【0039】
(2)白度
カード機にて解繊した試料繊維4.0gを回転式測色セル(35mlの透明円筒セル)に充填し、東京電色社製色差計TC−1500MC−88型(D65光源)にて、60回/分の割合で回転させながら測色した。この測定を3回繰返し、L*、a*の値(平均値)を求めた。
(3)吸湿率(%)
試料繊維約5.0gを熱風乾燥機で105℃、16時間乾燥して重量を測定する(W1g)。次に試料を温度20℃で65%RHの恒湿槽に24時間入れておく。このようにして吸湿した試料の重量を測定する(W2g)。以上の測定結果から、次式によって算出した。
(吸湿率 %)={(W2−W1)/W1}×100
(4)布帛白度
白度とはASTM E 313に基づきミノルタ(株)製分光測色計CM−3700dを使用し測定したものである。
JIS白度(W)=L*+3×a*−3×b*
(5)布帛吸湿率
上記に記載の繊維の吸湿率測定に準ずる。
【0040】
実施例1
AN96重量%、アクリル酸メチル(以下、MAという)4重量%からなるAN系重合体(30℃ジメチルホルムアミド中での極限粘度[η]:1.2)10部を48%のロダンソーダ水溶液90部に溶解した紡糸原液を、常法に従って紡糸、延伸(全延伸倍率;10倍)した後、乾球/湿球=120℃/60℃の雰囲気下で乾燥、湿熱処理して単繊維繊度1.7dtexの原料繊維を得た。
【0041】
該原料繊維に、水加ヒドラジンの20重量%水溶液中で、98℃×5Hr架橋導入処理を行った。本処理により、架橋が導入され、窒素含有量が増加する。なお、窒素増加量は、原料繊維と架橋導入処理後の繊維を元素分析にて窒素含有量を求め、その差から算出した。次に、苛性ソーダの3重量%水溶液中で、90℃×2Hr加水分解処理を行い、純水で洗浄した。この処理により、繊維にNa型カルボキシル基が5.5meq/g生成していた。
【0042】
該加水分解後の繊維を、ハイドロサルファイトナトリウム塩(以下、SHSという)の1重量%水溶液中で、90℃×2Hr還元処理を行い、純水で洗浄した。
続いて、硝酸の3重量%水溶液中、90℃×2Hr酸処理を行った。これにより5.5meq/g生成していたNa型カルボキシル基は全量がH型カルボキシル基になっていた。該酸処理後の繊維を、純水中に投入し、濃度48%の苛性ソーダ水溶液をH型カルボキシル基に対し、Na中和度70モル%になる様に添加し、60℃×3Hr塩型調整処理を行った。
【0043】
以上の工程を経た繊維を、水洗、油剤付与、脱水、乾燥し実施例1の高白度吸湿性繊維(2dtex×38mm)を得た。得られた繊維の吸湿率、白度、色安定性を調べ、塩型カルボキシル基量、窒素増加量などと共に表1に示した。得られた繊維とポリエステルステープル(1.5dtex×38mm)3:7の40/1の混紡糸を平織とし、ボイル仕上げ、乾熱セットを施した。布帛白度は64.3であり、吸湿性は8.0%であった。洗濯後変色は5級であった。得られた布帛を用いてシーツと布団側地を作成したところ、ムレ感のない快適なもので、繰り返し洗濯をしても色味の変化が殆ど無かった。
【0044】
比較例1
AN90重量%、MA10重量%からなるAN系重合体を用いた以外は実施例1と同様にして得られた吸湿性繊維を使用し、実施例1にしたがって布帛を作成した。布帛白度は60.2であり、吸湿性は7.8%であった。洗濯後変色は3級であった。
【0045】
実施例2
塩型調整処理を苛性カリで行い高白度吸湿性繊維(1dtex×28mm)を得、2:8の割合で、ポリエステルステープル(1.5dtex×48mm)と混紡し、レースを作成した以外は、実施例1と同様にして布帛を得た。布帛白度は68.7であり、吸湿性は5.5%であった。得られた布帛を用いてカーテンとシートカバーを作成したところ、適度な吸湿性を有すると共に、繰り返し洗濯をしても色味の変化が殆ど無かった。
【0046】
実施例3
実施例1の繊維を塩化カルシウム水溶液で処理して、Na型カルボキシル基をCa型カルボキシル基とし高白度吸湿性繊維(1dtex×44mm)を得、5:5の割合でポリエステルステープル(1.5dtex×48mm)と混紡し、目付40g/m2の低密度織物を作成した以外は、実施例1と同様にして布帛を得た。布帛白度は55.7であり、吸湿性は14.7%であった。得られた布帛を用いて芯地を作成し、白生地のカッターシャツに用いたところ、汗をかいても快適で、繰り返し洗濯をしても色味の変化が殆ど無く、芯地が透けて見えるようなことはなかった。
【0047】
比較例2
AN94重量%、MA6重量%からなるAN系重合体を用い、還元処理後の酸処理及び塩型調整処理を行わなかった以外は実施例1と同様にした。布帛白度は60.3であり、吸湿性は7.5%であった。洗濯後変色は2級であった。
【0048】
実施例4
実施例1で得られた高白度吸湿性繊維と綿を3:7で混紡し、パイル布帛を作成し、過酸化水素を用いて晒し処理を施した。布帛白度は69.5であり、吸湿性は14.7%であった。得られた布帛を用いてタオルを作成したところ、繰り返し洗濯をしても色味の変化が殆ど無かった。
【0049】
実施例5
実施例4で得られた混紡糸で平編を作成し、それを靴側地として用いてデッキシューズを作成した。汗をかいても快適で、繰り返し洗濯をしても色味の変化が殆ど無かった。
【0050】
実施例6
実施例1で得られた高白度吸湿性繊維(3dtex×51mm)とポリエチレンテレフタレート綿(1dtex×60mm)とポリプロピレン綿(1.5dtex×46mm)を3:5:2で混綿したものを不織布とし、貼付材を作成した。布帛白度は62.6であり、吸湿性は9.6%であった。問題無い白さと、適度な吸湿性を有し、肌荒れのしないものであった、また不織布タイプの白い壁紙を作成した。問題無い白さと調湿性を有していた。
【0051】
実施例1の高白度吸湿性繊維は35%の吸湿率を示し、白度もL*88.4、a*0.99と良好であった。また、晒し耐久性、洗濯耐久性および放置安定性もそれぞれ3−4級、4−5級、4−5級と色安定性に優れた繊維であった。実施例1と金属塩の種類が異なる実施例2、3は、実施例1に比べ、吸湿率が若干低下するものの、白度、色安定性は実施例1繊維と遜色のない結果であった。
一方、比較例1はアクリル酸エステル化合物であるMAを10重量%含む原料繊維を使用した。白度は良好であったが、晒し耐久性、洗濯耐久性および放置安定性は、それぞれ2級、3級、3級と色安定性が劣り加工段階あるいは最終製品としての使用段階で問題となるレベルであった。比較例2では還元処理を省略しているため赤色に着色していた。
以上、本発明は従来、吸湿性繊維については特開2000−303353号公報の技術により得られるものが、吸湿性能と白度のバランスのとれたものとされてきたが、本発明の資材は従来に比較し、格段の向上を示すものである。
【0052】
【表1】

Figure 0004058678
【0053】
【発明の効果】
本発明によれば、高白度吸湿性繊維を少なくとも一部に用いた資材としたことで、資材に要求される基本物性並びに吸湿性特性を維持しながら、かかる従来の吸湿性繊維が抱える色が不安定であるという欠点の改良を可能としたものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a material made of hygroscopic synthetic fiber. More specifically, color stability that has flame retardancy and antibacterial properties, has excellent processability, improves whiteness more than conventional products, and does not change color even after repeated exposure and washing in the dyeing process. The present invention relates to a material composed of a high whiteness hygroscopic synthetic fiber excellent in properties, in particular, a sheet, a futon side fabric, a lace curtain, a seat cover, a patch, a wallpaper, a shoe side fabric, an interlining, a towel, a puff, and a low-density fabric.
[0002]
[Prior art]
