JP2002291201A - Slide contact structure - Google Patents

Slide contact structure

Info

Publication number
JP2002291201A
JP2002291201A JP2001130351A JP2001130351A JP2002291201A JP 2002291201 A JP2002291201 A JP 2002291201A JP 2001130351 A JP2001130351 A JP 2001130351A JP 2001130351 A JP2001130351 A JP 2001130351A JP 2002291201 A JP2002291201 A JP 2002291201A
Authority
JP
Japan
Prior art keywords
sliding contact
contact surface
composition
sintered body
conductive agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001130351A
Other languages
Japanese (ja)
Other versions
JP4991983B2 (en
Inventor
Katsutada Watanabe
克忠 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001130351A priority Critical patent/JP4991983B2/en
Publication of JP2002291201A publication Critical patent/JP2002291201A/en
Application granted granted Critical
Publication of JP4991983B2 publication Critical patent/JP4991983B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • Motor Or Generator Current Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce electric resistance in mutual connection without increasing the mechanical friction in mechanical sliding between members such as a blush and a slip ring of an electric motor. SOLUTION: A slide contact surface a4 at the end surface of a cylindrical sintered body a3 as a slide contact A slidably contacts the slide contact receiving surface b3 of a copper disc b2 rotating relatively. On the outer jacket a1 of the sintered body a3, the density of conductive member is higher than that of a core a2. In the core a2 of the sintered body a3, the density of a solid lubricant is higher than that of the outer jacket a1. Because the current between the slide contact surface a4 and the slide contact receiving surface b3 concentrates on the outer jacket a1, mutual electric resistance is reduced. The decrease of the friction factor by a solid lubricat is not lost at a core portion a2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、典型的には、電
動機中のブラシとスリップリングの例に見られるよう
に、相対運動する2つの部材間での機械的な相互摺動機
能と、電気的な相互接続機能の双方を同時的に確保する
ための摺動接触構造体に関連し、特に、そのような摺動
接触構造体の両機能のうちの専ら電気的な相互接続機能
の良否を支配する摺動接触面での電気抵抗の逓減改善に
関するものである。
BACKGROUND OF THE INVENTION The present invention typically relates to a mechanical inter-sliding function between two members that move relative to each other, as seen in the example of a brush and a slip ring in an electric motor. Contact structure for simultaneously ensuring both of the functional interconnect functions, and in particular, the quality of the electrical interconnect function of both functions of such a sliding contact structure. The present invention relates to an improvement in gradually decreasing electric resistance at a dominant sliding contact surface.

【0002】[0002]

【従来の技術】従前のこの種の構造体に関しては、銅・
ニッケル合金(Cu−Ni)、錫(Sn)、チタニウム
(Ti)などの金属粒子を導電剤の組成と、窒化ホウ素
(BN)、グラファイト、2硫化タングステン(W
)、マイカ(Si、Al、K)などの素材粒子を含
む固体潤滑剤の組成とが全体に一様分布して成る焼結体
で形成された円柱状の摺動接触体が、例えば、電動機の
ブラシ用の摺動接点部材として多用されており、このよ
うな円柱状の焼結体の一端面に摺動接触面が形成されて
いて、この摺動接触面に対して、例えば、電動機のスリ
ップリング用として多用されている銅製のリングやその
他の産業機械の摺接部材として多用されている金属製の
平板などのような導電性の摺動接受体が相対摺動自在に
摺接するように構成された摺動接触構造体が知られてい
る。
2. Description of the Related Art Conventional structures of this type include copper and copper.
Metal particles such as nickel alloy (Cu-Ni), tin (Sn) and titanium (Ti) are mixed with a conductive agent composition, boron nitride (BN), graphite, tungsten disulfide (W
S 2 ), a columnar sliding contact body formed of a sintered body in which the composition of a solid lubricant containing material particles such as mica (Si, Al, K) is uniformly distributed throughout, for example, It is frequently used as a sliding contact member for a brush of an electric motor, and a sliding contact surface is formed on one end surface of such a columnar sintered body, and for this sliding contact surface, for example, A conductive sliding contact member such as a copper ring which is frequently used for a slip ring of an electric motor or a metal flat plate which is frequently used as a sliding contact member of other industrial machines is slidably slidable relative to each other. A sliding contact structure configured as described above is known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従前の摺動接触構造体にあっては、電気的な相互接
続機能を支配する接触抵抗、即ち、摺動接触面での電気
抵抗が、金属どうしの接触抵抗に比べて、すこぶる高
く、例えば、銅製の摺動接受体の採用下で、8.5mm
φの円形の摺動接触面に対して、例えば、18mΩ程度
の値を呈するのが普通である。この種の摺動接触構造体
の摺動接触体としての焼結体に形成された摺動接触面上
には、導電剤の組成と固体潤滑剤の組成とが、100ミ
クロンオーダーの粒子ないし粒状塊の一様分布の形態で
露出しており、これにより、導電剤の粒子ないし粒状塊
によりもたらされるところの、摺動接触面での電気抵抗
の逓減という形での電気的な相互接続機能の増強が、固
体潤滑剤の粒子ないし粒状塊によりもたらされるところ
の、摺動接触面での摩擦係数の逓減という形での機械的
な相互摺動接触機能の増強の犠牲の下に実現される訳
で、そこでは、電気抵抗の逓減と摩擦係数の逓減という
背反二律の要請の調和が図られているのである。よっ
て、本来的には、金属どうしの摺動接触面での電気抵抗
との相対では、高抵抗を呈する傾向にあると言える。
However, in such a conventional sliding contact structure, the contact resistance that governs the electrical interconnection function, that is, the electrical resistance at the sliding contact surface is: It is extremely high compared to the contact resistance between metals, for example, 8.5 mm under the adoption of a sliding contact member made of copper.
Usually, for example, a value of about 18 mΩ is exhibited with respect to a circular sliding contact surface of φ. On the sliding contact surface formed on the sintered body as a sliding contact body of this kind of sliding contact structure, the composition of the conductive agent and the composition of the solid lubricant are in the form of particles or particles of the order of 100 microns. Exposed in the form of a uniform distribution of lumps, thereby providing an electrical interconnection function in the form of a diminution of electrical resistance at the sliding contact surface caused by particles or particulate lumps of conductive agent. The enhancement is achieved at the expense of an enhanced mechanical inter-sliding contact function in the form of a gradual decrease in the coefficient of friction at the sliding contact surface, which is provided by particles or a particulate mass of solid lubricant. Thus, there is a harmonization of the demands of the trade-offs of diminishing electrical resistance and diminishing friction coefficient. Therefore, it can be said that there is an inherent tendency to exhibit a high resistance relative to the electrical resistance at the sliding contact surface between the metals.

