JP2002293540A5 - - Google Patents

Download PDF

Info

Publication number
JP2002293540A5
JP2002293540A5 JP2002013349A JP2002013349A JP2002293540A5 JP 2002293540 A5 JP2002293540 A5 JP 2002293540A5 JP 2002013349 A JP2002013349 A JP 2002013349A JP 2002013349 A JP2002013349 A JP 2002013349A JP 2002293540 A5 JP2002293540 A5 JP 2002293540A5
Authority
JP
Japan
Prior art keywords
titanium oxide
oxide composite
particulate titanium
composite according
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002013349A
Other languages
Japanese (ja)
Other versions
JP2002293540A (en
JP4313535B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2002013349A priority Critical patent/JP4313535B2/en
Priority claimed from JP2002013349A external-priority patent/JP4313535B2/en
Publication of JP2002293540A publication Critical patent/JP2002293540A/en
Publication of JP2002293540A5 publication Critical patent/JP2002293540A5/ja
Application granted granted Critical
Publication of JP4313535B2 publication Critical patent/JP4313535B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Claims (23)

一次粒子内に、−O−Ti−X−結合(式中、Xは、炭素(C)、窒素(N)、リン(P)、硫黄(S)より選ばれた少なくとも1種の元素を表す)が存在することを特徴とする微粒子状酸化チタン複合体。In the primary particles, -O-Ti-X- bond (wherein X represents at least one element selected from carbon (C), nitrogen (N), phosphorus (P), sulfur (S)). ) Present in the form of particulate titanium oxide composites. 一次粒子の平均粒子径が、0.008μm〜0.3μmの範囲内にある請求項1に記載の微粒子状酸化チタン複合体。The fine particle titanium oxide composite according to claim 1, wherein the average particle diameter of the primary particles is in the range of 0.008 μm to 0.3 μm. 波長550nmの光の反射率が95%以下である請求項1または2に記載の微粒子状酸化チタン複合体。The particulate titanium oxide composite according to claim 1 or 2, wherein the reflectance of light having a wavelength of 550 nm is 95% or less. 微粒子状酸化チタン複合体のBET比表面積が5〜200m2/gである請求項1乃至3のいずれか1項に記載の微粒子状酸化チタン複合体。The particulate titanium oxide composite according to any one of claims 1 to 3, wherein the particulate titanium oxide composite has a BET specific surface area of 5 to 200 m 2 / g. 700℃、1時間加熱後のBET比表面積減少率が20%以下である請求項1乃至4のいずれか1項に記載の微粒子状酸化チタン複合体。The particulate titanium oxide composite according to any one of claims 1 to 4, wherein the BET specific surface area reduction rate after heating at 700 ° C for 1 hour is 20% or less. 微粒子状酸化チタン複合体が、異種金属構造体によってコア(核)/シェル(殻)構造をとっている請求項1乃至5のいずれか6. The fine particle titanium oxide composite has a core / shell structure formed of a dissimilar metal structure. 11 項に記載の微粒子状酸化チタン複合体。The particulate titanium oxide composite according to Item. 四塩化チタンを含有する原料ガスと酸化性ガスに、炭素含有化合物、窒素含有化合物、リン含有化合物、硫黄含有化合物より選ばれた少なくとも1種の化合物(以下、特に断りの無い限り「非Ti系化合物」と記載する)を反応させることを特徴とする微粒子状酸化チタン複合体の製造方法。 At least one compound selected from a carbon-containing compound, a nitrogen-containing compound, a phosphorus-containing compound, and a sulfur-containing compound (hereinafter referred to as “non-Ti-based unless otherwise specified”) is used as a raw material gas containing titanium tetrachloride and an oxidizing gas. A method for producing a particulate titanium oxide composite , characterized by reacting a compound ”). 非Ti系化合物が、炭酸塩及び有機酸塩を除く炭素含有化合物、硝酸塩を除く窒素含有化合物、リン含有化合物、硫酸塩を除く硫黄含有化合物より選ばれた少なくとも1種の化合物であることを特徴とする請求項7に記載の微粒子状酸化チタン複合体の製造方法。The non-Ti compound is at least one compound selected from a carbon-containing compound excluding carbonate and organic acid salt, a nitrogen-containing compound excluding nitrate, a phosphorus-containing compound, and a sulfur-containing compound excluding sulfate. A method for producing a particulate titanium oxide composite according to claim 7. 非Ti系化合物が、炭素数1乃至20を有する炭化水素、炭素数1乃至20を有するアルコール、アンモニア、ヒドラジン、炭素数1乃至20を有する第1級アミン,第2級アミン,第3級アミンおよび第4級アミン、水素化リン、炭素数1乃至20を有する有機リン、硫化水素、および炭素数1乃至20を有する有機硫化物からなる群より選ばれた少なくとも1種である、請求項7に記載の微粒子状酸化チタン複合体の製造方法。Non-Ti compounds are hydrocarbons having 1 to 20 carbon atoms, alcohols having 1 to 20 carbon atoms, ammonia, hydrazine, primary amines, secondary amines, and tertiary amines having 1 to 20 carbon atoms. and quaternary amines, phosphorus hydride, organic phosphorus having 1 to 20 carbon atoms, at least one selected from the group consisting of organic sulfides with hydrogen sulfide, and 1 to 20 carbon atoms, claim 7 The manufacturing method of the particulate titanium oxide composite as described in 2. 非Ti系化合物が、ガスの状態で反応管に供給される請求項 7 乃至9のいずれか 1 項に記載の微粒子状酸化チタン複合体の製造方法。Non Ti compound The method for producing a particulate titanium oxide complex according to any one of claims 7 to 9 is fed to the reaction tube in a state of gas. 非Ti系化合物が、溶液またはスラリーの状態で反応管に供給される請求項7乃至9のいずれか 1 項に記載の微粒子状酸化チタン複合体の製造方法。Non Ti compound is a solution or method of manufacturing a particulate titanium oxide complex according to any one of claims 7 to 9 is fed to the reaction tube in a slurry state. 溶液またはスラリーを、噴霧することにより供給する請求項11に記載の微粒子状酸化チタン複合体の製造方法。The method for producing a particulate titanium oxide composite according to claim 11 , wherein the solution or slurry is supplied by spraying. 溶液またはスラリーの溶媒が、大気圧において沸点40℃以上を有するものである請求項11または12に記載の微粒子状酸化チタン複合体の製造方法。The method for producing a particulate titanium oxide composite according to claim 11 or 12 , wherein the solvent of the solution or slurry has a boiling point of 40 ° C or higher at atmospheric pressure. 非Ti系化合物の反応管への供給が、四塩化チタンを含有する原料ガスと酸化性ガスの反応開始点より上流部で行われることを特徴とする請求項7乃至13のいずれか1項に記載の微粒子状酸化チタン複合体の製造方法。The supply of the non-Ti compound to the reaction tube is performed upstream of the reaction start point of the raw material gas containing titanium tetrachloride and the oxidizing gas, according to any one of claims 7 to 13. The manufacturing method of the particulate titanium oxide composite of description. 反応が、四塩化チタンを含有する原料ガスと酸化性ガスを、それぞれ流速10m/秒以上で反応管に供給することにより行われる請求項7乃至14のいずれか1項に記載の微粒子状酸化チタン複合体の製造方法。The particulate titanium oxide according to any one of claims 7 to 14 , wherein the reaction is performed by supplying a raw material gas containing titanium tetrachloride and an oxidizing gas to the reaction tube at a flow rate of 10 m / sec or more, respectively. A method for producing a composite. 反応管内におけるガスの平均流速が5m/秒以上である請求項7乃至15のいずれか1項に記載の微粒子状酸化チタン複合体の製造方法。The method for producing a particulate titanium oxide composite according to any one of claims 7 to 15 , wherein an average gas flow velocity in the reaction tube is 5 m / sec or more. 四塩化チタンを含有する原料ガスが、四塩化チタンを10〜100体積%含有することを特徴とする請求項7乃至16のいずれか1項に記載の微粒子状酸化チタン複合体の製造方法。The method for producing a particulate titanium oxide composite according to any one of claims 7 to 16 , wherein the raw material gas containing titanium tetrachloride contains 10 to 100% by volume of titanium tetrachloride. 四塩化チタンを含有する原料ガス及び酸化性ガスを700℃以上で予熱することを特徴とする請求項7乃至17のいずれか 1 に記載の微粒子状酸化チタン複合体の製造方法。Method for producing a particulate titanium oxide complex according to any one of claims 7 to 17, characterized in that preheating the raw material gas and the oxidizing gas containing titanium tetrachloride at 700 ° C. or higher. 請求項7乃至18のいずれか1項に記載の製造方法を用いて製造された微粒子状酸化チタン複合体。A particulate titanium oxide composite produced by using the production method according to any one of claims 7 to 18 . 請求項1乃至6及び19のいずれか1項に記載の微粒子状酸化チタン複合体を含むことを特徴とする微粒子状酸化チタン複合体組成物。A particulate titanium oxide composite composition comprising the particulate titanium oxide composite according to any one of claims 1 to 6 and 19 . 請求項1乃至6及び19のいずれか1項に記載の微粒子状酸化チタン複合体を含むことを特徴とする顔料、誘電体原料、化粧料、衣料、紫外線遮蔽剤、研磨剤、シリコーンゴム、紙。A pigment, a dielectric material, a cosmetic, a garment, an ultraviolet shielding agent, an abrasive, a silicone rubber, and a paper comprising the particulate titanium oxide composite according to any one of claims 1 to 6 and 19. . 請求項1乃至6及び19のいずれか1項に記載の微粒子状酸化チタン複合体を含むことを特徴とする光触媒体。A photocatalyst comprising the particulate titanium oxide composite according to any one of claims 1 to 6 and 19. 請求項1乃至6及び19のいずれか1項に記載の微粒子状酸化チタン複合体を含むことを特徴とする可視光応答性を有する光触媒体。A photocatalyst having visible light responsiveness, comprising the particulate titanium oxide composite according to any one of claims 1 to 6 and 19.
JP2002013349A 2001-01-26 2002-01-22 Fine particle titanium oxide composite, method for producing the composite, and composite composition Expired - Fee Related JP4313535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002013349A JP4313535B2 (en) 2001-01-26 2002-01-22 Fine particle titanium oxide composite, method for producing the composite, and composite composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001019127 2001-01-26
JP2001-19127 2001-01-26
JP2002013349A JP4313535B2 (en) 2001-01-26 2002-01-22 Fine particle titanium oxide composite, method for producing the composite, and composite composition

Publications (3)

Publication Number Publication Date
JP2002293540A JP2002293540A (en) 2002-10-09
JP2002293540A5 true JP2002293540A5 (en) 2005-07-07
JP4313535B2 JP4313535B2 (en) 2009-08-12

Family

ID=26608381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002013349A Expired - Fee Related JP4313535B2 (en) 2001-01-26 2002-01-22 Fine particle titanium oxide composite, method for producing the composite, and composite composition

Country Status (1)

Country Link
JP (1) JP4313535B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064493A (en) * 2003-07-31 2005-03-10 Kyocera Corp Photoelectric converter and photovoltaic device using the same
DE10394356B4 (en) * 2003-12-31 2014-04-10 Council Of Scientific & Industrial Research Synthesis of ultrafine titania particles in rutile phase at low temperature
JP4526273B2 (en) * 2004-01-30 2010-08-18 ダイセル化学工業株式会社 Carbon-doped titanium oxide and method for producing the same, photocatalyst, and method for oxidizing organic compound using the catalyst
JP4938985B2 (en) * 2004-02-18 2012-05-23 株式会社日本触媒 Metal oxide particles and uses thereof
US20070154561A1 (en) * 2004-02-18 2007-07-05 Nippon Shokubai Co., Ltd. Metal oxide particle and its uses
JP5016193B2 (en) * 2005-01-05 2012-09-05 株式会社日本触媒 Particulate metal oxides and their applications
US8207522B2 (en) 2005-05-31 2012-06-26 Kyocera Corporation Composite comprising array of needle-like crystal, method for producing the same, photovoltaic conversion element, light emitting element, and capacitor
CN117088408B (en) * 2023-10-20 2023-12-26 西南石油大学 Nanometer titanium dioxide and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Kim et al. Scalable manufacturing of boron nitride nanotubes and their assemblies: a review
Saka Surface modification with oxygen doping of g-C3N4 nanoparticles by carbon vacancy for efficient dehydrogenation of sodium borohydride in methanol
Li et al. Preparation of Ag doped Bi2O3 nanosheets with highly enhanced visible light photocatalytic performances
JP6177878B2 (en) Method and system for thermal energy recovery from the production of solid carbon material by reducing carbon oxides
TW201838713A (en) Carbon doped tin disulphide and methods for synthesizing the same
EP2223743A1 (en) Catalyst composition for the synthesis of thin multi-walled carbon nanotube and its manufacturing method
Nagy et al. Photocatalytic WO 3/TiO 2 nanowires: WO 3 polymorphs influencing the atomic layer deposition of TiO 2
Allaedini et al. Methane decomposition for carbon nanotube production: Optimization of the reaction parameters using response surface methodology
US20090081454A1 (en) Carbon Nanoparticles, Production and Use Thereof
CN104619414A (en) Catalyst composition for the synthesis of multi-walled carbon nanotube
Martelli et al. Production of iron-oxide nanoparticles by laser-induced pyrolysis of gaseous precursors
JP2002293540A5 (en)
JP2016503751A (en) Production of carbon nanotubes from carbon dioxide
CN110494390A (en) Use the preparation method of the multi-walled carbon nanotube of continous way process
Zhang et al. Non-metallic gold nanoclusters for oxygen activation and aerobic oxidation
KR20120021581A (en) Process for preparing catalyst composition for the synthesis of carbon nanotube with high yields using the spray pyrolysis method
Beshkar et al. Novel dendrite-like CuCr 2 O 4 photocatalyst prepared by a simple route in order to remove of Azo Dye in textile and dyeing wastewater
AU2002341159A1 (en) Photosensitizer functionalised nanoparticles
Aghaali et al. Synthesis of nanostructured fcc/hcp hollow Ni particles by ultrasonic spray pyrolysis and its dry reforming catalytic properties
Hu et al. In-situ solid-state synthesis and regulation of Ag2O/Ag2CO3 heterojunctions with promoted visible-light driven photocatalytic decomposition for organic pollutant
CN101224905A (en) Method for preparing molybdenum disulfide with spheroidal structure
Shinde et al. Magnetically recyclable Ag@ Fe2O3 Core-shell nanostructured catalyst for one-pot synthesis of 2-aryl benzimidazole and benzothiazole
Ramdani et al. Synthesis, characterization and kinetic computations of fullerene (C60)–CuO on the mechanism decomposition of ammonium perchlorate
Tahir et al. Template-free synthesis of hierarchical graphitic carbon nitride (H-gC3N4) embedded with NiO for water splitting and CO2 reduction with the role of hole scavenger: A comparative investigation
JP5290161B2 (en) Gas phase method for producing nanometer particles