Natural fibers typified by cotton are preferred because of their texture and comfort. The main factor of this comfortable wearing feeling is that the natural fiber has an appropriate hygroscopicity. Due to such excellent characteristics, its use has spread to various fields as a living material represented by bedding. However, in order to maintain the whiteness against yellowing due to repeated exposure and washing, it is necessary to perform bleaching washing, which causes problems such as fiber deterioration and rough skin due to residual bleach. I have it.
[0003]
In addition, wool products are not only difficult to obtain the high whiteness required for materials, but also have the problem that the whiteness decreases with repeated washing, as is the case with cotton. Absent.
[0004]
On the other hand, synthetic fibers, especially low-cost polyester, are widely used for various material applications with excellent durability, but due to low hygroscopicity, discomfort due to stuffiness is noticeable when used in applications that touch the skin, The improvement is desired. In addition, humidity control functions have been demanded for applications that do not touch the skin, such as curtains and wallpaper, and the official moisture content of nylon, which is relatively excellent in hygroscopicity among synthetic fibers, is about 4-5%, and is still The feeling of stuffiness has not been eliminated.
[0005]
Various studies have been made to improve the hygroscopicity of fibers. As a means for removing moisture in the air from the fibrous material, a means of Japanese Patent Application Laid-Open No. 1-299624 in which a highly water-absorbing fiber is impregnated with a deliquescent salt has been proposed. The fibers obtained by this means are easy to process into knitted fabrics, woven fabrics, non-woven fabrics, etc., have a high moisture absorption / release rate, and have practical performance with no hygroscopic removal, but the fiber surface is hydrogel. For this reason, when it absorbs moisture, it becomes sticky, and in particular, it is difficult to apply to wallpaper and futon, and it does not satisfy the flame retardancy and antibacterial properties that are increasing as social needs recently.
[0006]
As a method for solving these problems, means disclosed in Japanese Patent Laid-Open No. 5-132858 has been proposed. However, in this method, if the amount of the salt-type carboxyl group exceeds 4.5 meq / g, the tensile strength becomes 0.9 cN / dtex or less, and the fiber properties are insufficient to withstand various processing. It was a barrier to further increase the moisture absorption rate. In addition, when the increase in nitrogen content introduced by the treatment with the hydrazine compound in order to obtain a highly hygroscopic fiber having a fiber strength of 0.9 cN / dtex or more exceeds 8.0% by weight, There was a problem that the amount of salt-type carboxyl group introduced was reduced and the hygroscopicity was lowered.
[0007]
Further, the fiber obtained by the method according to JP-A-5-132858 has a disadvantage that the field of use is limited because it exhibits a dark brown color to a dark brown color. The invention of Japanese Patent Laid-Open No. 9-158040, which has been proposed as a means for overcoming this drawback, is that the acid treatment A is performed after the crosslinking treatment with a hydrazine compound, and the acid treatment B is performed after the hydrolysis treatment with an alkali. Thus, whiteness can be improved considerably. However, even with such technology, the present situation is that it does not sufficiently satisfy a field that requires strict whiteness. Japanese Patent Application Laid-Open No. 2000-303353 discloses performing a hydrolysis treatment in an oxygen-free atmosphere as a method for improving whiteness. However, since the fiber obtained by this method is colored by repeated oxidative bleaching and washing in the dyeing process, it has the disadvantage of poor color stability.
