JP2002294463A - Apparatus and method for forming film on large-scale substrate - Google Patents

Apparatus and method for forming film on large-scale substrate

Info

Publication number
JP2002294463A
JP2002294463A JP2001104705A JP2001104705A JP2002294463A JP 2002294463 A JP2002294463 A JP 2002294463A JP 2001104705 A JP2001104705 A JP 2001104705A JP 2001104705 A JP2001104705 A JP 2001104705A JP 2002294463 A JP2002294463 A JP 2002294463A
Authority
JP
Japan
Prior art keywords
plasma
electrode
frequency current
optical signal
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001104705A
Other languages
Japanese (ja)
Inventor
Seiichi Nishida
聖一 西田
Takahiro Kubota
隆博 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001104705A priority Critical patent/JP2002294463A/en
Publication of JP2002294463A publication Critical patent/JP2002294463A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus and a method for forming a film on a large- scale substrate with plasma CVD, which can accurately form a film having a uniform thickness and quality, by detecting factors directly correlating with distribution of plasma as a distribution on or around a plane of a substrate, and controlling the distribution of plasma into the optimum condition, on the basis of the information on the distribution. SOLUTION: This apparatus comprises a sealed housing which introduces high-frequency current fractionated by a high-frequency current fractionation means, through a high-frequency current fractionation point set on at least one of electrodes or the current feeding point, and converts high-frequency current into light by a photovoltaic device, an optical fiber cable which takes out optical signals from the sealed housing and leads them to an optical signal processing device, and the optical signal processing device which outputs plasma distribution signals of generated plasma according to the optical signals, to make the plasma distribution signals as the information for uniformizing the distribution of generated plasma.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はプラズマCVDによ
り、大型基板上に皮膜を形成させる大型基板用製膜装置
および大型基板上の製膜方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film forming apparatus for forming a film on a large substrate by plasma CVD and a method for forming a film on a large substrate.

【0002】[0002]

【従来の技術】プラズマCVDにより、大型基板上に皮
膜を形成させる製膜装置は、通常、真空室内に方形状の
大型基板を保持して、加熱する基板保持手段と、該大型
基板と対面して、対面空間にプラズマを生成させる電極
と、該電極の給電点にインピーダンスマッチング回路を
介して接続された高周波電源と、真空室内にプロセスガ
スを供給するガス供給手段と、真空室内を排気して設定
圧力に保持するガス排気装置を備えており、真空室内を
排気して設定圧力に保持し、例えばシランなどを含むプ
ロセスガスを供給しつつ、該大型基板を加熱し、前記電
極の、給電点に高周波電力を供給して、電極と基板との
対面空間にプラズマを生成させて、該基板上に例えばシ
リコンなどの皮膜を形成させる。
2. Description of the Related Art A film forming apparatus for forming a film on a large substrate by plasma CVD generally includes a substrate holding means for holding a large rectangular substrate in a vacuum chamber, heating the substrate, and facing the large substrate. An electrode for generating plasma in the facing space, a high-frequency power supply connected to a feed point of the electrode via an impedance matching circuit, gas supply means for supplying a process gas into the vacuum chamber, and exhausting the vacuum chamber. A gas exhaust device for maintaining the set pressure is provided.The vacuum chamber is evacuated and maintained at the set pressure, and the large substrate is heated while supplying a process gas containing, for example, silane, and the power supply point of the electrode is provided. Is supplied with high-frequency power to generate plasma in the space between the electrode and the substrate, thereby forming a film such as silicon on the substrate.

【0003】特に大型基板平面上の製膜においては、平
面全体の膜厚と、膜質の均一であることが生命であっ
て、そのためには、基板と電極が対面する空間、即ち、
基板面上に発生するプラズマの分布が均一に制御されて
いる必要がある。それには、先ずプラズマの分布に直接
相関する因子を、前記平面上若しくは近傍の分布として
検知する必要がある。そして、その分布情報に基いて、
最適なプラズマの分布状態に制御すればよい。
In particular, in the case of film formation on a large substrate plane, it is important that the film thickness on the entire plane and the film quality are uniform, and for that purpose, the space where the substrate and the electrode face each other, that is,
The distribution of plasma generated on the substrate surface needs to be controlled uniformly. To do so, it is first necessary to detect a factor that directly correlates to the plasma distribution as a distribution on or near the plane. And, based on the distribution information,
What is necessary is just to control to the optimal plasma distribution state.

【0004】周知のように、製膜室内では種々の化学活
性種が高温状態で存在し、且つ高圧の高周波が印加され
ている環境中であるから、光学的方法でプラズマ発光を
測定しようとすると、観測窓にも膜が付着し、製膜時間
経過とともに、光の透過率が悪くなり、ついには測定不
可能に陥る。また製膜用電極など内部構造によっては視
野が制約され、計測不可能点もある。
As is well known, in a film forming chamber, various chemical active species are present in a high temperature state and in an environment where a high-frequency high frequency is applied. Then, the film adheres to the observation window, and as the film forming time elapses, the light transmittance deteriorates, and eventually the measurement becomes impossible. Also, the field of view is restricted depending on the internal structure such as a film-forming electrode, and there are some points where measurement is impossible.

【0005】また、電気的に測定しようとして探針など
をプラズマ存在域に挿入すると、それ自体が発生プラズ
マを乱し、分布の均一性を損ねることになる。
Further, if a probe or the like is inserted into the plasma existing area for electrical measurement, the generated plasma itself is disturbed and the uniformity of distribution is impaired.

