JP2002287045A - Parallel flat plate type micro electrostatic actuator, micro optical path switch, micro mechanical switch, and their driving method - Google Patents

Parallel flat plate type micro electrostatic actuator, micro optical path switch, micro mechanical switch, and their driving method

Info

Publication number
JP2002287045A
JP2002287045A JP2001093927A JP2001093927A JP2002287045A JP 2002287045 A JP2002287045 A JP 2002287045A JP 2001093927 A JP2001093927 A JP 2001093927A JP 2001093927 A JP2001093927 A JP 2001093927A JP 2002287045 A JP2002287045 A JP 2002287045A
Authority
JP
Japan
Prior art keywords
movable electrode
electrode
fixed
state
inclined posture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001093927A
Other languages
Japanese (ja)
Other versions
JP3931576B2 (en
JP2002287045A5 (en
Inventor
Shigeo Nojima
重男 野島
Takashi Takeda
高司 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2001093927A priority Critical patent/JP3931576B2/en
Publication of JP2002287045A publication Critical patent/JP2002287045A/en
Publication of JP2002287045A5 publication Critical patent/JP2002287045A5/ja
Application granted granted Critical
Publication of JP3931576B2 publication Critical patent/JP3931576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a parallel flat plate type electrostatic actuator which can drive a movable electrode with small power consumption and can quickly makes the electrode take an attitude in parallel to a substrate in addition to a tilt attitude as a parallel flat plate type micro actuator which controls the attitude of the movable electrode by electrostatic driving. SOLUTION: A fixed electrode 4 is divided into >=3 parts to make it possible to make the area of the fixed electrode 4 different according to whether or not it is driven when the movable electrode 3 is in motion and has its attitude held, when the movable electrode 3 is changed from a tilt state to another tilt state, the movable electrode 3 and substrate 2 are placed in an entire-surface abutting state wherein they are brought into parallel contact with each other during the state change to improve the operation efficiency, thereby reducing the power consumption.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、静電駆動で可動電
極の姿勢を制御する平行平板型マイクロアクチュエー
タ、入射した光の光路を切り替えるマイクロ光路スイッ
チ、電気配線の切り替えを行うマイクロメカニカルスイ
ッチおよびそれらの駆動方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a parallel plate type micro-actuator for controlling the attitude of a movable electrode by electrostatic drive, a micro-optical path switch for switching an optical path of incident light, a micro-mechanical switch for switching electric wiring, and the like. In the driving method.

【0002】[0002]

【従来の技術】固定電極と、ばね構造で保持され前記固
定電極と相対する可動電極を設け、両電極間に電圧を印
可することにより発生する静電気力により、前記可動電
極を動作させる平行平板型のマイクロ静電アクチュエー
タは、マイクロアクチュエータの中でも最も使用頻度の
高いアクチュエータの一つである。
2. Description of the Related Art A fixed electrode and a movable electrode which is held by a spring structure and is opposed to the fixed electrode are provided. A parallel plate type in which the movable electrode is operated by an electrostatic force generated by applying a voltage between the two electrodes. Is one of the most frequently used actuators among microactuators.

【0003】平行平板型マイクロ静電アクチュエータ
は、固定電極と可動電極の相対位置、および、可動電極
の支持方法によりその運動の性質をさまざまに変えるこ
とができる特徴を持ち、例えば図4(a)に示すように
固定電極と可動電極を対向した位置に置き、可動電極を
ばね構造で両持ち梁状に支えると、可動電極は上下の平
行運動を行い、図4(b)に示すように固定電極と可動
電極をずらした位置に置き、固定電極面に平行で電極を
ずらした方向に対して垂直な向きのトーションバーで可
動電極を支持すると、可動電極は回転運動を行う。
[0003] The parallel plate type micro-electrostatic actuator has a feature that the nature of its movement can be variously changed depending on the relative position of the fixed electrode and the movable electrode and the method of supporting the movable electrode. When the fixed electrode and the movable electrode are placed at positions facing each other as shown in FIG. 4 and the movable electrode is supported in a double-supported beam shape by a spring structure, the movable electrode performs a vertical parallel motion, and is fixed as shown in FIG. When the electrode and the movable electrode are placed at shifted positions, and the movable electrode is supported by a torsion bar that is parallel to the fixed electrode surface and perpendicular to the direction in which the electrode is shifted, the movable electrode performs a rotational motion.

【0004】平行平板型マイクロ静電アクチュエータ
は、構造が非常にシンプルであるため製造が比較的容易
であり、また動作する構造体の質量が小さいため高速な
応答が可能であり、さらに電極間の距離を近づければよ
り大きな発生力を得ることができるため電極部のパター
ニングを微細にすれば駆動に要する電力を小さく抑える
ことができるなど、マイクロデバイスでの使用に適した
アクチュエータであり、特に回転動作が可能なタイプで
は、高周波で動作するマイクロスイッチデバイスや、光
スイッチングデバイスといった分野でその応用が進んで
いる。
The parallel plate type micro-electrostatic actuator has a very simple structure, so that it is relatively easy to manufacture. In addition, since the mass of the operating structure is small, a high-speed response is possible. An actuator suitable for use in microdevices, such as minimizing the patterning of the electrode section to reduce the power required for driving. The operable type has been applied in fields such as microswitch devices operating at high frequencies and optical switching devices.

【0005】[0005]

【発明が解決しようとする課題】このように、平行平板
型マイクロ静電アクチュエータは、製造が比較的容易で
あり、さらには高速応答が可能で、他の方式のアクチュ
エータに比べ駆動電力も少ないといった多くのメリット
を備えている。しかしながら、回転動作をして姿勢を制
御するタイプの平行平板型マイクロ静電アクチュエータ
は構造的に以下に示すような問題を抱えている。
As described above, the parallel plate type micro-electrostatic actuator is relatively easy to manufacture, can respond at high speed, and requires less driving power than other types of actuators. It has many benefits. However, the parallel plate type micro-electrostatic actuator of the type that performs a rotation operation to control the posture has the following structural problems.

【0006】その1つは、アクチュエータの姿勢制御の
際に、電極間に高い駆動電圧をかける必要があることで
ある。静電アクチュエータは、その原理上、固定電極と
可動電極間の距離の二乗に反比例して静電気力が働くた
め、両電極の距離が十分にある間は大きな動作が得られ
ず、可動電極が十分に固定電極に近づき、静電気力をば
ね力で支えられなくなって初めて大きな動作を得ること
ができる。そのため、既に傾斜して可動電極と下基板と
が接触した状態を保持するのは低い電位差で可能である
が、可動電極をアクチュエータの初期状態から傾斜姿勢
に移行させたり、1つの傾斜状態から別の傾斜状態へ移
行させようとすると、高い電位差をかけてやる必要が生
じ、その際大きな消費電力が必要となるという問題があ
った。全体的な消費電力を抑えるために、アクチュエー
タの姿勢切り替えの瞬間にのみ、パルス状に高電位差を
かけ、傾斜姿勢の保持は低電位差を用いる方法も行われ
ているが、それでもなお無駄な電力消費を伴っている。
One is that it is necessary to apply a high drive voltage between the electrodes when controlling the attitude of the actuator. Due to the principle of the electrostatic actuator, electrostatic force acts in inverse proportion to the square of the distance between the fixed electrode and the movable electrode. Only when it approaches the fixed electrode and the electrostatic force cannot be supported by the spring force, a large operation can be obtained. For this reason, it is possible to maintain the state in which the movable electrode and the lower substrate are in contact with each other with a low inclination, but it is possible to shift the movable electrode from the initial state of the actuator to the inclined posture, or to shift the movable electrode from one inclined state to another. In order to shift to the inclined state, it is necessary to apply a high potential difference, and there is a problem that large power consumption is required. In order to suppress the overall power consumption, a method of applying a high potential difference in a pulsed manner only at the moment of switching the posture of the actuator, and using a low potential difference to maintain the tilt posture has been used, but still wasteful power consumption Is accompanied.

【0007】もう1つの問題は、アクチュエータの初期
状態で可動電極が基板に平行になっている時の姿勢を、
制御対象として用いることが難しいことである。上記に
記載した静電アクチュエータの原理上の制限より、通常
アクチュエータの姿勢制御には静電気力とばね力の釣り
合いは用いず、アクチュエータ駆動時の姿勢制御は、可
動電極と下基板を接触させ、強制的にアクチュエータの
動作を止めることで、その位置で姿勢を保持する方式を
用い、この場合、アクチュエータの姿勢制御が非常に高
速に行われる。しかし、可動電極をばね力のみで支持す
る場合は、ばねの減衰に時間がかかるため、姿勢の制動
には時間を要したり、長い間使用するとくせがつき初期
状態でも可動電極が幾分どちらかに傾斜したりするとい
った問題があった。
Another problem is that the posture when the movable electrode is parallel to the substrate in the initial state of the actuator is as follows.
It is difficult to use as a control object. Due to the above-mentioned limitation of the principle of the electrostatic actuator, the balance of the electrostatic force and the spring force is not normally used for the posture control of the actuator, and the posture control at the time of driving the actuator is performed by bringing the movable electrode into contact with the lower substrate and forcing. A method of stopping the operation of the actuator to maintain the posture at that position is used. In this case, the posture control of the actuator is performed at a very high speed. However, when the movable electrode is supported only by the spring force, it takes time to attenuate the spring, so it takes time to brake the posture. There was a problem such as tilting the crab.