[0008]
[Problems to be solved by the invention]
The present invention at least partially includes a fiber that has improved the disadvantage that the color of such a conventional hygroscopic fiber is unstable while maintaining the basic physical properties required for the fiber and the characteristics that the hygroscopic fiber should have. The purpose is to provide the materials used.
[0009]
[Means for Solving the Problems]
That is, this invention consists of the following structures.
1. In the display method described in JIS-Z-8729, the saturated moisture absorption at 20 ° C. and 65% RH is 10% by weight or more, and the whiteness is in the range of L * 85 or more, a * ± 6, and JIS-L0217- In the display method according to JIS-Z-8729 , the high whiteness hygroscopic synthetic fiber having a whiteness of the fibers after washing of 5 times after the washing process of 103 method is within the range of L * 85 and a * ± 6. possess at least a portion, Koshirodo hygroscopic synthetic fibers, acrylic fibers made of an acrylonitrile-based polymer is a copolymerization component (meth) acrylic acid ester compound is less than 5 wt%, cross-linking by a hydrazine compound introducing treatment, hydrolysis, materials, characterized in der Rukoto that has been subjected to reduction treatment.
2. 2. The material according to the first item, wherein the saturated water absorption of the high whiteness hygroscopic synthetic fiber is 300% by weight or less.
3 . The material according to the above 1 or 2, wherein the discoloration of the high whiteness hygroscopic synthetic fiber after washing 5 times is 3-4 grade or more as evaluated by a gray scale for JIS-L0805 contamination.
4). The first to third aspects, wherein the material is one of a sheet, a futon side, a lace curtain, a seat cover, a patch, a wallpaper, a shoe side, an interlining, a towel, a puff, or a low-density fabric. Materials listed in any one.
[0010]
The present invention is described in detail below.
The hygroscopic fiber employed in at least a part of the material of the present invention preferably has a saturated moisture absorption rate of 10% by weight or more at 20 ° C. and 65% RH. Further, the whiteness of the high whiteness hygroscopic fiber of the present invention is preferably in the range of L * 85 or more and a * ± 6 in the display method described in JIS-Z-8729. More preferably, L * is 86 or more and a * is in the range of ± 4.
[0011]
In addition, the high whiteness hygroscopic fiber employed in at least a part of the material of the present invention is characterized in that the discoloration of the whiteness is extremely small even in the washing process, that is, the point is excellent in washing durability. Specifically, in the display method described in JIS-Z-8729, the whiteness of the fiber after 5 washes washed by the JIS-L0217-103 method (detergent uses an attack made by Kao Corporation) is L * 85. As described above, it is preferable that L * is within a range of a * ± 6, preferably L * is 86 or more, and a * is within a range of ± 5. Moreover, it is preferable that the discoloration after 5 times of washing is a thing of 3-4 grade or more evaluated by the gray scale for JIS-L0805 contamination. In addition, even after washing treatment, the thing most loosened in apparel use is redness. From this, the difference (Δa *) between before and after washing of the value of a * that is a parameter representing redness It is preferably 0.7 or less, and more preferably 0.6 or less. In addition, the washing durability of the material of this invention was measured based on JIS-L0844-B method.
[0012]
The saturated water absorption of the high whiteness hygroscopic fibers employed in at least a part of the material of the present invention is preferably 300% by weight or less. When the saturated water absorption exceeds 300% by weight, the fiber surface is sticky when water is absorbed, which is not particularly preferable for use on a futon side.
[0013]
In addition, it is desirable that the high whiteness hygroscopic fiber used in at least a part of the material does not decrease in whiteness even in the treatment such as oxidative exposure in the dyeing process. Specifically, the hydrogen peroxide concentration is 0 .5% by weight, NaOH pH = 10, bath ratio 1/50, 80 ° C., and 60% exposure to hydrogen peroxide fiber discoloration after bleaching (exposure durability) evaluated on JIS-L0805 contamination gray scale Grade 3 or higher, and the discoloration (standing stability) after leaving the fiber in the presence of water exceeding the saturated water absorption at 80 ° C. for 16 hours is grade 3-4 or higher as evaluated on a JIS-L0805 contamination gray scale. It is preferable.
[0014]
Here, the value (class) of exposure durability is set so that the fiber ratio of the fiber sample to the aqueous solution is 1/50 in an aqueous solution of 0.5% by weight of hydrogen peroxide adjusted to pH 10 with NaOH. In addition, it was obtained by evaluating the degree of discoloration from the color of the fiber sample before the bleaching treatment of the fiber which had been bleached at 80 ° C. for 60 minutes using a gray scale for JIS-L0805 contamination.
[0015]
In addition, the standing stability value (class) was obtained by immersing the sample fiber in pure water and allowing it to be sufficiently water-containing, and taking out the sample fiber, and holding a sufficient amount of water to maintain water exceeding the saturated water absorption even at 80 ° C. As it is, seal the container so that more than half of the container is a space, put it in a thermostat adjusted to 80 ° C., and remove the dehydrated and dried fiber after 16 hours. Degree of discoloration from the fiber sample before processing It was obtained by evaluating with a gray scale for JIS-L0805 contamination.
The saturated water absorption is an amount obtained by subtracting the weight after drying (105 ° C. × 16 hours) of the same sample fiber from the weight after centrifugal dehydration (160 G × 5 minutes) of the sufficiently water-containing fiber. Further, the saturated water absorption is a value obtained by dividing the saturated water absorption by the weight after drying (105 ° C. × 16 hours) of the sample fiber in%.
[0016]
As a method for producing such a high whiteness hygroscopic fiber employed in at least a part of the material of the present invention, an acrylic resin comprising an acrylonitrile polymer having a (meth) acrylic acid ester compound of less than 5% by weight as a copolymerization component is used. A method for producing a high whiteness hygroscopic fiber is recommended, which is characterized by subjecting the base fiber to a cross-linking introduction treatment with a hydrazine-based compound, hydrolysis, and reduction treatment. The method will be described in detail below.
