JP2002289606A - Manufacturing method of ferroelectric thin-film device - Google Patents

Manufacturing method of ferroelectric thin-film device

Info

Publication number
JP2002289606A
JP2002289606A JP2001091430A JP2001091430A JP2002289606A JP 2002289606 A JP2002289606 A JP 2002289606A JP 2001091430 A JP2001091430 A JP 2001091430A JP 2001091430 A JP2001091430 A JP 2001091430A JP 2002289606 A JP2002289606 A JP 2002289606A
Authority
JP
Japan
Prior art keywords
thin film
ferroelectric
ferroelectric thin
sbt
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001091430A
Other languages
Japanese (ja)
Inventor
Tadaaki Kuno
忠昭 久野
Eiji Natori
栄治 名取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2001091430A priority Critical patent/JP2002289606A/en
Publication of JP2002289606A publication Critical patent/JP2002289606A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the intensity of ferroelectric devices utilizing a good step coverage characteristic of a minute droplet material solution deposit method, and to manufacture a ferroelectric thin film with good crystal orientation in a sure and stable manner. SOLUTION: A manufacturing process of the ferroelectric thin-film devices is to deposit a Sol-gel material for ferroelectric in minute droplets on a substrate, including the process of forming the ferroelectric thin film by heating and crystallization and the process of surface cleaning by ozone irradiation to a base electrode prior to the deposit of the Sol-gel material, and to continuously perform the processes without exposure to the atmosphere. Furthermore, a degreasing process and a crystallization annealing process are performed under reduced pressure after the deposit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、強誘電体薄膜デバ
イスおよび圧電体デバイスなどに用いられるセラミック
ス薄膜に関するものである。特に、強誘電体として高機
能を発現させるため、高度な結晶構造制御を要望される
デバイスの製造方法に関するものである。
The present invention relates to a ceramic thin film used for a ferroelectric thin film device, a piezoelectric device and the like. In particular, the present invention relates to a method for manufacturing a device that requires a high degree of crystal structure control in order to express a high function as a ferroelectric.

【0002】[0002]