【0006】電圧分圧器や電流検出コイル等の電気的手
段も前記理由のため、電磁誘導の影響をうけ、誤差が大
である。
Electrical means such as a voltage divider and a current detection coil are also affected by electromagnetic induction and have large errors due to the above-mentioned reasons.

【0007】従って、従来はプラズマ分布情報を得て、
プラズマ分布を均一化して、均一な膜厚且つ膜質の製膜
のできる精度の高い装置、方法はなかった。
Therefore, conventionally, plasma distribution information is obtained,
There has been no highly accurate apparatus or method capable of forming a uniform film thickness and quality by making the plasma distribution uniform.

【発明が解決しようとする課題】[Problems to be solved by the invention]

【0008】本発明は従来のこのような問題点に鑑みて
なされたもので、プラズマCVDによる大型基板用成膜
装置および方法において、プラズマの分布に直接相関す
る因子を、基板平面上若しくは平面近傍の分布として検
知し、その分布情報に基いて、最適なプラズマの分布状
態に制御することにより、均一な膜厚且つ膜質の製膜の
できる精度の高い大型基板用成膜装置および大型基板上
成膜方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such a conventional problem, and in a film forming apparatus and a method for a large substrate by plasma CVD, a factor directly correlating to plasma distribution is determined on the substrate plane or in the vicinity of the plane. And a high-precision film forming apparatus for large substrates capable of forming a film having a uniform film thickness and quality by controlling the plasma distribution to an optimum state based on the distribution information. It is an object to provide a membrane method.

【0009】[0009]

【課題を解決するための手段】本発明の大型基板用成膜
装置は、真空室内に方形状の大型基板を保持して、加熱
する基板保持手段と、該大型基板と対面して、対面空間
にプラズマを生成させる電極と、該電極の給電点にイン
ピーダンスマッチング回路を介して接続された高周波電
源と、真空室内にプロセスガスを供給するガス供給手段
と、真空室内を排気して設定圧力に保持するガス排気装
置を有する大型基板用製膜装置において、少なくとも一
箇所の電極上もしくは前記給電点を高周波電流分取点と
して、高周波電流分取手段により分取した高周波電流を
導入して、光電変換装置により高周波電流を光に変換す
る密閉筐体と、該密閉筐体より光信号を取り出し光信号
処理器に導く光ケーブルと、該光信号によって発生プラ
ズマのプラズマ分布信号を出力する光信号処理器とを備
え、該プラズマ分布信号を、発生プラズマ分布の均一化
を図る情報とすることを特徴とする。
According to the present invention, there is provided a film forming apparatus for a large substrate, comprising a substrate holding means for holding and heating a large rectangular substrate in a vacuum chamber, and a facing space facing the large substrate. An electrode for generating a plasma, a high-frequency power supply connected to a feed point of the electrode via an impedance matching circuit, a gas supply unit for supplying a process gas into a vacuum chamber, and exhausting the vacuum chamber to maintain a set pressure. In a film forming apparatus for a large substrate having a gas exhaust device, a high-frequency current separated by high-frequency current collecting means is introduced using at least one of the electrodes or the feeding point as a high-frequency current separating point, and photoelectric conversion is performed. A sealed casing for converting a high-frequency current into light by the device, an optical cable for extracting an optical signal from the sealed casing and guiding the optical signal to an optical signal processor, and a plasma component generated by the optical signal. And an optical signal processor for outputting a signal, the plasma distribution signal, characterized in that the information to achieve uniformity of generated plasma distribution.

【0010】また、本発明の大型基板上製膜方法は、真
空室内を排気して設定圧力に保持し、プロセスガスを供
給しつつ、真空室内に方形状の大型基板を保持して、加
熱し、該大型基板と対面した電極の、給電点にインピー
ダンスマッチング回路を介して高周波電力を供給して、
電極と基板との対面空間にプラズマを生成させて、該基
板上に製膜する大型基板上製膜方法において、少なくと
も一箇所の電極上もしくは前記給電点を高周波電流分取
点として、分取した高周波電流を密閉筐体内に導入し
て、高周波電流を光に変換し、該光信号を該密閉筐体よ
り取り出し、光信号処理器に導き、該光信号によって発
生プラズマのプラズマ分布信号を出力させ、発生プラズ
マ均一化の情報としたことを特徴とする。
In the method of forming a film on a large substrate of the present invention, the vacuum chamber is evacuated and maintained at a set pressure, and while supplying a process gas, a large rectangular substrate is held in the vacuum chamber and heated. By supplying high-frequency power to the feeding point of the electrode facing the large-sized substrate through an impedance matching circuit,
A plasma is generated in a space facing the electrode and the substrate, and in a large-size substrate deposition method for depositing a film on the substrate, the high-frequency current distribution point is defined as a high-frequency current distribution point on at least one electrode or the feeding point. The current is introduced into the sealed housing, the high-frequency current is converted to light, the optical signal is extracted from the sealed housing, guided to an optical signal processor, and the plasma signal of the generated plasma is output by the optical signal, It is characterized in that the generated plasma is made uniform.