[0017]
The starting acrylic fiber (hereinafter also referred to as acrylonitrile fiber) is a fiber formed of an AN polymer containing acrylonitrile (hereinafter referred to as AN) of 40% by weight or more, preferably 50% by weight or more. , Short fibers, tows, yarns, knitted fabrics, non-woven fabrics, and the like, and may be intermediate products in the manufacturing process, waste fibers, and the like. The AN polymer may be either an AN homopolymer or a copolymer of AN and another monomer, but a (meth) acrylic acid ester compound is most preferably used as a monomer copolymerizable with AN. However, when it is unavoidable, it needs to be less than 5% by weight, more preferably 4.0% by weight or less. In addition, the description which attached | subjected (meth) represents both acrylic acid ester and methacrylic acid ester. Examples of the ester compound that may be used as a copolymer component as long as it is less than 5% by weight include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and (meth) acrylic acid. Examples include dimethylaminoethyl, diethylaminoethyl (meth) acrylate, and the like. Other copolymer components include sulfonic acid group-containing monomers such as methallyl sulfonic acid and p-styrene sulfonic acid and their salts; monomers such as styrene and vinyl acetate that can be copolymerized with AN Although it will not specifically limit if it is a body, It is desirable to copolymerize 5-20 weight% of vinyl ester type compounds represented by vinyl acetate. Such vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate and the like.
[0018]
The acrylic fiber is subjected to a cross-linking introduction treatment with a hydrazine compound, and a cross-link is formed in the sense that it is no longer dissolved in the solvent of the acrylic fiber, and at the same time, an increase in nitrogen content occurs. The means is not particularly limited. A means by which the increase in nitrogen content by this treatment can be adjusted to 1.0 to 10% by weight is preferable, but even if the increase in nitrogen content is 0.1 to 1.0% by weight, Any high-whiteness hygroscopic fiber that can be used at least in part can be used. In addition, as a means by which the increase in nitrogen content can be adjusted to 1.0 to 10% by weight, a means for treating within 5 hours at a temperature of 50 to 120 ° C. in an aqueous solution of a hydrazine compound concentration of 5 to 60% by weight. Is industrially preferred. In order to keep the increase in nitrogen content at a low rate, these conditions should be made milder in accordance with the teaching of reaction engineering. Here, the increase in the nitrogen content refers to the difference between the nitrogen content of the raw acrylic fiber and the nitrogen content of the acrylic fiber into which crosslinking by the hydrazine compound has been introduced.
[0019]
The hydrazine-based compound used here is not particularly limited, and hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, hydrazine bromate, hydrazine carbonate, etc., other ethylenediamine, guanidine sulfate, guanidine hydrochloride, guanidine phosphate, Examples include compounds containing a plurality of amino groups such as melamine.
[0020]
The fiber that has undergone the crosslinking and introducing treatment step with such a hydrazine-based compound may be subjected to an acid treatment. This treatment contributes to the improvement of the color stability of the fiber. Examples of the acid used here include, but are not particularly limited to, aqueous solutions of mineral acids such as nitric acid, sulfuric acid, and hydrochloric acid, and organic acids. Prior to this treatment, the hydrazine-based compound remaining in the crosslinking introduction treatment is sufficiently removed. The conditions for the acid treatment are not particularly limited, but the treated fibers are usually immersed in an aqueous solution having an acid concentration of 5 to 20% by weight, preferably 7 to 15% by weight, at a temperature of 50 to 120 ° C. for 0.5 to 10 hours. An example is given.
[0021]
The fiber that has undergone the cross-linking and introducing treatment step with the hydrazine-based compound, or the fiber that has undergone further acid treatment, is subsequently hydrolyzed with an aqueous alkaline metal salt solution. By this treatment, the remaining CN groups without participating in the cross-linking introduction treatment by the hydrazine-based compound treatment of acrylic fibers, and some remaining CN groups when acid treatment is performed after the cross-linking treatment step The hydrolysis of the CONH 2 group hydrolyzed by the acid treatment proceeds. These groups form a carboxyl group by hydrolysis, but since the drug used is an alkaline metal salt, a metal salt type carboxyl group is eventually formed. Examples of the alkaline metal salt used here include alkali metal hydroxides, alkaline earth metal hydroxides, and alkali metal carbonates. The concentration of the alkali metal salt to be used is not particularly limited, but the means for treating within 1 to 10 hours at a temperature of 50 to 120 degrees in an aqueous solution of 1 to 10% by weight, more preferably 1 to 5% by weight is industrial, fiber. It is also preferable in terms of physical properties.
[0022]
Examples of the type of metal salt, that is, the salt type of the carboxyl group, include alkali metals such as Li, Na, and K, and alkaline earth metals such as Mg, Ca, and Ba. The degree of hydrolysis, that is, the amount of metal salt-type carboxyl groups should be controlled to 4-10 meq / g, which can be easily done by combining the chemical concentration, temperature, and treatment time during the treatment described above. Can do. In addition, as for the fiber which passed through this hydrolysis process, CN group may or may not remain. If the CN group remains, the reactivity may be utilized to provide further functions.
[0023]
The reducing agent used in the subsequent reduction treatment is one or two selected from the group consisting of hydrosulfite salt, thiosulfate, sulfite, nitrite, thiourea dioxide, ascorbate, and hydrazine compounds. A combination of more than one type can be suitably used. The conditions for the reduction treatment are not particularly limited, but examples include immersing the treated fiber in an aqueous solution having a drug concentration of 0.5 to 5% by weight at a temperature of 50 ° C. to 120 ° C. for 30 minutes to 5 hours. . The reduction treatment may be performed simultaneously with the hydrolysis described above or after the hydrolysis.