【従来の技術】PZT(チタン酸ジルコン酸鉛)に代表
される強誘電体材料は、比誘電率の高さからCMOSな
どの記憶素子の絶縁体キャパシタ、自発分極を持つこと
から不揮発性記憶素子、圧電性から圧力センサやアクチ
ュエータ、などに広く応用されている。多くの場合、強
誘電体材料は薄膜の形で利用される。強誘電体薄膜の作
製方法としては、溶液塗布法、スパッタリング法、気相
蒸着法、レーザーアブレーション法などが用いられてい
る。近年、SBT(Sr,Bi,Ta系酸化物)が強誘電体材料と
して注目されている。さらに最近になってSBTを微細
な霧状態として基板上にデポし、これを加熱結晶化させ
て強誘電体薄膜を形成する装置(装置例;PRIMAXX社製 L
iquid Source Misted Chemical Deposition装置、以下
LSMCD装置と表記 )が発表されている。この装置は
良好なステップカバレッジ性が得られることから、強誘
電体デバイスの高集積化の有力な生産手段と考えられ、
現在工業生産工程に展開されつつある。
2. Description of the Related Art Ferroelectric materials typified by PZT (lead zirconate titanate) are insulative capacitors for storage elements such as CMOS because of their high relative permittivity, and non-volatile storage elements because they have spontaneous polarization. It is widely applied to pressure sensors and actuators due to its piezoelectricity. Often, ferroelectric materials are utilized in the form of thin films. As a method for producing a ferroelectric thin film, a solution coating method, a sputtering method, a vapor deposition method, a laser ablation method, or the like is used. In recent years, SBT (Sr, Bi, Ta-based oxide) has attracted attention as a ferroelectric material. More recently, a device for forming a ferroelectric thin film by depositing SBT in a fine mist state on a substrate and heating and crystallizing the SBT (apparatus example: PRIMAXX L
iquid Source Misted Chemical Deposition apparatus (hereinafter referred to as LSMCD apparatus) has been published. Since this apparatus can provide good step coverage, it is considered to be an effective production method for high integration of ferroelectric devices.
Currently being developed into industrial production processes.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述の
装置には溶液材料としてMOD(Metal Organic Deposit
ion)材が用いられている。MOD材は材料としての安定
性が高く、大気に触れさせても長時間変化のないことが
特長である。一般にLSMCD装置への原料セットは、
一旦大気に触れさせてから装置に原料タンクをセットす
るため、安定性の高いMOD材が用いられるのである。
しかしMOD材を用いた成膜の場合にはゾルゲル材を用
いた成膜の場合に比較して、形成された強誘電体膜の結
晶配向をさせにくいという欠点がある。良好な強誘電性
を得るためには高い残留分極(Pr)得ること、また、高S
N比および特性安定性向上を得るためヒステリシスカー
ブの角形性を得ることが要求される。特に最近の厳しい
高集積化の要求に応えるため、前記の高Prや角形性は必
須条件となっており、これを得るには強誘電体膜の精密
な配向制御が欠かせない。一般にSBTはその結晶構造
に由来するC軸方向への優先配向性を持っている。しか
しC軸方向に優先配向したSBTは分極性に劣り、高Pr
を得ることはむつかしい。SBTで高Prを得る一つの手
法として、ランダム性の結晶配向を得る、ということが
挙げられる。しかし、成膜原料としてMOD材を用いた
場合には前述のような配向制御を行う場合において課題
を有している。
However, in the above-mentioned apparatus, MOD (Metal Organic Deposit) is used as a solution material.
ion) material is used. The MOD material has a high stability as a material and has a feature that it does not change for a long time even when exposed to the atmosphere. Generally, the raw material set to the LSMCD device is
Since the raw material tank is set in the apparatus after it is once exposed to the atmosphere, a highly stable MOD material is used.
However, in the case of film formation using a MOD material, there is a disadvantage that the crystal orientation of the formed ferroelectric film is less likely to be caused than in the case of film formation using a sol-gel material. In order to obtain good ferroelectricity, it is necessary to obtain a high remanent polarization (Pr).
It is required to obtain a squareness of the hysteresis curve in order to obtain an improvement in N ratio and characteristic stability. Particularly, in order to meet recent severe demands for high integration, the above-mentioned high Pr and squareness are indispensable conditions, and precise alignment control of the ferroelectric film is indispensable to obtain these. Generally, SBT has a preferred orientation in the C-axis direction derived from its crystal structure. However, SBT preferentially oriented in the C-axis direction is inferior in polarizability and has a high Pr
It is difficult to get One method of obtaining a high Pr by SBT is to obtain a random crystal orientation. However, when the MOD material is used as a film forming material, there is a problem in performing the above-described orientation control.

【0004】[0004]

【課題を解決するための手段】本発明の請求項1記載の
強誘電体薄膜デバイスの作成方法は、強誘電体用Sol-Ge
l材を微細な霧状態として基板上にデポし、これを加熱
結晶化させて強誘電体薄膜を形成する工程を含むことを
特徴とする。
According to a first aspect of the present invention, there is provided a method of manufacturing a ferroelectric thin film device, comprising:
The method further comprises a step of forming a ferroelectric thin film by depositing the material on a substrate in a fine mist state and heating and crystallizing the deposited material.

【0005】前記の特徴によれば、成膜原料としてMO
D材を用いた従来の場合と比較してより精密な配向制御
が出来るという効果を有する。
[0005] According to the above characteristics, MO is used as a film forming material.
There is an effect that more precise alignment control can be performed as compared with the conventional case using the D material.

【0006】本発明の請求項2記載の強誘電体薄膜デバ
イスの作成方法は、下部電極をプラズマ、イオン、オゾ
ンを照射し表面を洗浄した後に強誘電体薄膜形成するこ
とを特徴とする。
A method of manufacturing a ferroelectric thin film device according to a second aspect of the present invention is characterized in that a lower electrode is irradiated with plasma, ions, and ozone to clean the surface, and then a ferroelectric thin film is formed.