【0004】その上、さらに、摺動接触面での電気抵抗
に関しては、摺動接触面に一様分布する導電剤組成の粒
子ないし粒状塊に点的に集中して流れる電流の相互依存
作用によってもたらされる相互抵抗の発生メカニズム
が、グリーンウッド(Greenwood)の理論(出
典:J.A.Greenwood,”Constric
tion resistance and the r
eal area ofcontact”,Brit.
J.Appl.Phys.,vol.17,pp.16
21−1632,1966)として、明らかにされてい
るところであるが、本願発明者は、この理論の焼結体摺
動接触面での電気抵抗の発生メカニズムへの適用に関
し、実証的研究を鋭意継続した結果、摺動接触面上の中
央領域に一様に分布する導電剤の粒子ないし粒状塊は、
摺動接触面全体の導電剤の粒子等に点的に集中する電流
からの全体的な相互作用により、相対的に大きな相互抵
抗を生成し、かかる相互抵抗が、摺動接触面上での電気
抵抗を実質的に支配するのに対し、摺動接触面上の周辺
領域に一様に分布する導電剤の粒子等は、専ら、周辺領
域内で隣接する導電剤の粒子等に点的に集中する電流か
らの相互作用により、相対的に小さな相互抵抗を生成す
るに過ぎないことから、こうした周辺領域の導電剤の粒
子等に対して、摺動接触面上の電流が集中することを実
証的に解明した(出典:Y.Watanabe,Ana
lysis of Contact Resistan
ce in Composite Materials
forSliding Contacts,IEIC
E Trans,Electron.Japan vo
l.E83−C No.9.pp.1409−1413
September 2000)。本願発明者の実証的
解明によれば、焼結体の摺動接触面上に発生するグリー
ンウッドの相互抵抗は、そこでの摩擦係数逓減のための
固体潤滑剤の粒子ないし粒上塊の混在による代償分の電
気抵抗を越える超過要素の電気抵抗であるので、勢い、
摩擦係数の逓減の割りには、摺動接触面全体に発生する
電気抵抗が大きなものとなり、その面から、従前のこの
種の摺動接触構造体の用途範囲が制約を受けるという問
題点があった。
In addition, the electric resistance at the sliding contact surface is further dependent on the interdependent action of the current flowing intensively on the particles or granular lumps of the conductive agent composition uniformly distributed on the sliding contact surface. The mechanism of the resulting mutual resistance is described in Greenwood's theory (Source: JA Greenwood, “Constric”
Tension resistance and ther
eal area of contact ", Brit.
J. Appl. Phys. , Vol. 17, pp. 16
21-1632, 1966), the inventor of the present application has enthusiastically continued empirical research on the application of this theory to the mechanism of generation of electrical resistance at the sliding contact surface of a sintered body. As a result, the conductive agent particles or granular mass uniformly distributed in the central region on the sliding contact surface,
The overall interaction from the current concentrated point-wise on the conductive agent particles, etc. across the sliding contact surface creates a relatively large mutual resistance, which creates a large electrical resistance on the sliding contact surface. While the resistance is substantially dominant, the conductive agent particles uniformly distributed in the peripheral region on the sliding contact surface are exclusively concentrated in the peripheral region in the peripheral region. Since the interaction from the current generated only generates a relatively small mutual resistance, it is demonstrated that the current on the sliding contact surface concentrates on the conductive agent particles and the like in these peripheral areas. (Source: Y. Watanabe, Ana)
lysis of Contact Resistan
ce in Composite Materials
forSliding Contacts, IEIC
E Trans, Electron. Japan vo
l. E83-C No. 9. pp. 1409-1413
September 2000). According to the empirical elucidation of the present inventor, the mutual resistance of the green wood generated on the sliding contact surface of the sintered body is caused by the mixture of the particles of the solid lubricant or the lump on the particles for decreasing the friction coefficient there. Momentum, since it is the resistance of the excess element exceeding the resistance of the compensation
Even if the coefficient of friction gradually decreases, the electrical resistance generated on the entire sliding contact surface becomes large, and from that surface, there is a problem that the range of use of the conventional sliding contact structure is restricted. Was.

【0005】そこで、かかる超過要素の相互抵抗起因の
電気抵抗を最小限度のものに抑制することで、固体潤滑
剤の粒子ないし粒状塊の混在にによる摩擦係数の逓減作
用を犠牲にすることなしに、焼結体の摺動接触面上での
全体的な電気抵抗の大幅逓減を図るようにした摺動接触
構造体を提供することが請求項1〜3記載の発明の課題
である。
[0005] Therefore, by suppressing the electric resistance due to the mutual resistance of the excess elements to a minimum, without sacrificing the effect of decreasing the friction coefficient due to the mixture of the particles or granular lumps of the solid lubricant. SUMMARY OF THE INVENTION It is an object of the present invention to provide a sliding contact structure in which the overall electric resistance on the sliding contact surface of a sintered body is greatly reduced.

【0006】[0006]

【課題を解決するための手段】上記従前構造体における
摺動接触面上での大きな電気抵抗による用途範囲の制約
という問題点に鑑み、上記請求項1〜3記載の発明は、
相互抵抗の発生の少ない摺動接触面上の周辺領域で、導
電剤の組成を高密度に分布させ、逆の観点からすれば、
相互抵抗の発生の顕著な摺動接触面上の中央領域で、固
体潤滑剤の組成を高密度に分布させることによって、上
記問題点を解決して、焼結体の摺動接触面上での摩擦係
数の逓減作用を犠牲にすることなしに、そこでの全体的
な電気抵抗の大幅逓減を図るようにした優れた摺動接触
構造体を提供するものである。
In view of the problem that the range of application is limited by a large electric resistance on the sliding contact surface of the conventional structure, the inventions according to claims 1 to 3 have the following problems.
In the peripheral area on the sliding contact surface where the occurrence of mutual resistance is small, the composition of the conductive agent is distributed at a high density, and from the opposite viewpoint,
The above problem is solved by distributing the composition of the solid lubricant at a high density in the central region on the sliding contact surface where the occurrence of mutual resistance is remarkable. It is an object of the present invention to provide an excellent sliding contact structure in which the overall electric resistance is greatly reduced without sacrificing the effect of decreasing the coefficient of friction.

【0007】[0007]

【作用】請求項1記載の発明は、摺動接触体が、導電剤
の組成と固体潤滑剤の組成とから成る焼結体で形成され
ていて、それの立方体の一面に摺動接触面を備えてお
り、導電性の摺動接受体が、上記摺動接触体の摺動接触
面に対して、相対摺動自在に摺接する摺動接受面を備え
ており、上記摺動接触体の摺動接触面上の周辺領域での
導電剤の組成の密度が、該摺動接触面上の中央領域での
導電剤の密度に対して相対的に高くなるように分布して
おり、これにより、周辺領域での相対的に高密度の導電
剤組成の粒子ないし粒状塊に対して電流が集中すること
で、該摺動接触面上を相対的に逓減された相互抵抗に抗
して電流が通過し、中央領域での相対的に高密度の固体
潤滑剤組成の粒子ないし粒状塊が、専ら、該摺動接触面
上での摩擦係数を逓減するように作用する。
According to the first aspect of the present invention, the sliding contact body is formed of a sintered body having a composition of a conductive agent and a composition of a solid lubricant, and a sliding contact surface is formed on one surface of the cube. A sliding contact receiving surface, wherein the conductive sliding contact receiving member has a sliding contact receiving surface which is slidably slidably contacted with a sliding contact surface of the sliding contact member. The density of the composition of the conductive agent in the peripheral region on the dynamic contact surface is distributed so as to be relatively higher than the density of the conductive agent in the central region on the sliding contact surface, whereby: The current concentrates on the particles or granular lumps having a relatively high density of the conductive agent composition in the peripheral region, so that the current passes on the sliding contact surface against the relatively reduced mutual resistance. However, the particles or granules of the relatively high density solid lubricant composition in the central region exclusively reduce the coefficient of friction on the sliding contact surface. It acts to.

【0008】請求項2記載の発明は、上記摺動接触面の
導電剤の組成としての、銅・ニッケル合金(Cu−N
i)、錫(Sn)、チタニウム(Ti)の粒子ないし粒
状塊が、摺動接触面上の周辺領域に相対的に高密度に分
布していて、そこに、電流が集中し、上記摺動接触体の
固体潤滑剤の組成としての、窒化ホウ素(BN)、グラ
ファイト、2硫化タングステン(WS)、マイカ(S
i、Al、K)の粒子ないし粒状塊が、上記摺動接触面
上の中央領域に相対的に高密度に分布していて、そこで
の摩擦係数を逓減するように作用する。請求項3記載の
発明は、上記摺動接触体が焼結体で形成される円柱体で
あって、その一端面が摺動接触面として作用する。
According to a second aspect of the present invention, a copper-nickel alloy (Cu-N
i), tin (Sn) and titanium (Ti) particles or granular masses are relatively densely distributed in the peripheral region on the sliding contact surface, where current is concentrated, Boron nitride (BN), graphite, tungsten disulfide (WS 2 ), mica (S
Particles or particles of (i, Al, K) are relatively densely distributed in the central region on the sliding contact surface, and act to reduce the friction coefficient there. According to a third aspect of the present invention, the sliding contact body is a cylindrical body formed of a sintered body, and one end surface thereof functions as a sliding contact surface.

【0009】[0009]

【実施の形態】図1〜図3を参照しつつ請求項1〜3記
載の発明の実施の形態を以下に説明する。図1の要部抽
出の斜視図に示されるように、摺動接触構造体Pは、摺
動接触体Aと摺動接受体Bとで構成されており、摺動接
触体Aに固定的に接続されている図示外の給電系から供
給された電流が、該摺動接触体Aを介して、これに対し
て相対摺動自在に対向配置された摺動接受体Bに固定的
に接続されている図示外の負荷系に流入する。図2の部
分断面斜視図に明瞭に示されているように、銅(Cu)
製の円管様のスリーブa1の中空部内には、固体潤滑剤
の組成としての、窒化ホウ素(BN)、グラファイト、
2硫化タングステン(WS)、マイカ(Si、Al、
K)などの素材粒子の混合物a2が圧入されてコア部分
を形成しており、該スリーブa1と、該コア部分の混合
物a2とに対して一体的な焼結処理が施されて生成され
る焼結体a3により、円柱体の摺動接触体Aが形成され
ている。摺動接触体Aには、該摺動接触体Aとしての円
柱体の一端に平面に形成された摺動接触面a4が備えら
れている。一方、摺動接触体Aに対向配置された摺動接
受体Bは、中心開口b1に連結する図示外の回転駆動機
構により駆動されて、図中反時計方向に回転する導電性
の円盤、典型的には、銅(Cu)製の円盤b2で構成さ
れており、該円盤b2の表面上には、平面に形成された
摺動接受面b3が備えられている。そして、この摺動接
受面b3が、摺動接触体A側の摺動接触面a4に対して
相対摺動自在に摺接していて、摺動接触体Aと摺動接受
体Bとの間の機械的な相互摺動機能と両者間の電気的な
相互接続機能との双方が同時的に確保されている。摺動
接触体Aの摺動接触面a4としての円形断面の周辺領域
には、円筒様のスリーブa1の端面の銅(Cu)が露出
しており、該円形断面の中央領域には、コア部分対応の
混物a2中の固体潤滑剤組成の100ミクロンオーダー
の粒子ないし粒状塊が一様分布の形態で混在している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS. As shown in the perspective view of the main part extraction of FIG. 1, the sliding contact structure P is composed of a sliding contact body A and a sliding contact receiver B, and is fixed to the sliding contact body A. An electric current supplied from a connected power supply system (not shown) is fixedly connected to a sliding contact receiver B which is slidably opposed to the electric current via the sliding contact body A. Into the load system (not shown). As clearly shown in the partial cross-sectional perspective view of FIG.
In a hollow portion of a circular tube-like sleeve a1 made of, for example, boron nitride (BN), graphite,
Tungsten disulfide (WS 2 ), mica (Si, Al,
The mixture a2 of the material particles such as K) is press-fitted to form a core portion, and the sleeve a1 and the mixture a2 of the core portion are subjected to an integral sintering process to form a sintered body. A cylindrical sliding contact body A is formed by the union a3. The sliding contact body A is provided with a sliding contact surface a4 formed in a flat surface at one end of a cylindrical body as the sliding contact body A. On the other hand, a sliding contact receiving member B disposed opposite to the sliding contact member A is driven by a rotation driving mechanism (not shown) connected to the center opening b1, and is a conductive disk that rotates counterclockwise in the drawing, typically. More specifically, the disk b2 is made of a copper (Cu) disk, and a sliding contact surface b3 formed in a plane is provided on the surface of the disk b2. The sliding contact receiving surface b3 is in sliding contact with the sliding contact surface a4 of the sliding contact body A so as to be relatively slidable. Both a mechanical mutual sliding function and an electrical interconnection function between them are simultaneously ensured. Copper (Cu) on the end surface of the cylindrical sleeve a1 is exposed in the peripheral region of the circular cross section as the sliding contact surface a4 of the sliding contact body A, and the core region is provided in the central region of the circular cross section. In the corresponding mixture a2, particles or granular lumps of the order of 100 microns of the solid lubricant composition are mixed in the form of a uniform distribution.

【0010】図1に戻って、かかる構成の摺動接触体A
の摺動接触面a4が摺動接受体Bの摺動接受面b3に対
して圧接摺動した状態下で、摺動接触面a4と摺動接受
面b3間が通電されると、その間の電流は、専ら、摺動
接触面a4上の周辺領域のスリーブa1に集中して低抵
抗でそこを通過して、摺動接受体Bに流入する。その
間、摺動接触面a4上の中央領域におけるコア部分の焼
結体a3中に含まれる固体潤滑剤組成の粒子ないし粒状
塊から擦り出される2硫化タングステン(WS)、グ
ラファイトなどが、対向摺動する摺動接受面b3側にも
転移して摺動接触面a4と摺動接受面b3との間に潤滑
被膜を形成することで、両面間での摩擦係数の逓減作用
が確保される。
Returning to FIG. 1, the sliding contact body A having such a configuration will be described.
When the sliding contact surface a4 and the sliding contact receiving surface b3 are pressed and slid against the sliding contact receiving surface b3 of the sliding contact receiving member B, current flows between the sliding contact surface a4 and the sliding contact receiving surface b3. Concentrates on the sleeve a1 in the peripheral area on the sliding contact surface a4, passes therethrough with low resistance, and flows into the sliding contact B. In the meantime, tungsten disulfide (WS 2 ), graphite, and the like rubbed out from particles or granular lumps of the solid lubricant composition contained in the sintered body a3 of the core portion in the central region on the sliding contact surface a4 are opposed to each other. By forming a lubricating film between the sliding contact surface a4 and the sliding contact surface b3 by also transferring to the moving sliding contact surface b3, the effect of gradually reducing the friction coefficient between the two surfaces is ensured.

【0011】同様にして、摺動接触体Aの摺動接触面a
4上での導電剤組成の粒子ないし粒状塊の密度が、該摺
動接触面a4の周辺領域において、該摺動接触面の中央
領域のそれとの相対で高くなるように製作された焼結体
a3の普遍的な構造を示す部分断面斜視図が図3であ
る。図3において、焼結体c3は、中心軸沿いに延在
し、一端面の摺動接触面c4上で中央領域として露出す
るコア部分c2と、コア部分c2の外周沿いに延在し、
該摺動接触面c4上で周辺領域として露出する外套部分
c1とが円柱体を形成するように一体的に焼結されたも
のであり、コア部分c2には、固体潤滑剤組成の粒子な
いし粒状塊が導電剤組成のそれとの相対で高密度に分布
しており、外套部分c1には、導電剤組成の粒子ないし
粒状塊が固体潤滑剤組成のそれとの相対で高密度に分布
している。
Similarly, the sliding contact surface a of the sliding contact body A
A sintered body manufactured such that the density of the particles or granular lumps of the conductive agent composition on the surface 4 is higher in the peripheral region of the sliding contact surface a4 than in the central region of the sliding contact surface. FIG. 3 is a partial cross-sectional perspective view showing the universal structure of a3. In FIG. 3, the sintered body c3 extends along the central axis, extends along the outer periphery of the core portion c2, and a core portion c2 exposed as a central region on a sliding contact surface c4 at one end surface,
The outer peripheral portion c1 exposed as a peripheral region on the sliding contact surface c4 is integrally sintered so as to form a columnar body, and the core portion c2 has particles or particles of a solid lubricant composition. The agglomerates are densely distributed relative to that of the conductive agent composition, and particles or granular lumps of the conductive agent composition are densely distributed in the mantle portion c1 relative to that of the solid lubricant composition.

【0012】コア部分c2と外套部分c1との間の境界
付近の緩衝域での導電剤組成の粒子ないし粒状塊の分布
密度の変遷は、図2に示されているように、離散的(ス
テップ状)であってもよいが、図示外のように、連続的
であってもよい。さらに、外套部分c1での導電剤組成
に関しては、銅(Cu)の粒子ないし粒状塊の分布密度
を選択的に高めてもよく、こうした銅(Cu)の粒子な
いし粒状塊の選択的高密度分布の極値例として、図2に
示されているように、外套部分c1に代えて、銅(C
u)製のスリーブa1を採用した焼結体a3の構造が把
握可能である。さらに、図3に示されている摺動接触体
A中の円管様の外套部分c1に関しては、その組成が銅
(Cu)に限られる訳ではなく、一般的には、銅・ニッ
ケル合金(90Cu−10Ni)、錫(Sn)、チタニ
ウム(Ti)などの導電剤組成を含有するマトリックス
材も好適に採用される。
The change in the distribution density of the particles of the conductive agent composition in the buffer region near the boundary between the core portion c2 and the mantle portion c1 is discrete (step) as shown in FIG. ), But may be continuous as shown in the figure. Further, with respect to the composition of the conductive agent in the jacket portion c1, the distribution density of the copper (Cu) particles or granular lumps may be selectively increased, and the selective high-density distribution of such copper (Cu) particles or granular lumps may be obtained. As shown in FIG. 2, instead of the jacket portion c1, copper (C
The structure of the sintered body a3 employing the sleeve a1 made of u) can be grasped. Further, the composition of the outer tubular portion c1 in the sliding contact body A shown in FIG. 3 is not limited to copper (Cu), and is generally not limited to copper-nickel alloy ( A matrix material containing a conductive agent composition such as 90Cu-10Ni), tin (Sn), and titanium (Ti) is also suitably employed.

【0013】[0013]

【実施例】図4の斜視図に示されているのは、従前の摺
動接触体Aとしての焼結体d3であり、導電剤と固体潤
滑剤の粒子ないし粒状塊を一様分布で含有する円柱体に
形成されていて、その一端面に摺動接触面d4が設けら
れている。このような従前の複合材料の焼結体d3であ
って、下記の諸元の下に製作されたもの(CMML−
1)を本願発明の実施例の焼結体c3に関する性能評価
のための参照標本として用意した。 [形状寸法] 直径: 8.5mmφの円柱体 [焼結体d3の全体の導電剤の組成(Wt%)] 銅・ニッケル合金(90Cu−10Ni):80.74
8 錫(Sn):7.099 チタニウム(Ti):0.887 [焼結体d3の全体の固体潤滑剤の組成(Wt%)] 窒化ホウ素(BN):0.229 グラファイト:2.364 2硫化タングステン(WS):7.609 マイカ:1.064
FIG. 4 shows a perspective view of a sintered body d3 as a conventional sliding contact body A, which contains a conductive agent and solid lubricant particles or a granular mass in a uniform distribution. And a sliding contact surface d4 is provided on one end surface thereof. A sintered body d3 of such a conventional composite material manufactured under the following specifications (CMML-
1) was prepared as a reference sample for evaluating the performance of the sintered body c3 of the example of the present invention. [Shape and dimensions] Diameter: 8.5 mmφ cylindrical body [Composition (Wt%) of entire conductive material of sintered body d3] Copper / nickel alloy (90Cu-10Ni): 80.74
8 Tin (Sn): 7.099 Titanium (Ti): 0.887 [Composition of the entire solid lubricant of sintered body d3 (Wt%)] Boron nitride (BN): 0.229 Graphite: 2.364 2 Tungsten sulfide (WS 2 ): 7.609 Mica: 1.064

【0014】図4のものと同様の外観を呈する銅(C
u)製の円柱体であって、その一端面に摺動接触面の設
けられているものも摺動接触体Aとして多用されてい
る。このような従前の金属材料の摺動接触体Aであっ
て、下記の諸元の下に製作されたもの(Cu)を本願発
明の実施例の焼結体c3に関する性能評価のための参照
標本として用意した。 [形状寸法] 直径: 8.5mmφの円柱体 [全体の導電剤の組成(Wt%)] 銅(Cu):100 [全体の固体潤滑剤の組成(Wt%)] なし
Copper (C) having an appearance similar to that of FIG.
A cylindrical member made of u) having a sliding contact surface on one end surface is also frequently used as the sliding contact member A. Such a conventional sliding contact body A made of a metallic material, which was manufactured under the following specifications (Cu), was used as a reference specimen for evaluating the performance of the sintered body c3 of the embodiment of the present invention. Prepared as. [Shape and dimensions] Diameter: 8.5 mmφ cylindrical body [Whole conductive composition (Wt%)] Copper (Cu): 100 [Whole solid lubricant composition (Wt%)] None

【0015】上記2つの参照標本との対比において、性
能評価されるべき、実施例の標本の焼結体c3として、
下記の諸元のもの(CMML−1W)を製作した。 [形状寸法] 外径: 8.5mmφ、内径5.0mmφのスリーブ 直径5.0mmφのコア部分 [外套部分c1の導電剤の組成(Wt%)] 銅・ニッケル合金(90Cu−10Ni):78.66
9 錫(Sn):6.916 チタニウム(Ti):0.864 但し、固体潤滑剤の組成は含有されていない。 [コア部分c2の潤滑剤の組成(Wt%)] 窒化ホウ素(BN):0.276 グラファイト:2.843 2硫化タングステン(WS):9.152 マイカ:1.280 但し、導電気剤の組成は含有されていない。
In comparison with the above two reference samples, the sintered body c3 of the sample of the embodiment to be evaluated for performance is:
The following specifications (CMML-1W) were produced. [Shape and dimension] Outer diameter: 8.5 mmφ, sleeve with inner diameter 5.0 mmφ Core part with diameter 5.0 mmφ [Composition of conductive agent of outer part c1 (Wt%)] Copper / nickel alloy (90Cu-10Ni): 78. 66
9 Tin (Sn): 6.916 Titanium (Ti): 0.864 However, the composition of the solid lubricant was not contained. [Composition of lubricant of core portion c2 (Wt%)] Boron nitride (BN): 0.276 Graphite: 2.843 Tungsten disulfide (WS 2 ): 9.152 Mica: 1.280 No composition is contained.

【0016】ここで性能評価されるべき実施例の標本
(CMML−1W)の焼結体c3は、単位軸長(単位体
積)当りの含有組成の重量%配分において、前掲の複合
材料の参照標本(CMML−1)の焼結体d3との同一
性が保たれているものである。従って、複合材料の参照
標本(CMML−1)の焼結体d3中に一様に分布して
いる導電剤組成と固体潤滑剤組成のうちの導電剤組成の
方だけを外套部分c1内に集結させて、残りの潤滑剤組
成の全部をコア部分c2に集結させた構成のものが、実
施例の標本(CMML−1W)の焼結体c3であると言
うことができる。
Here, the sintered body c3 of the sample (CMML-1W) of the embodiment to be evaluated for performance is a reference sample of the above-mentioned composite material in the weight% distribution of the contained composition per unit axial length (unit volume). The identity with the sintered body d3 of (CMML-1) is maintained. Therefore, only the conductive agent composition of the conductive agent composition and the solid lubricant composition that are uniformly distributed in the sintered body d3 of the reference sample (CMML-1) of the composite material is concentrated in the mantle portion c1. Then, it can be said that the structure in which all of the remaining lubricant composition is collected in the core portion c2 is the sintered body c3 of the sample (CMML-1W) of the example.

【0017】ここで再び図1に戻って、摺動接受体Bと
して回転駆動されている銅(Cu)製の円盤b2上の摺
動接受面b3に対して、複合材料の参照標本(CMML
−1)と金属材料の参照標本(Cu)と本願発明の実施
例の標本(CMML−1W)の各別の摺動接触面を、1
00gの押圧力の下、相対回転速度10RPM(相対周
速度0.0105m/sec)で摺動運動させること
で、標本の参照標本に対する電気的性能を実証的に対比
評価すべく、摺動接触面と摺動接受面との間の接触抵抗
(電気抵抗)を円盤b2の累積回転回数(500回ま
で)ごとの総平均値として計測して、摺動接触面と摺動
接受面との間を通過する電流量ごとにプロットした電気
的特性図が図5であり、同様にして、標本の参照標本に
対する機械的性能を実証的に対比評価すべく、摺動接触
面と摺動接受面との間の摩擦係数を円盤b2の累積回転
回数(500回まで)ごとの総平均値として計測して、
摺動接触面と摺動接受面との間を通過する電流量ごとに
プロットした機械的特性図が図6である。図5の電気的
特性図によれば、本願発明の実施例の標本(CMML−
1W)の接触抵抗は、10A以下の通過電流量域で、3
〜4mΩ程度の低値を示しており、5A以下の通過電流
量域で略18mΩを示す複合材料の参照標本(CMML
−1)のそれに比べて顕著に低く、10A以下の通過電
流量域で1〜2mΩを示す金属材料の参照標本(Cu)
に概匹敵していると言える。
Returning again to FIG. 1, a reference specimen (CMML) of a composite material is applied to a sliding contact surface b3 on a copper (Cu) disk b2 which is rotationally driven as a sliding contact member B.
-1), the reference specimen (Cu) of the metal material and the specimen (CMML-1W) of the embodiment of the present invention,
The sliding contact surface is used to empirically compare and evaluate the electrical performance of the sample with respect to the reference sample by sliding the sample at a relative rotational speed of 10 RPM (a relative peripheral speed of 0.0105 m / sec) under a pressing force of 00 g. Resistance (electrical resistance) between the sliding contact surface and the sliding contact surface is measured as the total average value for each cumulative number of rotations (up to 500 times) of the disk b2, and the distance between the sliding contact surface and the sliding contact surface is measured. FIG. 5 is an electrical characteristic diagram plotted for each amount of current passing therethrough. Similarly, in order to empirically compare and evaluate the mechanical performance of the specimen with respect to the reference specimen, the sliding contact surface and the sliding contact receiving surface are compared. The friction coefficient between the discs is measured as a total average value for each cumulative number of rotations (up to 500 times) of the disk b2,
FIG. 6 is a mechanical characteristic diagram plotted for each amount of current passing between the sliding contact surface and the sliding contact receiving surface. According to the electrical characteristic diagram of FIG. 5, the sample (CMML-
The contact resistance of 1 W) is 3 in a passing current amount region of 10 A or less.
A reference sample of a composite material (CMML) showing a low value of about 4 mΩ and about 18 mΩ in a passing current amount range of 5 A or less.
Reference sample (Cu) of a metal material which is remarkably lower than that of -1) and exhibits 1-2 mΩ in a passing current amount region of 10 A or less.
Can be said to be roughly comparable to

【0018】さらに、図6の機械的特性図によれば、本
願発明の実施例の標本(CMML−1W)の摩擦係数
は、10A以下の通過電流量域で、0.2〜0.3程度
の低値を示しており、同じ通過電流量域で、1.2〜
1.8を示す金属材料の参照標本(Cu)よりも格段に
低く、しかも、同じ通過電流量域での複合材料の標本
(CMML−1)の値に対しても逓減改善が認められ
る。以上のように、図5の電気的特性図と図6の機械的
特性に基づいて、本願発明の摺動接触構造体は、固体潤
滑剤の粒子ないし粒状塊の混在による摩擦係数の逓減作
用を全く犠牲にすることなしに、焼結体の摺動接触面上
での全体的な電気抵抗の大幅逓減を達成するものであ
り、摺動接触面での電気的な相互接続機能の増強と機械
的な相互摺動接触機能の増強という背反二律の要請に適
うものであることが実証された。
Further, according to the mechanical characteristic diagram of FIG. 6, the friction coefficient of the sample (CMML-1W) according to the embodiment of the present invention is about 0.2 to 0.3 in a passing current amount range of 10 A or less. At the same passing current amount range, 1.2 to
The value is much lower than that of the reference sample (Cu) of the metal material showing 1.8, and furthermore, a gradual improvement is observed with respect to the value of the sample of the composite material (CMML-1) in the same passing current amount region. As described above, based on the electrical characteristics shown in FIG. 5 and the mechanical characteristics shown in FIG. 6, the sliding contact structure of the present invention has a function of gradually decreasing the friction coefficient due to the mixture of the solid lubricant particles or the granular mass. It achieves a drastic reduction in the overall electrical resistance on the sliding contact surface of the sintered body without any sacrifice, and enhances the electrical interconnection function on the sliding contact surface and improves the mechanical performance. It has been proved that it meets the demands of the trade-off of enhancing the mutual sliding contact function.

【0019】なお、上述の実施の形態として例示されて
いる摺動接触体Aの焼結体a3、c3は、いずれも円柱
体に形成されており、一端面に断面円形の摺動接触面a
4、c4が備えられているものであるが、摺動接触面a
4、c4は、対向摺接する摺動接受面b3との間で機械
的な相互摺動機能と電気的な相互接続機能を確保すれば
足りるので、断面円形のものに限られることはなく、断
面三角形の三角柱や断面四角の長方体も適宜に採用可能
であり、敷衍するならば、これらの全てを包含し、3次
元空間で閉じた輪郭をもつという意味での立体であれば
足りる。
Each of the sintered bodies a3 and c3 of the sliding contact body A exemplified as the above-described embodiment is formed in a cylindrical body, and has a sliding contact surface a having a circular cross section on one end surface.
4 and c4, but the sliding contact surface a
4 and c4 are not limited to those having a circular cross section, because it is sufficient to ensure a mechanical mutual sliding function and an electric interconnection function between the sliding contact receiving surfaces b3 which are in sliding contact with each other. A triangular prism having a triangular shape or a rectangular body having a square cross section can also be appropriately employed, and if it is expanded, a three-dimensional body in the sense of including all of these and having a closed contour in a three-dimensional space is sufficient.

【図面の簡単な説明】[Brief description of the drawings]

図1〜図3及び図5〜図6は、この発明の実施の形態に
関するものである。図4は従来の技術に関するものであ
る。
1 to 3 and FIGS. 5 to 6 relate to an embodiment of the present invention. FIG. 4 relates to the prior art.

【図1】摺動構造体Pの要部を抽出して示す斜視図であ
る。
FIG. 1 is a perspective view extracting and showing a main part of a sliding structure P. FIG.

【図2】摺動接触体Aの構造の1例を示す部分断面斜視
図である。
FIG. 2 is a partial sectional perspective view showing an example of the structure of a sliding contact body A.

【図3】摺動接触体Aの構造の別の一例を示す部分断面
斜視図である。
FIG. 3 is a partial sectional perspective view showing another example of the structure of the sliding contact body A.

【図4】従来の摺動接触体Aの構造の一例を示す斜視図
である。
FIG. 4 is a perspective view showing an example of the structure of a conventional sliding contact body A.

【図5】摺動接触面a4、c4、d4と摺動接受面b3
との間の電気抵抗を示す電気的特性図である。
FIG. 5 shows sliding contact surfaces a4, c4, d4 and sliding contact receiving surface b3.
FIG. 5 is an electrical characteristic diagram showing an electric resistance between the first embodiment and the second embodiment.

【図6】摺動接触面a4、c4、d4と摺動接受面b3
との間の摩擦係数を示す機械的特性図である。
FIG. 6 shows sliding contact surfaces a4, c4, d4 and sliding contact receiving surface b3.
FIG. 5 is a mechanical characteristic diagram showing a coefficient of friction between.

【符号の説明】[Explanation of symbols]

A 摺動接触体 B 摺動接受体 P 摺動接触構造体 a1 円管様のスリーブ c1 円管様の外套部分 a2・c2 混合物(コア部分) a3・c3・d3 焼結体 a4・c4・d4 摺動接触面 b1 中心開口 b2 導電性の円盤 b3 摺動接受面 Reference Signs List A sliding contact body B sliding contact receiver P sliding contact structure a1 cylindrical sleeve c1 circular tube-like mantle part a2, c2 mixture (core part) a3, c3, d3 sintered body a4, c4, d4 Sliding contact surface b1 Center opening b2 Conductive disk b3 Sliding contact surface

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年4月18日(2001.4.1
8)
[Submission Date] April 18, 2001 (2001.4.1
8)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Correction target item name] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0002】[0002]