[0024]
Thus, a high whiteness hygroscopic fiber employed in at least a part of the material of the present invention can be obtained, but in order to further stabilize the color, the fiber subjected to the above-mentioned reduction treatment step is subjected to an acid treatment, and the metal salt. The H-type carboxyl group is converted to H-type, and a part of the H-type carboxyl group is converted into a metal salt form (salt type adjustment treatment) by metal salt treatment selected from Li, Na, K, Ca, Mg, Ba, and Al. It is preferable to adjust the molar ratio of H type / metal salt type to 90/10 to 0/100.
[0025]
Examples of the acid used for the acid treatment include aqueous solutions of mineral acids such as nitric acid, sulfuric acid and hydrochloric acid, and organic acids, but are not particularly limited. The conditions for the acid treatment are not particularly limited, but the treated fibers are usually immersed in an aqueous solution having an acid concentration of 1 to 10% by weight, preferably 2 to 10% by weight, at a temperature of 50 to 120 ° C. for 2 to 10 hours. An example is given.
[0026]
Further, the metal type of the metal salt employed in the salt type adjustment treatment is selected from Li, Na, K, Ca, Mg, Ba, and Al, but Na, K, Ca, Mg, and the like are particularly recommended. The salt may be a water-soluble salt of these metals, and examples thereof include hydroxides, halides, nitrates, sulfates and carbonates. Specifically, as typical metals, NaOH, Na 2 CO 3 as Na salt, KOH as K salt, Ca (OH) 2 , Ca (NO 3 ) 2 , CaCl as Ca salt 2 is preferred.
[0027]
The H-type / metal salt type molar ratio of the carboxyl group is within the above-described range, but is appropriately set together with the type of metal depending on the function to be given to the fiber. In the concrete implementation of the salt mold adjustment treatment, an aqueous solution of 0.2 to 30% by weight of a metal salt is prepared in a treatment tank, and the treated fiber is immersed at about 20 to 80 ° C. for about 0.25 to 5 hours. Alternatively, there is a method of spraying the aqueous solution. In order to control to the above-mentioned ratio, the salt type adjustment treatment in the presence of a buffering agent is preferable. A buffer having a pH buffering range of 5.0 to 9.2 is suitable. The type of metal salt of the metal salt type carboxyl group is not limited to one type, and two or more types may be mixed.
[0028]
The high whiteness hygroscopic fibers employed in at least a part of the materials of the present invention described above have hygroscopicity, flame retardancy, and antibacterial properties, and are excellent in processability and have whiteness even higher than conventional products. Hygroscopic fiber with improved color stability.
[0029]
Further, when the salt type adjustment treatment is performed with a substance having low water solubility such as a metal salt compound such as Ca, Mg, Ba, etc., the molar ratio of H type / metal salt type to H type carboxyl group in the step is changed to metal There is some difficulty in increasing the salt form. In such a case, as a pretreatment of the salt type adjustment treatment after the acid treatment, the carboxyl group that has been converted to H-type in the acid treatment step is adjusted, that is, the pH indicated by the carboxyl group is adjusted with an aqueous solution such as caustic soda or caustic potash. It is recommended to perform a sum treatment (pH = 5 to 11). By this prescription, since the carboxyl group after neutralization treatment is in a state where H type and Na or K type coexist, the next salt type adjustment treatment is easily performed by exchanging Ca or the like with Na or K. As it progresses, the difficulties raised are resolved.
[0030]
In addition, the manufacturing means of the acrylic fiber which is a starting material is not specifically limited, The means employ | adopted for manufacture of the fiber for normal clothing can be used. In addition, it is preferable to use such a fiber as a starting fiber, but it is not always necessary to complete the final process, even if it is in the middle of the acrylic fiber manufacturing process, or the final fiber is subjected to a spinning process or the like. Later ones are also acceptable. Above all, as the starting acrylic fiber, the fiber before stretching after the acrylic fiber manufacturing process (prior to spinning the AN polymer spinning stock solution according to a conventional method, stretched and oriented, dry densification, wet heat relaxation treatment, etc. When fibers not subjected to heat treatment, especially wet or dry / wet spinning, stretched water-swelled gel fibers: water swelling degree 30 to 150%), the dispersibility of the fibers in the treatment liquid, into the fibers This is desirable because the permeability of the treatment liquid is improved, and the introduction of a crosslink and the hydrolysis reaction are performed uniformly and rapidly.
[0031]
Note that these starting acrylic fibers are filled in a container having a stirring function and a temperature control function, and the above steps are performed sequentially, or a plurality of containers are arranged side by side and continuously taken. However, it is desirable from the viewpoints of the device, such as safety and uniform processability. An example of such an apparatus is a dyeing machine.
[0032]
As another method for producing the high whiteness hygroscopic fiber employed in at least a part of the material of the present invention, the acrylic fiber is subjected to crosslinking introduction treatment, hydrolysis, reduction treatment, acid treatment with the hydrazine compound described above. The method of giving a process and repeating a reduction process and an acid process further is mentioned. Repeating reduction treatment and acid treatment improves whiteness and color stability, is in the range of L * 85 or higher, a * ± 6, and has high whiteness moisture absorption of 3-4 grade or higher. Fiber is obtained. According to this method, even if the (meth) acrylic acid ester compound is 5% by weight or more as a copolymerization component of the acrylonitrile-based polymer forming the acrylic fiber, it is used in at least a part of the material of the present invention. Although whiteness hygroscopic fibers can be obtained, since it is necessary to repeat reduction treatment and acid treatment, the physical properties of the fibers are lowered and the production cost is increased. Therefore, the present invention described above is recommended. It is advantageous to employ a manufacturing method.