【0007】前記の特徴によれば、表面洗浄することに
より、その上部に、異物の少なく、かつ良好な結晶配向
の強誘電体薄膜を形成することができるという効果が得
られる。すなわち、請求項2の場合において請求項1の
効果がより顕著になるということである。
[0007] According to the above feature, by cleaning the surface, it is possible to obtain an effect that a ferroelectric thin film with less foreign matter and excellent crystal orientation can be formed on the upper surface thereof. That is, in the case of claim 2, the effect of claim 1 becomes more remarkable.

【0008】本発明の請求項3記載の強誘電体薄膜デバ
イスの作成方法は、請求項1および2に記載の工程を大
気にさらすことなく連続して行うことを特徴とする。
According to a third aspect of the present invention, there is provided a method of manufacturing a ferroelectric thin film device, wherein the steps according to the first and second aspects are performed continuously without exposing to the atmosphere.

【0009】前記の特徴によれば、下電極の上部位置
に、異物の少なく、かつ安定な結晶配向の強誘電体薄膜
を形成することができるという効果が得られる。すなわ
ち、請求項3の場合において請求項1および2の効果が
より顕著になるということである。
According to the above-described feature, an effect is obtained that a ferroelectric thin film having a small amount of foreign matter and a stable crystal orientation can be formed at the upper position of the lower electrode. That is, in the case of the third aspect, the effects of the first and second aspects become more remarkable.

【0010】本発明の請求項4記載の強誘電体薄膜デバ
イスの作成方法は、デポした強誘電体膜の脱脂工程およ
び結晶化アニールを減圧下で行うことを特徴とする。
[0010] A method of manufacturing a ferroelectric thin film device according to a fourth aspect of the present invention is characterized in that the degreasing step and the crystallization annealing of the deposited ferroelectric film are performed under reduced pressure.

【0011】前記の特徴によれば、下電極の上部位置
に、異物の少なく、かつ安定な結晶配向の強誘電体薄膜
を形成することができるという効果が得られる。すなわ
ち、請求項4の場合において請求項1、2および3の効
果がより顕著になるということである。
According to the above feature, an effect is obtained that a ferroelectric thin film with less foreign matter and stable crystal orientation can be formed at the upper position of the lower electrode. That is, in the case of the fourth aspect, the effects of the first, second and third aspects become more remarkable.

【0012】請求項1から4の特徴によれば、本製造方
法を用いることで、霧状原料溶液デポ方式の持つ良好な
ステップカバレッジ性を活かして高集積化し、加えて良
好な結晶配向を有する強誘電体薄膜を確実かつ安定的に
生産することができ、高集積強誘電体薄膜デバイスを生
産する工業的分野においてその効果が特に著しい。
According to the first to fourth aspects of the present invention, by using the present manufacturing method, high integration is achieved by utilizing the good step coverage of the mist type raw material solution deposition method, and in addition, a good crystal orientation is obtained. Ferroelectric thin films can be produced reliably and stably, and the effect is particularly remarkable in the industrial field of producing highly integrated ferroelectric thin film devices.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態を図を用
いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】(実施例1)表面に白金電極層をつけた直
径4インチシリコン基板をLSMCD装置にセットし
た。濃度0.2mol/LのMOD型SBT成膜原料溶液を、L
SMCD装置に装着し、措置内霧化機構に供給して、サ
ブミクロンサイズの霧状原料溶液を発生させた。引き続
いて装置チャンバー内に霧状原料溶液を導入し、減圧
下、室温の条件で、基板上に120nm堆積デポした。この
基板を取り出して電気炉に入れ、260℃、O2雰囲気下で
5分間脱溶媒工程を行い、次に高速熱処理装置に入れて
700℃、O2雰囲気下で1分間アニール結晶化した。
(Example 1) A 4-inch diameter silicon substrate having a platinum electrode layer on the surface was set in an LSMCD apparatus. A MOD type SBT film forming raw material solution having a concentration of 0.2 mol / L was
It was mounted on the SMCD device and supplied to the atomizing mechanism in the treatment to generate a submicron-sized atomized raw material solution. Subsequently, the atomized raw material solution was introduced into the apparatus chamber, and a 120 nm deposition was deposited on the substrate under reduced pressure at room temperature. The substrate is taken out, put into an electric furnace, subjected to a desolvation step at 260 ° C. in an O2 atmosphere for 5 minutes, and then put into a high-speed heat treatment apparatus.
Annealing crystallization was performed at 700 ° C. in an O 2 atmosphere for 1 minute.

【0015】上部電極として直径1mmの円状の白金を
スパッタリングにより成膜した。
As an upper electrode, a circular platinum having a diameter of 1 mm was formed by sputtering.

【0016】以上のようにしてSBT薄膜デバイスを作
製した。このデバイスの断面構造を図1に示す。10は
シリコン基板、20はPt層、30はSBT層、40は直
径1mmの円状のPt、である。
An SBT thin film device was manufactured as described above. FIG. 1 shows a cross-sectional structure of this device. 10 is a silicon substrate, 20 is a Pt layer, 30 is an SBT layer, and 40 is a circular Pt having a diameter of 1 mm.

【0017】(実施例2)表面に白金電極層をつけた直
径4インチシリコン基板をLSMCD装置にセットし
た。濃度0.5mol/Lのゾルゲル型SBT成膜原料溶液を、
LSMCD装置に装着し、措置内霧化機構に供給して、
サブミクロンサイズの霧状原料溶液を発生させた。引き
続いて装置チャンバー内に霧状原料溶液を導入し、減圧
下、室温の条件で、基板上に120nm堆積デポした。
Example 2 A 4-inch diameter silicon substrate having a platinum electrode layer on the surface was set in an LSMCD apparatus. A sol-gel type SBT film forming raw material solution having a concentration of 0.5 mol / L is
Attached to the LSMCD device and supplied to the atomization mechanism within the measure,
A submicron sized feedstock solution was generated. Subsequently, the atomized raw material solution was introduced into the apparatus chamber, and a 120 nm deposition was deposited on the substrate under reduced pressure at room temperature.

【0018】これ以後の、脱溶媒工程に始まり、上部Pt
成膜にいたるデバイス作製工程は実施例1と同じ条件で
実施し、SBT薄膜デバイスを作製した。
After the desolvation step, the upper Pt
The device fabrication process leading to film formation was performed under the same conditions as in Example 1, and an SBT thin film device was fabricated.

【0019】(実施例3)表面に白金電極層をつけた直
径4インチシリコン基板を用意しLSMCD装置にセッ
トした。前記装置内に装備されているオゾン発生器にO2
ガスを導入し、ここから出てきたガス(10%濃度O3を含む
O2ガス)を基板に流速5L/minで基板に吹き付け、減圧
下、基板温度200℃の条件で表面洗浄を行った。
Example 3 A 4-inch diameter silicon substrate having a platinum electrode layer on the surface was prepared and set in an LSMCD apparatus. O2 is supplied to the ozone generator installed in the device.
Introduce gas and gas coming out of it (including 10% concentration O3
O2 gas) was sprayed onto the substrate at a flow rate of 5 L / min, and the surface was cleaned under reduced pressure at a substrate temperature of 200 ° C.

【0020】これ以後の、MOD型SBT成膜原料溶液
の霧化、基板へのデポに始まり、上部Pt成膜にいたるデ
バイス作製工程は実施例2と同じ条件で実施し、SBT
薄膜デバイスを作製した。
The subsequent device fabrication steps from atomization of the MOD type SBT film forming raw material solution, deposition on the substrate, and upper Pt film formation were performed under the same conditions as in Example 2.
A thin film device was fabricated.

【0021】(実施例4)MOD型SBT成膜原料溶液
の霧化、基板へのデポにいたる工程は実施例1と同じ条
件で実施した。引き続き、同一LSMCD装置内に装備
されている電気炉および高速熱処理装置に、順次基板を
移動させて、それぞれ260℃、O2雰囲気下で5分間の脱
溶媒工程、700℃、O2雰囲気下で1分間のアニール結晶
化を行った。
Example 4 The steps from atomization of the MOD type SBT film forming raw material solution to deposition on the substrate were performed under the same conditions as in Example 1. Subsequently, the substrates were sequentially moved to an electric furnace and a high-speed heat treatment apparatus installed in the same LSMCD apparatus, and a desolvation step was performed at 260 ° C. and an O 2 atmosphere for 5 minutes, respectively, and at 700 ° C. and an O 2 atmosphere for 1 minute. Was annealed and crystallized.

【0022】これ以後の上部Pt成膜は実施例2と同じ条
件で実施し、SBT薄膜デバイスを作製した。
The subsequent upper Pt film formation was carried out under the same conditions as in Example 2 to produce an SBT thin film device.

【0023】(実施例5)脱溶媒工程を600TorrO2雰囲
気として260℃5分間、さらにアニール結晶化を600Torr
O2雰囲気として700℃1分間行った。
(Example 5) The desolvation step was performed in a 600 Torr O2 atmosphere at 260 ° C. for 5 minutes, and the annealing crystallization was performed at 600 Torr.
An O2 atmosphere was performed at 700 ° C. for 1 minute.

【0024】これ以外の工程は実施例4と同じ条件で実
施し、SBT薄膜デバイスを作製した。
The other steps were carried out under the same conditions as in Example 4 to produce an SBT thin film device.

【0025】以上の実施例により作製したSBT薄膜デ
バイスについて、すべての試料で図2に示すような強誘
電性のヒステリシス曲線が得られ、強誘電体デバイスが
構成されていることを確認した。次に結晶性およびヒス
テリシス特性の測定を行ない評価を行った。これらの結
果について以下に示す。
With respect to the SBT thin film devices manufactured according to the above examples, a ferroelectric hysteresis curve as shown in FIG. 2 was obtained for all samples, and it was confirmed that a ferroelectric device was formed. Next, the crystallinity and hysteresis characteristics were measured and evaluated. The results are shown below.

【0026】まず結晶性について調査した。図3は実施
例1のSBT薄膜デバイスのX線回折結果であり、実施
例2、3、4、5のSBT薄膜デバイスについても同様
のX線回折結果が得られた。図3中の面指数(1 1 5),(0
0 4),(0 0 10)に着目してピークカウントおよび(0 0
4)を基準にしたピークカウント比をまとめたものを表1
に示す。
First, the crystallinity was investigated. FIG. 3 shows an X-ray diffraction result of the SBT thin film device of Example 1, and similar X-ray diffraction results were obtained for the SBT thin film devices of Examples 2, 3, 4, and 5. The surface indices (1 1 5), (0
Focusing on (0 4) and (0 0 10), the peak count and (0 0
Table 1 summarizes the peak count ratio based on 4).
Shown in

【0027】[0027]

【表1】 図3および表1によると製造した薄膜は、(1)SBTの
みであり、異相は存在しないこと、(2)(0 0 C),(a 0
0),(1 1 C),(a 0 c),(a a 0)と種々の面指数に対応する
ピークが検出されていること、(3)(0 0 4)ピークを基準
にしたときの(1 15),(0 0 10)ピークカウント比がバル
ク材よりも小さいことから、結晶性は良好であること、
結晶配向性はランダム性でC軸方向への優先配向が弱い
ことがわかり、望ましい結晶配向性であった。さらに、
実施例2、3、4、5となるに従って(1 1 5),(0 0 10)
ピークカウント比は小さくなっており、結晶配向のラン
ダム性は向上していることがわかった。
[Table 1] According to FIG. 3 and Table 1, the thin film produced was (1) only SBT, no heterophase, and (2) (0 0 C), (a 0
(0), (1 1 C), (a 0 c), (aa 0) and peaks corresponding to various surface indices are detected, and (3) (0 0 4) (1 15), (0 0 10) Since the peak count ratio is smaller than the bulk material, that the crystallinity is good,
It was found that the crystal orientation was random and the preferred orientation in the C-axis direction was weak, indicating that the crystal orientation was desirable. further,
(1 1 5), (0 0 10)
The peak count ratio was small, indicating that the randomness of the crystal orientation was improved.

【0028】次にヒステリシス特性について評価した。
実施例1〜6のすべての試料の上下部電極に+3V〜-3
Vの電界を印加し電極間の分極量を測定し、得られたヒ
ステリシス曲線について、残留分極値(2Pr;図4に示
したA点〜B点間の分極量)を調べた。これにより得ら
れた2Pr値を表2に示す。
Next, the hysteresis characteristics were evaluated.
+3 V to -3 was applied to the upper and lower electrodes of all the samples of Examples 1 to 6.
The amount of polarization between the electrodes was measured by applying an electric field of V, and the residual polarization value (2Pr; the amount of polarization between points A and B shown in FIG. 4) was examined for the obtained hysteresis curve. Table 2 shows the 2Pr values thus obtained.

【0029】[0029]

【表2】 実施例2、3、4、5となるに従って2Pr値は大きくな
っており、強誘電体特性は向上していることが判明し
た。
[Table 2] The values of 2Pr increased as Examples 2, 3, 4, and 5 were obtained, and it was found that the ferroelectric characteristics were improved.

【0030】以上述べてきたように、強誘電体用SBT
材を微細な霧状態として基板上にデポし、これを加熱結
晶化させて強誘電体薄膜を形成する場合に、SBT材料
としてSol-gel材を用いた場合、さらに好ましくは、(1)
下部電極をオゾン照射し表面洗浄した後、SBT薄膜形
成する、(2) (1)を含むSol-gel材によるSBT薄膜形成
の工程を大気にさらすことなく連続して行う、(3)デポ
後の脱脂工程および結晶化アニール工程を減圧下で行
う、のいずれか1つ以上を、前記Sol-gel材によるSB
T薄膜形成と組み合わせた場合においては、強誘電体用
SBT材を微細な霧状態として基板上にデポし、これを
加熱結晶化させて強誘電体薄膜を形成する場合に、SB
T材料としてMOD材を用いた場合よりも、結晶配向の
ランダム性が向上し、かつ、残留分極値に代表される強
誘電体特性の良好である強誘電体薄膜を形成することが
可能であることがわかった。
As described above, the SBT for ferroelectrics
When a material is deposited on a substrate in a fine mist state and heated and crystallized to form a ferroelectric thin film, when a Sol-gel material is used as an SBT material, more preferably (1)
After irradiating the surface of the lower electrode with ozone and washing the surface, an SBT thin film is formed. (2) The SBT thin film forming process using a Sol-gel material including (1) is continuously performed without exposing to the atmosphere. Performing at least one of the degreasing step and the crystallization annealing step under reduced pressure, using SB with the Sol-gel material.
When combined with the formation of a T thin film, the SBT material for ferroelectric material is deposited in a fine mist state on a substrate, and heated and crystallized to form a ferroelectric thin film.
It is possible to form a ferroelectric thin film in which the randomness of the crystal orientation is improved and the ferroelectric characteristics represented by the remanent polarization value are excellent as compared with the case where the MOD material is used as the T material. I understand.

【0031】以上、SBT材について説明したが、これ
以外の強誘電体用Sol-gel材料についても本発明は同等
の効果を有する。また上下部電極材としてPtについて説
明したが、これ以外の電極材質についても本発明は同等
の効果を有するものである。
Although the SBT material has been described above, the present invention has the same effect with other Sol-gel materials for ferroelectrics. Although Pt has been described as the upper and lower electrode materials, the present invention has the same effect for other electrode materials.

【0032】[0032]

【発明の効果】強誘電体用液体材料を微細な霧状態とし
て基板上にデポし、これを加熱結晶化させて強誘電体薄
膜を形成する場合に、液体材料としてSol-gel材を用い
る。さらに、Sol-gel材デポ前に下部電極をオゾン照射
し表面洗浄する、強誘電体薄膜形成の全工程にわたって
大気にさらすことなく連続して行う、デポ後の脱脂工程
および結晶化アニール工程を減圧下で行う、のいずれか
1つ以上を前記Sol-gel材による強誘電体薄膜形成と組
み合わせる本発明の製造方法によって製造された強誘電
体薄膜デバイスにおいては、従来のMOD材を液体材料
として用いた場合よりも、強誘電体の結晶配向ランダム
性が向上し、かつ、残留分極値に代表される強誘電体特
性の良好である強誘電体薄膜を形成することが可能であ
り、高機能の強誘電体薄膜デバイスを安定、確実に生産
できることから工業生産分野における効果は著しい。
According to the present invention, when a liquid material for a ferroelectric is deposited in a fine mist state on a substrate and heated and crystallized to form a ferroelectric thin film, a Sol-gel material is used as the liquid material. Furthermore, the lower electrode is cleaned by irradiating it with ozone before the deposition of the Sol-gel material, and the degreasing and crystallization annealing steps are continuously performed without exposing to the atmosphere throughout the entire ferroelectric thin film formation process. In the ferroelectric thin film device manufactured by the manufacturing method of the present invention in which any one or more of the following is combined with the formation of a ferroelectric thin film using the Sol-gel material, a conventional MOD material is used as a liquid material. It is possible to improve the crystal orientation randomness of the ferroelectric, and to form a ferroelectric thin film having good ferroelectric characteristics typified by the remanent polarization value. Since the ferroelectric thin film device can be produced stably and reliably, the effect in the industrial production field is remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1において作製したSBT薄膜デバイス
の断面構造を示した図である。
FIG. 1 is a diagram showing a cross-sectional structure of an SBT thin film device manufactured in Example 1.

【図2】実施例1〜5において作製したSBT薄膜デバ
イスの、ヒステリシス特性を測定した結果の概略図であ
る。
FIG. 2 is a schematic diagram showing the results of measuring the hysteresis characteristics of the SBT thin film devices manufactured in Examples 1 to 5.

【図3】実施例1において作製したSBT薄膜デバイス
の、X線回折を測定した結果の概略図である。
FIG. 3 is a schematic view showing the result of measuring X-ray diffraction of the SBT thin film device manufactured in Example 1.

【図4】実施例1〜5において作製したSBT薄膜デバ
イスの、残留分極値(2Pr)について示した図である。
FIG. 4 is a diagram showing a remanent polarization value (2Pr) of the SBT thin film device manufactured in Examples 1 to 5.

【符号の説明】[Explanation of symbols]

10.シリコン基板、 20.Pt層 30.SBT層 40.直径1mmの円状のPt 10. Silicon substrate, 20. Pt layer 30. SBT layer 40. 1mm diameter circular Pt

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F058 BA05 BA09 BA11 BC03 BD05 BE04 BF41 BH01 BJ01 5F083 FR01 JA14 JA38 PR00 PR23 PR34  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F058 BA05 BA09 BA11 BC03 BD05 BE04 BF41 BH01 BJ01 5F083 FR01 JA14 JA38 PR00 PR23 PR34

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】強誘電体用Sol-gel材を微細な霧状態とし
て基板上にデポし、これを加熱結晶化させて強誘電体薄
膜を形成する工程を含むことを特徴とする強誘電体薄膜
デバイスの製造方法。
1. A ferroelectric material comprising a step of depositing a Sol-gel material for a ferroelectric material in a fine mist state on a substrate and heating and crystallizing the same to form a ferroelectric thin film. A method for manufacturing a thin film device.
【請求項2】下部電極をプラズマ、イオン、オゾンを照
射し表面を洗浄した後に強誘電体薄膜形成することを特
徴とする請求項1に記載の強誘電体薄膜デバイスの製造
方法。
2. The method for manufacturing a ferroelectric thin film device according to claim 1, wherein a ferroelectric thin film is formed after irradiating the lower electrode with plasma, ions and ozone to clean the surface.
【請求項3】請求項1および2に記載の工程を大気にさ
らすことなく連続して行うことを特徴とする強誘電体薄
膜デバイスの製造方法。
3. A method for manufacturing a ferroelectric thin film device, wherein the steps according to claim 1 and 2 are continuously performed without exposing to the atmosphere.
【請求項4】デポした強誘電体膜の脱脂工程および結晶
化アニールを減圧下で行うことを特徴とする請求項1、
2および3に記載の強誘電体薄膜デバイスの製造方法。
4. The method according to claim 1, wherein the degreasing step and the crystallization annealing of the deposited ferroelectric film are performed under reduced pressure.
4. The method for producing a ferroelectric thin film device according to 2 or 3.
JP2001091430A 2001-03-27 2001-03-27 Manufacturing method of ferroelectric thin-film device Withdrawn JP2002289606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001091430A JP2002289606A (en) 2001-03-27 2001-03-27 Manufacturing method of ferroelectric thin-film device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001091430A JP2002289606A (en) 2001-03-27 2001-03-27 Manufacturing method of ferroelectric thin-film device

Publications (1)

Publication Number Publication Date
JP2002289606A true JP2002289606A (en) 2002-10-04

Family

ID=18946046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001091430A Withdrawn JP2002289606A (en) 2001-03-27 2001-03-27 Manufacturing method of ferroelectric thin-film device

Country Status (1)

Country Link
JP (1) JP2002289606A (en)

Similar Documents

Publication Publication Date Title
JP5613910B2 (en) Method for manufacturing PZT ferroelectric thin film
EP0616723B1 (en) Process for fabricating layered superlattice materials
KR100313468B1 (en) Bottom electrode structure for dielectric capacitors and method of making the same
JPH0855967A (en) Manufacture of ferroelectric thin film capacitor
JP4387723B2 (en) Bismuth-titanium-silicon oxide, bismuth-titanium-silicon oxide thin film and manufacturing method thereof
JP4662112B2 (en) Ferroelectric thin film and manufacturing method thereof
KR100433819B1 (en) Process for fabricating layered superlattice materials and making electronic devices including same
TW201314774A (en) Method for producing ferroelectric thin film
KR19990030031A (en) Ferroelectric thin film device and manufacturing method thereof
KR20000036180A (en) Liquid source formation of thin films using hexamethyl-disilazane
US20040241330A1 (en) Method of manufacturing ceramic film and pressure heat treatment device used therefor
JP2688872B2 (en) Method for producing PZT thin film and sputtering apparatus
JP3286002B2 (en) Thin film forming equipment
JP3586870B2 (en) Oriented thin film forming substrate and method for producing the same
JP2002289606A (en) Manufacturing method of ferroelectric thin-film device
JP3013418B2 (en) Dielectric thin film, thin film device, and method for producing them
JP2006228447A (en) Manufacturing method for ferroelectric thin film
JP2001279443A (en) Method and equipment for manufacturing ceramics, and semiconductor device and piezoelectric element
JPH0931645A (en) Production of dielectric thin film element
KR19990072528A (en) Ferroelectric thin film device and method of producing the same
JP5326699B2 (en) Dielectric element and manufacturing method thereof
JP2000058770A (en) Formation of capacitor for semiconductor device
JP3888400B2 (en) Dielectric thin film manufacturing method
EP0699343A1 (en) Thin film capacitors on gallium arsenide substrate and process for making the same
Naoyama et al. A Low Temperature Preparation of BaTiO3 Thin Film by Sol-Gel-Hydrothermal Treatment below 210° C

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603