【0011】これにより、分取点より高周波電流分取す
る分取手段は該分取手段より高周波電流を導入すべき密
閉筐体へ接続するケーブルとともに、電極後部からアク
セスするので、プラズマを撹乱することはない。また分
取手段は該分取点の電極または給電線に直接導線を接続
しても可能だが、インダクタンス若しくはコンダクタン
スを介しても取り出すことができる。最も簡便に行う例
としては、図2のごとく、給電線106の電極109へ
の接続端に分取ケーブル102を巻きつけ、電極への電
流Iの誘導で生じる高周波電流iを取り出せばよい。
[0011] Accordingly, the sorting means for sorting the high-frequency current from the sorting point is accessed from the rear of the electrode together with the cable connected to the closed casing into which the high-frequency current is to be introduced from the sorting means, so that the plasma is disturbed. Never. Further, the sorting means can be obtained by connecting a conducting wire directly to the electrode or the feeding line at the sorting point, but can also be taken out via an inductance or a conductance. As the simplest example, as shown in FIG. 2, the sorting cable 102 may be wound around the connection end of the power supply line 106 to the electrode 109, and the high-frequency current i generated by the induction of the current I to the electrode may be extracted.

【0012】分取した電流は分取ケーブル102によっ
て密閉筐体101に導かれ、該筐体内に配置された光電
変換装置201により光に変換され、光ケーブル103
により光信号は外部へ取り出され光信号処理器へ入力さ
れる。光電変換装置は半導体発光素子、ネオン管など電
気信号によって発光する素子によって構成できる。光信
号処理器では、通常、一端光信号を電気信号に変換し、
該信号情報によってプラズマ分布信号を出力する。
The separated current is guided to a sealed casing 101 by a sorting cable 102, converted into light by a photoelectric conversion device 201 disposed in the casing, and converted into an optical cable 103.
As a result, the optical signal is taken out and inputted to the optical signal processor. The photoelectric conversion device can be constituted by an element that emits light by an electric signal, such as a semiconductor light emitting element or a neon tube. In an optical signal processor, one end usually converts an optical signal into an electric signal,
A plasma distribution signal is output according to the signal information.

【0013】このようにして信号を取り出し変換するこ
とによって、磁気の影響も受けないし、密閉筐体中での
処理であるから、前記したような機能部分の汚れを懸念
する必要はない。
By taking out and converting the signal in this way, it is not affected by magnetism, and the processing is performed in a closed casing. Therefore, there is no need to worry about the contamination of the functional part as described above.

【0014】更に、本発明の大型基板用成膜装置は、光
信号処理器の出力する発生プラズマのプラズマ分布信号
を入力信号として電極姿勢調整アクチュエータを操作す
る操作量を出力する制御部と、該操作量によって電極の
位置および姿勢を調節することのできる電極姿勢調整ア
クチュエータとを備え、発生プラズマ分布の均一化を図
ることを特徴とする。
Further, the film forming apparatus for a large substrate according to the present invention comprises a control unit for outputting an operation amount for operating an electrode attitude adjusting actuator by using a plasma distribution signal of a generated plasma output from an optical signal processor as an input signal. An electrode attitude adjusting actuator capable of adjusting the position and attitude of the electrode by an operation amount is provided to achieve uniform distribution of generated plasma.

【0015】また、本発明の大型基板上製膜方法は、発
生プラズマのプラズマ分布信号によって、電極の位置お
よび姿勢を調節して、発生プラズマの均一化を図ること
を特徴とする。プラズマ放電は電極位置、電極平行度に
よって大きく変化するので、他要素の制御に比較して著
しく有効で精度の高い制御が可能である。
Further, the method for forming a film on a large substrate according to the present invention is characterized in that the position and the posture of the electrode are adjusted by the plasma distribution signal of the generated plasma to make the generated plasma uniform. Since the plasma discharge changes greatly depending on the electrode position and the electrode parallelism, it is possible to perform control that is significantly more effective and precise than control of other elements.

【0016】電極姿勢調整アクチュエータは例えば、エ
アシリンダー、油圧シリンダー、ステップモーターなど
により、その作動端が電極に当接して電極の位置および
姿勢を調節することができるようになっている。
The electrode attitude adjusting actuator can adjust the position and attitude of the electrode by using, for example, an air cylinder, a hydraulic cylinder, a step motor, or the like, with its operating end in contact with the electrode.

【0017】更に本発明の大型基板用成膜装置は、高周
波電流分取点が複数あることを特徴とし、本発明の方法
は複数点から高周波電流を分取することを特徴とする。
即ち、プラズマ分布を精度高く検知するには、サンプリ
ング点である高周波電流分取点が多点あって、情報量の
多いほうが好ましい。
Further, the film forming apparatus for a large substrate according to the present invention is characterized in that there are a plurality of high frequency current sampling points, and the method of the present invention is characterized in that the high frequency current is sampled from a plurality of points.
That is, in order to detect the plasma distribution with high accuracy, it is preferable that the number of high-frequency current sampling points, which are sampling points, is large and the amount of information is large.

【0018】更に本発明の大型基板用成膜装置は、電極
姿勢調整アクチュエータが複数個によって構成されてい
ることを特徴とする。これは、より微細且つ応答性よく
電極の姿勢を制御するには例えば電極の四隅にアクチュ
エータを備え、姿勢および距離制御させるのが好まし
い。
Further, the film forming apparatus for a large substrate according to the present invention is characterized in that the electrode posture adjusting actuator is constituted by a plurality of actuators. In order to control the attitude of the electrode more finely and responsively, it is preferable to provide actuators at the four corners of the electrode and control the attitude and distance.

【0019】更に本発明の大型基板用成膜装置は、電極
がラダー電極であることを特徴とする。裏面からプロセ
スガスを送入し基板面上に到達させる機能を有する為及
び、有効に且つ均一に高周波電力の負荷をかけるには、
ラダー構造が好ましいからである。また本発明の電流分
取や姿勢・距離制御にもラダー構造が適当である。
Further, the film forming apparatus for a large substrate according to the present invention is characterized in that the electrode is a ladder electrode. In order to have a function to send the process gas from the back side and reach the substrate surface, and to apply the high frequency power load effectively and uniformly,
This is because a ladder structure is preferable. The ladder structure is also suitable for current distribution and attitude / distance control according to the present invention.

【0020】[0020]

【発明の実施の形態】次に図面を参照しながら、発明の
実施形態について例示的に説明する。但し本実施の形態
に記載する構成部品の形状、材質、寸法、その相対配置
等は特に特定的な記載がない限りは本発明の範囲をそれ
のみに限定する趣旨ではなく、単なる説明例に過ぎな
い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the present invention will be exemplarily described with reference to the drawings. However, the shapes, materials, dimensions, relative arrangements, and the like of the components described in the present embodiment are not intended to limit the scope of the present invention thereto, unless otherwise specified, but are merely illustrative examples. Absent.

【0021】(実施例1)図1は本発明の大型基板用製
膜装置の例を説明する概念図である。本例は電流分布を
測定してプラズマ分布を知り、該情報を電極位置調整機
能に反映させたものである。
(Embodiment 1) FIG. 1 is a conceptual diagram illustrating an example of a film forming apparatus for a large substrate according to the present invention. In this example, the plasma distribution is known by measuring the current distribution, and the information is reflected on the electrode position adjusting function.

【0022】図1において、115は製膜を行う真空
室、この真空室内に方形状の大型基板110を保持し
て、加熱する基板保持手段112を備え、該大型基板と
対面して、対面空間にプラズマを生成させる電極109
には、給電点に給電線106a及び106bによって、
インピーダンスマッチング回路107を介して高周波電
源104を接続する。真空室内にプロセスガス116を
供給するガス供給手段111を配し、真空室内を排気し
て設定圧力に保持するガス排気装置114を、排気口1
13に接続する。
In FIG. 1, reference numeral 115 denotes a vacuum chamber for forming a film, and a substrate holding means 112 for holding and heating a large rectangular substrate 110 in the vacuum chamber and facing the large substrate. 109 for generating plasma on the surface
At the feed points by feeder lines 106a and 106b,
The high frequency power supply 104 is connected via the impedance matching circuit 107. A gas supply unit 111 for supplying a process gas 116 is provided in the vacuum chamber, and a gas exhaust device 114 for exhausting the vacuum chamber and maintaining the set pressure is provided in the exhaust port 1.
13 is connected.

【0023】前記給電線の給電点近くの末端に、高周波
電流分取ケーブル102a、102bを接続し、他端を
密閉筐体101a、101b中の光電変換装置に接続す
る。密閉筐体の細部は図2で示した。即ち、高周波電流
Iを供給する、電極109上の給電点付近の給電線10
6に、高周波電流分取ケーブルが巻かれており、これに
より高周波電流iが分取される。高周波電流iは光電変
換装置201に導かれ光信号202に変換され、該光信
号202は光ケーブル103により筐体外部に取り出さ
れる。本例の図2における光電変換装置201には半導
体発光素子を使用した。
The high-frequency current distribution cables 102a and 102b are connected to the end of the power supply line near the power supply point, and the other end is connected to the photoelectric conversion device in the closed casings 101a and 101b. Details of the sealed housing are shown in FIG. That is, the power supply line 10 near the power supply point on the electrode 109 for supplying the high-frequency current I
A high-frequency current distribution cable is wound around 6, and thereby a high-frequency current i is distributed. The high-frequency current i is guided to the photoelectric conversion device 201 and converted into an optical signal 202. The optical signal 202 is taken out of the housing by the optical cable 103. A semiconductor light emitting element was used for the photoelectric conversion device 201 in FIG. 2 of this example.

【0024】密閉筐体101a、101b中の光電変換
装置で変換された光信号は、光ケーブル103a、10
3bによって接続された光信号処理器108に導かれ、
光信号は電気信号に変換され、該信号は次段に接続され
た制御部117に入力され、アクチュエーターを操作す
る操作量を出力する。アクチュエーター105a、10
5bはアクチュエーターの作動により電極が基板に対し
て進退可能なように、その作動端を、電極109の背面
に接続する。
The optical signals converted by the photoelectric conversion devices in the closed casings 101a and 101b are transmitted to the optical cables 103a and 103b.
3b to the optical signal processor 108 connected by
The optical signal is converted into an electric signal, and the signal is input to the control unit 117 connected to the next stage, and outputs an operation amount for operating the actuator. Actuators 105a, 10
5b has its working end connected to the back surface of the electrode 109 so that the electrode can advance and retreat with respect to the substrate by the operation of the actuator.

【0025】而して、保持手段112に、基板110を
セットし、排気装置114により真空室115内を排気
し、加熱を開始し、設定温度に達したところで、プロセ
スガス116を供給しつつ高周波電力を供給して、プラ
ズマを生成させ、製膜を進行させる。
Thus, the substrate 110 is set on the holding means 112, the inside of the vacuum chamber 115 is evacuated by the exhaust device 114, heating is started, and when the temperature reaches the set temperature, the process gas 116 is supplied while Electric power is supplied to generate plasma, and film formation proceeds.

【0026】前記した構成により給電点の電流分布をプ
ラズマ分布情報としてアクチュエーターを操作して、電
極の位置を制御し、均一なプラズマ分布を持続させる。
With the above configuration, the actuator is operated by using the current distribution at the feeding point as plasma distribution information to control the position of the electrode and maintain a uniform plasma distribution.

【0027】(実施例2)図3は本発明の大型基板用製
膜装置における、多点給電、多点分取、多点アクチュエ
ータ方式をラダー電極に適用した例を説明する斜視図で
ある。本例は電極の複数部位に給電し、より電流を均一
にしようとするほか、多点の電流分布を測定してプラズ
マ分布をより精度高く知り、該情報を多点における電極
位置及び電極の平行度を含む電極姿勢などの調整機能に
反映させたものである。
(Embodiment 2) FIG. 3 is a perspective view for explaining an example in which a multi-point feeding, multi-point sorting, multi-point actuator system is applied to a ladder electrode in a large-sized substrate film forming apparatus of the present invention. In this example, in addition to feeding power to a plurality of portions of the electrode to make the current more uniform, the current distribution at multiple points is measured to know the plasma distribution with higher accuracy, and the information is obtained at the electrode positions at multiple points and parallelism of the electrodes. This is reflected in the adjustment function of the electrode posture including the degree.

【0028】図3において、製膜を行う真空室、この真
空室内に方形状の大型基板を保持して、基板保持手段な
どは省略してある。109は大型基板と対面して、対面
空間にプラズマを生成させるラダー電極であって、電極
支持枠301によって支持する。給電点に給電線106
a、106b、106c及び106dによって、インピ
ーダンスマッチング回路107を介して高周波電源10
4を接続する。
In FIG. 3, a vacuum chamber for forming a film, a large rectangular substrate is held in the vacuum chamber, and the substrate holding means and the like are omitted. A ladder electrode 109 faces the large substrate and generates plasma in the facing space, and is supported by an electrode support frame 301. Feeding line 106 at feeding point
a, 106b, 106c and 106d through the impedance matching circuit 107
4 is connected.

【0029】前記給電線の給電点近くの末端に、高周波
電流分取ケーブル102a、102b、102c及び1
02dを接続し、他端を密閉筐体101a、101b、
101c及び101d中の光電変換装置に接続する。密
閉筐体の細部は図2で示した。即ち、高周波電流Iを供
給する、ラダー電極109上の給電点付近の給電線10
6の端部に、102高周波電流分取ケーブルが巻かれて
おり、これにより高周波電流iが分取される。高周波電
流iは光電変換装置201に導かれ光信号202に変換
され、該光信号202は光ケーブル103により筐体外
部に取り出される。本例の図2における光電変換装置2
01には半導体発光素子を使用した。
At the end of the power supply line near the power supply point, high-frequency current distribution cables 102a, 102b, 102c and 1
02d, and the other ends are sealed housings 101a, 101b,
It connects to the photoelectric conversion device in 101c and 101d. Details of the sealed housing are shown in FIG. That is, the power supply line 10 near the power supply point on the ladder electrode 109 for supplying the high-frequency current I
At the end of 6, a high-frequency current distribution cable 102 is wound so that a high-frequency current i is distributed. The high-frequency current i is guided to the photoelectric conversion device 201 and converted into an optical signal 202. The optical signal 202 is taken out of the housing by the optical cable 103. Photoelectric conversion device 2 in FIG. 2 of this example
For 01, a semiconductor light emitting device was used.

【0030】密閉筐体101a、101b、101c、
101d中の光電変換装置で変換された光信号は、光ケ
ーブル103a、103b、103c、103dによっ
て接続された光信号処理器108に導かれ、光信号は電
気信号に変換され、該信号は次段に接続された制御部1
17に入力され、アクチュエーターを操作する操作量を
出力する。アクチュエーター105a、105b、10
5c、105dはアクチュエーターの作動により電極が
基板に対して進退可能なように、その作動端を、電極1
09を支持している電極支持枠301の背面に接続す
る。
The sealed casings 101a, 101b, 101c,
The optical signal converted by the photoelectric conversion device in 101d is guided to an optical signal processor 108 connected by optical cables 103a, 103b, 103c, and 103d, and the optical signal is converted into an electric signal. Control unit 1 connected
17 and outputs an operation amount for operating the actuator. Actuators 105a, 105b, 10
Reference numerals 5c and 105d denote the operating ends of the electrodes 1 and 2 so that the electrodes can advance and retreat with respect to the substrate by the operation of the actuator.
09 is connected to the back of the electrode support frame 301 supporting the same.

【0031】而して、本例では前記した構成により多点
の電流分布を測定してプラズマ分布をより精度高く知
り、該情報により複数のアクチュエーターを操作して、
多点における電極位置及び電極の平行度を含む電極姿勢
などの制御を行って、より均一なプラズマ分布を持続さ
せる。
In this embodiment, the current distribution at multiple points is measured by the above-described configuration to know the plasma distribution more accurately, and a plurality of actuators are operated based on the information,
By controlling electrode positions and electrode attitudes including electrode parallelism at multiple points, more uniform plasma distribution is maintained.

【0032】(実施例3)図4は本発明の大型基板用製
膜装置における、ラダー電極のプラズマ分布の測定を説
明する例を説明する概念図である。本例はラダー電極上
の多点で高周波電流分布を測定し、それをプラズマ分布
情報として、表示装置に表示させたものである。
(Embodiment 3) FIG. 4 is a conceptual diagram for explaining an example for explaining the measurement of the plasma distribution of the ladder electrode in the apparatus for forming a large substrate according to the present invention. In this example, a high-frequency current distribution is measured at multiple points on a ladder electrode, and this is displayed on a display device as plasma distribution information.

【0033】図4において、115は製膜を行う真空
室、この真空室内に方形状の大型基板110を保持し
て、加熱する基板保持手段112を備え、該大型基板と
対面して、対面空間にプラズマを生成させるラダー電極
109には、給電点に給電線106によって、インピー
ダンスマッチング回路107を介して高周波電源104
を接続する。真空室内にプロセスガス116を供給する
ガス供給手段111を配し、真空室内を排気して設定圧
力に保持するガス排気装置114を、排気口113に接
続する。
In FIG. 4, reference numeral 115 denotes a vacuum chamber for forming a film, and a substrate holding means 112 for holding and heating a large rectangular substrate 110 in this vacuum chamber. A ladder electrode 109 for generating a plasma at a high-frequency power supply 104 via an impedance matching circuit 107 through a power supply line 106 at a power supply point.
Connect. A gas supply unit 111 for supplying a process gas 116 is provided in the vacuum chamber, and a gas exhaust device 114 that exhausts the vacuum chamber and maintains the set pressure is connected to an exhaust port 113.

【0034】前記ラダー電極の複数各部位に、高周波電
流分取ケーブル102a〜102nを接続し、他端を密
閉筐体101a、101b、101c〜101n中の光
電変換装置に接続する。
A high-frequency current distribution cable 102a to 102n is connected to each of the plurality of portions of the ladder electrode, and the other end is connected to a photoelectric conversion device in the closed casings 101a, 101b, 101c to 101n.

【0035】密閉筐体101a、101b、101c〜
101n中の光電変換装置で変換された光信号は、光ケ
ーブル103a〜103nによって接続された光信号処
理器108に導かれ、光信号は電気信号に変換され、該
信号によって次段に接続された表示装置117が駆動さ
れる。
The sealed housings 101a, 101b, 101c and so on
The optical signal converted by the photoelectric conversion device in 101n is guided to the optical signal processor 108 connected by the optical cables 103a to 103n, and the optical signal is converted into an electric signal, and the display is connected to the next stage by the signal. The device 117 is driven.

【0036】而して、保持手段112に、基板110を
セットし、排気装置114により真空室115内を排気
し、加熱を開始し、設定温度に達したところで、プロセ
スガス116を供給しつつ高周波電力を供給して、プラ
ズマを生成させ、製膜を進行させる。
Then, the substrate 110 is set on the holding means 112, the inside of the vacuum chamber 115 is evacuated by the exhaust device 114, heating is started, and when the temperature reaches the set temperature, the process gas 116 is supplied while Electric power is supplied to generate plasma, and film formation proceeds.

【0037】前記した構成によりラダー電極各点の電流
分布をプラズマ分布情報として表示装置に表示させプラ
ズマ分布状態を観察する。
With the above configuration, the current distribution at each point of the ladder electrode is displayed on the display device as plasma distribution information, and the plasma distribution state is observed.

【0038】[0038]

【発明の効果】以上説明したように、本発明により、プ
ラズマCVDによる大型基板用成膜装置および方法にお
いて、プラズマの分布に直接相関する高周波電流分布
を、検知し、その分布情報に基いて、最適なプラズマの
分布状態に制御することにより、均一な膜厚且つ膜質の
製膜のできる精度の高い大型基板用成膜装置および大型
基板上成膜方法を提供することが可能となる。
As described above, according to the present invention, in the apparatus and method for forming a large substrate by plasma CVD, a high-frequency current distribution directly correlated with the plasma distribution is detected, and based on the distribution information, By controlling the distribution state of the plasma to be optimal, it is possible to provide a large-scale substrate film forming apparatus and a large-size substrate film forming method capable of forming a film having a uniform thickness and quality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の大型基板用製膜装置の例を説明する
概念図。
FIG. 1 is a conceptual diagram illustrating an example of a large substrate film forming apparatus of the present invention.

【図2】 本発明の大型基板用製膜装置における、高周
波電流分取手段と密閉筐体の例を説明する概念図。
FIG. 2 is a conceptual diagram illustrating an example of a high-frequency current sampling unit and a closed casing in the large-sized substrate film forming apparatus of the present invention.

【図3】 本発明の大型基板用製膜装置における、多点
給電、多点分取、多点アクチュエータ方式をラダー電極
に適用した例を説明する斜視図。
FIG. 3 is a perspective view illustrating an example in which a multi-point power supply, a multi-point sorting, and a multi-point actuator method are applied to a ladder electrode in the large-sized substrate film forming apparatus of the present invention.

【図4】 本発明の大型基板用製膜装置における、ラダ
ー電極のプラズマ分布の測定を説明する例を説明する概
念図。
FIG. 4 is a conceptual diagram illustrating an example for explaining measurement of plasma distribution of a ladder electrode in the large substrate film forming apparatus of the present invention.