[0033]
The fiber employed in at least a part of the material of the present invention is a high whiteness hygroscopic fiber having a high elongation enough to withstand fiber processing and excellent in color stability, and also generates heat with moisture absorption. It also has flame retardancy, antibacterial properties, deodorization properties, chemical resistance, etc. that are thought to be due to a nitrogen-containing crosslinked structure and a high moisture absorption rate.
[0034]
The material of this invention should just contain the above high whiteness hygroscopic synthetic fiber at least in part. It is also preferred to be used in combination with other fibers as necessary. It can be mixed with other staple fibers and filament fibers by methods such as blending, fine spinning and twisting, core yarn, uniform blended composite spinning, twisting, blending, knit, and weaving. However, when mixed with hydrophobic fibers such as polyester fibers, if the content of the high whiteness hygroscopic synthetic fiber is too small, the hygroscopicity becomes poor, so at least 5% by weight, more preferably 10% by weight or more. It is preferable to keep it. The material of the present invention may be a nonwoven fabric. Of course, the high whiteness hygroscopic synthetic fiber may be spun, knitted or woven, or a non-woven fabric.
[0035]
The material of the present invention uses the high whiteness hygroscopic synthetic fiber at least in part, and can be suitably used for all materials having white as a necessary color. Sheets, futon sides, lace curtains, sheets It is suitably used for covers, patch materials, wallpaper, shoe side fabrics, interlinings, towels, puffs, low density fabrics and the like.
[0036]
The reason why the high whiteness hygroscopic fibers employed in at least a part of the material of the present invention described in detail above has excellent whiteness and color stability has not been fully elucidated, but is generally as follows. Conceivable. That is, when a crosslinked structure is introduced with a hydrazine compound, if the acrylic fiber as a raw material contains 5% by weight or more of a (meth) acrylate compound as a copolymer component, the carbonyl carbon portion of the copolymer component As a result, a bond containing an oxygen molecule is introduced into the cross-linked structure due to the reaction of the hydrazine compound with the hydrazine compound, so that color development is likely to occur, that is, the color stability is inferior. It is presumed that the color development is suppressed because it is suppressed at the raw material stage, and it is difficult to develop the color even by treatment such as hydrogen peroxide exposure treatment or repeated washing. In addition, even when the (meth) acrylic acid ester compound is contained in an amount of 5% by weight or more, by repeating the reduction treatment and the acid treatment, a molecular structure that develops a color even by treatment such as hydrogen peroxide exposure treatment and repeated washing This is presumably because it has a stable molecular structure that is difficult to change.
[0037]
【Example】
The present invention will be specifically described below with reference to examples. Parts and percentages in the examples are on a weight basis unless otherwise indicated. The amount of metal salt-type carboxyl group, whiteness and moisture absorption were determined by the following methods.
[0038]
(1) Amount of metal salt type carboxyl group (meq / g)
About 1 g of the sufficiently dried fiber after hydrolysis was precisely weighed (Xg), 200 ml of water was added thereto, 1 mol / l aqueous hydrochloric acid solution was added to pH 2 while heating to 50 ° C., and then 0. A titration curve was obtained with a 1 mol / l aqueous sodium hydroxide solution according to a conventional method. From the titration curve, the consumption amount of the aqueous sodium hydroxide solution (Yml) consumed by the carboxyl groups was determined, and the carboxyl group amount (meq / g) was calculated by the following formula.
(Amount of carboxyl group) = 0.1 Y / X
Separately, a titration curve was similarly obtained without adjusting to pH 2 by adding a 1 mol / l hydrochloric acid aqueous solution during the above-described carboxyl group content measurement operation, and the amount of H-type carboxyl groups (meq / g) was determined. From these results, the metal salt type carboxyl group amount was calculated by the following formula.
(Amount of metal salt type carboxyl group) = (Amount of carboxyl group) − (Amount of H type carboxyl group)
[0039]
(2) 4.0 g of sample fiber defibrated by a whiteness card machine is filled in a rotary colorimetric cell (35 ml transparent cylindrical cell), and color difference meter TC-1500MC-88 manufactured by Tokyo Denshoku Co., Ltd. (D65 light source) ) And colorimetric while rotating at a rate of 60 times / minute. This measurement was repeated 3 times, and L * and a * values (average values) were determined.
(3) Moisture absorption rate (%)
About 5.0 g of sample fiber is dried with a hot air dryer at 105 ° C. for 16 hours, and the weight is measured (W1 g). Next, the sample is placed in a 65% RH constant humidity bath at a temperature of 20 ° C. for 24 hours. The weight of the sample thus absorbed is measured (W2g). From the above measurement results, calculation was performed according to the following equation.
(Hygroscopic rate%) = {(W2-W1) / W1} × 100
(4) Fabric whiteness Whiteness is measured using a spectrocolorimeter CM-3700d manufactured by Minolta Co., Ltd. based on ASTM E313.
JIS whiteness (W) = L * + 3 × a * -3 × b *
(5) Fabric moisture absorption According to the above-described fiber moisture absorption measurement.
[0040]
Example 1
90 parts of a 48% rhodium soda solution of 10 parts of AN polymer (intrinsic viscosity [η]: 1.2) in dimethylformamide at 30 ° C.) consisting of 96% by weight of AN and 4% by weight of methyl acrylate (hereinafter referred to as MA) After spinning and drawing (total draw ratio: 10 times) according to a conventional method, the spinning stock solution dissolved in 1 was dried and wet heat-treated in an atmosphere of dry bulb / wet bulb = 120 ° C./60° C. to obtain a single fiber fineness of 1. A raw material fiber of 7 dtex was obtained.