【従来の技術】従前のこの種の構造体に関しては、銅・
ニッケル合金(Cu−Ni)、錫(Sn)、チタニウム
(Ti)などの金属粒子を含む導電剤の組成と、窒化ホ
ウ素(BN)、グラファイト、2硫化タングステン(W
)、マイカ(Si、Al、K)などの素材粒子を含
む固体潤滑剤の組成とが全体に一様分布して成る焼結体
で形成された円柱状の摺動接触体が、例えば、電動機の
ブラシ用の摺動接点部材として多用されており、このよ
うな円柱状の焼結体の一端面に摺動接触面が形成されて
いて、この摺動接触面に対して、例えば、電動機のスリ
ップリング用として多用されている銅製のリングやその
他の産業機械の摺接部材として多用されている金属製の
平板などのような導電性の摺動接受体が相対摺動自在に
摺接するように構成された摺動接触構造体が知られてい
る。
2. Description of the Related Art Conventional structures of this type include copper and copper.
The composition of a conductive agent containing metal particles such as nickel alloy (Cu-Ni), tin (Sn), titanium (Ti), boron nitride (BN), graphite, tungsten disulfide (W
S 2 ), a columnar sliding contact body formed of a sintered body in which the composition of a solid lubricant containing material particles such as mica (Si, Al, K) is uniformly distributed throughout, for example, It is frequently used as a sliding contact member for a brush of an electric motor, and a sliding contact surface is formed on one end surface of such a columnar sintered body, and for this sliding contact surface, for example, A conductive sliding contact member such as a copper ring which is frequently used for a slip ring of an electric motor or a metal flat plate which is frequently used as a sliding contact member of other industrial machines is slidably slidable relative to each other. A sliding contact structure configured as described above is known.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0004】その上、さらに、摺動接触面での電気抵抗
に関しては、摺動接触面に一様分布する導電剤組成の粒
子ないし粒状塊に点的に集中して流れる電流の相互依存
作用によってもたらされる相互抵抗の発生メカニズム
が、グリーンウッド(Greenwood)の理論(出
典:J.A.Greenwood,”Constric
tion resistance and the r
eal area ofcontact”,Brit.
J.Appl.Phys.,vol.17,pp.16
21−1632,1966)として、明らかにされてい
るところであるが、本願発明者は、この理論の焼結体摺
動接触面での電気抵抗の発生メカニズムへの適用に関
し、実証的研究を鋭意継続した結果、摺動接触面上の中
央領域に一様に分布する導電剤の粒子ないし粒状塊は、
摺動接触面全体の導電剤の粒子等に点的に集中する電流
からの全体的な相互作用により、相対的に大きな相互抵
抗を生成し、かかる相互抵抗が、摺動接触面上での電気
抵抗を実質的に支配するのに対し、摺動接触面上の周辺
領域に一様に分布する導電剤の粒子等は、専ら、周辺領
域内で隣接する導電剤の粒子等に点的に集中する電流か
らの相互作用により、相対的に小さな相互抵抗を生成す
るに過ぎないことから、こうした周辺領域の導電剤の粒
子等に対して、摺動接触面上の電流が集中することを実
証的に解明した(出典:Y.Watanabe,Ana
lysis of Contact Resistan
ce in Composite Materials
forSliding Contacts,IEIC
E Trans,Electron.Japan vo
l.E83−C No.9.pp.1409−1413
September 2000)。本願発明者の実証的
解明によれば、焼結体の摺動接触面上に発生するグリー
ンウッドの相互抵抗は、そこでの摩擦係数逓減のための
固体潤滑剤の粒子ないし粒上塊の混在による代償分の電
気抵抗を越える超過要素の電気抵抗であるので、勢い、
摩擦係数の逓減の割りには、摺動接触面全体に発生する
電気抵抗が大きなものとなり、その面から、従前のこの
種の摺動接触構造体の用途範囲が制約を受けるという問
題点があった。
In addition, the electric resistance at the sliding contact surface is further dependent on the interdependent action of the current flowing intensively on the particles or granular lumps of the conductive agent composition uniformly distributed on the sliding contact surface. The mechanism of the resulting mutual resistance is described in Greenwood's theory (Source: JA Greenwood, “Constric”
Tension resistance and ther
eal area of contact ", Brit.
J. Appl. Phys. , Vol. 17, pp. 16
21-1632, 1966), the inventor of the present application has enthusiastically continued empirical research on the application of this theory to the mechanism of generation of electrical resistance at the sliding contact surface of a sintered body. As a result, the conductive agent particles or granular mass uniformly distributed in the central region on the sliding contact surface,
The overall interaction from the current, which is concentrated point-wise on the conductive agent particles, etc. on the entire sliding contact surface, creates a relatively large mutual resistance, which creates a large electrical resistance on the sliding contact surface. While the resistance is substantially dominant, the conductive agent particles and the like distributed uniformly in the peripheral region on the sliding contact surface are exclusively concentrated at the conductive agent particles and the like in the peripheral region. The interaction from the current that generates only a relatively small mutual resistance, demonstrating that the current on the sliding contact surface concentrates on the conductive agent particles in these peripheral areas (Source: Y. Watanabe, Ana)
lysis of Contact Resistan
ce in Composite Materials
forSliding Contacts, IEIC
E Trans, Electron. Japan vo
l. E83-C No. 9. pp. 1409-1413
September 2000). According to the empirical elucidation of the present inventor, the mutual resistance of the green wood generated on the sliding contact surface of the sintered body is caused by the mixture of the particles of the solid lubricant or the lump on the particles for decreasing the friction coefficient there. Momentum, because it is the electrical resistance of the excess element exceeding the electrical resistance for the price
Even if the coefficient of friction gradually decreases, the electrical resistance generated on the entire sliding contact surface becomes large, and from that surface, there is a problem that the range of use of the conventional sliding contact structure is restricted. Was.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0005】そこで、かかる超過要素の相互抵抗起因の
電気抵抗を最小限度のものに抑制することで、固体潤滑
剤の粒子ないし粒状塊の混在による摩擦係数の逓減作用
を犠牲にすることなしに、焼結体の摺動接触面上での全
体的な電気抵抗の大幅逓減を図るようにした摺動接触構
造体を提供することが請求項1〜3記載の発明の課題で
ある。
[0005] Therefore, by suppressing the electric resistance due to the mutual resistance of the excess elements to a minimum, without sacrificing the effect of decreasing the coefficient of friction due to the mixture of particles or granular lumps of the solid lubricant, It is an object of the present invention to provide a sliding contact structure in which the overall electric resistance on the sliding contact surface of the sintered body is reduced greatly.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C10M 125/04 C10M 125/04 169/04 169/04 // C10N 10:02 C10N 10:02 10:08 10:08 10:12 10:12 10:16 10:16 20:00 20:00 Z 30:00 30:00 Z 40:02 40:02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C10M 125/04 C10M 125/04 169/04 169/04 // C10N 10:02 C10N 10:02 10:08 10:08 10:12 10:12 10:16 10:16 20:00 20:00 Z 30:00 30:00 Z 40:02 40:02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 導電剤の組成と固体潤滑剤の組成とから
成る焼結体で形成される立体の一面に摺動接触面を備え
ている摺動接触体と、上記摺動接触体の摺動接触面に対
して、相対摺動接触自在に摺接する摺動接受面を備えて
いる導電性の摺動接受体とを含んで成り、上記摺動接触
体の摺動接触面上の周辺領域での導電剤の組成の密度
が、該摺動接触面上の中央領域での導電剤の密度に対し
て相対的に高くなるように、分布していることを特徴と
する摺動接触構造体。
1. A sliding contact body provided with a sliding contact surface on one surface of a three-dimensional body formed of a sintered body comprising a composition of a conductive agent and a composition of a solid lubricant; A conductive sliding contact receiving surface having a sliding contact receiving surface that is slidably slidably contacted with the dynamic contact surface; and a peripheral area on the sliding contact surface of the sliding contact body. Wherein the density of the composition of the conductive agent is distributed so as to be relatively higher than the density of the conductive agent in the central region on the sliding contact surface. .
【請求項2】 上記摺動接触体の導電剤の組成が、銅・
ニッケル合金(Cu−Ni)、錫(Sn)、チタニウム
(Ti)を含んでおり、上記摺動接触体の固体潤滑剤の
組成が、窒化ホウ素(BN)、グラファイト、2硫化タ
ングステン(WS)、マイカ(Si、Al、K)を含
んでいる請求項1記載の摺動接触構造体。
2. The composition of the conductive agent of the sliding contact body is copper.
It contains nickel alloy (Cu-Ni), tin (Sn), and titanium (Ti), and the composition of the solid lubricant of the sliding contact body is boron nitride (BN), graphite, tungsten disulfide (WS 2 ) The sliding contact structure according to claim 1, comprising mica (Si, Al, K).
【請求項3】 上記摺動接触体が、上記焼結体で形成さ
れる円柱体の一端面に摺動接触面を備えている請求項1
記載の摺動接触構造体。
3. The sliding contact body has a sliding contact surface on one end surface of a cylindrical body formed of the sintered body.
The sliding contact structure as described in the above.
JP2001130351A 2001-03-24 2001-03-24 Sliding contact structure Expired - Lifetime JP4991983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001130351A JP4991983B2 (en) 2001-03-24 2001-03-24 Sliding contact structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001130351A JP4991983B2 (en) 2001-03-24 2001-03-24 Sliding contact structure

