JP2002292461A - Surface hardening method for half molten forming member and surface hardening member by the method - Google Patents

Surface hardening method for half molten forming member and surface hardening member by the method

Info

Publication number
JP2002292461A
JP2002292461A JP2001099344A JP2001099344A JP2002292461A JP 2002292461 A JP2002292461 A JP 2002292461A JP 2001099344 A JP2001099344 A JP 2001099344A JP 2001099344 A JP2001099344 A JP 2001099344A JP 2002292461 A JP2002292461 A JP 2002292461A
Authority
JP
Japan
Prior art keywords
semi
solid
hardness
solid phase
light metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001099344A
Other languages
Japanese (ja)
Inventor
Kazuo Sakamoto
和夫 坂本
Katsuya Nishiguchi
勝也 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2001099344A priority Critical patent/JP2002292461A/en
Publication of JP2002292461A publication Critical patent/JP2002292461A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface hardening method for a member formed with a half molten forming material of a light metal without applying heat treatment and capable of enhancing its surface hardness, and a hardened member of the half molten forming material hardened with the surface by such a method. SOLUTION: Against the surface 1f of the member 1 formed by the half molten forming material of the light metal with 10% or more of a solid rate, a rotating body 10 is made to enter the surface part of the member while making contact with the surface to stir the surface part 1a of the member by the rotating body in a nonmolten state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、軽金属の半溶融
成形材料で形成された部材の表面硬化方法、及びかかる
方法で表面硬化された半溶融成形材の表面硬化部材に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for hardening a surface of a member formed of a semi-solid molding material of light metal, and a surface-hardened member of a semi-solid molding material hardened by such a method.

【0002】[0002]

【従来の技術】従来、例えばマグネシウム(以下、適
宜、その元素記号Mgで表示する。)及びその合金ある
いはアルミニウム(以下、適宜、その元素記号Alで表
示する。)及びその合金などの軽金属を材料とした成形
材の製造方法として、軽金属の溶湯を半溶融状態で(以
下、完全に溶融した状態ではなく半溶融状態のものであ
っても、「溶湯」と称する。)成形型のキャビティ内に
充填して成形材を得るようにした半溶融成形法が知られ
ている。この半溶融成形法は、原材料を融点以上の所定
温度に昇温させ完全な溶融状態として成形を行う従来の
成形法に比べて、溶湯温度が低いので、所謂「バリ」が
出にくく高速および/または高圧での成形にも適用で
き、生産性の向上を図る上で有利であり、また、品質面
においても、高精度で均質な軽金属成形材を得ることが
できるプロセスとして注目されている。
2. Description of the Related Art Conventionally, light metals such as, for example, magnesium (hereinafter appropriately denoted by its element symbol Mg) and its alloy or aluminum (hereinafter, appropriately denoted by its element symbol Al) and its alloy are used as materials. As a method of manufacturing a molding material, a molten metal of a light metal is semi-molten (hereinafter referred to as a “molten metal” even if it is not a completely molten state but a semi-molten state). BACKGROUND ART A semi-solid molding method in which a molding material is obtained by filling is known. In this semi-solid molding method, since the temperature of the molten metal is lower than that of the conventional molding method in which the raw material is heated to a predetermined temperature equal to or higher than the melting point and molded in a completely molten state, so-called "burrs" are less likely to appear and high speed and / or Alternatively, it can be applied to molding at high pressure, which is advantageous in improving productivity, and is also attracting attention as a process capable of obtaining a highly accurate and homogeneous light metal molding in terms of quality.

【0003】ところで、軽金属成形材を素材として機械
部品や構造部材などを製作する場合、軽金属を採用する
ことにより鉄もしくは鋼製のものに比して大幅な軽量化
を達成できる反面、疲れ強さが低いので、繰り返し荷重
を受ける部分については耐久性が不足する場合がある。
かかる問題に関して、例えば特開平10−183316
号公報には、Al鋳物材について、その特定部分の疲れ
強さを高めて耐久性を向上させることを目的として、
「Al鋳物材の表面に、高速回転するプローブを接触さ
せて摩擦熱にて軟化させる摩擦撹拌溶接処理を施すこと
を特徴としたAl鋳物材の表面改質法」が開示されてい
る。
[0003] In the case of manufacturing machine parts and structural members using a light metal molding material as a material, the use of a light metal can achieve a significant reduction in weight as compared with an iron or steel material, but on the other hand, fatigue strength. , The durability may be insufficient for portions that are subjected to repeated loads.
Regarding such a problem, for example, Japanese Patent Application Laid-Open No. 10-183316
In the publication, for the purpose of improving the durability by increasing the fatigue strength of a specific portion of the Al casting material,
"A surface modification method of an Al casting material characterized by applying a friction stir welding process of bringing a probe rotating at a high speed into contact with the surface of the Al casting material to soften by friction heat" is disclosed.

【0004】この従来技術に係る表面改質法は、金属部
材の突き合わせ当接部分に回転体を接触させながら進行
させることで、その際に発生する摩擦熱と回転体の撹拌
作用により、上記当接部分およびその近傍の両金属材料
に塑性状態を生じさせ、この塑性状態の材料部分(可塑
性部分)を凝固させることによって、両金属部材どうし
を接合する、所謂、摩擦撹拌接合法を応用したものであ
り、あくまでもAl鋳物材を対象とし、当該Al鋳物材
の疲れ強さを高めて耐久性の向上を図るものである。す
なわち、このAl鋳物材の表面改質法によれば、表面を
溶融させて改質する場合に比べて、Al鋳物材の表面部
の金属組織が緻密となり、伸び及び靭性が向上するとと
もに疲れ強さが向上するとされている。また、表面を溶
融させて改質する場合のように、鋳物材の内部ガスがブ
ローホールを形成するような不具合もないとされてい
る。
In this surface modification method according to the prior art, the rotating member is caused to proceed while being brought into contact with the abutting contact portion of the metal member. A so-called friction stir welding method that joins both metal members by causing a plastic state in the metal part in contact with and in the vicinity thereof and solidifying the material part (plastic part) in the plastic state. The purpose is to improve the durability of the Al casting by increasing the fatigue strength of the Al casting. That is, according to the method for modifying the surface of an Al casting material, the metal structure on the surface of the Al casting material becomes denser, the elongation and toughness are improved, and the fatigue strength is higher than when the surface is modified by melting. Is said to improve. Further, unlike the case where the surface is melted and reformed, there is no problem that the internal gas of the casting material forms a blow hole.

【0005】[0005]

【発明が解決しようとする課題】ところで、Mg系やA
l系などの軽金属の成形材を上記半溶融成形法によって
製作した場合、上述のように、高品質の(バリが無く高
精度で均質な)軽金属成形材を得ることができるのであ
るが、この半溶融成形法の場合、液相と固相とが共存し
た半溶融状態で金属溶湯を成形型のキャビティ内に充填
して成形材を得るので、得られた成形材の金属組織は、
通常、基地(液相)中に固相が混在した組織状態を呈し
ている。このような金属組織を有する軽金属合金の半溶
融成形材では、液相部分は金属間化合物が晶出している
のでかなりの硬度を有しているが、固相部分は化学組成
が純粋な軽金属の組成に近いので硬度が低くなる。
Problems to be Solved by the Invention By the way, Mg or A
When a light metal molding such as l-system is manufactured by the above-mentioned semi-solid molding method, as described above, a high-quality (high-precision, uniform without burrs) light metal molding can be obtained. In the case of the semi-solid molding method, the molten metal is filled in the cavity of the mold in a semi-molten state in which a liquid phase and a solid phase coexist to obtain a molding material, so that the metal structure of the obtained molding material is
Usually, it has a tissue state in which a solid phase is mixed in a matrix (liquid phase). In the semi-solid formed material of a light metal alloy having such a metal structure, the liquid phase portion has considerable hardness because the intermetallic compound is crystallized, but the solid phase portion has a chemical composition of pure light metal. Since the composition is close to the composition, the hardness is low.

【0006】従って、固相率がある程度以上の半溶融成
形材の場合、硬度が低い固相部分が一定以上含まれてい
る関係上、部材としての表面硬さが低く、例えば、摺動
部分など、ある程度以上の表面硬さが求められる部分を
有する機械部品や構造部材には適用することができない
という問題があった。特に、Mg及びその合金の場合、
純Mgの硬さが特に(例えば、Alに比して)低いの
で、その半溶融成形材の表面硬さ不足の問題は、とりわ
け顕著であった。尚、このMg及びその合金の場合、発
火点が低いので、Al系合金の場合のように、例えばレ
ーザ光などによるリメルト処理も行なうことができな
い。
Accordingly, in the case of a semi-solid molded material having a solid fraction of a certain degree or more, the surface hardness of the member is low because a solid part having a low hardness is contained in a certain amount or more. However, there is a problem that the method cannot be applied to a mechanical part or a structural member having a portion requiring a certain degree of surface hardness. In particular, in the case of Mg and its alloy,
Since the hardness of pure Mg is particularly low (compared to, for example, Al), the problem of insufficient surface hardness of the semi-solid formed material was particularly remarkable. In the case of Mg and its alloy, since its ignition point is low, it is not possible to perform a remelt treatment using, for example, a laser beam as in the case of an Al-based alloy.

【0007】このため、熱処理により硬度を高めること
が考えられるが、Al系やMg系の軽金属およびその合
金の場合、硬度を高めるためには、溶体化処理後に人工
時効処理を行う、所謂、T6処理が必要とされる。しか
しながら、これら軽金属の半溶融成形材にT6処理を行
った場合、以下のような不利益がある。すなわち、 溶体化処理時に、素材内部に不可避的に含有されて
いたガスに起因する所謂ブリスターが発生し易い。 溶体化処理時に部材に変形が生じ易く、特に、大型
の部材ではその変形が大きくなる。 部分的な硬さ向上のために、部材全体にT6処理を
施す必要があり、特に、大型の部材の場合には不経済で
ある。 従って、Al系やMg系の軽金属およびその合金の半溶
融成形材の場合、その表面硬さ向上のためにT6処理を
施すのは、一般に、好ましくない。
For this reason, it is conceivable to increase the hardness by heat treatment. In the case of an Al-based or Mg-based light metal or an alloy thereof, in order to increase the hardness, an artificial aging treatment is performed after the solution treatment, so-called T6. Processing is required. However, when the T6 treatment is applied to these light metal semi-solid molded materials, there are the following disadvantages. That is, during the solution treatment, so-called blisters are likely to be generated due to the gas inevitably contained in the material. At the time of solution treatment, the members are likely to be deformed, and the deformation is particularly large for large members. In order to partially improve the hardness, it is necessary to perform T6 treatment on the entire member, which is uneconomical particularly for a large member. Therefore, in the case of a semi-solid formed material of an Al-based or Mg-based light metal or an alloy thereof, it is generally not preferable to perform T6 treatment to improve the surface hardness.

【0008】そこで、この発明は、軽金属の半溶融成形
材料で形成された部材について、熱処理を行うことな
く、その表面硬さを高めることができる表面硬化方法、
及びかかる方法で表面を硬化させた半溶融成形材のの硬
化部材を提供することを、基本的な目的としてなされた
ものである。
Accordingly, the present invention provides a surface hardening method capable of increasing the surface hardness of a member formed of a semi-solid molding material of light metal without performing heat treatment.
A basic object of the present invention is to provide a cured member of a semi-solid molded material whose surface is cured by such a method.

【0009】なお、本明細書において、部材の原材料の
金属溶湯について「半溶融状態」とは、基本的には、
「固体状態の原料(固相)と溶融して液体状態となった
原料(液相)とが共存している状態」を言い、通常、原
材料をその融点未満に加熱することによって得られる状
態である。但し、溶湯の温度が実質的にその融点もしく
は融点直上で、固相率が実質的に0(零)%に等しい場
合も、この「半溶融状態」に含まれるものとする。金属
溶湯自体がこのような実質的に固相率0%の場合でも、
現実の半溶融部材の形成工程を考えれば、成形型内への
1回(1ショット)の充填が終って次回(次ショット)
の充填が行われるまでの間に、溶湯供給経路内に残存し
た金属溶湯が冷やされて該供給経路の末端側に凝固部分
(所謂、コールドプラグ)や固相率の高い高固相部分が
生じるので、実際に型内に充填される溶湯には、不可避
的に固相部分が含まれることになる。
In the present specification, the “semi-molten state” of a molten metal as a raw material of a member is basically defined as
A state in which a solid-state raw material (solid phase) and a molten raw material (liquid phase) coexist, and are usually obtained by heating a raw material below its melting point. is there. However, a case where the temperature of the molten metal is substantially at or just above the melting point and the solid phase ratio is substantially equal to 0 (zero)% is also included in the “semi-molten state”. Even when the molten metal itself has such a substantially solid phase ratio of 0%,
Considering the actual process of forming a semi-molten member, one time (one shot) is filled into the mold and the next time (the next shot)
Until the filling is performed, the molten metal remaining in the molten metal supply path is cooled, and a solidified portion (a so-called cold plug) or a high solid phase portion having a high solid fraction is generated at the end of the supply path. Therefore, the molten metal actually filled in the mold inevitably contains a solid phase portion.

【0010】また、本明細書において、「固相」とは
「金属溶湯が半溶融状態である場合において溶融されず
に固体状態を維持している部分」を言い、また、「液
相」とは「完全に溶融されて液体状態となっている部
分」を言うものとする。上記「固相」は、得られた半溶
融成形部材の凝固組織を観察することにより、「半溶融
の金属溶湯状態で溶融されずに固体状態を維持していた
部分」として、「半溶融の金属溶湯状態で完全に溶融さ
れて液体状態となっていた」液相部分とは、容易に識別
することができる。半溶融成形部材について「固相」と
いう場合は、「半溶融の金属溶湯状態で溶融されずに固
体状態を維持していた(固相であった)部分」を言う。
更に、本明細書において、「固相率」とは、「半溶融状
態の金属溶湯において溶湯全体(固相+液相)に対する
固相の割合」を言い、得られた半溶融成形部材の凝固組
織を観察することにより、観察領域全体に対する「固
相」であった部分の割合(面積比率)として、数値的に
求めることができるものである。
[0010] In this specification, the term "solid phase" refers to "a portion of a molten metal that is not melted and remains in a solid state when it is in a semi-molten state". Refers to “a part that is completely melted and is in a liquid state”. By observing the solidified structure of the obtained semi-solid molded member, the “solid phase” is referred to as a “part that has been maintained in a solid state without being molten in a semi-molten molten metal state”, The liquid phase portion, which was completely melted in the molten metal state to be in the liquid state, can be easily identified. The term “solid phase” for a semi-solid molded member refers to a “portion that has been maintained in a solid state without being melted in a semi-molten molten metal (solid phase)”.
Further, in the present specification, the “solid fraction” refers to “the ratio of the solid phase to the entire molten metal (solid phase + liquid phase) in the metal melt in a semi-molten state”. By observing the tissue, the ratio (area ratio) of the portion that was the “solid phase” to the entire observation region can be obtained numerically.

【0011】本願発明者らは、上記の技術的課題に鑑
み、軽合金製の半溶融成形部材の実用的な表面硬化方法
を開発すべく鋭意研究を重ねた結果、軽合金製の半溶融
成形部材の表面部を回転体により摩擦攪拌して凝固させ
ることにより、Т6処理などの熱処理を行なうことな
く、部材表面部の硬さを効果的に高め得ること、また、
この表面硬さ向上の効果は、固相率が一定以上の場合あ
るいはMg系の軽金属材料の場合に、特に大きいことな
どを見出した。
In view of the above technical problems, the inventors of the present application have conducted intensive studies to develop a practical surface hardening method for a semi-solid molded member made of a light alloy. By solidifying the surface of the member by friction stirring with a rotating body, it is possible to effectively increase the hardness of the surface of the member without performing a heat treatment such as # 6 treatment.
It has been found that the effect of improving the surface hardness is particularly large when the solid fraction is equal to or higher than a certain value or when a Mg-based light metal material is used.

【0012】[0012]

【課題を解決するための手段】そこで、本願の請求項1
の発明(以下、第1の発明という)に係る半溶融成形部材
の表面硬化方法は、固相率10%以上の軽金属の半溶融
成形材料で形成された部材の表面に対して回転体を接触
させながら部材表面部に進入させ、該部材表面部を上記
回転体により非溶融状態で撹拌させるようにしたもので
ある。
SUMMARY OF THE INVENTION Therefore, claim 1 of the present application is provided.
The method for hardening a surface of a semi-molten molded member according to the invention (hereinafter referred to as the first invention) comprises contacting a rotating body with a surface of a member formed of a semi-solid molded material of a light metal having a solid phase ratio of 10% or more. The member is caused to enter the surface of the member while being stirred, and the surface of the member is agitated in a non-molten state by the rotating body.

【0013】ここに、軽金属の半溶融成形材料の固相率
の下限値を10%としたのは、固相率がこの値未満の場
合、部材の金属組織の基地と固相との硬度差が比較的小
さく、基地中に固相が混在することによる部材の硬さへ
の影響がもともと比較的小さい(つまり、硬さ不足の度
合いがもともと小さい)ので、表面硬化させることによ
る硬さ向上効果が小さいからである。
The reason why the lower limit of the solid phase ratio of the semi-solid molding material of light metal is set to 10% is that when the solid phase ratio is less than this value, the hardness difference between the base of the metallic structure of the member and the solid phase. Is relatively small, and the effect of the mixture of solid phase in the matrix on the hardness of the member is relatively small (that is, the degree of insufficient hardness is small). Is small.

【0014】また、本願の請求項2に係る発明(以下、
第2の発明という)は、上記第1の発明において、上記
軽金属はMg合金であることを特徴としたものである。
Further, the invention according to claim 2 of the present application (hereinafter referred to as “the invention”)
The second invention) is characterized in that, in the first invention, the light metal is an Mg alloy.

【0015】更に、本願の請求項3に係る発明(以下、
第3の発明という)は、上記第2の発明において、上記
半溶融成形部材は固相率が25%以上の半溶融成形材料
を用いて形成されていることを特徴としたものである。
Further, the invention according to claim 3 of the present application (hereinafter referred to as “the invention”)
A third invention) is characterized in that, in the second invention, the semi-solid molding member is formed using a semi-solid molding material having a solid fraction of 25% or more.

【0016】ここに、上記半溶融成形材料の固相率を2
5%以上としたのは、固相率がこの値以上になると、部
材の金属組織の基地と固相との硬度差が大きく、基地中
に固相が混在することによる部材の硬さへの影響が特に
大きい(つまり、硬さ不足の度合いが特に大きい)の
で、表面硬化させることによって特に大きな硬さ向上効
果が得られるからである。
Here, the solid fraction of the semi-solid molding material is set to 2
The reason that the solid phase ratio is 5% or more is that when the solid phase ratio exceeds this value, the hardness difference between the base of the metal structure of the member and the solid phase is large, and the hardness of the member due to the mixture of the solid phase in the base is reduced. This is because the effect is particularly large (that is, the degree of insufficient hardness is particularly large), so that a particularly large effect of improving the hardness can be obtained by surface hardening.

【0017】また、更に、本願の請求項4に係る発明
(以下、第4の発明という)は、上記第2又は第3の発明
において、上記半溶融成形部材は、固相率が60%以下
の半溶融成形材料を用いて、射出成形法およびダイキャ
スト鋳造法の何れか一方により形成されていることを特
徴としたものである。
Further, the invention according to claim 4 of the present application.
(Hereinafter, referred to as a fourth invention) according to the second or third invention, wherein the semi-solid molding member is formed by injection molding and die casting using a semi-solid molding material having a solid fraction of 60% or less. It is characterized by being formed by one of the casting methods.

【0018】ここに、半溶融成形材料の固相率の上限値
を60%としたのは、固相率がこの値を越えると、材料
の流動性が低下し(換言すれば、湯流れ性が悪くな
り)、射出成形法やダイキャスト鋳造法での部材の製造
が難しくなり、半溶融成形部材の製造に関して実用性が
低くなるからである。
The reason why the upper limit of the solid phase ratio of the semi-solid molding material is set to 60% is that when the solid phase ratio exceeds this value, the fluidity of the material is reduced (in other words, the flowability of the molten metal is reduced). This makes it difficult to produce members by injection molding or die casting, and the practicality of producing semi-solid molded members is reduced.

【0019】また、更に、本願の請求項5に係る発明
(以下、第5の発明という)は、上記第2〜第4の発明の
いずれか一において、上記半溶融成形材料はMgを90
重量%以上含有したMg−Al合金であることを特徴と
したものである。ここに、半溶融成形材料のMg含有量
を90重量%以上としたのは、このMg含有量が多いと
硬さが低下するため、Mg含有量が90重量%未満の合
金に比して、表面硬化による効果の度合いが大きくなる
ことによる。
Further, the invention according to claim 5 of the present application.
(Hereinafter, referred to as a fifth invention) is characterized in that, in any one of the second to fourth inventions, the semi-solid molding material contains Mg by 90%.
It is characterized in that it is a Mg-Al alloy containing at least% by weight. Here, the reason why the Mg content of the semi-solid molding material is set to 90% by weight or more is that, when the Mg content is large, the hardness is reduced, so that the Mg content is less than 90% by weight. This is because the degree of the effect of surface hardening increases.

【0020】また、本願の請求項6に係る発明(以下、
第6の発明という)は、固相率10%以上の軽金属の半
溶融成形材料で形成された部材を基材とし、該基材の表
面に対して回転体を接触させながら基材表面部に進入さ
せ、該基材表面部を上記回転体により非溶融状態で撹拌
させることで、半溶融成形部材の表面部に硬化層が形成
されてなることを特徴としたものである。ここに、軽金
属の半溶融成形材料の固相率の下限値を10%としたの
は、上記第1の発明における場合と同様の理由によるも
のである。
Further, the invention according to claim 6 of the present application (hereinafter referred to as “the invention”)
A sixth aspect of the invention) uses a member formed of a semi-solid molding material of a light metal having a solid phase ratio of 10% or more as a base material, and applies a rotating body to the surface of the base material while applying a rotating body to the surface of the base material. The semi-solid molded member is formed in such a manner that a hardened layer is formed on the surface portion of the semi-molten molded member by entering the substrate and stirring the substrate surface portion in a non-molten state by the rotating body. Here, the lower limit of the solid phase ratio of the semi-solid molding material of light metal is set to 10% for the same reason as in the first invention.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態につい
て、添付図面を参照しながら詳細に説明する。図1及び
図2は、本実施の形態に係る半溶融成形部材の表面硬化
方法を説明するための表面硬化対象部材および摩擦攪拌
処理装置の要部を示す斜視図および断面説明図である。
これらの図に示すように、本実施の形態に係る表面硬化
方法では、表面硬化処理の処理対象たる軽金属の半溶融
成形部材1を基台(不図示)上に載置し固定した状態
で、上記軽金属部材1の表面1fに回転体10を接触さ
せながら部材表面部1fに進入させることによって行わ
れる。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. 1 and 2 are a perspective view and a cross-sectional explanatory view illustrating a surface hardening target member and a main part of a friction stir processing apparatus for explaining a surface hardening method of a semi-solid molded member according to the present embodiment.
As shown in these drawings, in the surface hardening method according to the present embodiment, the semi-solid molded member 1 of light metal to be subjected to the surface hardening treatment is placed and fixed on a base (not shown). This is performed by causing the rotating body 10 to enter the member surface portion 1f while contacting the rotating body 10 with the surface 1f of the light metal member 1.

【0022】上記回転体10は、所定直径の回転可能な
円柱体で成る回転基体部11と、その先端の中央部に一
体的に固着された所定長さで比較的(上記回転基体部1
1よりも)小径の円柱体で成るプローブ部12とで構成
されている。上記回転基体部11は、図示しないホルダ
によって軸線回りに回転自在に支持されており、このホ
ルダ(不図示)を駆動することにより、若しくは基台
(不図示)側を駆動することにより、回転体10を半溶
融成形部材1に対し、その表面1fと直角方向に(つま
り、部材1の深さ方向に)進入させ、また、部材表面1
fに沿って相対的に移動させることができるようになっ
ている。尚、このような回転体10を部材表面1fに沿
って相対移動させる機構は、従来公知のものであるの
で、その構造について詳細な説明および図示は省略す
る。
The rotating body 10 has a rotating base 11 composed of a rotatable cylindrical body having a predetermined diameter, and a relatively fixed length (the rotating base 1) integrally fixed to the center of the tip of the rotating base.
And a probe section 12 formed of a small-diameter cylindrical body. The rotating base portion 11 is rotatably supported around an axis by a holder (not shown), and is driven by driving the holder (not shown) or the base (not shown) to rotate the rotating body. 10 enters the semi-solid molded member 1 in a direction perpendicular to the surface 1f thereof (that is, in the depth direction of the member 1).
It can be relatively moved along f. Since a mechanism for relatively moving the rotating body 10 along the member surface 1f is conventionally known, a detailed description and illustration thereof will be omitted.

【0023】尚、上記回転体10は、図1及び図2に示
されたように、回転基体部11の先端部(下端部)に小
径のプローブ部12を備えたものに限定されるものでは
なく、上記プローブ部12が設けられていないフラット
な(平坦な)下面のものを用いても良い。表面硬化の深
さについて、ある程度の深さまで硬化させることが求め
られる場合には、上記プローブ部12を備えたタイプの
回転体10を用い、余り深くまで硬化させる必要が無い
場合には、プローブ部12が無いタイプの回転体を用い
て効率良く表面硬化処理を行うようにすれば良い。
As shown in FIGS. 1 and 2, the rotating body 10 is not limited to a rotating body 11 provided with a small-diameter probe 12 at the tip (lower end) of a rotating base 11. Instead, a flat (flat) lower surface on which the probe section 12 is not provided may be used. When the surface hardening depth is required to be hardened to a certain depth, a rotating body 10 having the above-described probe portion 12 is used. The surface hardening process may be efficiently performed using a rotating body having no 12.

【0024】本発明方法では、上記軽金属の半溶融成形
部材1の表面1fに対して上記回転体10の下面側(つ
まり、プローブ部12及び回転基体部11下面)を接触
させながら、該回転体10を所定の回転速度で回転させ
た状態で、部材表面部1fに対しその深さ方向へ所定深
さに達するまで進入させる。その際に発生する摩擦熱と
回転体10の撹拌作用により、上記部材表面部1fが非
溶融の塑性状態となり、この塑性状態の表面部分1a
(可塑性部分)が冷却凝固して硬化される。
In the method of the present invention, the lower surface of the rotating body 10 (that is, the lower surface of the probe section 12 and the rotating base section 11) is brought into contact with the surface 1f of the light metal semi-molten molded member 1, While rotating the member 10 at a predetermined rotation speed, the member 10 is made to enter the member surface portion 1f in the depth direction until the member reaches a predetermined depth. Due to the frictional heat generated at that time and the stirring action of the rotating body 10, the member surface portion 1f is brought into a non-melting plastic state, and the surface portion 1a in this plastic state is formed.
The (plastic portion) is cooled and solidified and hardened.

【0025】特に、硬度が低い固相部分については、上
記回転体10の摩擦撹拌作用により、非溶融状態で固相
が分断され、組織が緻密化されるので、従来、組織の基
地中に固相が混在することにより高い硬度を得ることが
できなかった半溶融成形部材について、その表面硬さを
向上させることができるのである。
In particular, as for the solid phase portion having low hardness, the solid phase is divided in a non-molten state by the friction stir action of the rotating body 10 and the tissue is densified. It is possible to improve the surface hardness of a semi-molten molded member that could not obtain high hardness due to the mixture of phases.

【0026】本発明方法による軽金属の半溶融成形部材
の表面硬さ向上の効果を確かめるための確認試験を行っ
た。この確認試験では、表面硬化処理の処理対象たる軽
金属部材1を形成する半溶融成形材料である軽金属とし
て、Mg合金、特にMgを90%以上含有したMg−A
l合金を材料に用い、これを半溶融射出成形法により所
定の成形型内に射出成形して試験サンプルを作成した。
本試験に用いたMg−Al合金の化学組成を表1に示
す。
A confirmation test was conducted to confirm the effect of improving the surface hardness of the semi-solid light metal member according to the method of the present invention. In this confirmation test, as a light metal which is a semi-solid molding material forming the light metal member 1 to be treated for the surface hardening treatment, a Mg alloy, particularly Mg-A containing 90% or more of Mg, is used.
1 alloy was used as a material, and this was injection-molded into a predetermined mold by a semi-solid injection molding method to prepare a test sample.
Table 1 shows the chemical composition of the Mg-Al alloy used in this test.

【0027】[0027]

【表1】 [Table 1]

【0028】尚、上記半溶融射出成形法は、従来の鋳造
法に比べた場合、作業環境面では比較的クリーン(清
浄)で安全性もより高く、また、品質面においても高精
度で均質な軽金属成形品を得ることができるプロセスと
して知られている。また、溶湯温度が低いので、所謂
「バリ」が出にくく高速および/または高圧での射出に
も適しており、生産性の向上を図る上でも有利である。
更に、金属溶湯を半溶融状態として成形キャビティ内に
射出充填することにより、完全に溶解した液相部分中に
未溶解の固相部分が混在した溶湯がそのまま射出充填さ
れるので、層流に近い状態で充填されるようになり、ガ
スの巻き込みに起因するガス欠陥の発生も比較的少なく
て済む。
The semi-solid injection molding method is relatively clean (clean) in terms of working environment and higher in safety than the conventional casting method, and is also highly accurate and uniform in quality. It is known as a process by which light metal moldings can be obtained. Further, since the temperature of the molten metal is low, so-called "burrs" are not easily generated, which is suitable for high-speed and / or high-pressure injection, and is advantageous in improving productivity.
Furthermore, by injecting and filling the molten metal into the molding cavity in a semi-molten state, the molten metal in which the undissolved solid phase portion is mixed in the completely dissolved liquid phase portion is directly injected and filled, so that the flow is close to laminar flow. The gas is filled in a state, and the generation of gas defects due to the entrainment of the gas is relatively small.

【0029】このような半溶融射出成形を適用し、上記
表1に示した化学組成のMg合金材料を用い、固相率を
略4%〜40%の範囲で種々異なるように設定(具体的
には、略4%,25%,30%,40%の固相率にそれ
ぞれ設定)して試験サンプルを作成し、各サンプルにつ
いて上述の本発明方法で表面硬化処理を施した。尚、M
g系合金の場合、例えばAl系合金に比べて、一般に高
温での強度が低いので、本発明の表面硬化方法を適用す
るに際して、より高速での処理が可能である。各サンプ
ルの表面硬さについて、硬化処理前の基地および固相の
硬さを測定しておき、且つ、硬化処理後の表面硬さを測
定してデータを採取した。各試験サンプルについての処
理前および処理後の表面硬さ測定結果を図3に示す。
Applying such semi-solid injection molding, using the Mg alloy material having the chemical composition shown in Table 1 above, the solid phase ratio is set to be variously different in a range of approximately 4% to 40% (specifically, Were set to approximately 4%, 25%, 30%, and 40%, respectively, to prepare test samples, and each sample was subjected to the surface hardening treatment by the method of the present invention described above. Note that M
In the case of a g-based alloy, the strength at a high temperature is generally lower than that of, for example, an Al-based alloy. Therefore, when the surface hardening method of the present invention is applied, processing at a higher speed is possible. Regarding the surface hardness of each sample, the hardness of the matrix and the solid phase before the curing treatment was measured, and the surface hardness after the curing treatment was measured to collect data. FIG. 3 shows the surface hardness measurement results before and after the treatment for each test sample.

【0030】図3の測定結果から良く分かるように、処
理前においては、基地がある程度硬くても、固相の硬さ
はかなり低い。従って、部材全体としての表面硬さ(平
均的なマクロ硬さ)は、基地硬さと固相硬さの間の低い
値のままとなる。特に、基地の硬さは固相率に関係なく
略一定であるのに対して、固相の硬さは、固相率25%
程度までは固相率が大きくなるにつれて急激に低くなっ
ている。
As can be clearly understood from the measurement results shown in FIG. 3, before the treatment, the hardness of the solid phase is considerably low even if the matrix is somewhat hard. Accordingly, the surface hardness (average macro hardness) of the entire member remains at a low value between the matrix hardness and the solid phase hardness. In particular, the hardness of the matrix is substantially constant irrespective of the solid phase ratio, while the hardness of the solid phase is 25%
To the extent, the ratio rapidly decreases as the solid fraction increases.

【0031】そして、基地と固相の硬度差は、固相率が
極く低い領域では小さいが、固相率が次第に大きくなり
略10%程度以上になると、目立って大きくなってく
る。特に、固相率が25%程度までの範囲では、固相の
硬さが急激に且つ著しく低くなるので、基地と固相の硬
度差が非常に大きくなっている。尚、固相率が25%以
上の範囲では、固相の硬さの変化は比較的小さくなって
いる。
The hardness difference between the matrix and the solid phase is small in a region where the solid phase ratio is extremely low, but becomes remarkably large when the solid phase ratio is gradually increased to about 10% or more. In particular, when the solid phase ratio is in the range up to about 25%, the hardness of the solid phase rapidly and remarkably decreases, so that the hardness difference between the matrix and the solid phase is very large. When the solid phase ratio is in the range of 25% or more, the change in hardness of the solid phase is relatively small.

【0032】図3のグラフから明らかなように、本発明
方法に係る表面硬化処理を行うことにより、表面硬度が
確実に向上することが確かめられた。すなわち、本発明
方法の表面硬化処理を施すことにより、半溶融成形部材
の表面硬さは、固相率に関係なく処理前の基地硬さより
も高くなっている。この処理後の表面硬さは略一定に近
い狭い範囲の高い値が得られるので、本発明方法の表面
硬化処理は、処理前の固相の硬度が低い固相率略10%
以上の領域で有効であり、特に、処理前の固相の硬度が
著しく低くなる固相率25%以上の領域でとりわけ効果
的で、高い硬度向上効果が得られる。
As is apparent from the graph of FIG. 3, it was confirmed that the surface hardening treatment according to the method of the present invention reliably improved the surface hardness. That is, by performing the surface hardening treatment of the method of the present invention, the surface hardness of the semi-solid molded member is higher than the base hardness before the treatment irrespective of the solid fraction. Since the surface hardness after the treatment can be a high value in a narrow range close to substantially constant, the surface hardening treatment of the method of the present invention has a low solid phase hardness of approximately 10% before the treatment.
This is effective in the above region, and is particularly effective in the region where the solid phase ratio is 25% or more where the hardness of the solid phase before treatment is extremely low, and a high hardness improving effect is obtained.

【0033】このように、本発明方法の表面硬化処理に
よれば、固相率が略10%以上の半溶融成形部材の表面
硬さ向上に高い効果が得られ、特に、この効果は、表面
硬さ不足が著しい25%以上の高い固相率の半溶融成形
部材で大きくなり、かかる部材について、耐摩耗性が向
上することにより、摺動部分がある機械部品や構造部材
などにも適用することができるようになる。すなわち、
T6処理などの熱処理を施すことなく、表面硬さを有効
に高めて耐摩耗性を向上させることができ、軽金属の半
溶融成形部材の使用上の適用範囲を大幅に拡大すること
ができ。
As described above, according to the surface hardening treatment of the method of the present invention, a high effect can be obtained for improving the surface hardness of a semi-solid molded member having a solid phase ratio of about 10% or more. Insufficient hardness increases in a semi-solid molded member having a high solid phase ratio of 25% or more, and such a member is applied to machine parts and structural members having sliding parts by improving wear resistance. Will be able to do it. That is,
Without applying heat treatment such as T6 treatment, the surface hardness can be effectively increased and the wear resistance can be improved, and the applicable range of the use of the semi-solid molded member of light metal can be greatly expanded.

【0034】上述のように、本発明方法の表面硬化処理
を施した場合、処理前の固相の硬度が著しく低くなる固
相率25%以上の高い固相率の領域で硬さ向上効果が大
きくなるのであるが、この固相率が余りに高く、60%
を越えるようになれば、材料の流動性が低下し(つま
り、湯流れ性が悪くなり)、射出成形法やダイキャスト
鋳造法での部材の製造が難しくなり、部材の製造に関し
て実用性が低くなる。従って、半溶融成形部材の固相率
としては、60%以下であることが好ましい。
As described above, when the surface hardening treatment of the method of the present invention is performed, the effect of improving the hardness is obtained in a region having a high solid fraction of 25% or more where the hardness of the solid phase before treatment is extremely low. This solid phase ratio is too high,
Is exceeded, the fluidity of the material decreases (that is, the fluidity deteriorates), and it becomes difficult to manufacture members by injection molding or die-casting, and the practicality of manufacturing members is low. Become. Therefore, the solid phase ratio of the semi-solid molded member is preferably 60% or less.

【0035】このように、従来、組織の基地中に硬度の
低い固相が混在することにより部材全体として高い硬度
を得ることができなかった半溶融成形部材について、そ
の表面硬さを向上させることができる表面硬さ向上効果
は、上述のように、回転体10による摩擦撹拌作用で部
材(試験サンプル)表面部1fが非溶融の塑性状態とな
り、この塑性状態の表面部分1a(可塑性部分)が冷却
凝固して硬化され、特に、硬度が低い固相部分につい
て、上記回転体10の摩擦撹拌作用により、非溶融状態
で固相が分断され、組織が緻密化されることによるもの
である。
As described above, the surface hardness of a semi-molten molded member which has not been able to obtain a high hardness as a whole due to the presence of a solid phase having a low hardness in the matrix of the tissue has been improved. As described above, the surface hardness 1f of the member (test sample) is brought into a non-melting plastic state by the friction stir action by the rotating body 10 and the surface portion 1a (plastic portion) in this plastic state is formed as described above. This is because the solid phase portion which is hardened by cooling and solidified, and in particular, has a low hardness, is divided in a non-molten state by the friction stir action of the rotating body 10 and the structure is densified.

【0036】図5及び図6は、上記確認試験で得られた
表面硬化処理後の試験サンプルにおける摩擦撹拌部分お
よび該部分と基材部との境界部分の金属組織の顕微鏡写
真で、固相率30%の試験サンプルを例にとって示した
ものである。これらの写真から(特に図6から)良く分
かるように、基材部1bでは、各固相(図5,図6にお
ける白色部分)が明確な形状と大きさをもって基地中に
分散して混在しているのに対して、摩擦撹拌部分1a
(表面硬化部分)では、固相部分が分断されて緻密な組
織になっていることが確かめられた。
FIGS. 5 and 6 are micrographs of the metal structure of the friction stir portion and the boundary portion between the portion and the substrate portion in the test sample after the surface hardening treatment obtained in the above confirmation test. A 30% test sample is shown as an example. As can be clearly understood from these photographs (especially from FIG. 6), in the substrate portion 1b, each solid phase (white portion in FIGS. 5 and 6) is dispersed and mixed in the matrix with a clear shape and size. In contrast, friction stir section 1a
In the (surface hardened portion), it was confirmed that the solid phase portion was divided into a dense structure.

【0037】また、上記表面硬化処理前の基地および固
相の硬さ並びにマクロの硬さを測定しておき、且つ、表
面硬化処理後の上記摩擦撹拌部分1a(表面硬化部分)
の硬さのバラツキを調べた。これらの硬さのバラツキ測
定は、固相率30%の試験サンプルを例にとって行っ
た。表面硬化処理前の基地および固相の硬さ並びにマク
ロの硬さは、それぞれ3箇所の測定点で測定し、また、
それぞれの硬さについて平均値を算出した。この測定結
果を表2に示す。
Further, the hardness of the matrix and the solid phase before the surface hardening treatment and the macro hardness are measured, and the friction stir portion 1a (the surface hardened portion) after the surface hardening treatment is measured.
Was examined for variations in hardness. These hardness variations were measured using a test sample having a solid phase ratio of 30% as an example. The hardness of the matrix and the solid phase before the surface hardening treatment and the hardness of the macro were measured at three measurement points, respectively.
An average value was calculated for each hardness. Table 2 shows the measurement results.

【0038】[0038]

【表2】 [Table 2]

【0039】この表2の測定結果から良く分かるよう
に、表面硬化処理前では、基地部と固相部の硬さの差が
非常に大きく(最大でHv29,平均値でHv22)、
マクロの硬さは、これらの間で固相部の硬さの方に近い
値を示している。すなわち、表面硬化処理前において
は、基地がある程度硬くても、固相の硬さはかなり低
く、部材全体としての表面硬さ(マクロ硬さ)は、基地
硬さと固相硬さの間の低い値のままであることが確かめ
られた。
As can be clearly seen from the measurement results in Table 2, before the surface hardening treatment, the difference between the hardness of the base portion and the hardness of the solid portion was very large (Hv 29 at the maximum, Hv 22 at the average).
The macro hardness shows a value closer to the hardness of the solid phase portion between them. That is, before the surface hardening treatment, even if the matrix is hard to some extent, the hardness of the solid phase is considerably low, and the surface hardness (macro hardness) of the entire member is low between the matrix hardness and the solid phase hardness. It was confirmed that the value remained.

【0040】また、表面硬化処理後の摩擦撹拌部分1a
(表面硬化部分)の硬さは、図4に示すように、表面硬
化処理をしていない基材部分1bと硬化部分1aとの境
界部の極く近傍を始点(測定部位1)とし、ここから図
4における矢印方向へ所定間隔(100μm間隔)で測
定部位15のポイントまで測定した。その測定結果を表
3に示す。
Further, the friction stir section 1a after the surface hardening treatment
As shown in FIG. 4, the hardness of the (surface hardened portion) is defined as a starting point (measurement site 1) immediately near the boundary between the base portion 1 b not subjected to the surface hardening treatment and the hardened portion 1 a. 4 in the direction of the arrow in FIG. 4 at predetermined intervals (100 μm intervals) up to the point of the measurement site 15. Table 3 shows the measurement results.

【0041】[0041]

【表3】 [Table 3]

【0042】表3の測定結果から良く分かるように、表
面硬化処理後の摩擦撹拌部分1a(表面硬化部分)の硬
さは、基材部分1bとの境界部の近傍部位(測定部位1
及び2)を除けばバラツキが小さく(最大でHv1
3)、また、上記境界部の近傍部位での硬さ値の落ち込
みが小さく、このような近傍部位を含めてもバラツキは
比較的小さい(最大でHv17)。すなわち、本発明方
法の表面硬化処理によれば、軽金属の半溶融成形部材の
表面硬さを、安定して(バラツキを小さくして)確実に
高めることができることが確認できた。
As can be clearly seen from the measurement results in Table 3, the hardness of the friction stir portion 1a (the surface hardened portion) after the surface hardening treatment is determined in the vicinity of the boundary with the base material portion 1b (the measurement portion 1).
And 2), the variation is small (Hv1 at maximum).
3) In addition, the drop in the hardness value in the vicinity of the boundary is small, and even when such a vicinity is included, the variation is relatively small (Hv17 at the maximum). That is, it was confirmed that according to the surface hardening treatment of the method of the present invention, the surface hardness of the semi-solid molded member of the light metal can be increased stably (with less variation).

【0043】以上のように、本実施の形態に係る表面硬
化方法によれば、軽金属としてのMg合金(特に、Mgを
90重量%以上含有したMg−Al合金)の半溶融成形
材料で形成された部材1を基材とし、該基材の表面に対
して回転体10を接触させながら基材表面部1fに進入
さる際に発生する摩擦熱と回転体10の撹拌作用によ
り、基材表面1fおよびその近傍の軽金属材料に非溶融
の塑性状態が生じ、この塑性状態の表面部分1a(可塑
性部分)が冷却凝固して硬化されることによって、基材
表面部分1aの硬さが高められる。特に、硬度が低い固
相部分について、上記回転体10の摩擦攪拌作用により
非溶融状態で固相が分断され、組織が緻密化されて部材
表面部分1aの硬さが高められる。すなわち、熱処理を
施すことなく、半溶融成形部材1の表面部1fに硬化層
1aを形成することができる。
As described above, according to the surface hardening method according to the present embodiment, a semi-solid molding material of a Mg alloy (particularly, an Mg-Al alloy containing 90% by weight or more of Mg) as a light metal is used. The frictional heat generated when the rotating member 10 enters the substrate surface portion 1f while the rotating member 10 is in contact with the surface of the substrate and the stirring operation of the rotating member 10 is used as the base material 1f. In addition, a non-melting plastic state is generated in the light metal material in the vicinity thereof, and the surface portion 1a (plastic portion) in the plastic state is cooled and solidified and hardened, thereby increasing the hardness of the substrate surface portion 1a. In particular, the solid phase portion having a low hardness is cut off in a non-molten state by the friction stir action of the rotating body 10, the structure is densified, and the hardness of the member surface portion 1 a is increased. That is, the cured layer 1a can be formed on the surface portion 1f of the semi-solid molded member 1 without performing heat treatment.

【0044】特に、固相率10%以上でその表面硬さの
不足が顕著なMg合金製の半溶融成形部材1について、
熱処理を施すことなく、表面硬さが有効に高められて耐
摩耗性が向上する。その結果、かかるMg合金製の半溶
融成形部材1を摺動部分がある機械部品や構造部材にも
適用することが可能となり、その適用範囲を大幅に拡大
することができるのである。
In particular, regarding the semi-solid molded member 1 made of an Mg alloy whose solid phase ratio is 10% or more and whose surface hardness is remarkably insufficient,
Without heat treatment, the surface hardness is effectively increased and the wear resistance is improved. As a result, it becomes possible to apply the semi-solid molded member 1 made of Mg alloy to a mechanical part or a structural member having a sliding portion, and the application range can be greatly expanded.

【0045】尚、以上の説明は、表面硬化処理の処理対
象部材を形成する半溶融成形材料である軽金属として、
Mgを90重量%以上含有したMg−Al合金を用い、
これを半溶融射出成形法により所定の成形型内に射出成
形するようにしたものであったが、本発明は、かかる場
合に限定されるものではなく、上記軽金属として、他の
種類のMg合金、更には、例えばAl系合金など、他の
種類の軽金属を用いることができる。また、半溶融成形
部材の製造法としては、上記半溶融射出成形法に限ら
ず、例えばダイキャスト鋳造などの鋳造法を用いること
もできる。
In the above description, the light metal that is a semi-solid molding material forming the member to be subjected to the surface hardening treatment is described.
Using an Mg-Al alloy containing 90% by weight or more of Mg,
This was injection-molded into a predetermined molding die by a semi-solid injection molding method, but the present invention is not limited to such a case, and other types of Mg alloy as the light metal may be used. Further, other types of light metals such as an Al-based alloy can be used. In addition, the method of manufacturing the semi-solid molded member is not limited to the above-described semi-solid injection molding method, and for example, a casting method such as die casting can be used.

【0046】このように、本発明は、上述の実施態様に
限定されるものではなく、その要旨を逸脱しない範囲に
おいて、種々の改良あるいは設計上の変更等が可能であ
ることは言うまでもない。
As described above, the present invention is not limited to the above-described embodiment, and it goes without saying that various improvements or design changes can be made without departing from the gist of the present invention.

【0047】[0047]

【発明の効果】本願の第1の発明に係る半溶融成形部材
の表面硬化方法によれば、軽金属の半溶融成形材料で形
成された部材の表面を硬化させるに際し、該部材の表面
に対して回転体を接触させながら部材表面部に対し進入
させる際に発生する摩擦熱と回転体の撹拌作用により、
部材表面およびその近傍の軽金属材料に非溶融の塑性状
態が生じ、この塑性状態の表面部分(可塑性部分)が冷
却凝固して硬化される。特に、硬度が低い固相部分につ
いて、上記回転体の摩擦攪拌作用により非溶融状態で固
相を分断することができ、組織を緻密化して部材表面部
分の硬さを高めることができる。これにより、特に、固
相率10%以上でその表面硬さの不足が顕著な軽金属の
半溶融成形材料で形成された部材について、熱処理を施
すことなく、表面硬さを有効に高めて耐摩耗性を向上さ
せることができる。その結果、軽金属の半溶融成形材を
摺動部分がある機械部品や構造部材にも適用することが
できるようになる。
According to the method for hardening the surface of a semi-solid molded member according to the first invention of the present application, when the surface of a member formed of a semi-solid molded material of light metal is hardened, the surface of the member is hardened. Due to frictional heat generated when the rotating body enters the surface of the member while making contact with the rotating body and the stirring action of the rotating body,
A non-melting plastic state occurs in the light metal material on the surface of the member and in the vicinity thereof, and the surface portion (plastic portion) in the plastic state is cooled and solidified and hardened. In particular, the solid phase portion having a low hardness can be separated in a non-molten state by the friction stir action of the rotating body, and the structure can be densified to increase the hardness of the member surface portion. This makes it possible to effectively increase the surface hardness of a member formed of a semi-solid molding material of a light metal having a solid phase ratio of 10% or more and whose surface hardness is remarkably insufficient, without performing heat treatment, and thereby achieving abrasion resistance. Performance can be improved. As a result, the semi-solid molded material of light metal can be applied to mechanical parts and structural members having sliding parts.

【0048】本願の第2の発明によれば、上記軽金属は
Mg合金であるので、表面硬さ不足が特に顕著なMg合
金系の半溶融成形材について、上記第1の発明と同様の
効果を奏することができ、Mg合金系半溶融成形材の適
用範囲を大幅に拡大することが可能になる。
According to the second aspect of the present invention, since the light metal is an Mg alloy, the same effect as in the first aspect can be obtained for an Mg alloy-based semi-molten molded material having a particularly remarkable surface hardness. Therefore, the range of application of the Mg alloy-based semi-solid molded material can be greatly expanded.

【0049】本願の第3の発明によれば、上記半溶融成
形部材は固相率が25%以上の半溶融成形材料を用いて
形成されている場合について、上記第2の発明と同様の
効果を奏することができる。とりわけ、部材の金属組織
の基地中に固相が混在することによる部材の硬さへの影
響が特に大きくなる(つまり、硬さ不足の度合いが特に
大きくなる)固相率25%以上の場合について、特に大
きな表面硬さ向上効果を得ることができる。
According to the third invention of the present application, the same effect as in the second invention is obtained when the semi-solid molding member is formed using a semi-solid molding material having a solid phase ratio of 25% or more. Can be played. In particular, the case where the solid phase is mixed in the matrix of the metal structure of the member has a particularly large influence on the hardness of the member (that is, the degree of insufficient hardness is particularly large) and the solid phase ratio is 25% or more. In particular, a large surface hardness improving effect can be obtained.

【0050】また、更に、本願の第4の発明によれば、
基本的には、上記第2又は第3の発明と同様の効果を奏
することができる。特に、半溶融成形材料の固相率を6
0%以下としたことにより、半溶融成形材料の流動性が
確保でき(換言すれば、湯流れ性が確保でき)、射出成
形法やダイキャスト鋳造法にて良好に部材の製造を行え
るので、部材の製造に関して充分な実用性を確保するこ
とができる。
Further, according to the fourth invention of the present application,
Basically, the same effect as the second or third invention can be obtained. In particular, the solid fraction of the semi-solid molding material is set to 6
By setting the content to 0% or less, the fluidity of the semi-solid molding material can be secured (in other words, the fluidity of the molten metal can be secured), and the member can be favorably manufactured by injection molding or die casting. Sufficient practicality can be ensured for the production of the member.

【0051】また、更に、本願の第5の発明によれば、
特に、Mgを90重量%以上含有したMg−Al合金の
半溶融成形材料を用いて部材を形成する場合について、
上記第2〜第4の発明のいずれか一と同様の効果を奏す
ることができる。通常、Mg含有量が多いと硬さが低下
するため、特に、半溶融成形材料のMg含有量を90重
量%以上としたことにより、Mg含有量が90重量%未
満の合金に比して、表面硬化による効果の度合いが大き
くなる。
Further, according to the fifth invention of the present application,
In particular, when a member is formed using a semi-solid molding material of an Mg-Al alloy containing 90% by weight or more of Mg,
The same effect as any one of the second to fourth inventions can be obtained. Usually, since the hardness decreases when the Mg content is large, the Mg content of the semi-solid molding material is set to 90% by weight or more, so that the Mg content is less than 90% by weight. The degree of effect due to surface hardening increases.

【0052】また、本願の第6の発明によれば、軽金属
の半溶融成形材料で形成された部材を基材とし、該基材
の表面に対して回転体を接触させながら基材表面部に進
入さる際に発生する摩擦熱と回転体の撹拌作用により、
基材表面およびその近傍の軽金属材料に非溶融の塑性状
態が生じ、この塑性状態の表面部分(可塑性部分)が冷
却凝固して硬化されることによって、基材表面部分の硬
さが高められている。特に、硬度が低い固相部分につい
て、上記回転体の摩擦攪拌作用により非溶融状態で固相
が分断され、組織が緻密化されて部材表面部分の硬さが
高められている。すなわち、熱処理を施すことなく、半
溶融成形部材の表面部に硬化層が形成されている。特
に、固相率10%以上でその表面硬さの不足が顕著な軽
金属の半溶融成形材料で形成された部材について、熱処
理を施すことなく、表面硬さが有効に高められて耐摩耗
性が向上する。その結果、軽金属の半溶融成形材を摺動
部分がある機械部品や構造部材にも適用することが可能
となる。
According to the sixth aspect of the present invention, a member formed of a semi-solid molding material of a light metal is used as a base material, and a rotating body is brought into contact with the surface of the base material to form a base member on the base material surface. Due to the frictional heat generated when entering and the stirring action of the rotating body,
A non-melting plastic state occurs in the base metal surface and in the vicinity of the light metal material, and the surface part (plastic part) in the plastic state is cooled and solidified and hardened, thereby increasing the hardness of the base material surface part. I have. In particular, the solid phase portion having a low hardness is divided in a non-molten state by the friction stir action of the rotating body, and the structure is densified, thereby increasing the hardness of the member surface portion. That is, the cured layer is formed on the surface of the semi-solid molded member without performing the heat treatment. In particular, for a member formed of a semi-solid molding material of light metal whose solidity ratio is 10% or more and whose surface hardness is remarkably insufficient, the surface hardness is effectively increased without heat treatment and the wear resistance is improved. improves. As a result, it is possible to apply the semi-solid molded material of light metal to mechanical parts and structural members having sliding parts.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態に係る半溶融成形部材の
表面硬化方法を説明するための表面硬化対象部材および
摩擦攪拌処理装置の要部を示す斜視図である。
FIG. 1 is a perspective view showing a surface hardening target member and a main part of a friction stir processing apparatus for explaining a surface hardening method of a semi-solid molded member according to an embodiment of the present invention.

【図2】 上記表面硬化対象部材および摩擦攪拌処理装
置の要部を示す断面説明図である。
FIG. 2 is an explanatory cross-sectional view showing a main part of the surface hardening target member and a friction stir processing apparatus.

【図3】 上記実施の形態に係る半溶融成形部材の表面
硬化方法で表面硬化処理された試験サンプルの硬度測定
結果を示すグラフである。
FIG. 3 is a graph showing a hardness measurement result of a test sample surface-hardened by the surface hardening method for a semi-solid molded member according to the embodiment.

【図4】 上記試験サンプルの摩擦攪拌部分の硬さのバ
ラツキの測定データに対する測定ポイントを示す試験サ
ンプル要部の断面説明図である。
FIG. 4 is an explanatory cross-sectional view of a relevant part of a test sample, showing measurement points for measurement data of the variation in hardness of a friction stir portion of the test sample.

【図5】 上記実施の形態に係る半溶融成形部材の表面
硬化方法で表面硬化処理された試験サンプルにおける摩
擦攪拌部分の金属組織の顕微鏡写真である。
FIG. 5 is a photomicrograph of a metal structure of a friction stir portion in a test sample surface-hardened by the surface hardening method for a semi-solid molded member according to the embodiment.

【図6】 上記試験サンプルにおける摩擦攪拌部分と基
材部との境界部分の金属組織の顕微鏡写真である。
FIG. 6 is a micrograph of a metal structure of a boundary portion between a friction stir portion and a substrate portion in the test sample.

【符号の説明】[Explanation of symbols]

1…半溶融成形部材 1a…摩擦攪拌部分(表面硬化部分) 1b…基材部分 10…回転体 11…回転基体部 12…プローブ部 DESCRIPTION OF SYMBOLS 1 ... Semi-solid molding member 1a ... Friction stir part (surface hardened part) 1b ... Base part 10 ... Rotating body 11 ... Rotating base part 12 ... Probe part

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4E067 AA06 AC00 BG00 DA10 EA00 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4E067 AA06 AC00 BG00 DA10 EA00

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 固相率10%以上の軽金属の半溶融成形
材料で形成された部材の表面に対して回転体を接触させ
ながら部材表面部に進入させ、該部材表面部を上記回転
体により非溶融状態で撹拌させることを特徴とする半溶
融成形部材の表面硬化方法。
1. A rotating body is brought into contact with a surface of a member formed of a semi-solid molding material of light metal having a solid phase ratio of 10% or more while being in contact with the surface of the member. A method for hardening a surface of a semi-molten molded member, wherein the method comprises stirring in a non-molten state.
【請求項2】 上記軽金属はMg合金であることを特徴
とする請求項1記載の半溶融成形部材の表面硬化方法。
2. The method according to claim 1, wherein the light metal is a Mg alloy.
【請求項3】 上記半溶融成形部材は、固相率が25%
以上の半溶融成形材料を用いて形成されていることを特
徴とする請求項2に記載の半溶融成形部材の表面硬化方
法。
3. The semi-solid molded member has a solid phase ratio of 25%.
The method for hardening a surface of a semi-solid molded member according to claim 2, wherein the method is formed using the semi-solid molded material.
【請求項4】 上記半溶融成形部材は、固相率が60%
以下の半溶融成形材料を用いて、射出成形法およびダイ
キャスト鋳造法の何れか一方により形成されていること
を特徴とする請求項2または請求項3に記載の半溶融成
形部材の表面硬化方法。
4. The semi-solid molded member has a solid phase ratio of 60%.
The method for hardening a surface of a semi-solid molded member according to claim 2 or 3, wherein the semi-solid molded member is formed by one of an injection molding method and a die casting method using the following semi-solid molding material. .
【請求項5】 上記半溶融成形材料はMgを90重量%
以上含有したMg−Al合金であることを特徴とする請
求項2〜請求項4のいずれか一に記載の半溶融成形部材
の表面硬化方法。
5. The semi-solid molding material contains 90% by weight of Mg.
The method according to any one of claims 2 to 4, wherein the Mg-Al alloy contains the above.
【請求項6】 固相率10%以上の軽金属の半溶融成形
材料で形成された部材を基材とし、該基材の表面に対し
て回転体を接触させながら基材表面部に進入させ、該基
材表面部を上記回転体により非溶融状態で撹拌させるこ
とで、半溶融成形部材の表面部に硬化層が形成されてな
ることを特徴とする表面硬化部材。
6. A member formed of a semi-solid molding material of a light metal having a solid phase ratio of 10% or more is used as a base material, and is made to enter a base material surface portion while a rotating body is in contact with the surface of the base material. A surface-hardened member, wherein a hardened layer is formed on the surface of a semi-solid molded member by stirring the surface of the substrate in a non-molten state by the rotating body.
JP2001099344A 2001-03-30 2001-03-30 Surface hardening method for half molten forming member and surface hardening member by the method Pending JP2002292461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001099344A JP2002292461A (en) 2001-03-30 2001-03-30 Surface hardening method for half molten forming member and surface hardening member by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001099344A JP2002292461A (en) 2001-03-30 2001-03-30 Surface hardening method for half molten forming member and surface hardening member by the method

Publications (1)

Publication Number Publication Date
JP2002292461A true JP2002292461A (en) 2002-10-08

Family

ID=18952892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001099344A Pending JP2002292461A (en) 2001-03-30 2001-03-30 Surface hardening method for half molten forming member and surface hardening member by the method

Country Status (1)

Country Link
JP (1) JP2002292461A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105463353A (en) * 2015-11-23 2016-04-06 哈尔滨工业大学 Method for manufacturing fine-grain magnesium alloy block through friction stir treatment
CN116198196A (en) * 2023-03-21 2023-06-02 合肥联宝信息技术有限公司 Composite board, manufacturing method and device thereof and packaging cotton structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105463353A (en) * 2015-11-23 2016-04-06 哈尔滨工业大学 Method for manufacturing fine-grain magnesium alloy block through friction stir treatment
CN116198196A (en) * 2023-03-21 2023-06-02 合肥联宝信息技术有限公司 Composite board, manufacturing method and device thereof and packaging cotton structure

Similar Documents

Publication Publication Date Title
US7509993B1 (en) Semi-solid forming of metal-matrix nanocomposites
Balasubramanian et al. Effect of inclusion of SiC particulates on the mechanical resistance behaviour of stir-cast AA6063/SiC composites
TWI307368B (en) Near liquidus injection molding process
CN108570571A (en) Sliding material and its manufacturing method and sliding component and bearing arrangement
JP4672202B2 (en) Rotating tool, member processing method and surface processing method using the rotating tool
JP4685933B2 (en) Manufacturing method of salt core for casting and salt core for casting
TW201636436A (en) Method for producing complex formed castings and casting consisting of an AlCu alloy
CA2485828C (en) Process for injection molding semi-solid alloys
Mahmoud et al. Effect of tool rotational and welding speeds on microstructural and mechanical characteristics of friction stir welded A319 cast Al alloy
JP2003035198A (en) Piston for internal combustion engine and method of manufacturing the same
CN110430962A (en) Friction welded method
KR20040022416A (en) Friction stirring surface treatment method and apparatus
JP2002292461A (en) Surface hardening method for half molten forming member and surface hardening member by the method
JP2000197956A (en) Manufacture for forging light metal-made blank and manufacture of forged member using this blank
JP4710190B2 (en) Surface treatment method and surface treatment apparatus
JP2000312981A (en) Coating method of cylinder inner face
JP5455009B2 (en) Tool steel surface treatment method and tool steel surface-treated by the method
JP2003048084A (en) Rotary tool and manufacturing method thereof, and treatment method using the rotary tool
JP3603658B2 (en) Manufacturing method of forged member
JP3551121B2 (en) Manufacturing method of light metal moldings
Talebi et al. Friction stir extrusion and mechanical alloying of LM13 casting ingot to produce LM28 tubes
JP3370009B2 (en) Manufacturing method of magnesium alloy member
JP2001182609A (en) Method of manufacturing cylinder head
JP2003010958A (en) Mold for die cast molding, die cast molding method, and molded product
JP2003048060A (en) Surface treating tool and surface treating method using this tool