【0008】上記のマイクロ静電アクチュエータを用い
て作成したマイクロ光路スイッチやマイクロメカニカル
スイッチにおいても上記と同様で、無駄な消費電力によ
りデバイスの寿命を縮めたり、アクチュエータの初期状
態を制御対象の姿勢としずらいことから基板と平行な状
態を制御できず、スイッチの切り替え数が制限されると
いった問題があった。
[0008] In the same manner as described above, the micro optical path switch and the micro mechanical switch prepared by using the micro electrostatic actuator shorten the device life due to wasteful power consumption, or set the initial state of the actuator to the attitude of the control target. Due to the deviation, the state parallel to the substrate cannot be controlled, and there is a problem that the number of switching is limited.

【0009】そこで、本発明においては、静電駆動で回
転動作をし姿勢制御を行う平行平板型の静電アクチュエ
ータであって、他の同タイプの静電アクチュエータに比
べ低い消費電力で駆動が可能であり、さらに傾斜姿勢以
外にも基板に平行な姿勢を高速にとることができる平行
平板型の静電アクチュエータを提供することを目的とし
ている。また、本発明の平行平板型静電アクチュエータ
を用いて、低消費電力でスイッチ切り替え数が従来より
も多いマイクロ光路スイッチ、マイクロメカニカルスイ
ッチを提供することも本発明の目的としている。
In view of the above, the present invention is a parallel plate type electrostatic actuator which performs a rotation operation and an attitude control by electrostatic drive, and can be driven with lower power consumption than other electrostatic actuators of the same type. It is another object of the present invention to provide a parallel plate type electrostatic actuator which can take a posture parallel to the substrate in addition to the inclined posture at a high speed. It is also an object of the present invention to provide a micro optical path switch and a micro mechanical switch that use the parallel plate type electrostatic actuator of the present invention and have a lower power consumption and a larger number of switches than conventional ones.

【0010】[0010]

【課題を解決するための手段】このような課題を解決す
るため、まず、本発明においては、可動電極が回転運動
のみならず、可動電極全面が下から力を受けて平行運動
できるよう、可動電極を、ねじれ方向、伸縮方向の両方
向に対して十分に弾性変形が可能なばね構造で保持し、
また、固定電極を3個以上複数に分割し、分割された固
定電極はそれぞれ独立に制御できる構造を持たせること
を特徴としている。
In order to solve this problem, first, in the present invention, not only the movable electrode is rotated but also the movable electrode is moved so that the entire surface of the movable electrode can be moved in parallel by receiving a force from below. The electrode is held by a spring structure that can be sufficiently elastically deformed in both the torsion direction and the expansion and contraction direction,
Further, the present invention is characterized in that the fixed electrode is divided into three or more pieces, and each of the divided fixed electrodes has a structure that can be controlled independently.

【0011】本発明によれば、可動電極が固定電極から
離れていて静電気力が働きにくい時には、固定電極の面
積を大きく使って効率よく可動電極に伝えることがで
き、逆に可動電極が固定電極と近接し、静電気力が十分
に大きく働く時には、固定電極を必要最小限な小面積に
することで、それぞれ消費電力の低減につなげることが
できる。
According to the present invention, when the movable electrode is far from the fixed electrode and the electrostatic force is difficult to act, the fixed electrode can be efficiently transmitted to the movable electrode by using a large area of the fixed electrode. When the electrostatic force is sufficiently large, the fixed electrode can be reduced to a necessary minimum area to reduce the power consumption.

【0012】また、本発明においては、可動電極の1傾
斜姿勢から他の傾斜姿勢へ移行時には、必ず可動電極下
の全固定電極を働かせ、可動電極全体が基板と接触した
全面当接状態に1度移行させ、その後接触させたい箇所
近傍の固定電極だけ残し、他の固定電極の電位を可動電
極と合わせることで次の傾斜姿勢に移行させる方式を用
いることを特徴としている。この駆動方法を用いること
により、傾斜姿勢状態から全面当接状態に移行する際に
は、静電気力が大きく働く条件である電極間の距離が近
い状態を保持したまま動作が進めることができ、無駄な
消費電力を抑えることができる。また、目的の傾斜姿勢
に移行した後は、必要最小限の面積の固定電極のみ駆動
させればよいので、これも消費電力を低く抑えることが
できる。また、可動電極が基板に平行な状態となる、前
記の全面当接状態は、それ自身が非常に安定した可動電
極の姿勢の1つであり、アクチュエータの初期状態の姿
勢を代替する姿勢状態の1つとして応用することも可能
である。
Further, in the present invention, when the movable electrode shifts from one inclined posture to another inclined posture, all the fixed electrodes below the movable electrode are always operated, and the movable electrode is brought into contact with the entire surface in contact with the substrate. This method is characterized in that a method is used in which only the fixed electrode in the vicinity of the portion to be contacted is left, and the potential of the other fixed electrode is adjusted to the movable electrode to shift to the next inclined posture. By using this driving method, when shifting from the inclined posture state to the entire contact state, the operation can proceed while maintaining a state in which the distance between the electrodes, which is a condition where the electrostatic force acts greatly, is kept short. Power consumption can be suppressed. Further, after the transition to the desired tilting posture, only the fixed electrode having the minimum necessary area needs to be driven, so that the power consumption can also be reduced. In addition, the above-mentioned overall contact state in which the movable electrode is parallel to the substrate is one of the attitudes of the movable electrode itself which is very stable, and is an attitude state that substitutes the attitude of the initial state of the actuator. It is also possible to apply as one.

【0013】本発明では、可動電極下面に可動電極と導
通した突起を設け、下基板の対向する位置に可動電極と
等電位の第3の電極を設けることを特徴としており、ま
た、可動電極本体は高剛性化を施していることを特徴と
している。このことにより、可動電極を積極的に基板と
接触させる本発明において、可動電極と基板との接触点
を上記突起と上記の第3の電極に限定し、同接触部に静
電気力が働くのを抑え、可動電極の接触・離床をスムー
ズに行うことができる。
The present invention is characterized in that a projection electrically connected to the movable electrode is provided on the lower surface of the movable electrode, and a third electrode having the same potential as the movable electrode is provided at a position facing the lower substrate. Is characterized by high rigidity. Thus, in the present invention in which the movable electrode is positively contacted with the substrate, the contact point between the movable electrode and the substrate is limited to the protrusion and the third electrode, and the electrostatic force acts on the contact portion. The contact between the movable electrode and the bed can be smoothly performed.

【0014】次に、本発明においては、可動電極の傾斜
姿勢状態から、上記全面当接状態への移行に際し、傾斜
に寄与する固定電極から近い固定電極の順に順次可動電
極に対して電位差を加える駆動方式を用いることを特徴
としている。可動電極が傾斜している時、全固定電極に
同じ電圧を付加した場合、可動電極と下基板の接触点か
ら近い固定電極ほど回転運動への寄与率は高く、前記接
触点からの距離に反比例する。よって、上記の駆動方式
を用いれば、回転への寄与率が低い固定電極の使用を行
わないことにより、結果的に消費電力を抑えることがで
きる。
Next, in the present invention, when the movable electrode shifts from the inclined posture state to the above-mentioned entire contact state, a potential difference is sequentially applied to the movable electrode in order from the fixed electrode contributing to the inclination to the fixed electrode. It is characterized by using a driving method. When the same voltage is applied to all fixed electrodes when the movable electrode is inclined, the fixed electrode closer to the contact point between the movable electrode and the lower substrate has a higher contribution to the rotational motion and is inversely proportional to the distance from the contact point. I do. Therefore, when the above-described driving method is used, power consumption can be suppressed as a result of not using a fixed electrode having a low contribution rate to rotation.

【0015】上記とは別の方法として、本件においては
可動電極の傾斜姿勢状態から、上記全面当接状態への移
行に際し、傾斜に寄与する固定電極から遠い固定電極の
順に、可動電極に対して大きな電位差を加える駆動方式
を用いることについても記載している。この場合、回転
への寄与率が低い箇所に対して補強がなされる形とな
り、動作を短時間に終了させることができるので、制御
時間を縮めることで低消費電力を目指すことができる。
As another method different from the above, in the present case, when the movable electrode shifts from the inclined posture state to the above-mentioned full-contact state, the movable electrode is applied to the movable electrode in the order of the fixed electrode far from the fixed electrode contributing to the inclination. The use of a driving method for applying a large potential difference is also described. In this case, a portion having a low contribution to rotation is reinforced, and the operation can be completed in a short time. Therefore, it is possible to aim for low power consumption by shortening the control time.

【0016】さらに、本発明においては、上述の静電ア
クチュエータを半導体基板上に形成し、同基板上に別途
アクチュエータの駆動回路を作ることを特徴としてい
る。この場合、デバイスのサイズを低減できると同時
に、電気配線を短くできるため、さらに低消費電力化を
図ることができる。
Further, the present invention is characterized in that the above-described electrostatic actuator is formed on a semiconductor substrate, and a drive circuit for the actuator is separately formed on the substrate. In this case, the size of the device can be reduced and, at the same time, the electrical wiring can be shortened, so that the power consumption can be further reduced.

【0017】このように、本発明のマイクロ静電アクチ
ュエータであれば、他の同タイプの静電アクチュエータ
に比べ、効率よく駆動することができるため、消費電力
を低く抑えることができる。また、傾斜姿勢以外にも、
基板に平行な姿勢を高速にとらせることも可能である。
また、本発明の平行平板型静電アクチュエータを用いれ
ば、低消費電力でスイッチ切り替え数が従来よりも多い
マイクロ光路スイッチ、マイクロメカニカルスイッチを
提供することも可能である。
As described above, the micro-electrostatic actuator of the present invention can be driven more efficiently than other electrostatic actuators of the same type, so that power consumption can be reduced. Also, besides the inclined posture,
It is also possible to take a posture parallel to the substrate at a high speed.
Further, by using the parallel plate type electrostatic actuator of the present invention, it is also possible to provide a micro optical path switch and a micro mechanical switch with low power consumption and a larger number of switching operations than in the past.

【0018】[0018]

【発明の実施の形態】以下に図面を参照しながら本発明
の実施の形態を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1に本発明の静電駆動で回転動作し姿勢
を制御する平行平板型マイクロアクチュエータ1の構成
を示してあり、図1(a)はその側面図を、図2(b)
はその上面図を示している。基板2の上に可動電極3が
基板2と距離を置いた形で配置され、可動電極3は支持
肢6により支えられ、支持肢6が繋がったアンカー7を
介して基板2と繋がっている。可動電極3は、変形しな
いよう高い剛性を持たせるため比較的厚膜で構成されて
おり、アクチュエータ1の非駆動時に可動電極3が基板
2から離れた状態でバランスが取れるように、その重心
を通る線Aの両端で2組の支持肢6によって支持されて
いる。支持肢6は細長い2本の梁で出来ており、ねじれ
方向と伸縮方向の両方で十分弾性変形ができる構造とな
っている。このため、可動電極3は力が加わる部位や方
向によって、線Aを軸とする回転方向にも、基板2の面
と垂直方向にも動作することができる。
FIG. 1 shows a configuration of a parallel plate type microactuator 1 of the present invention which rotates and controls the attitude by electrostatic drive. FIG. 1 (a) is a side view and FIG. 2 (b).
Shows a top view thereof. The movable electrode 3 is disposed on the substrate 2 at a distance from the substrate 2, and the movable electrode 3 is supported by the support limb 6 and is connected to the substrate 2 via an anchor 7 to which the support limb 6 is connected. The movable electrode 3 is formed of a relatively thick film so as to have high rigidity so as not to be deformed. The center of gravity of the movable electrode 3 is adjusted so that the movable electrode 3 is separated from the substrate 2 when the actuator 1 is not driven. Both ends of the passing line A are supported by two sets of supporting limbs 6. The support limb 6 is made of two elongated beams, and has a structure capable of sufficiently elastically deforming in both the twisting direction and the stretching direction. Therefore, the movable electrode 3 can operate in the rotation direction around the line A and in the direction perpendicular to the surface of the substrate 2 depending on the location and direction of the force.

【0020】基板2面上の可動電極3に対向する位置に
は、固定電極4aから4dの4枚の固定電極からなる固
定電極群4が、線Aと直交する方向に、可動電極3に対
向する部分をほぼ全面覆うように配置されており、固定
電極4a、4b、4c、4dの4枚の電極はそれぞれ独
立して制御できるようになっている。また基板2の面上
には、固定電極群4とは別に、第3の電極5が配置さ
れ、可動電極3下面の第3の電極5と対向する位置に
は、可動電極3と電気的に導通する材料で突起8が設け
られており、第3の電極5と可動電極3とは、アンカー
7、支持肢6を通じて電気的に導通しているため、常に
等電位に保たれる。
At a position facing the movable electrode 3 on the surface of the substrate 2, a fixed electrode group 4 composed of four fixed electrodes 4a to 4d faces the movable electrode 3 in a direction orthogonal to the line A. The fixed electrodes 4a, 4b, 4c and 4d can be controlled independently of each other. A third electrode 5 is arranged on the surface of the substrate 2 separately from the fixed electrode group 4, and is electrically connected to the movable electrode 3 at a position on the lower surface of the movable electrode 3 that faces the third electrode 5. The projection 8 is provided with a conductive material, and the third electrode 5 and the movable electrode 3 are electrically connected to each other through the anchor 7 and the supporting limb 6, so that they are always kept at the same potential.

【0021】図2(a)から(d)に本例の平行平板型
静電アクチュエータ1の動作説明を模式的に示してあ
る。図2(a)は本例の静電アクチュエータ1の初期状
態を示す図であり、可動電極3と固定電極群4とは等電
位の状態にあって、電極間には静電気力は一切働いてい
ない。よって、可動電極は支持肢6のばね力のみによっ
て、基板2と距離を置いた空中に保持された状態にあ
る。
FIGS. 2A to 2D schematically show the operation of the parallel plate type electrostatic actuator 1 of this embodiment. FIG. 2A is a diagram showing an initial state of the electrostatic actuator 1 of the present embodiment. The movable electrode 3 and the fixed electrode group 4 are in an equipotential state, and no electrostatic force acts between the electrodes. Absent. Therefore, the movable electrode is held in the air at a distance from the substrate 2 only by the spring force of the support limb 6.

【0022】図2(b)は、本例の静電アクチュエータ
1の全面当接状態を示す図であり、可動電極3に対して
固定電極4aから4dのすべての電極に電位差を与えた
状態にあって、可動電極3全体に下側から静電気力がか
かるため、可動電極は下方に平行に移動し、突起8を介
して第3の電極5と接触した状態で停止し、安定する。
この時、可動電極3と基板2は接触している状態にある
が、可動電極3、突起8および第3の電極5は導通し等
電位であるため、同接触箇所を通じて可動電極3と基板
2の間に電流が流れることもなく、また、可動電極3は
剛性を高め変形しにくいため、可動電極3の変形により
可動電極3と固定電極群4が接触することもないため、
固定電極群4と可動電極3の間の電位差はしっかりと保
持される。この全面当接状態において、可動電極3の上
面は、基板2の面と平行な状態にある。図2(a)のア
クチュエータ初期状態も同じく可動電極3の上面が基板
2の面と平行となるが、可動電極3はばねのみで保持さ
れているおり、外乱に対して弱く、また他の姿勢から移
行した場合、可動電極3の振動が減衰するまでに時間が
かかる。一方、図2(b)の全面当接状態の場合は、突
起8を介して基板2と接することで、強制的に運動が抑
えられるため、制動に要する時間が短時間でよい上に非
常に安定している。ゆえに、この全面当接状態は、上記
の可動電極のの1つの姿勢状態として制御対象として
も、十分実用的である。
FIG. 2B is a diagram showing the entire surface of the electrostatic actuator 1 according to the present embodiment in a state of contact with the movable electrode 3 when a potential difference is applied to all of the fixed electrodes 4a to 4d. Then, since the electrostatic force is applied to the entire movable electrode 3 from below, the movable electrode moves downward in parallel, stops in a state of contact with the third electrode 5 via the protrusion 8, and is stabilized.
At this time, the movable electrode 3 and the substrate 2 are in contact with each other, but the movable electrode 3, the projection 8 and the third electrode 5 are conductive and have the same potential. No current flows between them, and the movable electrode 3 has high rigidity and is hardly deformed. Therefore, the movable electrode 3 does not contact the fixed electrode group 4 due to the deformation of the movable electrode 3.
The potential difference between the fixed electrode group 4 and the movable electrode 3 is firmly held. In this state, the upper surface of the movable electrode 3 is parallel to the surface of the substrate 2. In the initial state of the actuator shown in FIG. 2A, the upper surface of the movable electrode 3 is also parallel to the surface of the substrate 2, but the movable electrode 3 is held only by a spring, is weak against disturbance, and has another posture. When it shifts from, it takes time until the vibration of the movable electrode 3 is attenuated. On the other hand, in the case of the entire contact state shown in FIG. 2B, the movement is forcibly suppressed by contacting the substrate 2 via the projection 8, so that the time required for braking is short, and the braking time is very short. stable. Therefore, this whole-surface contact state is sufficiently practical as a control target as one posture state of the movable electrode.

【0023】図2(c)は、本例の静電アクチュエータ
1の傾斜姿勢の1つを示す図であり、可動電極3に対し
て固定電極4dのみ電位差が与えられた状態にあって、
固定電極4aから4cは、可動電極3と等電位の状態に
ある。この時可動電極3は、可動電極3の図面上右端が
固定電極4dから下方に引っ張られ、同右端部が基板2
と接触し、可動電極3の重心部が支持肢6によって上方
に引っ張られる形となり、結果的に図面上右側に傾斜し
た姿勢をとる。この傾斜姿勢においても、第2の姿勢の
時と同様に可動電極3と基板2は接触するが、前記全面
当接状態の場合と同じ理由により、可動電極3と固定電
極4dとの電位差はしっかりと保持される。
FIG. 2C is a view showing one of the inclined postures of the electrostatic actuator 1 according to the present embodiment, in which a potential difference is given only to the fixed electrode 4 d with respect to the movable electrode 3.
The fixed electrodes 4a to 4c are in an equipotential state with the movable electrode 3. At this time, the right end of the movable electrode 3 in the drawing is pulled downward from the fixed electrode 4d, and the right end of the movable electrode 3 is
And the center of gravity of the movable electrode 3 is pulled upward by the support limb 6, and as a result, the movable electrode 3 assumes a posture inclined to the right in the drawing. In this inclined posture, the movable electrode 3 and the substrate 2 are in contact with each other as in the second posture, but the potential difference between the movable electrode 3 and the fixed electrode 4d is firm due to the same reason as in the case of the entire surface contact state. Is held.

【0024】図2(d)は、本例の静電アクチュエータ
1の傾斜姿勢の1つを示す図であり、可動電極3に対し
て固定電極4aのみ電位差が与えられた状態にあって、
固定電極4bから4dは、可動電極3と等電位の状態に
ある。この時可動電極3は、可動電極3の図面上左端が
固定電極4aから下方に引っ張られ、同左端部が基板2
と接触し、可動電極3の重心部が支持肢6によって上方
に引っ張られる形となり、結果的に図面上左側に傾斜し
た姿勢をとる。この傾斜姿勢においても、第2の姿勢の
時と同様に可動電極3と基板2は接触するが、前記全面
当接状態の場合と同じ理由により、可動電極3と固定電
極4aとの電位差はしっかりと保持される。
FIG. 2D is a diagram showing one of the inclined postures of the electrostatic actuator 1 of the present embodiment, in a state where only the fixed electrode 4 a is given a potential difference with respect to the movable electrode 3.
The fixed electrodes 4b to 4d are in an equipotential state with the movable electrode 3. At this time, the left end of the movable electrode 3 in the drawing is pulled downward from the fixed electrode 4a, and the left end of the movable electrode 3 is
Then, the center of gravity of the movable electrode 3 is pulled upward by the support limb 6, and as a result, the movable electrode 3 assumes a posture inclined to the left side in the drawing. In this inclined posture, the movable electrode 3 and the substrate 2 are in contact with each other as in the second posture, but the potential difference between the movable electrode 3 and the fixed electrode 4a is firm due to the same reason as in the case of the entire surface contact state. Is held.

【0025】次に、図2を用いて、本発明における駆動
方法について説明する。本発明においては、図2(a)
に示す第1の姿勢から図2(b)に移行する場合、可動
電極3と固定電極群4全体との間に電圧を印可し、可動
電極を動作させる。平行平板間に働く静電気力は、対向
する電位差のある電極の面積に比例するため、可動電極
3に対向する面積全体で引くほうが、当然駆動効率は高
くなり、駆動電力の低減化に結び付けることができる。
Next, a driving method according to the present invention will be described with reference to FIG. In the present invention, FIG.
2B, the voltage is applied between the movable electrode 3 and the entire fixed electrode group 4 to operate the movable electrode. Since the electrostatic force acting between the parallel plates is proportional to the area of the electrode having the opposite potential difference, pulling over the entire area facing the movable electrode 3 naturally increases the driving efficiency and can lead to a reduction in the driving power. it can.

【0026】本発明においては、図2(c)の傾斜状態
から図2(d)の傾斜状態へ移行する場合、前者の姿勢
から後者の姿勢に移行する途中に図2(b)に示す全面
当接状態を経由する駆動方法を用いている。静電気力は
電荷と相対する電荷との距離の二乗に反比例する性質を
有しているため、姿勢間の移行の際に、1度接近してい
る可動電極3と固定電極群4との距離を広げることなく
次の姿勢に移行できれば、他より駆動効率が高い方式で
あると言える。図2(c)で示す傾斜姿勢から図2
(b)で示す全面当接状態への移行はこの効率の高い駆
動方法にあたり、無駄を省けるため消費電力の低減化に
役立つ。図2(b)に示す全面当接状態から図2(d)
傾斜状態への移行は、固定電極4aを残し、他の固定電
極の電位を可動電極3と等電位に戻すだけで容易に移行
することが可能である。この時、固定電極4aと可動電
極3との間は十分に接近していて十分な静電気力が働く
ため、傾斜姿勢に寄与している固定電極が固定電極4a
だけでも、十分に可動電極は傾斜姿勢を保持することが
でき、この電圧を加える電極の小面積化は消費電力の低
減につながる。
In the present invention, when shifting from the inclined state of FIG. 2 (c) to the inclined state of FIG. 2 (d), the entire surface shown in FIG. A driving method via a contact state is used. Since the electrostatic force has the property of being inversely proportional to the square of the distance between the charge and the opposite charge, the distance between the movable electrode 3 and the fixed electrode group 4 approaching once at the time of the transition between the postures is reduced. If it is possible to shift to the next posture without expanding, it can be said that the driving efficiency is higher than the others. From the inclined posture shown in FIG.
The transition to the full contact state shown in (b) corresponds to this high-efficiency driving method, and is useful for reducing power consumption because waste can be eliminated. FIG. 2D shows the state of the entire contact shown in FIG.
The transition to the inclined state can be easily made simply by leaving the fixed electrode 4a and returning the potentials of the other fixed electrodes to the same potential as the movable electrode 3. At this time, since the fixed electrode 4a and the movable electrode 3 are sufficiently close to each other and a sufficient electrostatic force acts, the fixed electrode contributing to the tilting posture is fixed electrode 4a.
By itself, the movable electrode can sufficiently maintain the inclined posture, and reducing the area of the electrode to which this voltage is applied leads to a reduction in power consumption.

【0027】上記では、図2(c)で示す傾斜姿勢状態
から図2(d)で示す傾斜姿勢状態への移行について記
したが、図2(d)で示す傾斜姿勢状態から図2(c)
で示す傾斜姿勢状態に移行する場合も同様である。
In the above description, the transition from the inclined posture state shown in FIG. 2 (c) to the inclined posture state shown in FIG. 2 (d) is described, but from the inclined posture state shown in FIG. 2 (d) to FIG. )
The same applies to the case of shifting to the inclined posture state indicated by.

【0028】図2(c)に示す傾斜姿勢状態から、図2
(b)で示す全面当接状態への移行にあたり、傾斜に寄
与している固定電極4dに近い方から固定電極4c、4
b、4aの順に順次可動電極3に対して電位差を加えて
いってもよい。可動電極3と基板2との接点を支点とし
た回転運動について考えると、可動電極3の任意の微小
面積が寄与する力のモーメントは、前記支点から前記微
小面積部までの回転軸に直交する方向の距離と同微小面
積部にかかる静電力との積により求められるが、前記距
離と同微小面積部での可動電極と固定電極の間の距離は
比例するため、同部にかかる静電力は前記距離の二乗に
反比例してかかることとなり、前記力のモーメントは、
前記距離に反比例することとなる。これは、同時に固定
電極4aから4cに電位差を与えたとしても、回転運動
への寄与が高いのは4c、4b、4aの順であることを
意味している。そこで、最初は運動への寄与が小さい固
定電極への電圧印可は行わず、同寄与率の高い固定電極
によって回転を進行させた後、可動電極が接近した状態
で次の固定電極に電圧印可を行う上記の駆動方法は、ア
クチュエータの駆動効率を高めるのに役立てることがで
き、消費電力の低下に対して有効である。あるいは、固
定電極に印可する電圧の値を4cを基準として、4c<
4b<4aとし、支点からはなれた箇所の力のモーメン
トを上げてやってもよい。この場合は、回転動作がより
短い時間で完了し、制御時間を短くすることによる低電
圧化を見込むことができる。
From the inclined posture state shown in FIG.
In the transition to the full contact state shown in (b), the fixed electrodes 4c, 4c,
A potential difference may be sequentially applied to the movable electrode 3 in the order of b and 4a. Considering the rotational movement with the contact point between the movable electrode 3 and the substrate 2 as a fulcrum, the moment of the force contributed by an arbitrary minute area of the movable electrode 3 is in a direction orthogonal to the rotation axis from the fulcrum to the minute area part. Is obtained by multiplying the distance and the electrostatic force applied to the same small area portion.Since the distance and the distance between the movable electrode and the fixed electrode in the same small area portion are proportional, the electrostatic force applied to the same portion is It will be inversely proportional to the square of the distance, and the moment of the force is
It will be inversely proportional to the distance. This means that even if a potential difference is applied to the fixed electrodes 4a to 4c at the same time, the contribution to the rotational motion is high in the order of 4c, 4b, and 4a. Therefore, initially, voltage is not applied to the fixed electrode, which has a small contribution to the motion, and the rotation is advanced by the fixed electrode, which has a high contribution, and then voltage is applied to the next fixed electrode with the movable electrode approaching. The driving method described above can be used to increase the driving efficiency of the actuator, and is effective in reducing power consumption. Alternatively, the value of the voltage applied to the fixed electrode is defined as 4c <4c <
4b <4a, and the moment of the force at a position separated from the fulcrum may be increased. In this case, the rotation operation is completed in a shorter time, and a reduction in the voltage by shortening the control time can be expected.

【0029】上記では、図2(c)に示す傾斜姿勢状態
から、図2(b)で示す全面当接状態への移行について
記載したが、図2(d)に示す傾斜姿勢状態から、図2
(b)で示す全面当接状態へ移行する場合でも同様であ
る。
In the above description, the transition from the inclined posture state shown in FIG. 2C to the full contact state shown in FIG. 2B has been described. 2
The same applies to the case of transition to the full contact state shown in (b).

【0030】ここまで例として、固定電極が4つある場
合について記載してきたが、傾斜姿勢を保持するための
最低2個に電極と、この2個の電極間の面積を埋める最
低1個の電極の合計の、最低3個以上であれば、固定電
極の数は何個でもよい。固定電極の数が多い場合は、上
記の順次駆動で、より細かな制御が可能となる。また、
ここまでの例として、静電アクチュエータの回転軸が1
つの場合について記載してきたが、回転軸の数は複数で
あったてもよい。
As an example, the case where there are four fixed electrodes has been described above, but at least two electrodes for maintaining the inclined posture and at least one electrode for filling the area between these two electrodes. The number of fixed electrodes may be any number as long as the total number of the fixed electrodes is at least three. When the number of fixed electrodes is large, finer control is possible by the above-described sequential driving. Also,
As an example so far, the rotation axis of the electrostatic actuator is 1
Although two cases have been described, the number of rotation axes may be plural.

【0031】平行平板型アクチュエータは、半導体プロ
セスを用いて比較的容易に作成できるアクチュエータで
あるため、本発明の平行平板型アクチュエータを、シリ
コン基板等の半導体基板上に作成し、同基板上に別途ア
クチュエータの駆動回路を作成して、1つの基板にアク
チュエータと駆動回路の両方が備わるようにしてもよ
い。その場合、デバイスの小型化が見込めると同時に、
アクチュエータと駆動回路をとを結ぶ配線が短くて済む
ことで、さらなる低消費電力化も見込むことができるよ
うになる。
Since the parallel plate type actuator is an actuator which can be relatively easily formed by using a semiconductor process, the parallel plate type actuator of the present invention is formed on a semiconductor substrate such as a silicon substrate, and separately formed on the same substrate. A drive circuit for the actuator may be created so that one substrate is provided with both the actuator and the drive circuit. In that case, you can expect a smaller device,
Since the wiring connecting the actuator and the drive circuit is short, further reduction in power consumption can be expected.

【0032】本発明の平行平板型静電アクチュエータ1
の可動電極3の上面に、アルミニウム等の反射面の高い
膜を付け反射面とすることにより、マイクロ光路スイッ
チを作ることも可能である。この場合、可動電極3の上
面に形成された反射面に向けてレーザ光等の光を入射し
てやれば、可動電極3の前記全面当接状態と最低2種類
の前記傾斜姿勢状態との計3種類以上の向きに精度よく
反射面を向けることができるため、性能のよい光路スイ
ッチを実現することができる。それと共に、この光路ス
イッチは、低消費電力、同一デバイス内に駆動回路を組
み込み可能といった、上記で説明した平行平板型静電ア
クチュエータと同じメリットも兼ね備えている。
The parallel plate type electrostatic actuator 1 of the present invention
By forming a film having a high reflection surface such as aluminum on the upper surface of the movable electrode 3 as a reflection surface, a micro optical path switch can be manufactured. In this case, if light such as laser light is incident on the reflection surface formed on the upper surface of the movable electrode 3, the movable electrode 3 is brought into contact with the entire surface and at least two types of the inclined posture states, for a total of three types. Since the reflecting surface can be accurately oriented in the above directions, a high-performance optical path switch can be realized. In addition, this optical path switch has the same advantages as the above-described parallel plate type electrostatic actuator, such as low power consumption and the possibility of incorporating a drive circuit in the same device.

【0033】図3は本発明のマイクロメカニカルスイッ
チ11の概念図を示すものであり、図3(a)は断面図
を、図3(b)は上面図を示すものである。図1で示し
たものと同構成の平行平板型アクチュエータ1の上面に
シリコン酸化膜等の絶縁膜12を積層し、その上に2本
の電気配線13、14が配置されている。このため、可
動電極3と電気配線13と電気配線14とは電気的に独
立している。また、基板2上には切り替え対象となる電
気配線15、16が図に示すように配置されている。こ
のマイクロメカニカルスイッチ11において、可動電極
3が初期アクチュエータ状態にある時は、配線15、1
6ともOFFの状態に、可動電極3が全面当接状態にあ
る時は、配線15、16ともONの状態に、可動電極3
が図面上左周りで傾く傾斜姿勢状態にある時は、配線1
5がONで配線16がOFFの状態に、可動電極3が図
面上右周りで傾く傾斜姿勢状態にある時は、配線16が
ONで、配線15がOFFの状態にそれぞれ切り替える
ことができる。このように、本発明の平行平板型静電ア
クチュエータを用いたマイクロメカニカルスイッチは、
アクチュエータ初期状態や傾斜姿勢状態以外に、全面当
接状態を積極的に活用することにより、簡単な構成で従
来より多種の切り替えが可能な、マイクロメカニカルス
イッチを提供することができる。それと共に、このメカ
ニカルスイッチは、低消費電力、同一デバイス内に駆動
回路を組み込み可能といった、上記で説明した平行平板
型静電アクチュエータと同じメリットも兼ね備えてい
る。
FIGS. 3A and 3B are conceptual views of the micromechanical switch 11 of the present invention. FIG. 3A is a sectional view, and FIG. 3B is a top view. An insulating film 12 such as a silicon oxide film is laminated on the upper surface of a parallel plate type actuator 1 having the same configuration as that shown in FIG. 1, and two electric wirings 13 and 14 are arranged thereon. For this reason, the movable electrode 3, the electric wiring 13, and the electric wiring 14 are electrically independent. Also, electrical wirings 15 and 16 to be switched are arranged on the substrate 2 as shown in the figure. In this micro mechanical switch 11, when the movable electrode 3 is in the initial actuator state, the wiring 15, 1
When the movable electrode 3 is in the OFF state and the movable electrode 3 is in the state of contact with the entire surface, the wirings 15 and 16 are also in the ON state, and the movable electrode 3 is in the ON state.
When the camera is in an inclined posture in which it is tilted counterclockwise in the drawing, wiring 1
When the movable electrode 3 is in an inclined posture in which the wiring 5 is turned on and the wiring 16 is turned off and the movable electrode 3 is tilted clockwise in the drawing, the wiring 16 can be turned on and the wiring 15 can be turned off. Thus, the micromechanical switch using the parallel plate type electrostatic actuator of the present invention,
By actively utilizing the entire contact state in addition to the actuator initial state and the inclined posture state, it is possible to provide a micromechanical switch capable of performing various types of switching with a simple configuration compared to the related art. At the same time, this mechanical switch has the same advantages as the above-described parallel plate type electrostatic actuator, such as low power consumption and the possibility of incorporating a drive circuit in the same device.

【0034】[0034]

【発明の効果】以上に説明にしたように、本発明におい
ては、平行平板型アクチュエータの可動電極が回転運動
のみならず、平行運動ができるよう、可動電極をねじり
方向、伸縮方向の両方向に対して十分弾性変形が可能な
ばね構造で保持しており、また、固定電極を3つ以上に
分割し、分割した固定電極がそれぞれ独立に制御できる
構造を持たせている。これらの構造により、可動電極全
体を引き付ける動作をさせる際には固定電極を大面積に
して効率よく可動電極を動作でき、可動電極の傾斜姿勢
を保持する際には固定電極を小面積にして効率よく姿勢
を保持することができ、アクチュエータの消費電力を抑
制することができる。
As described above, in the present invention, the movable electrode of the parallel plate type actuator can be moved in both the torsion direction and the expansion / contraction direction so that the movable electrode can perform not only a rotational movement but also a parallel movement. The fixed electrode is divided into three or more, and the divided fixed electrodes can be independently controlled. With these structures, the fixed electrode has a large area and the movable electrode can be operated efficiently when performing the operation of attracting the entire movable electrode, and the fixed electrode has a small area when the inclined position of the movable electrode is maintained. The posture can be maintained well, and the power consumption of the actuator can be suppressed.