[0041]
The raw fiber was subjected to 98 ° C. × 5 Hr crosslinking introduction treatment in a 20 wt% aqueous solution of hydrazine hydrate. This treatment introduces cross-linking and increases the nitrogen content. The amount of increase in nitrogen was calculated from the difference between the raw material fiber and the fiber after the cross-linking introduction treatment by obtaining the nitrogen content by elemental analysis. Next, it was hydrolyzed at 90 ° C. × 2 Hr in a 3 wt% aqueous solution of caustic soda and washed with pure water. By this treatment, 5.5 meq / g of Na-type carboxyl group was generated in the fiber.
[0042]
The hydrolyzed fiber was subjected to a reduction treatment at 90 ° C. × 2 Hr in a 1 wt% aqueous solution of hydrosulfite sodium salt (hereinafter referred to as SHS) and washed with pure water.
Subsequently, a 90 ° C. × 2 Hr acid treatment was performed in a 3% by weight aqueous solution of nitric acid. As a result, the total amount of Na-type carboxyl groups produced at 5.5 meq / g was H-type carboxyl groups. The fiber after the acid treatment is put into pure water, and an aqueous caustic soda solution having a concentration of 48% is added so that the neutralization degree of Na is 70 mol% with respect to the H-type carboxyl group, thereby adjusting the salt type at 60 ° C. × 3Hr. Processed.
[0043]
The fiber after the above steps was washed with water, applied with an oil agent, dehydrated and dried to obtain a high whiteness hygroscopic fiber (2 dtex × 38 mm) of Example 1. The resulting fibers were examined for moisture absorption, whiteness, and color stability, and are shown in Table 1 together with the amount of salt-type carboxyl groups and the amount of increased nitrogen. The obtained fiber and polyester staple (1.5 dtex × 38 mm) 3: 7 40/1 blend yarn was made into a plain weave, boiled, and subjected to dry heat setting. The fabric whiteness was 64.3 and the hygroscopicity was 8.0%. The color change after washing was grade 5. When a sheet and a futon side fabric were prepared using the obtained fabric, the fabric was comfortable without stuffiness and there was almost no change in color even after repeated washing.
[0044]
Comparative Example 1
A fabric was prepared according to Example 1 using hygroscopic fibers obtained in the same manner as in Example 1 except that an AN polymer comprising 90% by weight of AN and 10% by weight of MA was used. The fabric whiteness was 60.2 and the hygroscopicity was 7.8%. The color change after washing was grade 3.
[0045]
Example 2
Except for preparing white lacey fiber (1dtex × 28mm) by adjusting the salt mold with caustic potash, mixing with polyester staple (1.5dtex × 48mm) at a ratio of 2: 8, and creating a lace. In the same manner as in Example 1, a fabric was obtained. The fabric whiteness was 68.7, and the hygroscopicity was 5.5%. When a curtain and a seat cover were prepared using the obtained fabric, the fabric had an appropriate hygroscopic property and there was almost no change in color even after repeated washing.
[0046]
Example 3
The fiber of Example 1 was treated with an aqueous solution of calcium chloride to obtain a high whiteness hygroscopic fiber (1 dtex × 44 mm) with a Na-type carboxyl group as a Ca-type carboxyl group, and a polyester staple (1.5 dtex × 1.5 mm) at a ratio of 5: 5. 48 mm), and a fabric was obtained in the same manner as in Example 1 except that a low-density fabric having a basis weight of 40 g / m 2 was prepared. The fabric whiteness was 55.7 and the hygroscopicity was 14.7%. Using the resulting fabric to create an interlining and using it as a white fabric cutter shirt, it is comfortable even when sweated, and there is almost no change in color even after repeated washing, and the interlining is transparent I didn't see it.
[0047]
Comparative Example 2
The same procedure as in Example 1 was conducted except that an AN polymer composed of 94% by weight of AN and 6% by weight of MA was used, and the acid treatment after the reduction treatment and the salt type adjustment treatment were not performed. The fabric whiteness was 60.3 and the hygroscopicity was 7.5%. The color change after washing was grade 2.
[0048]
Example 4
A high whiteness hygroscopic fiber obtained in Example 1 and cotton were blended at 3: 7 to prepare a pile fabric, which was subjected to an exposure treatment using hydrogen peroxide. The fabric whiteness was 69.5 and the hygroscopicity was 14.7%. When a towel was made using the obtained fabric, there was almost no change in color even after repeated washing.
[0049]
Example 5
A plain knitting was made from the blended yarn obtained in Example 4, and a deck shoe was made using it as a shoe side fabric. It was comfortable even when sweating, and there was almost no change in color even after repeated washing.
[0050]
Example 6
A non-woven fabric is a mixture of the high whiteness hygroscopic fibers (3 dtex × 51 mm) obtained in Example 1, polyethylene terephthalate cotton (1 dtex × 60 mm) and polypropylene cotton (1.5 dtex × 46 mm) in a 3: 5: 2 mixture. A patch was prepared. The fabric whiteness was 62.6 and the hygroscopicity was 9.6%. A non-woven type white wallpaper was created that had no problem white, moderate hygroscopicity, and did not cause rough skin. It had no problem whiteness and humidity control.
[0051]
The high whiteness hygroscopic fiber of Example 1 showed a moisture absorption rate of 35%, and the whiteness was also good at L * 88.4 and a * 0.99. Further, the fibers were excellent in color stability in terms of exposure durability, washing durability, and standing stability, respectively, as grades 3-4, 4-5, and 4-5. Examples 2 and 3, which are different from Example 1 in the type of metal salt, had slightly lower moisture absorption than Example 1, but had whiteness and color stability comparable to Example 1 fiber. .
On the other hand, the comparative example 1 used the raw material fiber which contains 10 weight% of MA which is an acrylic ester compound. Whiteness was good, but exposure durability, washing durability, and storage stability were inferior in color stability to grades 2, 3, and 3, respectively, and became problematic in the processing stage or use stage as a final product. It was a level. In Comparative Example 2, since the reduction treatment was omitted, it was colored red.
As described above, according to the present invention, hygroscopic fibers obtained by the technique of Japanese Patent Application Laid-Open No. 2000-303353 have been balanced with hygroscopic performance and whiteness. Compared to the above, it shows a marked improvement.
[0052]
[Table 1]
Figure 0004058678
[0053]
【The invention's effect】
According to the present invention, the high whiteness hygroscopic fiber is used as a material at least in part, so that the color possessed by the conventional hygroscopic fiber is maintained while maintaining the basic physical properties and hygroscopic properties required for the material. This makes it possible to improve the disadvantage of being unstable.

Claims (4)

20℃65%RHにおける飽和吸湿率が10重量%以上、白度がJIS−Z−8729に記載の表示方法において、L*85以上、a*±6の範囲内であり、且つJIS−L0217−103法で洗濯処理した洗濯5回後の繊維の白度がJIS−Z−8729に記載の表示方法において、L*85以上、a*±6の範囲内である高白度吸湿性合成繊維を少なくとも一部に有し、高白度吸湿性合成繊維が、共重合成分として(メタ)アクリル酸エステル化合物が5重量%未満であるアクリロニトリル系重合体からなるアクリル系繊維に、ヒドラジン系化合物による架橋導入処理、加水分解、還元処理を施したものであることを特徴とする資材。In the display method described in JIS-Z-8729, the saturated moisture absorption at 20 ° C. and 65% RH is 10% by weight or more, and the whiteness is in the range of L * 85 or more, a * ± 6, and JIS-L0217- whiteness of fibers after washing the treated washing 5 times with 103 method in the display method according to JIS-Z-8729, L * 85 or more, the Koshirodo hygroscopic synthetic fibers is in the range of a * ± 6 possess at least a portion, Koshirodo hygroscopic synthetic fibers, acrylic fibers made of an acrylonitrile-based polymer is a copolymerization component (meth) acrylic acid ester compound is less than 5 wt%, cross-linking by a hydrazine compound introducing treatment, hydrolysis, materials, characterized in der Rukoto that has been subjected to reduction treatment. 高白度吸湿性合成繊維の飽和吸水率が300重量%以下であることを特徴とする請求項1記載の資材。  The material according to claim 1, wherein the saturated water absorption of the high whiteness hygroscopic synthetic fiber is 300% by weight or less. 高白度吸湿性合成繊維の洗濯5回後の変色がJIS−L0805汚染用グレースケールで評価して3−4級以上であることを特徴とする請求項1又は2に記載の資材。The material according to claim 1 or 2 , wherein the discoloration of the high whiteness hygroscopic synthetic fiber after washing 5 times is 3-4 or higher as evaluated by a gray scale for JIS-L0805 contamination. 資材がシーツ、布団側地、レースカーテン、シートカバー、貼付材、壁紙、靴側地、芯地、タオル、パフ、または低密度織物のいずれかであることを特徴とする請求項1〜3のいずれかに記載の資材。The material according to any one of claims 1 to 3, wherein the material is one of a sheet, a futon side, a lace curtain, a seat cover, a patch, a wallpaper, a shoe side, an interlining, a towel, a puff, or a low-density fabric. Materials listed in any one.
JP2002206361A 2002-07-16 2002-07-16 Material Expired - Fee Related JP4058678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002206361A JP4058678B2 (en) 2002-07-16 2002-07-16 Material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002206361A JP4058678B2 (en) 2002-07-16 2002-07-16 Material

Publications (2)

Publication Number Publication Date
JP2004044043A JP2004044043A (en) 2004-02-12
JP4058678B2 true JP4058678B2 (en) 2008-03-12

Family

ID=31711358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002206361A Expired - Fee Related JP4058678B2 (en) 2002-07-16 2002-07-16 Material

Country Status (1)

Country Link
JP (1) JP4058678B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4258829B2 (en) * 2002-07-24 2009-04-30 日本エクスラン工業株式会社 Standing fabric
JP5854459B2 (en) * 2011-10-10 2016-02-09 日本バイリーン株式会社 Base material for patch

Also Published As

Publication number Publication date
JP2004044043A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
TWI481753B (en) An antistatic acrylic fiber and a making method thereof
KR100866842B1 (en) Black fiber highly moisture-absorbing and desorbing
JP3849791B2 (en) High whiteness and high hygroscopic fiber structure and method for producing the same
CN114262975A (en) Flame-retardant knitted fabric and preparation method thereof
JP5135120B2 (en) Modification process for cellulosic fiber materials
KR100794086B1 (en) High-whiteness hygroscopic fiber and process for its production
JP4058678B2 (en) Material
JP3698204B2 (en) High whiteness hygroscopic synthetic fiber and method for producing the fiber
JP4058679B2 (en) Sanitary materials
JP3196577B2 (en) pH buffering hygroscopic acrylic fiber and method for producing the same
JP2010031434A5 (en)
JP4032295B2 (en) uniform
JP4058677B2 (en) Fiber structure
JP4032296B2 (en) Sports clothing
JP3997478B2 (en) Thermal insulation product
JP2004052187A (en) Hygroscopic underwear
JP6655648B2 (en) Modified cellulose fiber
JP4258829B2 (en) Standing fabric
JP2004238756A (en) Black-based moisture absorbing and releasing textile product
JP2006045722A (en) Fiber structure and method for bleaching treatment
JP2019060066A (en) Moisture-absorptive acrylonitrile-based fiber, production method of the fiber, and fiber structure containing the fiber
JPH10183465A (en) Treatment of acrylic fiber
JPS5917223B2 (en) Manufacturing method for special fiber products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4058678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees