JP2002291487A - Cocculaurine-n-methyl transferase - Google Patents

Cocculaurine-n-methyl transferase

Info

Publication number
JP2002291487A
JP2002291487A JP2001226075A JP2001226075A JP2002291487A JP 2002291487 A JP2002291487 A JP 2002291487A JP 2001226075 A JP2001226075 A JP 2001226075A JP 2001226075 A JP2001226075 A JP 2001226075A JP 2002291487 A JP2002291487 A JP 2002291487A
Authority
JP
Japan
Prior art keywords
cnmt
enzyme
methyltransferase
leu
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001226075A
Other languages
Japanese (ja)
Other versions
JP4568833B2 (en
Inventor
Fumihiko Sato
文彦 佐藤
Kinfu Sai
琴富 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2001226075A priority Critical patent/JP4568833B2/en
Publication of JP2002291487A publication Critical patent/JP2002291487A/en
Application granted granted Critical
Publication of JP4568833B2 publication Critical patent/JP4568833B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of efficiently producing an isoquinoline alkaloid useful as a drug using cocculaurine-N-methyl transferase(CNMT). SOLUTION: N-methyl cocculaurine and/or various kinds of alkaloids biosynthesized from the N-methyl cocculaurine are produced by using CNMT being N-methyl cocculaurine biosynthetic enzyme.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、N-メチルコクラウ
リンの生合成酵素であるコクラウリン-N-メチルトラン
スフェラーゼ(以下「CNMT」と略記することがある)、
該酵素をコードするDNA該DNAを用いて、N-メチルコ
クラウリンおよび/またはこのN-メチルコクラウリンか
ら生合成される各種アルカロイド、ならびにCNMTによっ
て生成するN-メチル化化合物を製造する方法に関する。
TECHNICAL FIELD [0001] The present invention relates to cochraulin-N-methyltransferase (hereinafter sometimes abbreviated as "CNMT"), which is an N-methylcoclaurine biosynthesis enzyme.
The present invention relates to a method for producing N-methylcoclaurin and / or various alkaloids biosynthesized from the N-methylcoclaurin and an N-methylated compound produced by CNMT using the DNA.

【0002】[0002]

【従来の技術】ベルベリンは、イソキノリンアルカロイ
ドに分類される植物二次代謝産物の一種で、キンポウゲ
科のセリバオウレン(Coptis japonica Makino var. Di
ssecta(Yatabe) Nakai)やアキカラマツ(Thalictrum mi
nus var. hypolencum)、ミカン科のキハダ(Phelloden
dron amurense Rupr) 、メギ科のセイヨウメギ(Berber
is wilsoniae)などによって産生され、抗菌、健胃、抗
炎症活性を持つ。現在のところ、ベルベリンは前記植物
種を始めとするベルベリン含有植物天然品からの抽出に
よって製造されており、また当該植物の培養細胞を用い
た工業的な製造法が研究されている [K. Matsubara et
al., J. Chem. Tech. Biotechnol. 46,61-69 (1989)]
。バイオテクノロジーを応用する素材として、またア
ルカロイド生合成の代謝制御に関する基本的な興味か
ら、培養細胞におけるベルベリン生合成は酵素レべルで
よく研究されている[T. M. Kutchan, In The alkaloid
s. Vol 50(G. Cardell, ed.), San Diego, Academic Pr
ess, pp257-316(1998); F. Sato et al., Phytochemist
ry 32, 659-664 (1993); F. Sato et al., European Jo
urnal of Biochemistry 225, 125-131 (1994)]。ベルベ
リンは、チロシンを生合成における出発化合物とし、
(S)-ノルコクラウリンを経由して13段階の異なる酵素反
応により生合成される(図1)。この13段階の反応に
は、1つのN-メチルトランスフェラーゼ(NMT) [T. Fren
zel and M. H. Zenk, Phytochemistry 29, 3491-3497
(1990); C. K. Wat and M. H. Zenk, Zeitschrift fuer
Naturforschung 41c, 126-134(1986)]、3つのO-メチル
トランスフェラーゼ(OMTs)[M. Ruffer et al., Planta
Medica 49, 131-137 (1983); S. Muemmler et al., Pla
nt Cell Reports 4, 36-39(1985); T. Frenzel and M.
H. Zenk, Phytochemistry 29, 3505-3511 (1990);F. Sa
to etal., Phytochemistry 32, 659-664 (1993); F. Sa
to, et al. European Journal of Biochemistry 225, 1
25-131 (1994)]、1つのハイドロキシラーゼ[S. Loeffle
r and M. H. Zenk, Phytochemistry 29, 3499-3503 (19
90)]、1つのベルベリン架橋酵素[P.Steffens et al.,
Tetrahedron Letters 25, 951-952(1984)]、1つのメチ
レンジオキシ環形成酵素[M. Rueffer and M. H. Zenk,
Tetrahedron Letters 26, 201-202 (1985)]、1つのテト
ラヒドロプロトベルベリンオキシダーゼ[Y. Yamada and
N. Okada, Phytochemistry 24, 63-65 (1985); E. Gal
nder et al., Plant Cell Reports 7, 1-4 (1988)]が含
まれる。しかしながら、これら酵素のうち高度に精製さ
れ、その酵素学的性質が明らかにされたものは、6-O-メ
チルトランスフェラーゼ[M. Ruffer et al., Planta Me
dica 49, 131-137 (1983); F. Sato, et al. European
Journal of Biochemistry 225, 125-131(1994)]、3'-ハ
イドロキシ-N-メチルコクラウリン 4'-O-メチルトラン
スフェラーゼ[T. Frenzel and M. H. Zenk, Phytochemi
stry 29, 3505-3511 (1990)]、(S)-スコウレリン 9-O-
メチルトランスフェラーゼ[F. Sato et al., Phytoche
mistry 32, 659-664 (1993)]の3種にすぎない。これら
生合成に関わる酵素群の酵素学的性質、さらには該酵素
遺伝子を明らかにし、バイオテクノロジーを応用するこ
とは、ファインケミカルズの生物変換する上で有用であ
る。しかしながらベルベリン生合成経路上の酵素精製に
おける困難な点は、これら酵素の反応メカニズムや基質
が似ているために、それぞれの酵素の特性が類似してい
ることにある。
BACKGROUND ART Berberine is a kind of secondary metabolite of a plant classified as an isoquinoline alkaloid, and ceribauren (Coptis japonica Makino var. Di.
ssecta (Yatabe) Nakai) and Japanese larch (Thalictrum mi)
nus var. hypolencum), yellow citrus (Phelloden)
dron amurense Rupr), Barberry (Berber)
is wilsoniae) and has antibacterial, stomachic and anti-inflammatory activities. At present, berberine is produced by extraction from berberine-containing plant natural products such as the above plant species, and an industrial production method using cultured cells of the plant is being studied [K. Matsubara et
al., J. Chem. Tech. Biotechnol. 46,61-69 (1989)]
. Berberine biosynthesis in cultured cells has been well studied at the enzyme level as a source of biotechnology and because of the fundamental interest in the metabolic regulation of alkaloid biosynthesis [TM Kutchan, In The alkaloid
s. Vol 50 (G. Cardell, ed.), San Diego, Academic Pr
ess, pp257-316 (1998); F. Sato et al., Phytochemist
ry 32, 659-664 (1993); F. Sato et al., European Jo
urnal of Biochemistry 225, 125-131 (1994)]. Berberine uses tyrosine as a starting compound in biosynthesis,
It is biosynthesized through 13 different enzymatic reactions via (S) -norcoclaurin (FIG. 1). One N-methyltransferase (NMT) [T. Fren
zel and MH Zenk, Phytochemistry 29, 3491-3497
(1990); CK Wat and MH Zenk, Zeitschrift fuer
Naturforschung 41c, 126-134 (1986)], three O-methyltransferases (OMTs) [M. Ruffer et al., Planta
Medica 49, 131-137 (1983); S. Muemmler et al., Pla
nt Cell Reports 4, 36-39 (1985); T. Frenzel and M.
H. Zenk, Phytochemistry 29, 3505-3511 (1990); F. Sa
to etal., Phytochemistry 32, 659-664 (1993); F. Sa
to, et al. European Journal of Biochemistry 225, 1
25-131 (1994)], one hydroxylase [S. Loeffle
r and MH Zenk, Phytochemistry 29, 3499-3503 (19
90)] One berberine cross-linking enzyme [P. Steffens et al.,
Tetrahedron Letters 25, 951-952 (1984)], one methylenedioxy ring-forming enzyme [M. Rueffer and MH Zenk,
Tetrahedron Letters 26, 201-202 (1985)], one tetrahydroprotoberberine oxidase [Y. Yamada and
N. Okada, Phytochemistry 24, 63-65 (1985); E. Gal
nder et al., Plant Cell Reports 7, 1-4 (1988)]. However, among these enzymes, those highly purified and whose enzymological properties were revealed were 6-O-methyltransferase [M. Ruffer et al., Planta Me
dica 49, 131-137 (1983); F. Sato, et al. European
Journal of Biochemistry 225, 125-131 (1994)], 3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase [T. Frenzel and MH Zenk, Phytochemi
stry 29, 3505-3511 (1990)], (S) -Skourelin 9-O-
Methyltransferase [F. Sato et al., Phytoche
mistry 32, 659-664 (1993)]. It is useful to clarify the enzymological properties of the enzymes involved in biosynthesis and the enzyme genes and to apply biotechnology in the bioconversion of fine chemicals. However, the difficulty in purifying enzymes on the berberine biosynthetic pathway lies in the fact that the characteristics of the enzymes are similar due to the similar reaction mechanisms and substrates of these enzymes.

【0003】メチルトランスフェラーゼcDNAの単離およ
びこれらの大腸菌における発現に関する最近の研究は、
O-メチルトランスフェラーゼに関する更なる情報を供給
している[Frick et al.,Plant J. 17(4), 329-339(199
9); Morishige et al., J. Biol. Chem. 275(30), 2339
8-23405 (2000)]。しかしながら、ベルベリン生合成に
おけるユニークなN-メチルトランスフェラーゼであるコ
クラウリン N-メチルトランスフェラーゼに関してはほ
とんど報告がない。N-メチルトランスフェラーゼでは、
ニコチン生合成でのプトレシン N-メチルトランスフェ
ラーゼのみがよく研究されており、cDNAが単離されてい
る[N. Hibi et al., Plant Cell 6, 723-735(1994)]。
ベルベリン生合成のN-メチル化反応を触媒するCNMTは、
S-アデノシル-L-メチオニン(以下「SAM」と略記する)
をメチル基供与体として(S)-コクラウリンのアミノ基を
メチル化し、N-メチルコクラウリンを生成する酵素であ
る。本酵素と同じ反応を触媒する酵素がメギ科Berberis
koeineanaから既に単離されており、その酵素学的性質
が調べられているが [T. Frenzel and M. H. Zenk,Phyt
ochemistry 29, 3491-3497 (1990)]、本酵素はノルラウ
ダノソリン、6,7-ジメトキシ-1,2,3,4-テトラハイ
ドロイソキノリン、メチル-6,7-ジヒドロキシ-1,2,
3,4-テトラハイドロイソキノリンは基質として認識さ
れず、そのN-メチル化反応を触媒しない。一方、オウレ
ン細胞由来CNMTの単離精製、酵素化学的性質および該酵
素遺伝子に関しては、それを解明しようとする研究はこ
れまでのところ全くなかった。
Recent studies on the isolation of methyltransferase cDNAs and their expression in E. coli have
It provides further information on O-methyltransferase [Frick et al., Plant J. 17 (4), 329-339 (199
9); Morishige et al., J. Biol. Chem. 275 (30), 2339
8-23405 (2000)]. However, there are few reports on cokraulin N-methyltransferase, a unique N-methyltransferase in berberine biosynthesis. In N-methyltransferase,
Only putrescine N-methyltransferase in nicotine biosynthesis has been well studied and cDNA has been isolated [N. Hibi et al., Plant Cell 6, 723-735 (1994)].
CNMT, which catalyzes the N-methylation reaction of berberine biosynthesis,
S-adenosyl-L-methionine (hereinafter abbreviated as "SAM")
Is an enzyme that methylates the amino group of (S) -coclaurine using N as a methyl group donor to produce N-methylcoclaurine. Berberis is an enzyme that catalyzes the same reaction as this enzyme
It has already been isolated from koeineana and its enzymatic properties have been investigated [T. Frenzel and MH Zenk, Phyt
ochemistry 29, 3491-3497 (1990)], and the enzyme is norlaudanosoline, 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline, methyl-6,7-dihydroxy-1,2,
3,4-Tetrahydroisoquinoline is not recognized as a substrate and does not catalyze its N-methylation reaction. On the other hand, there has been no research to elucidate the isolation, purification, enzymatic chemical properties and gene of CNMT derived from spinach cells.

【0004】[0004]

【発明が解決しようとする課題】本発明は、CNMTを用い
て、医薬品として有用なイソキノリンアルカロイドを効
率よく生産することを目的とする。また、CNMTをコード
するDNAをクローン化し、その塩基配列を決定し、更に
クローン化した組換えDNAを発現させた細胞を用いてCNM
T、該酵素をコードするDNAおよびN-メチルコクラウリン
および/またはこのN-メチルコクラウリンから生合成さ
れる各種アルカロイド、さらにはCNMTによって触媒され
る種々のN-メチル化化合物を製造することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to efficiently produce isoquinoline alkaloids useful as pharmaceuticals by using CNMT. In addition, DNA encoding CNMT was cloned, its nucleotide sequence was determined, and CNM was performed using cells in which the cloned recombinant DNA was expressed.
T, production of DNA encoding the enzyme and N-methylcoclaurine and / or various alkaloids biosynthesized from this N-methylcoclaurin, and various N-methylated compounds catalyzed by CNMT. Aim.

【0005】[0005]

【課題を解決するための手段】本発明者らは、誠意研究
の結果、オウレンの培養細胞からCNMTの酵素活性(ノル
レティクリンとS-アデノシルメチオニンからのレティク
リンの生成)を指標にCNMTの単離精製を試み、硫安沈殿
および各種カラムクロマトグラフィーにより、およそ34
0倍に精製した酵素を疎抽出液の1%の収量で得た(表
1)。本精製酵素の酵素学的性質を調べたところ、オウ
レン培養細胞から得られたCNMTは、Berberisから単離さ
れたCNMTでは酵素反応の基質とならなかったノルラウダ
ノソリン、6,7-ジメトキシ-1,2,3,4-テトラハイド
ロイソキノリン、メチル-6,7-ジヒドロキシ-1,2,3,
4-テトラハイドロイソキノリンについても基質として利
用され、メチル化反応が触媒されることから、Berberis
からのCNMTに比べて基質特異性が低く、より多くの化合
物をメチル化できることを確認した。また、本酵素のN
末端アミノ酸配列ならびに発明者がこれまでに解析して
きたオウレンのコドンの使用頻度を手がかりとして、PC
R法によりCNMT cDNAをクローニングした。本cDNAの全長
ORFを大腸菌発現ベクターに組込み、形質転換して機能
解析をした結果、該大腸菌においてノルレティクリンと
S-アデノシルメチオニンからのレティクリンの生成、す
なわちN-メチルトランスフェラーゼ活性が認められたこ
とから、本cDNAがCNMTをコードしていることを確認し
た。
Means for Solving the Problems As a result of sincerity research, the present inventors found that CNMT enzyme activity (production of reticuline from norreticulin and S-adenosylmethionine) from cultured cells of spinach was used as an index. Isolation and purification were attempted, and ammonium sulfate precipitation and various column chromatography
A 0-fold purified enzyme was obtained in a yield of 1% of the sparse extract (Table 1).
1). The enzymological properties of this purified enzyme were examined. CNMT obtained from cultured spinach cells showed that norlaudanosoline, 6,7-dimethoxy-, which did not serve as a substrate for the enzymatic reaction in CNMT isolated from Berberis. 1,2,3,4-tetrahydroisoquinoline, methyl-6,7-dihydroxy-1,2,3,
4-Tetrahydroisoquinoline is also used as a substrate and catalyzes the methylation reaction.
Substrate specificity was lower than that of CNMT, and it was confirmed that more compounds could be methylated. In addition, the N
Based on the terminal amino acid sequence and the frequency of use of the codons of ours, which we have analyzed so far,
The CNMT cDNA was cloned by the R method. Full length of this cDNA
The ORF was incorporated into an Escherichia coli expression vector, transformed, and analyzed for function.
Generation of reticuline from S-adenosylmethionine, that is, N-methyltransferase activity was confirmed, confirming that the present cDNA encodes CNMT.

【0006】すなわち、本発明の第1の態様は、コクラ
ウリンN-メチルトランスフェラーゼの酵素活性を有し、
更にはノルラウダノソリン、6,7-ジメトキシ-1,2,
3,4-テトラハイドロイソキノリン、メチル-6,7-ジヒ
ドロキシ-1,2,3,4-テトラハイドロイソキノリンなど
のイソキノリンとともにフェニールエタノールアミンな
どのフェノールアミンを含む広範な化合物群を酵素反応
の基質としてメチル化反応を触媒する酵素および/また
は配列番号1に記載のアミノ酸配列を含むポリペプチド
である。また、第2の態様は、CNMT酵素活性を有するポ
リペプチドをコードするヌクレオチド配列を含むDNAお
よび/または配列番号1に記載のアミノ酸配列を含むポ
リペプチドをコードするヌクレオチド配列を含むDNAで
あり、配列番号1に記載のヌクレオチド配列を含むDNA
が挙げられる。本発明の第3の様態は、第2の様態に記
載のDNAを含むベクターである。本発明の第4の様態
は、上記ベクターで形質転換された細胞である。また、
本発明の第5の様態は、上記形質転換細胞を用いて、植
物二次代謝産物を製造する方法である。この植物二次代
謝産物はN-メチルコクラウリンから生合成されるアルカ
ロイドならびにCNMTによって生成するN-メチル化化合物
であってもよい。
That is, a first aspect of the present invention has an enzyme activity of coclaurin N-methyltransferase,
Further, norlaudanosoline, 6,7-dimethoxy-1,2,
A wide range of compounds, including isoquinolines such as 3,4-tetrahydroisoquinoline and methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, and phenolamines such as phenylethanolamine, as substrates for enzyme reactions An enzyme that catalyzes a methylation reaction and / or a polypeptide comprising the amino acid sequence of SEQ ID NO: 1. Further, a second embodiment is a DNA comprising a nucleotide sequence encoding a polypeptide having CNMT enzyme activity and / or a DNA comprising a nucleotide sequence encoding a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 1. DNA comprising the nucleotide sequence of No. 1
Is mentioned. A third aspect of the present invention is a vector comprising the DNA according to the second aspect. A fourth aspect of the present invention is a cell transformed with the above vector. Also,
A fifth aspect of the present invention is a method for producing a secondary metabolite of a plant using the above transformed cell. This secondary plant metabolite may be an alkaloid biosynthesized from N-methylcoclaurine as well as N-methylated compounds produced by CNMT.

【0007】[0007]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明者らは、ベルベリン型アルカロイド産生植物の一
つであるオウレンの培養細胞からCNMTを単離したが、SA
Mをメチル基供与体としてコクラウリンをN-メチルコク
ラウリンに変換する反応を有する植物であれば、本発明
のCNMTと実質的に同一の酵素が含まれていると推測さ
れ、本明細書に記載の方法を用いればそれら植物からで
も、本発明のCNMTと実質的に同一のを単離することがで
きる。SAMをメチル基供与体としてコクラウリンをN-メ
チルコクラウリンに変換する反応を有する植物として
は、セリバオウレンなどのキンポウゲ科Coptis属植物、
アキカラマツなどのキンポウゲ科Thalictrum属植物、キ
ハダなどのミカン科Phellodendron 属植物、セイヨウメ
ギなどのメギ科Berberis属植物、ケシなどのケシ科Papa
ver属植物などを例示することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The present inventors isolated CNMT from cultured cells of spinach, which is one of the berberine-type alkaloid-producing plants, but SA
Any plant having a reaction of converting coclaurine to N-methylcoclaurin using M as a methyl group donor is presumed to contain substantially the same enzyme as the CNMT of the present invention, and is described herein. By using the method described above, substantially the same CNMT of the present invention can be isolated from these plants. Plants having a reaction of converting cocolaurine to N-methylcoclaurin as a SAM as a methyl group donor include plants of the genus Coptis belonging to the family Ranunculaceae such as Seribaouren,
Rutaceae Thalictrum genus plants such as Japanese larch, Rutaceae Phellodendron genus plants such as yellowfin, Barberry Berberis genus plants such as barberry, and poppies Papa such as poppies
Examples include plants of the genus ver.

【0008】さらに、本発明のCNMTは、表2および図2
に示したようにコクラウリンの他にもノルラウダノソリ
ンやノルレティクリンといった構造類似化合物をもメチ
ル化することができるので、前記の植物種以外であって
もこれらコクラウリンの構造類似化合物を含む植物であ
れば、本発明の方法を適用することができる。
Further, the CNMT of the present invention is shown in Table 2 and FIG.
As shown in the above, since structurally similar compounds such as norlaudanosoline and norreticulin can also be methylated in addition to coclaurin, plants containing these structurally similar compounds of coclaurine even if they are other than the above plant species If so, the method of the present invention can be applied.

【0009】[0009]

【表1】 セリバオウレン CNMTの基質特異性 ─────────────────────────────────── 基質 比活性 ─────────────────────────────────── (R)-コクラウリン 122 (S)-コクラウリン 100 (R,S)-ノルレティクリン 55 (R,S)-ノルラウダノソリン 48 (R,S)-6-O-メチルノルラウダノソリン 38 (R,S)-スコーレリン 0 6,7-ジメトキシ-1,2,3,4-テトラヒドロイソキノリン 39 1,2,3,4-テトラヒドロイソキノリン 0 1-メチル-6,7-ジヒドロキシ-1,2,3,4-テトラヒドロイソキノリン 10 1,2,3,4-テトラヒドロ-3-イソキノリンカルボン酸 0 (+)-エメチン 0 ─────────────────────────────────── なお、酵素学的な検討の結果、本発明にかかるCNMTは以下の基本的性質を有す ることが明らかになっている。 ─────────────────────────────────── 4量体 分子量:160,000(ゲル濾過クロマトグラフィー) サブユニットの分子量:45,000(SDS/PAGE) 等電点:4.2(Mono-P) 至適pH:7.0 Km値(図3): 0.65 mM(S-アデノシル-L-メチオニン) 0.38 mM((R,S)-ノルレティクリン) 阻害剤(表3):Co2+, Cu2+, Mn2+ 反応機構(図4):典型的ミカエルス-メンテン型 ────────────────────────────────────[Table 1] Substrate specificity of Seribaouren CNMT ─────────────────────────────────── Substrate specific activity ── ───────────────────────────────── (R) -Cokraurin 122 (S) -Cokraurin 100 (R, S) -Norreticulin 55 (R, S) -Norlaudanosoline 48 (R, S) -6-O-Methylnorlaudanosoline 38 (R, S) -Scorelin 0 6,7-Dimethoxy-1,2 , 3,4-tetrahydroisoquinoline 39 1,2,3,4-tetrahydroisoquinoline 0 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline 10 1,2,3,4-tetrahydro- 3-isoquinolinecarboxylic acid 0 (+)-emetine 0 ─────────────────────────────────── Enzyme As a result of a chemical study, it was found that the CNMT according to the present invention has the following basic properties. It has become. ─────────────────────────────────── tetramer molecular weight: 160,000 (gel filtration chromatography) Molecular weight: 45,000 (SDS / PAGE) Isoelectric point: 4.2 (Mono-P) Optimum pH: 7.0 Km value (Fig. 3): 0.65 mM (S-adenosyl-L-methionine) 0.38 mM ((R, S)- Norreticulin) Inhibitor (Table 3): Co 2+ , Cu 2+ , Mn 2+ Reaction mechanism (Fig. 4): Typical Michaels-Menten type ─────────────── ─────────────────────

【0010】次に、CNMTをコードするcDNAを単離し、そ
の塩基配列を決定した。まず、ベルベリン高生産オウレ
ン培養細胞から単離精製したCNMT標品のN末端アミノ酸
配列を決定し、この配列に対する縮重プライマーを用い
て、アルカロイド高生産オウレン培養細胞cDNAライブ
ラリーを鋳型としたPCR法により、このアミノ酸配列に
相当するcDNAを増幅、単離し、この塩基配列を決定し
た。更に、決定した内部塩基配列より設計したプライマ
ーとcDNAライブラリーのアダプター領域に対するプラ
イマーを利用したPCR法により、本酵素のC末端及びN末
端部分に相当する塩基配列を得たことで、全長塩基配列
を決定した。本cDNAの全長のORFを大腸菌発現ベクター
に組込み、大腸菌に形質転換して機能解析を行った結
果、該大腸菌において本来存在しないN-メチルトランス
フェラーゼ活性が認められたことから、本cDNAがN-メチ
ルトランスフェラーゼをコードしていることを確認し
た。また、本組換え酵素は、単離精製したCNMTが有する
上記基質に対するN-メチルトランスフェラーゼ活性に加
え、4-O-メチルドーパミンやノルエピネフリンなどをN
-メチル化する活性を弱いながら有していた。
Next, cDNA encoding CNMT was isolated and its nucleotide sequence was determined. First, the N-terminal amino acid sequence of a CNMT sample isolated and purified from cultured berberine-producing spinach cells was determined, and a degenerate primer for this sequence was used to perform PCR using the alkaloid-producing spinach cultured cell cDNA library as a template. The cDNA corresponding to this amino acid sequence was amplified and isolated, and its nucleotide sequence was determined. Furthermore, by obtaining a nucleotide sequence corresponding to the C-terminal and N-terminal portions of the enzyme by PCR using a primer designed from the determined internal nucleotide sequence and a primer for the adapter region of the cDNA library, the full-length nucleotide sequence was obtained. It was determined. The full-length ORF of the present cDNA was integrated into an E. coli expression vector, and transformed into E. coli.Functional analysis revealed that N-methyltransferase activity, which was not originally present in the E. coli, was confirmed. It was confirmed that it encodes transferase. In addition, the present recombinant enzyme has an N-methyltransferase activity for the above-mentioned substrate possessed by the isolated and purified CNMT, and additionally has 4-O-methyldopamine and norepinephrine.
-Has weak methylating activity.

【0011】[0011]

【実施例】以下、実施例により本発明を更に具体的に説
明するが、本発明の範囲はこれらの実施例に限定される
ものではない。 [実施例1]CNMTの抽出、精製 まず、セリバオウレンからベルベリン高産生培養細胞を
以下のようにして誘導した。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to Examples, but the scope of the present invention is not limited to these Examples. [Example 1] Extraction and purification of CNMT First, high-cultured berberine-producing cultured cells were derived from seribaouren as follows.

【0012】セリバオウレンの葉および葉柄を、70%エ
タノールおよびアンチホルミン溶液で殺菌した後、切片
を作成し、10-5M αナフタレン酢酸および10-8M 6-ベ
ンジルアデニンを含むリンスマイヤー・スクーグの寒天
培地に床置し、25℃、暗所で培養した。培養開始後3週
間目頃から、当該切片の切り口に生じた黄色カルスを採
取して、前記と同様の寒天培地に移植しさらに増殖を図
った。こうして得られたカルスを前記と同様の組成の液
体培地に懸濁し、前記と同じく25℃、暗所で、旋回型の
ロータリーシェーカーを用いて100rpmで振盪培養し、2
〜3週間毎に移植を繰り返した。
After sterilizing the leaves and petiole of the squirrel spinach with 70% ethanol and antiformin solution, sections were prepared and rinsed with Rinsmeier Skoog containing 10 −5 M α-naphthaleneacetic acid and 10 −8 M 6-benzyladenine. The plate was placed on an agar medium and cultured at 25 ° C. in a dark place. About three weeks after the start of the culture, yellow calli generated at the cut end of the section were collected, transplanted to the same agar medium as described above, and further grown. The callus thus obtained was suspended in a liquid medium having the same composition as described above, and cultured at 25 ° C in the same manner as described above in the dark at 100 rpm using a rotary rotary shaker for shaking.
The transplant was repeated every ~ 3 weeks.

【0013】得られた液体培養細胞は、直径が数十μm
〜数mmの細胞塊からなるので、これら細胞塊を単位とし
て、ベルベリン高生産株の選抜を実施した。すなわち、
細胞塊の一部を前記の寒天培地上に均一に広げて培養
し、各細胞塊からコロニーを増殖させた。得られたコロ
ニーを同じ寒天培地に個別に増殖させ、その一方で液体
クロマトグラフィーを用いてベルベリンの含有量を測定
し、含有量の高いものを高生産細胞として選抜し、この
系統をあらたな親株として液体培養、次いで前記操作に
よる選抜を繰り返し、高生産株を得た。
The obtained liquid culture cells have a diameter of several tens μm.
Since the cells consist of cell clusters of a few mm in diameter, a berberine high-producing strain was selected using these cell clusters as a unit. That is,
A part of the cell mass was uniformly spread on the agar medium and cultured, and colonies were grown from each cell mass. The obtained colonies were individually grown on the same agar medium, while the content of berberine was measured using liquid chromatography, and those with a high content were selected as high-producing cells, and this strain was used as a new parent strain. , And the selection by the above operation was repeated to obtain a high production strain.

【0014】このベルベリン高産生培養細胞を10μMの
α- ナフタレン酢酸と0.01μMの6-ベンジルアデニンを
含むリンスマイヤー・スクーグの液体培地で3週間ごと
に継代し、25℃、暗所で、旋回型のロータリーシェーカ
ーを用いて100rpmで振盪培養した。培養14日目の細胞を
収穫し、直ちに液体窒素中で凍結後、−80℃で保存し
た。
The berberine high-producing cultured cells are subcultured every three weeks in a Linsmeier Skoog liquid medium containing 10 μM α-naphthaleneacetic acid and 0.01 μM 6-benzyladenine, and swirled at 25 ° C. in the dark. The cells were cultured with shaking at 100 rpm using a rotary shaker. Cells were harvested on day 14 of culture, immediately frozen in liquid nitrogen, and stored at -80 ° C.

【0015】この細胞を用いてCNMTの単離精製を実施し
た。特に断らない限り、全ての操作は0-4℃で行われ、
全ての緩衝液に20mMのβ-メルカプトエタノールと10%
グリセロールを添加した。約200gの凍結オウレン培養
細胞を、450mlの0.2Mトリス塩酸緩衝液中で、ワーリン
グブレンダーを用いて最高速度で2分間破砕し、その後2
0分間超音波処理を行って、酵素を抽出した。懸濁物を
濾過し、濾液を10000×gで50分間遠心分離した。上清を
NAP-10カラム(Parmacia社)で脱塩し、疎抽出液とした。
酵素は30-50%飽和の硫安で沈殿させた。沈殿した蛋白を
60mlの抽出緩衝液に溶解し、遠心した。蛋白溶液はPD-1
0カラム(Pharmacia社)で脱塩し、初動緩衝液(30%硫安
を含む200mMトリス塩酸緩衝液(pH7.5))で平衡させたフ
ェニルセファロースCL-4Bカラムにのせた。黄色のアル
カロイドを除去するために、同じ緩衝液で十分にカラム
を洗浄した後、CNMTは120mlの30%から0%の直線的グラ
ジエントをかけた硫安溶液で溶出した。CNMTフラクショ
ンを、200mMトリス塩酸緩衝液(pH7.5)で予め平衡させた
Q-Sepharose FF カラム(Pharmacia社)によるイオン交換
クロマトグラフィーにかけた。カラムを同じ緩衝液で洗
浄した後、CNMTを120mlの0から0.5Mの直線的グラジエ
ントをかけた塩化ナトリウム溶液で溶出した。活性フラ
クションを集め、脱塩し、20mMトリス塩酸緩衝液(pH7.
5)で予め平衡させたMono-Qカラム(HR5/5、Pharmacia社)
によるFPLCシステムで精製した。CNMTは40mlの0から0.
35Mのグラジエントをかけた塩化ナトリウム溶液で段階
的に溶出した。更に活性フラクションを集め、Mono-Pカ
ラム(HR5/5、Pharmacia社)によるFPLCシステムでのクロ
マトフォーカシングした(初動緩衝液;25mM Bis Tris
-イミノ二酢酸緩衝液( pH7.1)、溶出緩衝液;イミノ二
酢酸でpH4に調製した10%ポリ緩衝液74)。溶出したフ
ラクションのpHは直ちに、100mMトリス塩酸緩衝液(pH
7.5)で調整した。精製された酵素は50%グリセロール
中、-20℃で保存した。尚、凍結融解のくり返しによりC
NMT活性はかなり減少したことから、融解したサンプル
については再凍結を行わなかった。精製酵素は50%グリ
セロール中、-20℃で保存した場合、1年後でもCNMT活性
を保持していた。また、全てのFPLCステップは室温で実
施した。
Using these cells, CNMT was isolated and purified. Unless otherwise noted, all operations are performed at 0-4 ° C,
20 mM β-mercaptoethanol and 10% in all buffers
Glycerol was added. Approximately 200 g of frozen cultured spinach cells were disrupted in 450 ml of 0.2 M Tris-HCl buffer using a Waring blender at maximum speed for 2 minutes, followed by 2 min.
The enzyme was extracted by sonication for 0 minutes. The suspension was filtered and the filtrate was centrifuged at 10,000 xg for 50 minutes. Supernatant
Desalting was performed using a NAP-10 column (Parmacia) to obtain a sparse extract.
The enzyme was precipitated with 30-50% saturated ammonium sulfate. The precipitated protein
Dissolved in 60 ml of extraction buffer and centrifuged. Protein solution is PD-1
The mixture was desalted with a 0 column (Pharmacia) and loaded on a phenyl sepharose CL-4B column equilibrated with an initial buffer (200 mM Tris-HCl buffer containing 30% ammonium sulfate (pH 7.5)). After thoroughly washing the column with the same buffer to remove yellow alkaloids, CNMT was eluted with 120 ml of a 30% to 0% linear gradient ammonium sulfate solution. CNMT fraction was pre-equilibrated with 200 mM Tris-HCl buffer (pH 7.5)
The sample was subjected to ion exchange chromatography using a Q-Sepharose FF column (Pharmacia). After washing the column with the same buffer, the CNMT was eluted with 120 ml of a 0 to 0.5 M linear gradient of sodium chloride solution. The active fractions were collected, desalted and 20 mM Tris-HCl buffer (pH 7.
Mono-Q column pre-equilibrated in 5) (HR5 / 5, Pharmacia)
On an FPLC system. CNMT is 40ml 0 ~ 0.
Elution was performed stepwise with a 35M gradient of sodium chloride solution. Further, active fractions were collected and chromatofocused on an FPLC system using a Mono-P column (HR5 / 5, Pharmacia) (initial buffer: 25 mM Bis Tris).
-Iminodiacetic acid buffer (pH 7.1), elution buffer; 10% poly buffer 74 adjusted to pH 4 with iminodiacetic acid 74). The pH of the eluted fraction was immediately adjusted to 100 mM Tris-HCl buffer (pH
Adjusted in 7.5). The purified enzyme was stored at -20 ° C in 50% glycerol. In addition, due to repeated freezing and thawing, C
Thawed samples were not re-frozen because NMT activity was significantly reduced. When the purified enzyme was stored in 50% glycerol at -20 ° C, it retained CNMT activity even after one year. All FPLC steps were performed at room temperature.

【0016】CNMT活性の測定は以下条件で行った。表2
に精製過程をまとめた。 ───────────────────────────── アッセイ溶液 ノルレティクリン 0.1mM SAM(S-アデノシル-L-メチオニン) 1 mM アスコルビン酸ナトリウム 25 mM カリウム-リン酸緩衝液(pH7.0) 100 mM 酵素液 20μl 計 50μl 酵素反応条件 温度 :30℃ 時間 :60分間 反応停止 :50μlのメタノール添加 HPLC分析条件 サンプル:上記反応液を4℃、10000×gで50分間遠心した上清 カラム :LiChrosper 100RP-18(250mm×4mm, Cica Merck) 検出 :UV 280 nm 流速 :1.0 ml/min 移動相 :22%アセトニトリル+1%酢酸 ─────────────────────────────
The CNMT activity was measured under the following conditions. Table 2
The purification process is summarized below.ア ッ セ イ Assay solution Norreticulin 0.1 mM SAM (S-adenosyl-L-methionine) 1 mM ascorbic acid Sodium 25 mM potassium-phosphate buffer (pH 7.0) 100 mM enzyme solution 20 μl Total 50 μl Enzyme reaction conditions Temperature : 30 ° C. Time : 60 min Stop reaction : Add 50 μl methanol HPLC analysis conditions Sample : Supernatant centrifuged at 10,000 × g for 50 minutes Column: LiChrosper 100RP-18 (250 mm × 4 mm, Cica Merck) Detection: UV 280 nm Flow rate: 1.0 ml / min Mobile phase: 22% acetonitrile + 1% acetic acid 酢 酸─────────────────────────

【0017】[0017]

【表2】 [Table 2]

【0018】[実施例2] CNMTの酵素特性 コクラウリンN-メチルトランスフェラーゼが高純度で精
製され、酵素特性が調べられたのは、これが始めてであ
る。SDS-PAGE分析でのCNMTモノマーの分子量は45kDaで
あった。一方、Superose 12カラムでのゲル濾過クロマ
トグラフィーでは、天然のCNMTの分子量は約160kDaであ
った。これらの結果より、CNMTは4量体の酵素である。M
ono-Pカラムでのクロマトフォーカシングより、CNMTの
等電点は4.2であった。酵素活性の至適pHは7.0であり、
50%活性のpHは6.0と9.0であった。CNMTは活性発現に2価
カチオンを必要とせず、EDTA添加はCNMTの活性を阻害し
なかった(表3)。5mMのCo2+、Cu2+、Mn2+の添加は、
活性をそれぞれ、75、47、57%阻害した。いくつかのO-
メチルトランスフェラーゼ活性を阻害するSH-阻害剤で
あるp-クロロメリクリベンゾエイトとヨードアセタミド
は、5mMではCNMT活性を阻害しなかった。
Example 2 Enzyme Properties of CNMT It is the first time that coclaurine N-methyltransferase was purified with high purity and its enzyme properties were examined. The molecular weight of the CNMT monomer in SDS-PAGE analysis was 45 kDa. On the other hand, gel filtration chromatography on a Superose 12 column revealed that the molecular weight of native CNMT was about 160 kDa. From these results, CNMT is a tetrameric enzyme. M
The isoelectric point of CNMT was 4.2 from the chromatofocusing on the ono-P column. The optimum pH for enzyme activity is 7.0,
The pH at 50% activity was 6.0 and 9.0. CNMT did not require divalent cations for activity expression and EDTA addition did not inhibit CNMT activity (Table 3). The addition of 5 mM Co 2+ , Cu 2+ , Mn 2+
The activity was inhibited by 75, 47 and 57%, respectively. Some O-
The SH-inhibitors p-chloromericuribenzoate and iodoacetamide, which inhibit methyltransferase activity, did not inhibit CNMT activity at 5 mM.

【0019】[0019]

【表3】 [Table 3]

【0020】[実施例3] CNMTの基質特異性 広範囲のイソキノリンアルカロイドにおいて、酵素の基
質特性を調べた。酵素活性は、S-adenosyl-L-[methyl-3
H] methionineから生成物への放射能の編入を測定し
た。以下の条件で酵素反応を行った。 ───────────────────────────── アッセイ溶液 基質 1 mM [methyl-3H]SAM(7.4dpm/μmol) 1 mM アスコルビン酸ナトリウム 25 mM カリウム-リン酸緩衝液(pH7.0) 100 mM 酵素液 20μl 計 50μl 酵素反応条件 温度 :30℃ 時間 :20分間 ───────────────────────────── 酵素反応後、150μlの炭酸2ナトリウムと400μlのイソ
アミルアルコールを添加して反応を停止した。激しく混
合した後、室温、10000×gで5分間遠心し、150μlの有
機層を取り、放射能を測定した。酵素液の入っていない
アッセイ溶液をコントロールとして用いた。
Example 3 Substrate Specificity of CNMT The substrate characteristics of the enzyme were examined for a wide range of isoquinoline alkaloids. Enzyme activity is S-adenosyl-L- [methyl- 3
The incorporation of radioactivity from the [H] methionine into the product was measured. The enzyme reaction was performed under the following conditions. ───────────────────────────── assay solution Substrate 1 mM [methyl- 3 H] SAM (7.4dpm / μmol) 1 mM ascorbic Sodium acid 25 mM potassium-phosphate buffer (pH 7.0) 100 mM enzyme solution 20 μl Total 50 μl Enzyme reaction conditions Temperature : 30 ℃ Time : 20 minutes ─────────────────後 After the enzymatic reaction, the reaction was stopped by adding 150 μl of disodium carbonate and 400 μl of isoamyl alcohol. After mixing vigorously, the mixture was centrifuged at 10,000 xg for 5 minutes at room temperature, and 150 µl of the organic layer was removed and the radioactivity was measured. An assay solution containing no enzyme solution was used as a control.

【0021】結果を表1に示す。(S)-コクラウリンの活
性を100%とした場合、(R)-コクラウリン、ノルレティ
クリン、ノルラウダノソリンおよび6-O-メチルノルラウ
ダノソリンの比活性はそれぞれ、122%、55%、48%、
および38%であった。興味深いことに、6,7-ジメトキシ
-1,2,3,4-テトラヒドロイソキノリンは39%の比活性で
メチル化されたが、1,2,3,4-テトラヒドロイソキノリン
はメチル化されなかった。オウレンのCNMTは、かなり広
い範囲の基質にメチル基を転移し、立体特異性を示さな
かった。
The results are shown in Table 1. Assuming that the activity of (S) -coclaurine is 100%, the specific activities of (R) -coclaurine, norreticulin, norlaudanosoline and 6-O-methylnorlaudanosoline are 122%, 55%, 48%,
And 38%. Interestingly, 6,7-dimethoxy
-1,2,3,4-tetrahydroisoquinoline was methylated with a specific activity of 39%, whereas 1,2,3,4-tetrahydroisoquinoline was not methylated. Our CNMT transferred methyl groups to a fairly wide range of substrates and showed no stereospecificity.

【0022】オウレンCNMTの基質特異性は、Berberisの
N-メチルトランスフェラーゼの基質特異性とよく似てお
り、どちらの酵素も立体特異性を示さず、それぞれ(R)-
コクラウリン、(S)-コクラウリン、ノルレティクリン、
6-O-メチルノルラウダノソリンに広い基質特異性を示
す。しかし、オウレンのCNMTはノルラウダノソリンをN-
メチル化するが、BerberisのN-メチルトランスフェラー
ゼはノルラウダノソリンをN-メチル化しない。オウレン
由来CNMTは、Berberis由来CNMTに比べ、より広い基質特
異性を持つ。
The substrate specificity of Ouren CNMT is as described by Berberis.
Very similar to the substrate specificity of N-methyltransferase, neither enzyme shows stereospecificity and (R)-
Kokraulin, (S) -kokraulin, norreticulin,
Shows a wide substrate specificity for 6-O-methylnorlaudanosoline. However, Ourn's CNMT converts norlaudanosoline to N-
Although methylated, Berberis N-methyltransferase does not N-methyl norlaudanosoline. Spinach-derived CNMT has a wider substrate specificity than Berberis-derived CNMT.

【0023】[実施例4]CNMTの酵素動力学 CNMTの最適基質は(R)-コクラウリンであるが、CNMTの酵
素特異性を調べるのには、最も利用しやすいノルレティ
クリンを用いた。オウレン細胞のCNMTは、ノルレティク
リンとSAMとでミカエルス-メンテン型の動力学を示し
た。見かけのKm値は,ノルレティクリンが0.38mM、SAM
が0.68mMであった。これは、BerberisのCNMTのKm値(ノ
ルレティクリンで0.02mM、SAMで0.04mM)[T. Frenzel a
nd M. H. Zenk, Phytochemistry 29, 3491-3497 (199
0)]やSanguinariaのCNMTのKm値((R,S)-テトラヒドロベ
ルベリンで0.02mM、SAMで0.012mM)[B. R. O'keefe and
C. W.W. Beecher, Plant Physiology, 105, 395-403
(1994)]よりもやや大きいが、ノルコクラウリン6-O-メ
チルトランスフェラーゼのKm値((R,S)-ノルラウダノソ
リンで2.23mM、SAMで3.95mM)[F. Sato, et al. Europe
an Journal of Biochemistry, 225, 125-131(1994)]よ
りも小さい。
[Example 4] Enzyme kinetics of CNMT The optimal substrate of CNMT is (R) -coclaurin, but the most available norreticulin was used to examine the enzyme specificity of CNMT. Our cell CNMT showed Michaels-Menten type kinetics with norreticulin and SAM. Apparent Km value is 0.38 mM for norreticulin, SAM
Was 0.68 mM. This is due to the Km value of the Berberis CNMT (0.02 mM for norreticulin, 0.04 mM for SAM) [T. Frenzel a
nd MH Zenk, Phytochemistry 29, 3491-3497 (199
0)] and the Sanguinaria CNMT Km value (0.02 mM for (R, S) -tetrahydroberberine, 0.012 mM for SAM) [BR O'keefe and
CWW Beecher, Plant Physiology, 105, 395-403
(1994)], but the Km value of norcoclaurin 6-O-methyltransferase (2.23 mM for (R, S) -norlaudanosoline and 3.95 mM for SAM) [F. Sato, et al. Europe
an Journal of Biochemistry, 225, 125-131 (1994)].

【0024】[実施例5]CNMTのN末端アミノ酸配列の
決定 実施例1に記載のベルベリン高産生セリバオウレン培養
細胞から単離精製したコクラウリンN-メチルトランスフ
ェラーゼをSDS−PAGEにより分離し、Bio-Rad blotting
装置によりPVDFブロッティングメンブレンフィルター
(ミリポア製)へ電気泳動的に移した。メンブレンフィ
ルターを洗浄した後、CBB試薬による発色でタンパクの
位置を検出した。目的のバンドを切り出し、乾燥させた
後、アミノ酸シークエンサー477A/120A(Applied Biosy
stems製)により分析を行った。結果を配列番号2に示
す。
[Example 5] Determination of the N-terminal amino acid sequence of CNMT Cocraulin N-methyltransferase isolated and purified from the cultured berberine-producing celibaouren culture cells described in Example 1 was separated by SDS-PAGE and subjected to Bio-Rad blotting.
It was electrophoretically transferred to a PVDF blotting membrane filter (manufactured by Millipore) using an apparatus. After washing the membrane filter, the position of the protein was detected by color development with the CBB reagent. After cutting out the target band and drying, the amino acid sequencer 477A / 120A (Applied Biosy
stems). The result is shown in SEQ ID NO: 2.

【0025】[実施例6]cDNAライブラリーの作成 実施例1のようにして得られた培養10日目のセリバオウ
レン培養細胞から、グアニジンチオシアネート/ホット
フェノール法により全RNAを抽出し、更にmRNA精製キッ
ト(Pharmacia製)を用い、製造者の説明書に従ってPol
y(A)+RNAを精製した。精製したPoly(A)+RNAを用い、Gub
ler and Hoffman (Gene 25: 263 (1983))の方法に従っ
てセリバオウレン培養細胞cDNAライブラリーを作成し
た。
Example 6 Preparation of cDNA Library Total RNA was extracted by the guanidine thiocyanate / hot phenol method from 10 days of cultivated celiva uren culture cells obtained as in Example 1, followed by mRNA purification kit. (Pharmacia) and according to the manufacturer's instructions
y (A) + RNA was purified. Using purified Poly (A) + RNA,
According to the method of ler and Hoffman (Gene 25: 263 (1983)), a cDNA library of cultured serauba urenium was prepared.

【0026】[実施例7]CNMTのN末端アミノ酸配列に
相当するcDNA断片の取得 実施例5で決定したN末端アミノ酸配列をもとに、配列
番号3に記載の塩基配列を推定し、この配列に相当する
cDNA断片をオウレンのコドン使用頻度により予測した
縮重プライマーを用いたPCRにより増幅した。PCRは実施
例6に記載のセリバオウレン培養細胞cDNAライブラリー
を鋳型とし、配列番号4と配列番号5で示される塩基配
列の縮重プライマーを用い、94℃で30秒間のディネーチ
ャー、50℃で30秒間のアニール、72℃で45秒間の伸長反
応を1サイクルとし、30サイクル反応させた。得られたP
CR産物はpGEM−Tベクターにサブクローニングした。い
くつかのクローンをシークエンスした結果、配列番号6
で示される塩基配列から成る目的のcDNA断片を取得し
た。
[Example 7] Obtaining a cDNA fragment corresponding to the N-terminal amino acid sequence of CNMT Based on the N-terminal amino acid sequence determined in Example 5, the base sequence described in SEQ ID NO: 3 was deduced. Was amplified by PCR using degenerate primers predicted by the codon usage of ours. The PCR was carried out using the cDNA library of cultured squirrel spinach described in Example 6 as a template, degenerate primers having the nucleotide sequences shown in SEQ ID NO: 4 and SEQ ID NO: 5 at 94 ° C. for 30 seconds, and at 50 ° C. for 30 seconds. A cycle of annealing for 72 seconds and an extension reaction at 72 ° C. for 45 seconds was defined as one cycle, and a reaction was performed for 30 cycles. P obtained
The CR product was subcloned into the pGEM-T vector. As a result of sequencing several clones, SEQ ID NO: 6
A cDNA fragment of interest consisting of the nucleotide sequence represented by was obtained.

【0027】[実施例8]CNMTをコードする全長塩基配
列の決定 配列番号6に記載の塩基配列をもとに、本酵素のC末端
アミノ酸配列に相当するcDNA部分をセリバオウレンcD
NAライブラリーを鋳型にネスティッドPCRにより増幅し
た。初めは配列番号7で示される塩基配列のプライマー
と配列番号8で示されるcDNAライブラリーのアダプター
領域に対するプライマーを用いて、94℃で30秒間のディ
ネーチャー、50℃で30秒間のアニール、72℃で45秒間の
伸長反応を1サイクルとし、30サイクル反応させた。二
回目は配列番号9で示される塩基配列のプライマーとオ
リゴdTプライマーを用いて、94℃で30秒間のディネー
チャー、50℃で30秒間のアニール、72℃で45秒間の伸長
反応を1サイクルとし、30サイクル反応させた。得られ
たPCR産物はpGEM−Tベクターにサブクローニングした。
いくつかのクローンをシークエンスした結果、配列番号
10で示される塩基配列から成る目的のcDNA断片を取得
した。配列番号10に記載の塩基配列をもとに、本酵素の
N末端アミノ酸配列に相当するcDNA部分をセリバオウ
レンcDNAライブラリーを鋳型にネスティッドPCRにより
増幅した。初めは、配列番号11で示される塩基配列のプ
ライマーと配列番号12で示されるcDNAライブラリーのア
ダプター領域に対するプライマーを用いて、94℃で30秒
間のディネーチャー、50℃で30秒間のアニール、72℃で
45秒間の伸長反応を1サイクルとし、30サイクル反応さ
せた。二回目は、配列番号13で示される塩基配列のプラ
イマーと初めのPCRに使用した配列番号12で示されるプ
ライマーを用いて、94℃で30秒間のディネーチャー、50
℃で30秒間のアニール、72℃で45秒間の伸長反応を1サ
イクルとし、30サイクル反応させた。得られたPCR産物
はpGEM−Tベクターにサブクローニングした。いくつか
のクローンをシークエンスした結果、配列番号14で示さ
れる塩基配列から成る目的のcDNA断片を取得した。既
に決定していた配列と合わせて、配列番号1に示す1274
塩基よりなる塩基配列が得られ、その配列より、アミノ
酸配列が推定された。
[Example 8] Determination of the full-length nucleotide sequence encoding CNMT Based on the nucleotide sequence shown in SEQ ID NO: 6, a cDNA portion corresponding to the C-terminal amino acid sequence of the present enzyme was replaced with celiba uren cD.
Amplification was performed by nested PCR using the NA library as a template. Initially, using a primer having the nucleotide sequence shown in SEQ ID NO: 7 and a primer for the adapter region of the cDNA library shown in SEQ ID NO: 8, a denature at 94 ° C. for 30 seconds, annealing at 50 ° C. for 30 seconds, 72 ° C. The extension reaction for 45 seconds was regarded as one cycle, and the reaction was carried out for 30 cycles. In the second cycle, using a primer having the nucleotide sequence of SEQ ID NO: 9 and an oligo dT primer, a cycle of denaturation at 94 ° C. for 30 seconds, annealing at 50 ° C. for 30 seconds, and extension reaction at 72 ° C. for 45 seconds was one cycle. For 30 cycles. The obtained PCR product was subcloned into a pGEM-T vector.
As a result of sequencing several clones, SEQ ID NO:
A target cDNA fragment consisting of the nucleotide sequence represented by 10 was obtained. Based on the nucleotide sequence shown in SEQ ID NO: 10, a cDNA portion corresponding to the N-terminal amino acid sequence of the present enzyme was amplified by nested PCR using a Seriva urenium cDNA library as a template. Initially, using a primer of the nucleotide sequence represented by SEQ ID NO: 11 and a primer for the adapter region of the cDNA library represented by SEQ ID NO: 12, a denature at 94 ° C. for 30 seconds, annealing at 50 ° C. for 30 seconds, annealing at 72 ° C. In ° C
The extension reaction for 45 seconds was defined as one cycle, and the reaction was performed for 30 cycles. The second time was performed using a primer having the nucleotide sequence shown in SEQ ID NO: 13 and the primer shown in SEQ ID NO: 12 used in the first PCR, and a denature at 94 ° C. for 30 seconds, 50
Annealing at 30 ° C. for 30 seconds and elongation at 72 ° C. for 45 seconds were defined as one cycle, and the reaction was performed for 30 cycles. The obtained PCR product was subcloned into a pGEM-T vector. As a result of sequencing several clones, a target cDNA fragment consisting of the nucleotide sequence represented by SEQ ID NO: 14 was obtained. Together with the sequence already determined, 1274 shown in SEQ ID NO: 1
A base sequence consisting of bases was obtained, and the amino acid sequence was deduced from the sequence.

【0028】[実施例9]機能確認 実施例8で決定したアミノ酸配列を有するポリペプチド
の機能を明らかにするため、該ポリペプチドをコードす
るcDNAの全長ORFをPCRにより増幅し、大腸菌での発現プ
ラスミドpET-21d(Novagen社)に組込んだ。PCRはセリバ
オウレンcDNAライブラリーを鋳型とし、配列番号15と配
列番号16で示される塩基配列のプライマーを用い、94℃
で30秒間のディネーチャー、60℃で30秒間のアニール、
72℃で90秒間の伸長反応を1サイクルとし、30サイクル
反応させた。得られたPCR産物は制限酵素NcoIとEcoRIで
処理し、発現プラスミドpET−21dのNcoIとEcoRIサイト
に組込み、これをpET-21d-CNMTとした。これによりCNMT
はT7プロモーターの下流にセンス方向に導入される。更
に得られたpET-21d-CNMTプラスミドを大腸菌株BL21(DE
3) に導入した。培養条件、IPTGによる発現誘導、発現
した酵素の調整方法はMorishige,T. et al.文献に記載
されている方法と同様に行った[J.Boil.Chem. 275, 233
98-23405(2000)]。なお、誘導後の培養は30℃、3時間行
った。発現したタンパク質を用いて実施例1に従い、CN
MT活性を測定した。生成したアルカロイド画分はHPLCに
より分析した。生成した化合物であることはLC-MS(島
津製作所製)により行った。
Example 9 Confirmation of Function To clarify the function of the polypeptide having the amino acid sequence determined in Example 8, the full-length ORF of cDNA encoding the polypeptide was amplified by PCR and expressed in Escherichia coli. It was integrated into plasmid pET-21d (Novagen). PCR is used as a template of Seriba ouren cDNA library, using primers of the nucleotide sequence shown in SEQ ID NO: 15 and SEQ ID NO: 16, 94 ° C.
For 30 seconds, annealing at 60 ° C for 30 seconds,
The extension reaction at 72 ° C. for 90 seconds was defined as one cycle, and the reaction was performed for 30 cycles. The obtained PCR product was treated with restriction enzymes NcoI and EcoRI, and integrated into the NcoI and EcoRI sites of the expression plasmid pET-21d, which was designated as pET-21d-CNMT. This allows CNMT
Is introduced downstream of the T7 promoter in the sense direction. The obtained pET-21d-CNMT plasmid was further transformed into E. coli strain BL21 (DE
3) was introduced. Culture conditions, expression induction by IPTG, and a method for adjusting the expressed enzyme were performed in the same manner as described in Morishige, T. et al. Literature [J. Boil. Chem. 275, 233]
98-23405 (2000)]. The culture after induction was performed at 30 ° C. for 3 hours. According to Example 1 using the expressed protein,
MT activity was measured. The alkaloid fraction formed was analyzed by HPLC. The identity of the compound produced was determined by LC-MS (manufactured by Shimadzu Corporation).

【0029】尚、メチル化化合物のLC-MS分析の結果、
ノルレティクリン( m/z 316, m/z 178)からレチクリン
(m/z 330、m/z 192)が生成していることを確認した。
よって本cDNAは、高等植物から得られたN-メチルトラン
スフェラーゼの1つに位置づけられるコクラウリン-N-
メチルトランスフェラーゼ(CNMT)をコードしているも
のと結論づけた。
As a result of LC-MS analysis of the methylated compound,
It was confirmed that reticuline (m / z 330, m / z 192) was produced from norreticulin (m / z 316, m / z 178).
Therefore, the present cDNA is cocouraurin-N-, which is positioned as one of N-methyltransferases obtained from higher plants.
It was concluded that it encodes methyltransferase (CNMT).

【0030】さらに、上記大腸菌より実施例1により組
換えCNMTを精製したところ、その比活性はオウレン細胞
からの精製物よりはるかに高い活性(18 nkat/mg)を示
し、かつ、この酵素はnorreticulineを基質にした時の
活性を100として表示すると、1-methyl-6,7-dihydor
xy-1,2,3,4-tetrahydroisoqauinolineを180メチル化
し、phenylethanolamineを20、3-hydroxy-4-methoxyp
henylethylamineを11、norphenylephrine(noradrena
rine)を16メチル化するなど、イソキノリンアルカロ
イドに限らず、一般的なフェニールアミンに対してもN-
メチル化活性を示すことを明かとした。
Further, when the recombinant CNMT was purified from the above Escherichia coli according to Example 1, the specific activity was much higher than that of the purified product from the spinach cells (18 nkat / mg), and this enzyme was norreticuline When the activity when using as a substrate is expressed as 100, 1-methyl-6,7-dihydor
xy-1,2,3,4-tetrahydroisoqauinoline is methylated by 180, phenylethanolamine is converted to 20, 3-hydroxy-4-methoxyp
Henylethylamine was added to 11, norphenylephrine (noradrena
rine) by 16-methylation, not only for isoquinoline alkaloids but also for general phenylamine
It was revealed to show methylation activity.

【0031】[0031]

【発明の効果】以上記載の如く、本発明によりCNMTおよ
びCNMTをコードするDNAが提供される。本願発明の酵素
を用いることにより医薬品として有用なイソキノリンア
ルカロイドを効率よく生産することが可能で、更にクロ
ーン化した組換えDNAを発現させた細胞を用いてCNMT、
該酵素をコードするDNAおよびN-メチルコクラウリンお
よび/またはこのN-メチルコクラウリンから生合成され
る各種アルカロイド、あるいはN-メチル化フェニールア
ミン類縁体を製造することも可能である。
As described above, the present invention provides CNMT and DNA encoding CNMT. It is possible to efficiently produce isoquinoline alkaloids useful as pharmaceuticals by using the enzyme of the present invention, and furthermore, using cells expressing cloned recombinant DNA, CNMT,
It is also possible to produce DNA encoding the enzyme and N-methylcoclaurin and / or various alkaloids biosynthesized from this N-methylcoclaurin, or N-methylated phenylamine analogs.

【0032】[0032]

【配列表】 SEQUENCE LISTING <110> MITSUI CHEMICALS, INC <120> A coclaurine N-methyltransferase and a gene encodes the coclaurine N-methyltransferase <130> coclaurine N-methyltransferase <160> 16 <170> PatentIn Ver. 2.1 <210> 1 <211> 1274 <212> DNA <213> Coptis japonica <220> <221> CDS <222> (1)..(1077) <400> 1 atg gct gtg gaa gca aag caa aca aag aag gca gcc ata gta gag ttg 48 Met Ala Val Glu Ala Lys Gln Thr Lys Lys Ala Ala Ile Val Glu Leu 1 5 10 15 tta aaa cag ttg gag ctg ggc ttg gtt cca tat gat gat att aag cag 96 Leu Lys Gln Leu Glu Leu Gly Leu Val Pro Tyr Asp Asp Ile Lys Gln 20 25 30 ctc ata agg agg gaa ctg gca agg cgc ctg caa tgg ggt tat aaa cct 144 Leu Ile Arg Arg Glu Leu Ala Arg Arg Leu Gln Trp Gly Tyr Lys Pro 35 40 45 act tat gaa gaa caa ata gct gaa atc caa aac tta act cat tct ctg 192 Thr Tyr Glu Glu Gln Ile Ala Glu Ile Gln Asn Leu Thr His Ser Leu 50 55 60 cga caa atg aaa att gca aca gag gtt gag acc ttg gat tca caa ttg 240 Arg Gln Met Lys Ile Ala Thr Glu Val Glu Thr Leu Asp Ser Gln Leu 65 70 75 80 tac gag att cct att gag ttt cta aag att atg aat gga agt aac tta 288 Tyr Glu Ile Pro Ile Glu Phe Leu Lys Ile Met Asn Gly Ser Asn Leu 85 90 95 aaa gga agt tgt tgc tac ttc aaa gaa gat tca aca aca tta gat gaa 336 Lys Gly Ser Cys Cys Tyr Phe Lys Glu Asp Ser Thr Thr Leu Asp Glu 100 105 110 gct gag ata gcg atg ctg gat tta tac tgc gag aga gct caa atc caa 384 Ala Glu Ile Ala Met Leu Asp Leu Tyr Cys Glu Arg Ala Gln Ile Gln 115 120 125 gat gga cag agt gtt ctt gat ctt gga tgt ggg caa gga gct ctt aca 432 Asp Gly Gln Ser Val Leu Asp Leu Gly Cys Gly Gln Gly Ala Leu Thr 130 135 140 tta cat gtt gca cag aaa tat aaa aac tgt cgc gta aca gca gta aca 480 Leu His Val Ala Gln Lys Tyr Lys Asn Cys Arg Val Thr Ala Val Thr 145 150 155 160 aat tca gtt tca caa aaa gag tac att gaa gaa gaa tca agg aga cgt 528 Asn Ser Val Ser Gln Lys Glu Tyr Ile Glu Glu Glu Ser Arg Arg Arg 165 170 175 aat ttg ttg aat gtg gaa gtc aaa ttg gca gac ata acc aca cat gag 576 Asn Leu Leu Asn Val Glu Val Lys Leu Ala Asp Ile Thr Thr His Glu 180 185 190 atg gct gag aca tac gat cgt att ttg gta ata gag ttg ttt gag cac 624 Met Ala Glu Thr Tyr Asp Arg Ile Leu Val Ile Glu Leu Phe Glu His 195 200 205 atg aag aac tat gaa ctt ctc ctg agg aaa atc tca gag tgg ata tcg 672 Met Lys Asn Tyr Glu Leu Leu Leu Arg Lys Ile Ser Glu Trp Ile Ser 210 215 220 aaa gat ggg ctt ctc ttt cta gag cac ata tgc cac aag acc ttt gct 720 Lys Asp Gly Leu Leu Phe Leu Glu His Ile Cys His Lys Thr Phe Ala 225 230 235 240 tac cac tat gag cct cta gac gac gac gat tgg ttt aca gag tac gtg 768 Tyr His Tyr Glu Pro Leu Asp Asp Asp Asp Trp Phe Thr Glu Tyr Val 245 250 255 ttt cct gct ggg act atg atc ata cca tct gca tcg ttc ttt ttg tat 816 Phe Pro Ala Gly Thr Met Ile Ile Pro Ser Ala Ser Phe Phe Leu Tyr 260 265 270 ttc cag gat gac gtt tcg gtt gtg aac cat tgg act ctt agt ggg aag 864 Phe Gln Asp Asp Val Ser Val Val Asn His Trp Thr Leu Ser Gly Lys 275 280 285 cac ttt tcg cgt acc aat gag gaa tgg ttg aag aga ttg gac gca aac 912 His Phe Ser Arg Thr Asn Glu Glu Trp Leu Lys Arg Leu Asp Ala Asn 290 295 300 ctt gat gtt att aaa cca atg ttt gag act tta atg gga aat gag gaa 960 Leu Asp Val Ile Lys Pro Met Phe Glu Thr Leu Met Gly Asn Glu Glu 305 310 315 320 gag gca gtg aag ttg att aac tat tgg aga gga ttt tgt tta tct gga 1008 Glu Ala Val Lys Leu Ile Asn Tyr Trp Arg Gly Phe Cys Leu Ser Gly 325 330 335 atg gaa atg ttt gga tat aac aat ggt gaa gaa tgg atg gca agt cat 1056 Met Glu Met Phe Gly Tyr Asn Asn Gly Glu Glu Trp Met Ala Ser His 340 345 350 gtt ctg ttc aag aaa aaa tga ttttgcccaa cagtgtattt ctttcattag 1107 Val Leu Phe Lys Lys Lys 355 tagcattact tgaataagtt tggaagagtc ttcatatatc tgctacatcc agaaaggact 1167 agcagcacag tttgtagatc gattgtcccc tgctacattt gtatgagtta ttttggagat 1227 gaaataaaat atatctttgg atgggcaaaa aaaaaaaaaa aaaaaaa 1274 <210> 2 <211> 33 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:N-terminal amino acid sequences of CNMT <400> 2 Ala Val Glu Ala Lys Gln Thr Lys Lys Ala Ala Ile Val Glu Leu Leu 1 5 10 15 Lys Gln Leu Glu Leu Gly Leu Val Pro Tyr Asp Asp Ile Lys Gln Leu 20 25 30 Ile <210> 3 <211> 99 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Nucleotide sequences corresponing to N-terminal amino acid sequences of CNMT <400> 3 gcngtngarg cnaarcarac naaraargcn gcnathgtng arytnytnaa rcarytngar 60 ytnggnytng tnccntayga ygayathaar carytnath 99 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Forward degenerate primer for PCR to amplify cDNA fragment corresponding to N-terminal amino acid sequences of CNMT <400>4 gcngtngarg cnaarcarac 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Reverse degenerate primer for PCR to amplify cDNA fragment corresponding to N-terminal amino acid sequences of CNMT <400> 5 arytgyttda trtcrtcrta 20 <210> 6 <211> 95 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Nucleotide sequences of cDNA fragment obtained from PCR <400> 6 gctgtggaag caaagcaaac aaagaaggca gctatagtag agttgttaaa acagttggag 60 ctgggcttgg ttccatatga tgatattaag cagct 95 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Forward primer for the first PCR to amplify 3'-end of CNMT gene <400> 7 acgactcact atagggcgaa ttgg 24 <210> 8 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Reverse primer corresponding to adaptor region <400> 8 acgactcact atagggcgaa ttgg 24 <210> 9 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Forward primer for the second PCR to amplify 3'-end of CNMT gene <400> 9 gttgttaaaa cagttggagc tgggc 25 <210> 10 <211> 1230 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Nucleotide sequences of 3'-end cDNA <400> 10 gttgttaaaa cagttggagc tgggcttggt tccatatgat gatattaagc agctcataag 60 gagggaactg gcaaggcgcc tgcaatgggg ttataaacct acttatgaag aacaaatagc 120 tgaaatccaa aacttaactc attctctgcg acaaatgaaa attgcaacag aggttgagac 180 cttggattca caattgtacg agattcctat tgagtttcta aagattatga atggaagtaa 240 cttaaaagga agttgttgct acttcaaaga agattcaaca acattagatg aagctgagat 300 agcgatgctg gatttatact gcgagagagc tcaaatccaa gatggacaga gtgttcttga 360 tcttggatgt gggcaaggag ctcttacatt acatgttgca cagaaatata aaaactgtcg 420 cgtaacagca gtaacaaatt cagtttcaca aaaagagtac attgaagaag aatcaaggag 480 acgtaatttg ttgaatgtgg aagtcaaatt ggcagacata accacacatg agatggctga 540 gacatacgat cgtattttgg taatagagtt gtttgagcac atgaagaact atgaacttct 600 cctgaggaaa atctcagagt ggatatcgaa agatgggctt ctctttctag agcacatatg 660 ccacaagacc tttgcttacc actatgagcc tctagacgac gacgattggt ttacagagta 720 cgtgtttcct gctgggacta tgatcatacc atctgcatcg ttctttttgt atttccagga 780 tgacgtttcg gttgtgaacc attggactct tagtgggaag cacttttcgc gtaccaatga 840 ggaatggttg aagagattgg acgcaaacct tgatgttatt aaaccaatgt ttgagacttt 900 aatgggaaat gaggaagagg cagtgaagtt gattaactat tggagaggat tttgtttatc 960 tggaatggaa atgtttggat ataacaatgg tgaagaatgg atggcaagtc atgttctgtt 1020 caagaaaaaa tgattttgcc caacagtgta tttctttcat tagtagcatt acttgaataa 1080 gtttggaaga gtcttcatat atctgctaca tccagaaagg actagcagca cagtttgtag 1140 atcgattgtc ccctgctaca tttgtatgag ttattttgga gatgaaataa aatatatctt 1200 tggatgggca aaaaaaaaaa aaaaaaaaaa 1230 <210> 11 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Reverse primer for the first PCR to amplify 5'-end of CNMT gene <400> 11 caacttcctt ttaagttact tcc 23 <210> 12<211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Foward primer corresponding to adaptor region <400> 12 gaaagaaaaa aaatataccc cagc 24 <210> 13 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Reverse primer for the second PCR to amplify 5'-end of CNMT gene <400> 13 caattgtgaa tccaaggtct caacctctgt tgc 33 <210> 14 <211> 299 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Nucleotide sequences of 5'-end cDNA <400> 14 atggctgtgg aagcaaagca aacaaagaag gcagccatag tagagttgtt aaaacagttg 60 gagctgggct tggttccata tgatgatatt aagcagctca taaggaggga actggcaagg 120 cgcctgcaat ggggttataa acctacttat gaagaacaaa tagctgaaat ccaaaactta 180 actcattctc tgcgacaaat gaaaattgca acagaggttg agaccttgga ttcacaattg 240 tacgagattc ctattgagtt tctaaagatt atgaatggaa gtaacttaaa aggaagttg 299 <210> 15 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Foward primer for PCR (CNMT) <400> 15 gttgccatgg ctgtggaagc aaagcaaaca aagaaggc 38 <210> 16 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Reverse primer for PCR (CNMT) <400> 16 gcggaattca cgactcacta tagggcgaat tgg 33[Sequence List] SEQUENCE LISTING <110> MITSUI CHEMICALS, INC <120> A coclaurine N-methyltransferase and a gene encodes the coclaurine N-methyltransferase <130> coclaurine N-methyltransferase <160> 16 <170> PatentIn Ver. 2.1 <210 > 1 <211> 1274 <212> DNA <213> Coptis japonica <220> <221> CDS <222> (1) .. (1077) <400> 1 atg gct gtg gaa gca aag caa aca aag aag gca gcc ata gta gag ttg 48 Met Ala Val Glu Ala Lys Gln Thr Lys Lys Ala Ala Ile Val Glu Leu 1 5 10 15 tta aaa cag ttg gag ctg ggc ttg gtt cca tat gat gat att aag cag 96 Leu Lys Gln Leu Glu Leu Gly Leu Val Pro Tyr Asp Asp Ile Lys Gln 20 25 30 ctc ata agg agg gaa ctg gca agg cgc ctg caa tgg ggt tat aaa cct 144 Leu Ile Arg Arg Glu Leu Ala Arg Arg Leu Gln Trp Gly Tyr Lys Pro 35 40 45 act tat gaa gaa caa ata gct gaa atc caa aac tta act cat tct ctg 192 Thr Tyr Glu Glu Gln Ile Ala Glu Ile Gln Asn Leu Thr His Ser Leu 50 55 60 cga caa atg aaa att gca aca gag gtt gag acc ttg gat tca caa ttg 240 Arg Gln Met Lys Ile Ala Thr Glu Val Glu Thr Leu Asp Ser Gln Leu 65 70 75 80 tac gag att cct att gag ttt cta aag att atg aat gga agt aac tta 288 Tyr Glu Ile Pro Ile Glu Phe Leu Lys Ile Met Asn Gly Ser Asn Leu 85 90 95 aaa gga agt tgt tgc tac ttc aaa gaa gat tca aca aca tta gat gaa 336 Lys Gly Ser Cys Cys Tyr Phe Lys Glu Asp Ser Thr Thr Leu Asp Glu 100 105 110 gct gag ata gcg atg ctg gat tta tac tgc gag aga gct caa atc caa 384 Ala Glu Ile Ala Met Leu Asp Leu Tyr Cys Glu Arg Ala Gln Ile Gln 115 120 125 gat gga cag agt gtt ctt gat ctt gga tgt ggg caa gga gct ctt aca 432 Asp Gly Gln Ser Val Leu Asp Leu Gly Cys Gly Gln Gly Ala Leu Thr 130 135 140 tta cat gtt gca cag aaa tat aaa aac tgt cgc gta aca gca gta aca 480 Leu His Val Ala Gln Lys Tyr Lys Asn Cys Arg Val Thr Ala Val Thr 145 150 155 160 aat tca gtt tca caa aaa gag tac att gaa gaa gaa tca agg aga cgt 528 Asn Ser Val Ser Gln Lys Glu Tyr Ile Glu Glu Glu Ser Arg Arg Arg 165 170 175 aat ttg ttg aat gtg gaa gtc aaa ttg gca gac ata acc aca cat gag 576 Asn Leu Leu Asn Val Glu Val Lysu Ala Asp Ile Thr Thr His Glu 180 185 190 atg gct gag aca tac gat cgt att ttg gta ata gag ttg ttt gag cac 624 Met Ala Glu Thr Tyr Asp Arg Ile Leu Val Ile Glu Leu Phe Glu His 195 200 205 atg aag aac tat gaa ctt ctc ctg agg aaa atc tca gag tgg ata tcg 672 Met Lys Asn Tyr Glu Leu Leu Leu Arg Lys Ile Ser Glu Trp Ile Ser 210 215 220 aaa gat ggg ctt ctc ttt cta gag cac ata tgc cac aag acc ttt gct 720 Lys Asp Leu Leu Phe Leu Glu His Ile Cys His Lys Thr Phe Ala 225 230 235 240 tac cac tat gag cct cta gac gac gac gat tgg ttt aca gag tac gtg 768 Tyr His Tyr Glu Pro Leu Asp Asp Asp Asp Trp Phe Thr Glu Tyr Val 245 250 255 ttt cct gct ggg act atg atc ata cca tct gca tcg ttc ttt ttg tat 816 Phe Pro Ala Gly Thr Met Ile Ile Pro Ser Ala Ser Phe Phe Leu Tyr 260 265 270 ttc cag gat gac gtt tcg gtt gtg aac cat tgg act ctt agt ggg aag 864 Phe Gln Asp Asp Val Ser Val Val Asn His Trp Thr Leu Ser Gly Lys 275 280 285 cac ttt tcg cgt acc aat gag gaa tgg ttg aag aga ttg gac gca aac 912 His Phe Ser Arg Thr Asn Glu Glu Trp Leu Lys Arg Leu Asp Ala Asn 290 295 300 ctt gat gtt att aaa cca atg ttt gag act tta atg gga aat gag gaa 960 Leu Asp Val Ile Lys Pro Met Phe Glu Thr Leu Met Gly Asn Glu Glu 305 310 315 320 gag gca gtg aag ttg att aac tat tgg aga gga ttt tgt tta tct gga 1008 Glu Ala Val Lys Leu Ile Asn Tyr Trp Arg Gly Phe Cys Leu Ser Gly 325 330 335 atg gaa atg ttt gga tat aac aat ggt gaa gaagtg atgca 1056 Met Glu Met Phe Gly Tyr Asn Asn Gly Glu Glu Trp Met Ala Ser His 340 345 350 gtt ctg ttc aag aaa aaa tga ttttgcccaa cagtgtattt ctttcattag 1107 Val Leu Phe Lys Lys Lys 355 tagcattgca tgca tgca tgca tgca tg tgag ttttggagat 1227 gaaataaaat atatctttgg atgggcaaaa aaaaaaaaaa aaaaaaa 1274 <210> 2 <211> 33 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: N-terminal amino acid sequences of CNMT <400> 2 Ala Val Glu Ala Lys Gln Thr Lys Lys Ala Ala Ile Val Glu Leu Leu 1 5 10 15 Ly s Gln Leu Glu Leu Gly Leu Val Pro Tyr Asp Asp Ile Lys Gln Leu 20 25 30 Ile <210> 3 <211> 99 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Nucleotide sequences corresponing to N-terminal amino acid sequences of CNMT <400> 3 gcngtngarg cnaarcarac naaraargcn gcnathgtng arytnytnaa rcarytngar 60 ytnggnytng tnccntayga ygayathaar carytnath 99 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> of Artificial Sequence: Forward degenerate primer for PCR to amplify cDNA fragment corresponding to N-terminal amino acid sequences of CNMT <400> 4 gcngtngarg cnaarcarac 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Reverse degenerate primer for PCR to amplify cDNA fragment corresponding to N-terminal amino acid sequences of CNMT <400> 5 arytgyttda trtcrtcrta 20 <210> 6 <211> 95 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Nucleotide sequences of cDNA fragment obtained from PCR <400> 6 gctgtggaag caaagcaaac aaagaaggca gctatagtag agttgttaaa acagttggag 60 ctgggcttgg ttccatatga tgatattaag cagct 95 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: for the first PCR to amplify 3'-end of CNMT gene <400> 7 acgactcact atagggcgaa ttgg 24 <210> 8 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Reverse primer corresponding to adaptor region <400> 8 acgactcact atagggcgaa ttgg 24 <210> 9 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Forward primer for the second PCR to amplify 3 '-end of CNMT gene <400> 9 gttgttaaaa cagttggagc tgggc 25 <210> 10 <211> 1230 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Nucleotide sequences of 3'-end cDNA <400> 10 gttgttaaaa cagttggagc tgggcttggt tccatatgat gatattaagc agctcataag 60 gagggaactg gcaaggcgcc tgcaatgggg ttataaacct a cttatgaag aacaaatagc 120 tgaaatccaa aacttaactc attctctgcg acaaatgaaa attgcaacag aggttgagac 180 cttggattca caattgtacg agattcctat tgagtttcta aagattatga atggaagtaa 240 cttaaaagga agttgttgct acttcaaaga agattcaaca acattagatg aagctgagat 300 agcgatgctg gatttatact gcgagagagc tcaaatccaa gatggacaga gtgttcttga 360 tcttggatgt gggcaaggag ctcttacatt acatgttgca cagaaatata aaaactgtcg 420 cgtaacagca gtaacaaatt cagtttcaca aaaagagtac attgaagaag aatcaaggag 480 acgtaatttg ttgaatgtgg aagtcaaatt ggcagacata accacacatg agatggctga 540 gacatacgat cgtattttgg taatagagtt gtttgagcac atgaagaact atgaacttct 600 cctgaggaaa atctcagagt ggatatcgaa agatgggctt ctctttctag agcacatatg 660 ccacaagacc tttgcttacc actatgagcc tctagacgac gacgattggt ttacagagta 720 cgtgtttcct gctgggacta tgatcatacc atctgcatcg ttctttttgt atttccagga 780 tgacgtttcg gttgtgaacc attggactct tagtgggaag cacttttcgc gtaccaatga 840 ggaatggttg aagagattgg acgcaaacct tgatgttatt aaaccaatgt ttgagacttt 900 aatgggaaat gaggaagagg cagtgaagtt gattaactat tggagaggat tttgtttatc 960 tggaatggaa atgtttggat ataacaatgg tgaagaatgg atggcaagtc atgttctgtt 1020 caagaaaaaa tgattttgcc caacagtgta tttctttcat tagtagcatt acttgaataa 1080 gtttggaaga gtcttcatat atctgctaca tccagaaagg actagcagca cagtttgtag 1140 atcgattgtc ccctgctaca tttgtatgag ttattttgga gatgaaataa aatatatctt 1200 tggatgggca aaaaaaaaaa aaaaaaaaaa 1230 <210> 11 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Reverse primer for the first PCR to amplify 5'-end of CNMT gene <400> 11 caacttcctt ttaagttact tcc 23 <210> 12 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Forward primer corresponding to adaptor region <400> 12 gaaagaaaaa aaatataccc cagc 24 <210> 13 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Reverse primer for the second PCR to amplify 5'-end of CNMT gene <400> 13 caattgtgaa tccaaggtct caacctctgt tgc 33 <210> 14 <211> 299 <212> DNA <213> Artificial Sequence <220> <223 > Des cription of Artificial Sequence: Nucleotide sequences of 5'-end cDNA <400> 14 atggctgtgg aagcaaagca aacaaagaag gcagccatag tagagttgtt aaaacagttg 60 gagctgggct tggttccata tgatgatatt aagcagctca taaggaggga actggcaagg 120 cgcctgcaat ggggttataa acctacttat gaagaacaaa tagctgaaat ccaaaactta 180 actcattctc tgcgacaaat gaaaattgca acagaggttg agaccttgga ttcacaattg 240 tacgagattc ctattgagtt tctaaagatt atgaatggaa gtaacttaaa aggaagttg 299 <210> 15 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Forward primer for PCR (CNMT) <400> 15 gttgccatgg ctgtggaagc aaagcaaaca aagaaggc 38 <210> 16 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Reverse primer for PCR (CNMT) <400> 16 gcggaattca cgactcacta tagggcgaat tgg 33

【図面の簡単な説明】[Brief description of the drawings]

【図1】ベルベリン生合成経路を示す図である。図中、
1〜13は示される反応を触媒する酵素をそれぞれ表し
ている。各酵素は以下のとおりである。1:L-チロシン
デカルボキシラーゼ、2:フェノラーゼ、3:L-チロシ
ントランスアミナーゼ、4:p-ヒドロキシフェニルピル
ベートデカルボキシラーゼ、5:(S)-ノルコクラウリン
シンターゼ、6:ノルコクラウリン-6-O-メチルトトラ
ンスフェラーゼ(6-OMT) 、7:コクラウリンN-メチルト
ランスフェラーゼ(NMT) 、8:フェノラーゼ、9:(S)-
3'-ヒドロキシ-N-メチルコクラウリン4'-O-メチルトラ
ンスフェラーゼ(4'-OMT)、10:ベルベリン架橋酵素(B
BE) 、11:(S)-スコウレリン9-O-メチルトランスフェ
ラーゼ(SMT) 、12:メチレンジオキシ環形成酵素、1
3:テトラヒドロベルベリンオキシダーゼ(THBO)
FIG. 1 shows the berberine biosynthesis pathway. In the figure,
1 to 13 represent enzymes that catalyze the reaction shown. Each enzyme is as follows. 1: L-tyrosine decarboxylase, 2: phenolase, 3: L-tyrosine transaminase, 4: p-hydroxyphenylpyruvate decarboxylase, 5: (S) -norcoclaurin synthase, 6: norcoclaurin-6-O -Methyltotransferase (6-OMT), 7: coclaurine N-methyltransferase (NMT), 8: phenolase, 9: (S)-
3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase (4'-OMT), 10: berberine cross-linking enzyme (B
BE), 11: (S) -scourelin 9-O-methyltransferase (SMT), 12: methylenedioxy ring-forming enzyme, 1
3: Tetrahydroberberine oxidase (THBO)

【図2】CNMTの基質特異性を調べた化合物群の化学構造
を示す図である。
FIG. 2 is a view showing a chemical structure of a group of compounds for which the substrate specificity of CNMT was examined.

【図3】CNMT反応速度とノルレティクリン、SAM濃度の
関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the CNMT reaction rate and the concentrations of norreticulin and SAM.

【図4】CNMT活性の二重逆数プロットを示すグラフであ
る。(a)はノルレティクリンの各濃度における1/v対
1/[SAM]のプロットを示し、(b)はSAMの各濃度にお
ける1/v対1/[ノルレティクリン]のプロットを示
す。
FIG. 4 is a graph showing a double reciprocal plot of CNMT activity. (a) shows a plot of 1 / v vs. 1 / [SAM] at each concentration of norreticulin, and (b) shows a plot of 1 / v vs. 1 / [norreticulin] at each concentration of SAM.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12N 9/10 C12R 1:19 C12P 17/12 C12N 15/00 ZNAA //(C12N 9/10 5/00 A C12R 1:19) Fターム(参考) 4B024 AA01 AA03 BA10 CA04 DA06 EA04 GA11 4B050 CC03 DD13 EE10 LL01 LL05 4B064 AE49 CA02 CA19 CA21 CC24 DA01 DA16 4B065 AA26X AA88Y AB01 AC14 BA02 CA29 CA44 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C12N 9/10 C12R 1:19 C12P 17/12 C12N 15/00 ZNAA // (C12N 9/10 5/00 A C12R 1:19) F term (reference) 4B024 AA01 AA03 BA10 CA04 DA06 EA04 GA11 4B050 CC03 DD13 EE10 LL01 LL05 4B064 AE49 CA02 CA19 CA21 CC24 DA01 DA16 4B065 AA26X AA88Y AB01 AC14 BA02 CA29 CA44

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】下記の理化学的性質を有するコクラウリン
N-メチルトランスフェラーゼ。 (1)至適pH 7.0 (2)等電点 4.2 (3) 4量体 (4)分子量 140kDa(ゲル濾過クロマトグラフィー) (5)サブユニットの分子量 45kDa(SDS-PAGE)
A cocolaurine having the following physicochemical properties:
N-methyltransferase. (1) optimum pH 7.0 (2) isoelectric point 4.2 (3) tetramer (4) molecular weight 140 kDa (gel filtration chromatography) (5) subunit molecular weight 45 kDa (SDS-PAGE)
【請求項2】請求項1の酵素を用いて植物二次代謝産物
を製造する方法。
2. A method for producing a secondary metabolite of a plant using the enzyme of claim 1.
【請求項3】配列番号1に記載のアミノ酸配列を含むポ
リペプチド。
3. A polypeptide comprising the amino acid sequence of SEQ ID NO: 1.
【請求項4】請求項1記載のポリペプチドをコードする
ヌクレオチド配列を含むDNA。
4. A DNA comprising a nucleotide sequence encoding the polypeptide according to claim 1.
【請求項5】ポリペプチドが配列番号1に記載のアミノ
酸配列を有することを特徴とする請求項4記載のDNA。
5. The DNA according to claim 4, wherein the polypeptide has the amino acid sequence of SEQ ID NO: 1.
【請求項6】配列番号1に記載のヌクレオチド配列を含
む請求項5に記載のDNA。
6. The DNA according to claim 5, comprising the nucleotide sequence of SEQ ID NO: 1.
【請求項7】配列表の配列番号1の1〜1074番目の
ヌクレオチド配列を含む請求項5記載のDNA。
7. The DNA according to claim 5, comprising the nucleotide sequence of positions 1 to 1074 of SEQ ID NO: 1 in the sequence listing.
【請求項8】請求項4〜7のいずれか一項に記載のDNA
を含むベクター。
8. The DNA according to any one of claims 4 to 7,
Vector containing.
【請求項9】請求項8に記載のベクターで形質転換され
た細胞。
9. A cell transformed with the vector according to claim 8.
【請求項10】請求項9記載の細胞を用いて、コクラウ
リン-N-メチルトランスフェラーゼの酵素活性を有する
ポリペプチドを製造する方法。
[10] A method for producing a polypeptide having an enzyme activity of coclaurin-N-methyltransferase using the cell according to [9].
【請求項11】請求項9記載の細胞を用いて植物関連二
次代謝産物を製造する方法。
11. A method for producing a plant-related secondary metabolite using the cell according to claim 9.
【請求項12】植物二次代謝産物がコクラウリン-N-メ
チルトランスフェラーゼから生合成されるアルカロイド
である請求項11記載の方法。
12. The method according to claim 11, wherein the plant secondary metabolite is an alkaloid biosynthesized from coclaurin-N-methyltransferase.
JP2001226075A 2000-12-15 2001-07-26 Coclaurine-N-methyltransferase Expired - Lifetime JP4568833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001226075A JP4568833B2 (en) 2000-12-15 2001-07-26 Coclaurine-N-methyltransferase

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-382166 2000-12-15
JP2000382166 2000-12-15
JP2001226075A JP4568833B2 (en) 2000-12-15 2001-07-26 Coclaurine-N-methyltransferase

Publications (2)

Publication Number Publication Date
JP2002291487A true JP2002291487A (en) 2002-10-08
JP4568833B2 JP4568833B2 (en) 2010-10-27

Family

ID=26605919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001226075A Expired - Lifetime JP4568833B2 (en) 2000-12-15 2001-07-26 Coclaurine-N-methyltransferase

Country Status (1)

Country Link
JP (1) JP4568833B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153094A1 (en) * 2007-06-12 2008-12-18 Kyoto University Method for production of alkaloid
WO2012105565A1 (en) * 2011-02-01 2012-08-09 国立大学法人福島大学 Enzyme and method of production therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11178579A (en) * 1997-12-24 1999-07-06 Mitsui Chem Inc (s)-3'-hydroxy-n-methylcoclaurine 4'-o-methyltransferase and enzyme gene thereof
JPH11178577A (en) * 1997-12-24 1999-07-06 Mitsui Chem Inc Norcoclaurine 6-o-methyltransferase and enzyme gene thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11178579A (en) * 1997-12-24 1999-07-06 Mitsui Chem Inc (s)-3'-hydroxy-n-methylcoclaurine 4'-o-methyltransferase and enzyme gene thereof
JPH11178577A (en) * 1997-12-24 1999-07-06 Mitsui Chem Inc Norcoclaurine 6-o-methyltransferase and enzyme gene thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6010023714, Phytochemistry, Apr. 2001, Vol.56, p.649−655 *
JPN6010023717, Phytochemistry, 1990, Vol.29, p.3491−3497 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153094A1 (en) * 2007-06-12 2008-12-18 Kyoto University Method for production of alkaloid
JP5177573B2 (en) * 2007-06-12 2013-04-03 国立大学法人京都大学 Production method of alkaloids
US8993280B2 (en) 2007-06-12 2015-03-31 Kyoto University Method for producing alkaloids
WO2012105565A1 (en) * 2011-02-01 2012-08-09 国立大学法人福島大学 Enzyme and method of production therefor

Also Published As

Publication number Publication date
JP4568833B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
Ounaroon et al. (R, S)‐Reticuline 7‐O‐methyltransferase and (R, S)‐norcoclaurine 6‐O‐methyltransferase of Papaver somniferum–cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy
Noé et al. Tryptophan decarboxylase from Catharanthus roseus cell suspension cultures: purification, molecular and kinetic data of the homogenous protein
Ross et al. S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases
Lindermayr et al. Divergent members of a soybean (Glycine max L.) 4‐coumarate: coenzyme A ligase gene family: Primary structures, catalytic properties, and differential expression
Minami et al. Functional analysis of norcoclaurine synthase in Coptis japonica
Yip et al. Differential accumulation of transcripts for four tomato 1-aminocyclopropane-1-carboxylate synthase homologs under various conditions.
Rebeille et al. Folate biosynthesis in higher plants: purification and molecular cloning of a bifunctional 6‐hydroxymethyl‐7, 8‐dihydropterin pyrophosphokinase/7, 8‐dihydropteroate synthase localized in mitochondria
Dogru et al. The gene encoding polyneuridine aldehyde esterase of monoterpenoid indole alkaloid biosynthesis in plants is an ortholog of theα/β hydrolase super family
Khakdan et al. Molecular cloning, functional characterization and expression of a drought inducible phenylalanine ammonia-lyase gene (ObPAL) from Ocimum basilicum L.
US20100075385A1 (en) O-Methyltransferases of Tetrahydrobenzylisoquinoline Alkaloid Biosynthesis in Papaver Somniferum
CA2130800C (en) Plant genes encoding flavonoid-3&#39;,5&#39;-hydroxylase
Hehmann et al. Furanocoumarin biosynthesis in Ammi majus L. Cloning of bergaptol O‐methyltransferase
AU2001280652B2 (en) Acyl coenzyme a thioesterases
Turner et al. Identification and localization of multiple forms of serine hydroxymethyltransferase in pea (Pisum sativum) and characterization of a cDNA encoding a mitochondrial isoform.
Choi et al. Purification and characterization of coclaurine N-methyltransferase from cultured Coptis japonica cells
Park et al. Heterodimeric O‐methyltransferases involved in the biosynthesis of noscapine in opium poppy
Zhao et al. Two divergent members of 4‐coumarate: coenzyme A ligase from Salvia miltiorrhiza Bunge: cDNA cloning and functional study
Inoue et al. Characterization of UDP-glucosyltransferase from Indigofera tinctoria
JP2002291487A (en) Cocculaurine-n-methyl transferase
CA2363064A1 (en) Theobromine synthase polypeptide of coffee plant and the gene encoding said polypeptide
Sun et al. Purification, cloning, functional expression and characterization of perakine reductase: the first example from the AKR enzyme family, extending the alkaloidal network of the plant Rauvolfia
EP1055727B1 (en) Cloning of an N-methyltransferase involved in caffeine biosynthesis
Pšenák Biosynthesis of morphinane alkaloids
JPH11178577A (en) Norcoclaurine 6-o-methyltransferase and enzyme gene thereof
Talwar et al. The role of lysine-256 in the structure and function of sheep liver recombinant serine hydroxymethyltransferase

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060725

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061016

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4568833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term