【0035】また、本発明においては、アクチュエータ
の傾斜姿勢から他の傾斜姿勢へ移行時には、必ず可動電
極下の全固定電極を働かせ、可動電極全体が基板と接触
した全面当接状態に1度移行させ、その後接触させたい
箇所近傍の固定電極だけ残し、他の固定電極の電位を可
動電極と合わせることで次の傾斜姿勢に移行させる駆動
方式を用いることにより、これにより、アクチュエータ
の消費電力を抑える駆動方法を提供することができる。
Further, in the present invention, when the actuator is shifted from the inclined position to another inclined position, all the fixed electrodes below the movable electrode are always activated, and the transition is made once to the entire contact state where the entire movable electrode is in contact with the substrate. Then, only the fixed electrode in the vicinity of the portion to be contacted is left, and the driving method is used in which the potential of the other fixed electrode is adjusted to the movable electrode to shift to the next inclined posture, thereby reducing the power consumption of the actuator. A driving method can be provided.

【0036】また、本発明においては、前記傾斜姿勢状
態から前記全面当接状態に移行する際に、分割された固
定電極のうち、傾斜して可動電極が近接している部位か
ら近い順に順次電圧を印可していく駆動方法と傾斜して
可動電極が近接している部位から遠い順により高い電圧
を印可する駆動方法を用いており、両者ともアクチュエ
ータの駆動効率を上げる結果を得ることができる。
In the present invention, when shifting from the inclined posture state to the full contact state, the voltage is sequentially applied to the divided fixed electrodes in ascending order from the part where the movable electrode is inclined and approaching. And a driving method in which a higher voltage is applied in the order of increasing the distance from the portion where the movable electrode is close to the inclined position, and both can obtain the result of increasing the driving efficiency of the actuator.

【0037】さらに、本発明においては、上記静電アク
チュエータをシリコン等の基板上に半導体プロセスを用
いて形成し、同基板上に別途作った駆動回路を組み込む
ことにより、デバイスのサイズを低減できると同時に、
電気配線が短くてすむことにより、さらなる低消費電力
の実現を図ることができる。
Further, according to the present invention, the size of the device can be reduced by forming the electrostatic actuator on a substrate such as silicon by using a semiconductor process and incorporating a drive circuit separately formed on the substrate. at the same time,
Since the electric wiring can be shortened, further lower power consumption can be realized.

【0038】本発明のマイクロ静電アクチュエータを用
いて作成することにより、上述した種々の効果によって
低消費電力でかつスイッチの切り替え数が従来よりも多
いマイクロ光路スイッチ、マイクロメカニカルスイッチ
を提供することができる。
By using the micro-electrostatic actuator of the present invention, it is possible to provide a micro-optical path switch and a micro-mechanical switch that consume less power and have a larger number of switches than conventional ones due to the various effects described above. it can.

【0039】[0039]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る、静電駆動で回転動作し姿勢を制
御するタイプの平行平板型マイクロアクチュエータの構
成図である。
FIG. 1 is a configuration diagram of a parallel plate type microactuator of a type that controls a posture by performing a rotational operation by electrostatic drive according to the present invention.

【図2】図1に示す静電アクチュエータの動作形態を示
す図である。
FIG. 2 is a diagram showing an operation mode of the electrostatic actuator shown in FIG.

【図3】本発明に係るマイクロメカニカルスイッチの概
念図である。
FIG. 3 is a conceptual diagram of a micro mechanical switch according to the present invention.

【図4】従来の平行平板型マイクロ静電アクチュエータ
の概念図である。
FIG. 4 is a conceptual view of a conventional parallel plate type micro electrostatic actuator.

【符号の説明】[Explanation of symbols]

1 平行平板型マイクロ静電アクチュエータ 2 基板 3 可動電極 4a〜4d 固定電極 5 第3の電極 6 支持肢 7 アンカー 8 突起 11 マイクロメカニカルスイッチ 12 絶縁膜 13、14 切り替え用電気配線 15、16 切り替え対象となる電気配線 DESCRIPTION OF SYMBOLS 1 Parallel plate-type micro electrostatic actuator 2 Substrate 3 Movable electrode 4a-4d Fixed electrode 5 3rd electrode 6 Supporting limb 7 Anchor 8 Projection 11 Micro mechanical switch 12 Insulating film 13,14 Switching electric wiring 15,16 Switching object Become electrical wiring