Publications (2)

Publication Number Publication Date
JP2002291201A true JP2002291201A (en) 2002-10-04
JP4991983B2 JP4991983B2 (en) 2012-08-08

Family

ID=18978745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001130351A Expired - Lifetime JP4991983B2 (en) 2001-03-24 2001-03-24 Sliding contact structure

Country Status (1)

Country Link
JP (1) JP4991983B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187190A (en) * 2004-11-30 2006-07-13 Denso Corp Brush, commutator and commutation mechanism

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146874A (en) * 1984-08-13 1986-03-07 株式会社日立製作所 Freezing refrigerator with kitchen table
JPS62171434A (en) * 1987-01-12 1987-07-28 Hitachi Chem Co Ltd Carbon brush
JPS6396230A (en) * 1986-10-09 1988-04-27 Natl Aerospace Lab Composite brush material for electric use
JPS63114543A (en) * 1986-10-29 1988-05-19 Nippon Denso Co Ltd Brush holder
JPH01180857A (en) * 1988-01-11 1989-07-18 Wako Pure Chem Ind Ltd O-benzoylbenzoic acid long-chain alkyl ester and production thereof
JPH06290849A (en) * 1993-03-31 1994-10-18 Asmo Co Ltd Device for manufacturing multi-layer brush and manufacture thereof
JPH08223869A (en) * 1995-02-07 1996-08-30 Hitachi Chem Co Ltd Rotating electric machine brush
JP2000197315A (en) * 1998-12-28 2000-07-14 Totan Kako Kk Carbon brush for electric machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146874A (en) * 1984-08-13 1986-03-07 株式会社日立製作所 Freezing refrigerator with kitchen table
JPS6396230A (en) * 1986-10-09 1988-04-27 Natl Aerospace Lab Composite brush material for electric use
JPS63114543A (en) * 1986-10-29 1988-05-19 Nippon Denso Co Ltd Brush holder
JPS62171434A (en) * 1987-01-12 1987-07-28 Hitachi Chem Co Ltd Carbon brush
JPH01180857A (en) * 1988-01-11 1989-07-18 Wako Pure Chem Ind Ltd O-benzoylbenzoic acid long-chain alkyl ester and production thereof
JPH06290849A (en) * 1993-03-31 1994-10-18 Asmo Co Ltd Device for manufacturing multi-layer brush and manufacture thereof
JPH08223869A (en) * 1995-02-07 1996-08-30 Hitachi Chem Co Ltd Rotating electric machine brush
JP2000197315A (en) * 1998-12-28 2000-07-14 Totan Kako Kk Carbon brush for electric machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187190A (en) * 2004-11-30 2006-07-13 Denso Corp Brush, commutator and commutation mechanism

Also Published As

Publication number Publication date
JP4991983B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP2001081523A (en) Coppery sliding material
KR101596658B1 (en) Plain Bearing Material
JP2005200703A5 (en)
KR960003860A (en) Sintered contact member
WO2010030031A1 (en) SLIDING COMPONENT CONSISTING OF Pb-FREE Cu-Bi TYPE SINTERED MATERIAL
GB2365935A (en) Copper-based sliding material/bearing & manufacture thereof
JP2003269456A (en) Slide material
JPH10330868A (en) Copper-base sintered alloy
JP3274261B2 (en) Copper-based sliding material
JP3789291B2 (en) Ni metal particle dispersion type Ag-Ni alloy sliding contact material and clad composite material and DC small motor using the same
JP3138965B2 (en) Material for electrical contacts made of silver with carbon
WO1981000981A1 (en) Metal-bound diamond sintered material
JP2002053673A (en) Sliding material
JP3292445B2 (en) Sliding material with excellent wear resistance
JP2002291201A (en) Slide contact structure
JP2553374B2 (en) Sintered alloy material for oil-impregnated bearing and manufacturing method thereof
US10473160B2 (en) Sliding bearing with lining layer comprising carbon nanostructures
JPH08260078A (en) Sliding contact material, clad composite material and dc compact motor using the same
JP2904355B2 (en) Manufacturing method of sintered sliding material
JP2000192169A (en) Sliding contact material
JP2804509B2 (en) Lubricants for electrical contacts
JPS58133339A (en) Electric contact material
JP2977941B2 (en) Manufacturing method of low friction coefficient sintered bearing
JPH116021A (en) Coppery sintered friction material and its production
JPS6337445B2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20010418

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20010418

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080508

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090711

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4991983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term