【符号の説明】[Explanation of symbols]

101 密閉筐体 101a 密閉筐体 101b 密閉筐体 101c 密閉筐体 101d 密閉筐体 101n 密閉筐体 102 高周波電流分取ケーブル 102a 高周波電流分取ケーブル 102b 高周波電流分取ケーブル 102c 高周波電流分取ケーブル 102d 高周波電流分取ケーブル 102n 高周波電流分取ケーブル 103a 光ケーブル 103b 光ケーブル 103c 光ケーブル 103d 光ケーブル 103n 光ケーブル 104 高周波電源 105 電極姿勢調整アクチュエータ 105a 電極姿勢調整アクチュエータ 105b 電極姿勢調整アクチュエータ 105c 電極姿勢調整アクチュエータ 105d 電極姿勢調整アクチュエータ 106 給電線 106a 給電線 106b 給電線 106c 給電線 106d 給電線 107 インピーダンスマッチング回路 108 光信号処理器 109 電極 110 基板 111 ガス供給手段 112 基板保持手段 113 排気口 114 ガス排気装置 115 真空室 116 プロセスガス 117 制御部 201 光電変換装置 202 光信号 301 電極支持枠 401 表示装置 101 Closed case 101a Closed case 101b Closed case 101c Closed case 101d Closed case 101n Closed case 102 High frequency current sorting cable 102a High frequency current sorting cable 102b High frequency current sorting cable 102c High frequency current sorting cable 102d High frequency Current distribution cable 102n High-frequency current distribution cable 103a Optical cable 103b Optical cable 103c Optical cable 103d Optical cable 103n Optical cable 104 High-frequency power supply 105 Electrode attitude adjustment actuator 105a Electrode attitude adjustment actuator 105b Electrode attitude adjustment actuator 105c Electrode attitude adjustment actuator 105d Electrode attitude adjustment actuator 106 Electric wire 106a Feed line 106b Feed line 106c Feed line 106d Feed line 107 Imp Nsu matching circuit 108 optical signal processor 109 electrode 110 substrate 111 gas supply means 112 substrate holding means 113 outlet 114 gas exhaust unit 115 vacuum chamber 116 process gas 117 controller 201 the photoelectric conversion device 202 the optical signal 301 electrode support frame 401 display

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G075 AA24 AA43 BC04 CA25 CA32 CA80 EB01 EC21 EC30 4K030 CA12 FA03 JA07 KA15 5F045 AA09 BB01 BB08 CA15 DP09 EB01 EH04 EH07 EH19 GB08 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G075 AA24 AA43 BC04 CA25 CA32 CA80 EB01 EC21 EC30 4K030 CA12 FA03 JA07 KA15 5F045 AA09 BB01 BB08 CA15 DP09 EB01 EH04 EH07 EH19 GB08

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 真空室内に方形状の大型基板を保持し
て、加熱する基板保持手段と、該大型基板と対面して、
対面空間にプラズマを生成させる電極と、該電極の給電
点にインピーダンスマッチング回路を介して接続された
高周波電源と、真空室内にプロセスガスを供給するガス
供給手段と、真空室内を排気して設定圧力に保持するガ
ス排気装置を有する大型基板用製膜装置において、少な
くとも一箇所の電極上もしくは前記給電点を高周波電流
分取点として、高周波電流分取手段により分取した高周
波電流を導入して、光電変換装置により高周波電流を光
に変換する密閉筐体と、該密閉筐体より光信号を取り出
し光信号処理器に導く光ケーブルと、該光信号によって
発生プラズマのプラズマ分布信号を出力する光信号処理
器とを備え、該プラズマ分布信号を、発生プラズマ分布
の均一化を図る情報とすることを特徴とする大型基板用
製膜装置。
1. A substrate holding means for holding and heating a large rectangular substrate in a vacuum chamber and facing the large substrate,
An electrode for generating plasma in the facing space, a high-frequency power supply connected to a feed point of the electrode via an impedance matching circuit, gas supply means for supplying a process gas into the vacuum chamber, and a set pressure for exhausting the vacuum chamber. In a large substrate film forming apparatus having a gas exhaust device to hold, at least one of the electrodes or the feeding point as a high-frequency current sampling point, introducing a high-frequency current separated by high-frequency current sampling means, A sealed casing for converting a high-frequency current into light by a photoelectric conversion device, an optical cable for extracting an optical signal from the sealed casing and leading it to an optical signal processor, and an optical signal processing for outputting a plasma distribution signal of generated plasma by the optical signal A film forming apparatus for a large substrate, wherein the plasma distribution signal is used as information for uniformizing the generated plasma distribution.
【請求項2】 光信号処理器の出力する発生プラズマの
プラズマ分布信号を入力信号として電極姿勢調整アクチ
ュエーターを操作する操作量を出力する制御部と、該操
作量によって電極の位置および姿勢を調節することので
きる電極姿勢調整アクチュエーターとを備え、発生プラ
ズマ分布の均一化を図ることを特徴とする大型基板用製
膜装置。
2. A control unit for outputting an operation amount for operating an electrode attitude adjustment actuator using a plasma distribution signal of generated plasma output from an optical signal processor as an input signal, and adjusting a position and an attitude of the electrode by the operation amount. A film forming apparatus for a large substrate, comprising: an electrode attitude adjusting actuator capable of controlling the generated plasma;
【請求項3】 高周波電流分取点が複数あることを特徴
とする請求項1若しくは2記載の大型基板用製膜装置。
3. The film forming apparatus for a large substrate according to claim 1, wherein there are a plurality of high frequency current sampling points.
【請求項4】 電極姿勢調整アクチュエーターが複数個
によって構成されていることを特徴とする請求項2記載
の大型基板用製膜装置。
4. The film forming apparatus for a large substrate according to claim 2, wherein a plurality of electrode attitude adjusting actuators are formed.
【請求項5】 電極がラダー電極であることを特徴とす
る請求項1乃至4いずれかの項記載の大型基板用製膜装
置。
5. The film forming apparatus for a large substrate according to claim 1, wherein the electrode is a ladder electrode.
【請求項6】 真空室内を排気して設定圧力に保持し、
プロセスガスを供給しつつ、真空室内に方形状の大型基
板を保持して、加熱し、該大型基板と対面した電極の、
給電点にインピーダンスマッチング回路を介して高周波
電力を供給して、電極と基板との対面空間にプラズマを
生成させて、該基板上に製膜する大型基板上製膜方法に
おいて、少なくとも一箇所の電極上もしくは前記給電点
を高周波電流分取点として、分取した高周波電流を密閉
筐体内に導入して、高周波電流を光に変換し、該光信号
を該密閉筐体より取り出し、光信号処理器に導き、該光
信号によって発生プラズマのプラズマ分布信号を出力さ
せ、発生プラズマ均一化の情報としたことを特徴とする
大型基板上製膜方法。
6. A vacuum chamber is evacuated and maintained at a set pressure,
While supplying a process gas, a large rectangular substrate is held in a vacuum chamber, heated, and an electrode facing the large substrate is heated.
A high-frequency power is supplied to the power supply point via an impedance matching circuit to generate plasma in a space facing the electrode and the substrate, and the film is formed on the substrate. Alternatively, the feeding point is used as a high-frequency current sampling point, the separated high-frequency current is introduced into the sealed housing, the high-frequency current is converted into light, the optical signal is extracted from the sealed housing, and the optical signal is processed by the optical signal processor. A method for forming a film on a large substrate, comprising: outputting a plasma distribution signal of generated plasma by using the optical signal;
【請求項7】 発生プラズマのプラズマ強度分布信号に
よって、電極の位置および姿勢を調節して、発生プラズ
マの均一化を図ることを特徴とする請求項6記載の大型
基板上製膜方法。
7. The method for forming a film on a large substrate according to claim 6, wherein the position and orientation of the electrode are adjusted by the plasma intensity distribution signal of the generated plasma to make the generated plasma uniform.
【請求項8】 複数点から高周波電流を分取することを
特徴とする請求項6若しくは7記載の大型基板上製膜方
法。
8. The method for forming a film on a large substrate according to claim 6, wherein a high-frequency current is collected from a plurality of points.
JP2001104705A 2001-04-03 2001-04-03 Apparatus and method for forming film on large-scale substrate Withdrawn JP2002294463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001104705A JP2002294463A (en) 2001-04-03 2001-04-03 Apparatus and method for forming film on large-scale substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001104705A JP2002294463A (en) 2001-04-03 2001-04-03 Apparatus and method for forming film on large-scale substrate

Publications (1)

Publication Number Publication Date
JP2002294463A true JP2002294463A (en) 2002-10-09

Family

ID=18957524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001104705A Withdrawn JP2002294463A (en) 2001-04-03 2001-04-03 Apparatus and method for forming film on large-scale substrate

Country Status (1)

Country Link
JP (1) JP2002294463A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100688550B1 (en) 2005-06-03 2007-03-02 삼성전자주식회사 Plasma generating apparatus for fabricating semiconductor device
JP2007165410A (en) * 2005-12-09 2007-06-28 Mitsubishi Heavy Ind Ltd Electrical discharge electrode, thin film manufacturing device, and manufacturing method of solar battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100688550B1 (en) 2005-06-03 2007-03-02 삼성전자주식회사 Plasma generating apparatus for fabricating semiconductor device
JP2007165410A (en) * 2005-12-09 2007-06-28 Mitsubishi Heavy Ind Ltd Electrical discharge electrode, thin film manufacturing device, and manufacturing method of solar battery
JP4592576B2 (en) * 2005-12-09 2010-12-01 三菱重工業株式会社 Discharge electrode, thin film manufacturing apparatus and solar cell manufacturing method

Similar Documents

Publication Publication Date Title
TWI240600B (en) Apparatus and method for use of optical system with a plasma processing system
US6602384B2 (en) Plasma processing apparatus
EP1187187B1 (en) Plasma processing apparatus
KR20150072350A (en) Substrate processing apparatus
EP1681705A1 (en) Plasma processing apparatus
KR100782370B1 (en) Ion analysis system based on analyzers of ion energy distribution using retarded electric fields
KR20020055343A (en) Plasma processing apparatus for processing semiconductor wafer using plasma
US20100148769A1 (en) Non-contact plasma-monitoring apparatus and method and plasma processing apparatus
CN112449473B (en) Plasma detecting device, plasma processing device and control method
CN114424319A (en) Method and apparatus for controlling RF parameters at multiple frequencies
TWI759417B (en) Voltage-current probe for measuring radio-frequency electrical power in a high-temperature environment and method of calibrating the same
JP4554380B2 (en) Plasma generating apparatus and plasma generating method
JP2000031072A (en) Plasma monitoring method and semiconductor fabrication system
KR20060056972A (en) Method for balancing return currents in plasma processing apparatus
JP2002294463A (en) Apparatus and method for forming film on large-scale substrate
WO2005069701A1 (en) Plasma processing apparatus
JP7365878B2 (en) Measuring device and method
JP2003224112A (en) Plasma treatment device and plasma treatment method
EP1515363A1 (en) Method and device for measuring wafer potential or temperature
US20150194295A1 (en) Assembly for use in a vacuum treatment process
US20120325146A1 (en) Plasma Processing Apparatus
WO2023158227A1 (en) Plasma process monitoring method, plasma process monitoring device, and plasma generation device
KR101426011B1 (en) System for treatmenting substrate
JP2010123269A (en) Plasma status change detection device and plasma processing device equipped with this
JPS62228482A (en) Low-temperature plasma treating device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603