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】基板上に配置された固定電極と、前記固定
電極に微小な距離をおいて相対した可動電極を有し、前
記固定電極と前記可動電極の間に電圧を印可することで
発生する静電気力により前記可動電極を傾斜させるタイ
プの平行平板型マイクロ静電アクチュエータにおいて、
前記可動電極は、ねじれ・伸縮の両方に対して十分弾性
変形が可能なばね構造により支持され、前記基板の面上
に、3個以上複数の固定電極を、前記可動電極の回転軸
と垂直な方向に沿う形でかつ前記可動電極に対向する位
置全体を覆う形で配置し、前記複数の固定電極の各電極
はそれぞれが他と独立に電位を制御することを特徴とす
る平行平板型マイクロ静電アクチュエータ。
1. A fixed electrode disposed on a substrate and a movable electrode opposed to the fixed electrode at a small distance, and generated by applying a voltage between the fixed electrode and the movable electrode. In a parallel plate type micro electrostatic actuator of a type in which the movable electrode is tilted by an electrostatic force,
The movable electrode is supported by a spring structure capable of elastically deforming sufficiently for both torsion and expansion and contraction. On the surface of the substrate, three or more fixed electrodes are perpendicular to the rotation axis of the movable electrode. A parallel plate type micro-electrostatic device, wherein each of the plurality of fixed electrodes controls an electric potential independently of the other, in such a manner as to cover the entire position facing the movable electrode. Electric actuator.
【請求項2】請求項1において、前記可動電極の下面に
は前記複数の固定電極と直接接触することを防ぐストッ
パが形成してあり、前記基板上の前記ストッパと接触す
る箇所には、前記可動電極と常に等電位に保たれている
第3の電極が配置してあることを特徴とする平行平板型
マイクロ静電アクチュエータ。
2. A stopper according to claim 1, wherein a stopper for preventing direct contact with said plurality of fixed electrodes is formed on a lower surface of said movable electrode, and said stopper on said substrate is provided at a position contacting said stopper. A parallel plate type micro-electrostatic actuator, comprising a movable electrode and a third electrode which is always kept at the same potential.
【請求項3】請求項1において、前記可動電極の支持肢
の剛性を低くし、可動電極本体の剛性を、厚膜化等で高
くしたことを特徴とする平行平板型マイクロ静電アクチ
ュエータ。
3. The parallel plate type micro-electrostatic actuator according to claim 1, wherein the rigidity of the supporting limb of the movable electrode is reduced and the rigidity of the movable electrode body is increased by thickening the film.
【請求項4】請求項1において、前記基板は半導体基板
であり、同半導体基板上に別途前記アクチュエータの駆
動回路が形成されていることを特徴とする平行平板型マ
イクロ静電アクチュエータ。
4. The parallel plate type micro-electrostatic actuator according to claim 1, wherein the substrate is a semiconductor substrate, and a drive circuit for the actuator is separately formed on the semiconductor substrate.
【請求項5】請求項1に記載の平行平板型マイクロ静電
アクチュエータに対し、前記3個以上複数の固定電極の
うち前記可動電極と電位差を持たせる固定電極の選択の
組み合わせによって、前記可動電極が前記支持肢のばね
力のみで保持されたアクチュエータ初期状態と、前記可
動電極と前記複数の固定電極全数との間に電位差を生じ
させ、前記可動電極が平行に移動し前記ストッパを介し
て前記第3の電極と接触した状態となった全面当接状態
と、前記可動電極と前記複数の固定電極のうち一部の固
定電極との間にのみ電位差を生じさせ、前記可動電極の
一部が前記ストッパを介して前記第3の電極と接触して
前記基板に対し傾斜した姿勢をとった数種類の傾斜姿勢
状態を制御することを特徴とする前記平行平板型マイク
ロ静電アクチュエータの駆動方法。
5. The movable electrode according to claim 1, wherein the movable electrode is selected from a combination of the three or more fixed electrodes having a potential difference from the movable electrode. Causes an electric potential difference between the initial state of the actuator held only by the spring force of the support limb and the total number of the movable electrode and the plurality of fixed electrodes, and the movable electrode moves in parallel and moves through the stopper. An electric potential difference is generated only between the movable electrode and some of the plurality of fixed electrodes, and a part of the movable electrode is brought into contact with the third electrode. The parallel plate type micro-electrostatic actuator according to claim 1, wherein the parallel plate type micro-actuator is controlled in several kinds of inclined posture states in which the third electrode is in contact with the third electrode via the stopper and is inclined with respect to the substrate. Method of driving a motor.
【請求項6】請求項5において、前記静電アクチュエー
タの1つの傾斜姿勢状態から別の傾斜姿勢状態への移行
に際し、移行の途中に1度前記全面当接状態を経由させ
ることを特徴とする、前記平行平板型マイクロ静電アク
チュエータの駆動方法。
6. The apparatus according to claim 5, wherein when the electrostatic actuator is shifted from one inclined posture state to another inclined posture state, the electrostatic actuator is passed through the entire contact state once during the transition. And a method of driving the parallel plate type micro electrostatic actuator.
【請求項7】請求項6において、前記傾斜姿勢状態から
前記全面当接状態に移行させるにあたり、傾斜姿勢の保
持に寄与している固定電極から近い固定電極順に、前記
可動電極との間に順次電位差を与えていくことを特徴と
する、前記平行平板型マイクロ静電アクチュエータの駆
動方法。
7. The movable electrode according to claim 6, wherein the transition from the inclined posture state to the entire surface contact state is sequentially performed between the movable electrode and the fixed electrode in the order of a fixed electrode which contributes to maintaining the inclined posture. A method for driving the parallel plate type micro-electrostatic actuator, wherein a potential difference is applied.
【請求項8】請求項6において、前記傾斜姿勢から前記
全面当接状態に移行させるにあたり、前記可動電極と前
記固定電極との間に与える電位差を、傾斜姿勢の保持に
寄与していた固定電極から遠い固定電極順に高い値とす
ることを特徴とする、前記平行平板型マイクロ静電アク
チュエータの駆動方法。
8. The fixed electrode according to claim 6, wherein a potential difference applied between said movable electrode and said fixed electrode in maintaining said tilted posture in said transition from said tilted posture to said overall contact state is maintained. A method for driving the parallel plate type micro electrostatic actuator, wherein the value is increased in the order of the fixed electrode far from the fixed electrode.
【請求項9】請求項1に記載の静電アクチュエータの該
可動電極上面に反射膜を積層して作成したマイクロ光路
スイッチ。
9. A micro optical path switch formed by laminating a reflective film on the upper surface of the movable electrode of the electrostatic actuator according to claim 1.
【請求項10】請求項9において、前記マイクロ光路ス
イッチが形成された基板は半導体基板であり、同半導体
基板上に別途前記光路スイッチの駆動回路が形成してあ
ることを特徴とするマイクロ光路スイッチ。
10. The micro optical path switch according to claim 9, wherein the substrate on which the micro optical path switch is formed is a semiconductor substrate, and a drive circuit for the optical path switch is separately formed on the semiconductor substrate. .
【請求項11】請求項9に記載のマイクロ光路スイッチ
に対し、前記3個以上複数の固定電極のうち前記可動電
極と電位差を持たせる固定電極の選択の組み合わせによ
って、前記可動電極が前記支持肢のばね力のみで保持さ
れたアクチュエータ初期状態と、前記可動電極と前記複
数の固定電極全数との間に電位差を生じさせ、前記可動
電極が平行に移動し前記ストッパを介して前記第3の電
極と接触した状態となった全面当接状態と、前記可動電
極と前記複数の固定電極のうち一部の固定電極と間にの
み電位差を生じさせ、前記可動電極の一部が前記ストッ
パを介して前記第3の電極と接触して前記基板に対し傾
斜した姿勢をとった数種類の傾斜姿勢状態を制御し、前
記反射面の姿勢を制御することを特徴とする前記マイク
ロ光路スイッチの駆動方法。
11. The movable optical electrode of the micro optical path switch according to claim 9, wherein the movable electrode is selected from the three or more fixed electrodes by a combination of fixed electrodes having a potential difference with the movable electrode. A potential difference is generated between the initial state of the actuator held only by the spring force and the movable electrode and the total number of the plurality of fixed electrodes, the movable electrode moves in parallel, and the third electrode passes through the stopper. And the entire surface contact state in which the movable electrode and the fixed electrode of the plurality of fixed electrodes generate a potential difference only between the movable electrode and the fixed electrode, and a part of the movable electrode passes through the stopper. The micro optical path switch according to any one of the preceding claims, wherein the micro optical path switch controls several kinds of inclined posture states in which the third electrode is in contact with the third electrode and is inclined with respect to the substrate, and controls the posture of the reflection surface. Dynamic way.
【請求項12】請求項11において、前記静電アクチュ
エータの1つの傾斜姿勢状態から別の傾斜姿勢状態への
移行に際し、移行の途中に1度前記全面当接状態を経由
させることを特徴とする、前記マイクロ光路スイッチの
駆動方法。
12. The method according to claim 11, wherein the transition from one inclined posture state to another inclined posture state of the electrostatic actuator is performed once through the full contact state during the transition. And a method for driving the micro optical path switch.
【請求項13】請求項12において、前記傾斜姿勢状態
から前記全面当接状態に移行させるにあたり、傾斜姿勢
の保持に寄与している固定電極から近い固定電極順に、
前記可動電極との間に順次電位差を与えていくことを特
徴とする前記マイクロ光路スイッチの駆動方法。
13. The fixed electrode according to claim 12, wherein, when shifting from said inclined posture state to said overall contact state, in order of fixed electrodes that are closer to the fixed electrodes contributing to maintaining the inclined posture.
The method of driving the micro optical path switch, wherein a potential difference is sequentially applied to the movable electrode.
【請求項14】請求項12において、前記傾斜姿勢状態
から前記全面当接状態に移行させるにあたり、前記可動
電極と前記固定電極との間に与える電位差を、傾斜姿勢
の保持に寄与していた固定電極から遠い固定電極順に高
い値とすることを特徴とする、前記マイクロ光路スイッ
チの駆動方法。
14. The fixed state according to claim 12, wherein a potential difference given between said movable electrode and said fixed electrode during the transition from said inclined posture state to said overall contact state contributes to maintaining said inclined posture. The method of driving the micro optical path switch, wherein the value is increased in the order of the fixed electrode far from the electrode.
【請求項15】請求項1に記載の静電アクチュエータの
該可動電極に、該固定電極、該可動電極、該第3の電極
と電気的に独立した突起および突起間の結線を導電体で
形成し、前記突起とアクチュエータ駆動時に接触するよ
うに、該基板上に別途形成された電気配線を有するマイ
クロメカニカルスイッチ。
15. A projection formed on the movable electrode of the electrostatic actuator according to claim 1 and electrically connected to the fixed electrode, the movable electrode, and the third electrode, and a connection between the projections made of a conductor. A micromechanical switch having an electric wiring separately formed on the substrate so as to come into contact with the protrusion when the actuator is driven.
【請求項16】請求項15において、前記マイクロメカ
ニカルスイッチが形成された基板は半導体基板であり、
同半導体基板上に別途前記マイクロメカニカルスイッチ
の駆動回路が形成してあることを特徴とするマイクロメ
カニカルスイッチ。
16. The substrate according to claim 15, wherein the substrate on which the micromechanical switches are formed is a semiconductor substrate,
A micromechanical switch, wherein a drive circuit for the micromechanical switch is separately formed on the semiconductor substrate.
【請求項17】請求項15に記載のマイクロメカニカル
スイッチに対し、前記3個以上複数の固定電極のうち前
記可動電極と電位差を持たせる固定電極の選択の組み合
わせによって、前記可動電極が前記支持肢のばね力のみ
で保持されたアクチュエータ初期状態と、前記可動電極
と前記複数の固定電極全数との間に電位差を生じさせ、
前記可動電極が平行に移動し前記ストッパを介して前記
第3の電極と接触した状態となった全面当接状態と、前
記可動電極と前記複数の固定電極のうち一部の固定電極
と間にのみ電位差を生じさせ、前記可動電極の一部が前
記ストッパを介して前記第3の電極と接触して前記基板
に対し傾斜した姿勢をとった数種類の傾斜姿勢状態を制
御し、結線する前記電気配線の切り替えを制御すること
を特徴とする前記マイクロメカニカルスイッチの駆動方
法。
17. The micromechanical switch according to claim 15, wherein the movable electrode is connected to the supporting limb by a combination of selection of a fixed electrode having a potential difference from the movable electrode among the three or more fixed electrodes. An actuator initial state held only by the spring force, and a potential difference is generated between the movable electrode and all of the plurality of fixed electrodes,
Between the movable electrode and a part of the plurality of fixed electrodes, and between the movable electrode and a part of the plurality of fixed electrodes, in which the movable electrode moves in parallel and comes into contact with the third electrode via the stopper. Only a potential difference is generated, and a part of the movable electrode is in contact with the third electrode via the stopper to control several kinds of inclined posture states in which the movable electrode takes an inclined posture with respect to the substrate. A method for driving the micromechanical switch, wherein switching of wiring is controlled.
【請求項18】請求項17において、前記静電アクチュ
エータの1つの傾斜姿勢状態から別の傾斜姿勢状態への
移行に際し、それぞれの移行の途中で1度前記全面当接
状態を経由させることを特徴とする、前記マイクロメカ
ニカルスイッチの駆動方法。
18. The method according to claim 17, wherein, when the electrostatic actuator is shifted from one inclined posture state to another inclined posture state, the electrostatic actuator is caused to pass through the full contact state once during each transition. The driving method of the micro mechanical switch.
【請求項19】請求項18において、前記傾斜姿勢状態
から前記全面当接状態に移行させるにあたり、傾斜姿勢
の保持に寄与している固定電極から近い固定電極順に、
前記可動電極との間に順次電位差を与えていくことを特
徴とする、前記マイクロメカニカルスイッチの駆動方
法。
19. The method according to claim 18, wherein, when the state is shifted from the inclined posture state to the entire surface contact state, the fixed electrodes are arranged in the order of fixed electrodes that are closer to the fixed electrodes contributing to maintaining the inclined posture.
A method for driving the micro mechanical switch, wherein a potential difference is sequentially applied to the movable electrode.
【請求項20】請求項18において、前記傾斜姿勢状態
から前記全面当接状態に移行させるにあたり、前記可動
電極と前記固定電極との間に与える電位差を、傾斜姿勢
の保持に寄与していた固定電極から遠い固定電極順に高
い値とすることを特徴とする、前記マイクロメカニカル
スイッチの駆動方法。
20. The fixed state according to claim 18, wherein a potential difference given between said movable electrode and said fixed electrode in maintaining said inclined posture is changed in said transition from said inclined posture state to said overall contact state. The method for driving the micromechanical switch, wherein the value is increased in the order of the fixed electrodes far from the electrodes.
JP2001093927A 2001-03-28 2001-03-28 Parallel plate type micro electrostatic actuator, micro optical path switch, micro mechanical switch and driving method thereof Expired - Fee Related JP3931576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001093927A JP3931576B2 (en) 2001-03-28 2001-03-28 Parallel plate type micro electrostatic actuator, micro optical path switch, micro mechanical switch and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001093927A JP3931576B2 (en) 2001-03-28 2001-03-28 Parallel plate type micro electrostatic actuator, micro optical path switch, micro mechanical switch and driving method thereof

Publications (3)

Publication Number Publication Date
JP2002287045A true JP2002287045A (en) 2002-10-03
JP2002287045A5 JP2002287045A5 (en) 2005-02-03
JP3931576B2 JP3931576B2 (en) 2007-06-20

Family

ID=18948203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001093927A Expired - Fee Related JP3931576B2 (en) 2001-03-28 2001-03-28 Parallel plate type micro electrostatic actuator, micro optical path switch, micro mechanical switch and driving method thereof

Country Status (1)

Country Link
JP (1) JP3931576B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126825A (en) * 2004-09-30 2006-05-18 Fuji Photo Film Co Ltd Microelectromechanical modulation device, array of same, and image forming apparatus
JP2006518884A (en) * 2003-02-24 2006-08-17 エクサジュール リミテッド ライアビリティ カンパニー Micromirror system with concealed multi-piece hinge structure
US7164334B2 (en) 2003-07-02 2007-01-16 Sharp Kabushiki Kaisha Electrostatic actuator, microswitch, micro optical switch, electronic device, and method of manufacturing electrostatic actuator
WO2007080789A1 (en) * 2006-01-12 2007-07-19 Nippon Telegraph And Telephone Corporation Mirror element and method for manufacturing mirror element
WO2007110928A1 (en) * 2006-03-28 2007-10-04 Fujitsu Limited Movable element
WO2008084520A1 (en) * 2006-12-28 2008-07-17 Nikon Corporation Optical device, pattern generating apparatus, pattern generating method, exposure apparatus, exposure method and device manufacturing method
JP2008220085A (en) * 2007-03-06 2008-09-18 Topcon Corp Driving power circuit
JP2010008612A (en) * 2008-06-25 2010-01-14 Panasonic Electric Works Co Ltd Semiconductor machine structure
US7859370B2 (en) 2004-03-31 2010-12-28 Sharp Kabushiki Kaisha Electrostatic actuator
WO2012105705A1 (en) * 2011-02-04 2012-08-09 株式会社日立製作所 Optical filtering device, defect-inspection method, and apparatus therefor
US8422115B2 (en) 2008-01-18 2013-04-16 Samsung Display Co., Ltd. Display device
JP5867736B2 (en) * 2011-02-04 2016-02-24 株式会社日立製作所 Optical filtering device, defect inspection method and apparatus

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006518884A (en) * 2003-02-24 2006-08-17 エクサジュール リミテッド ライアビリティ カンパニー Micromirror system with concealed multi-piece hinge structure
US7164334B2 (en) 2003-07-02 2007-01-16 Sharp Kabushiki Kaisha Electrostatic actuator, microswitch, micro optical switch, electronic device, and method of manufacturing electrostatic actuator
US7859370B2 (en) 2004-03-31 2010-12-28 Sharp Kabushiki Kaisha Electrostatic actuator
JP2006126825A (en) * 2004-09-30 2006-05-18 Fuji Photo Film Co Ltd Microelectromechanical modulation device, array of same, and image forming apparatus
JP4695956B2 (en) * 2004-09-30 2011-06-08 富士フイルム株式会社 Micro electromechanical modulation element, micro electro mechanical modulation element array, and image forming apparatus
WO2007080789A1 (en) * 2006-01-12 2007-07-19 Nippon Telegraph And Telephone Corporation Mirror element and method for manufacturing mirror element
JP4814257B2 (en) * 2006-01-12 2011-11-16 日本電信電話株式会社 Mirror element and method for manufacturing mirror element
US7978388B2 (en) 2006-01-12 2011-07-12 Nippon Telegraph And Telephone Corporation Mirror device and mirror device manufacturing method incorporating a collision preventive structure
JPWO2007080789A1 (en) * 2006-01-12 2009-06-11 日本電信電話株式会社 Mirror element and method for manufacturing mirror element
WO2007110928A1 (en) * 2006-03-28 2007-10-04 Fujitsu Limited Movable element
US7602097B2 (en) 2006-03-28 2009-10-13 Fujitsu Limited Movable device
JP5051123B2 (en) * 2006-03-28 2012-10-17 富士通株式会社 Movable element
WO2008084520A1 (en) * 2006-12-28 2008-07-17 Nikon Corporation Optical device, pattern generating apparatus, pattern generating method, exposure apparatus, exposure method and device manufacturing method
JP2008220085A (en) * 2007-03-06 2008-09-18 Topcon Corp Driving power circuit
US8422115B2 (en) 2008-01-18 2013-04-16 Samsung Display Co., Ltd. Display device
JP2010008612A (en) * 2008-06-25 2010-01-14 Panasonic Electric Works Co Ltd Semiconductor machine structure
WO2012105705A1 (en) * 2011-02-04 2012-08-09 株式会社日立製作所 Optical filtering device, defect-inspection method, and apparatus therefor
US9182592B2 (en) 2011-02-04 2015-11-10 Hitachi, Ltd. Optical filtering device, defect inspection method and apparatus therefor
JP5867736B2 (en) * 2011-02-04 2016-02-24 株式会社日立製作所 Optical filtering device, defect inspection method and apparatus

Also Published As

Publication number Publication date
JP3931576B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP2004117832A (en) Mirror device, optical switch, electronic device, and method for driving mirror device
US6437485B1 (en) Double bimorph electromechanical element
JP2002287045A (en) Parallel flat plate type micro electrostatic actuator, micro optical path switch, micro mechanical switch, and their driving method
JP2002326197A (en) Mems element having spring with nonlinear restoring force
US5214727A (en) Electrostatic microactuator
JP2000314842A (en) Optical subminiature machine and method for controlling light beam
US7474454B2 (en) Programmable micromirror motion control system
KR20060068370A (en) Mems actuator
JP2007192902A (en) Method for driving micro-electro mechanical element, method for driving micro-electro mechanical element array, micro-electro mechanical element, micro-electro mechanical element array, and image forming apparatus
JP2002287045A5 (en)
WO2005069330A1 (en) Electro-mechanical micro-switch device
US7057746B2 (en) Scanner for precise movement and low power consumption
JP2009118682A (en) Micro actuator, micro actuator array, micro actuator arrangement, optical device, display, aligner, and method of manufacturing device
CN102217183B (en) Method for operating an electrostatic drive and electrostatic drives
US7365899B2 (en) Micromirror with multi-axis rotation and translation
JP2001268948A (en) Electrostatic actuator and operation mechanism using the same
EP2844611B1 (en) Mems device
JP2004085700A (en) Mirror device, optical switch, electronic apparatus, and mirror device driving method
WO2003035542A2 (en) Method of fabricating vertical actuation comb drives
US7898144B2 (en) Multi-step microactuator providing multi-step displacement to a controlled object
JP5160299B2 (en) Micro movable device and driving method thereof
JP4405705B2 (en) Optical router including bistable optical switch and method thereof
CN110120324B (en) Contact structure of self-holding MEMS relay
CN106646857B (en) Piezoelectric micro-mirror and control method
JPH05207760A (en) Electrostatic force actuator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070305

R150 Certificate of patent or registration of utility model

Ref document number: 3931576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees