JP2002286766A - Voltage detection method and voltage detection device - Google Patents

Voltage detection method and voltage detection device

Info

Publication number
JP2002286766A
JP2002286766A JP2001085023A JP2001085023A JP2002286766A JP 2002286766 A JP2002286766 A JP 2002286766A JP 2001085023 A JP2001085023 A JP 2001085023A JP 2001085023 A JP2001085023 A JP 2001085023A JP 2002286766 A JP2002286766 A JP 2002286766A
Authority
JP
Japan
Prior art keywords
voltage
power storage
storage device
unit
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001085023A
Other languages
Japanese (ja)
Other versions
JP4540029B2 (en
Inventor
Keiichi Shimizu
恵市 清水
Hideji Nakamura
秀司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2001085023A priority Critical patent/JP4540029B2/en
Publication of JP2002286766A publication Critical patent/JP2002286766A/en
Application granted granted Critical
Publication of JP4540029B2 publication Critical patent/JP4540029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a voltage detection method and a voltage detection device capable of highly accurately detecting the voltage of each unit cell or a capacitor constituting an electricity storage device. SOLUTION: When a voltage measuring operation connecting this voltage detection device between both poles of a unit cell E1 through a capacitor 20 is executed, a voltage signal of the same level as the voltage (V1) of the unit cell E1 is applied to an A/D terminal, and when a voltage storing operation connecting the capacitor 20 between the positive electrode terminal of a unit cell E2 and a GND line is executed, the capacitor 20 is charged up to the same level as the voltage (V1) of the unit cell E1. When the voltage measuring operation is executed on the unit cell E2, a voltage signal of the same level as the voltage (V2) of the unit cell E2 is applied to the A/D terminal. When the voltage storing operation is executed thereafter, the capacitor 20 is charged up to the same level as the total voltage (V1+V2) of the unit cells E1, E2. Such operations are repeated up to the unit cells E3, E4, to thereby measure successively the voltage of each unit cell based on the voltage signal at each voltage measuring operation time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池又はコンデン
サ等の単位蓄電装置を複数個直列接続して構成された蓄
電装置において、各単位蓄電装置の電圧を測定する電圧
検出方法及び蓄電装置の電圧検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage detecting method for measuring a voltage of each unit power storage device and a voltage of the power storage device in a power storage device comprising a plurality of unit power storage devices such as a battery or a capacitor connected in series. It relates to a detection device.

【0002】[0002]

【従来の技術】例えば、電気自動車の動力用バッテリー
は多数の単位電池を直列接続して所要の高電圧を確保し
た組電池により構成されている。このような電池システ
ムでは、各単位電池の電圧にばらつきが生ずると、電池
システムの信頼性が低下するおそれがあるため、各単位
電池の電圧を検出して、各単位電池が所定の状態にある
か否かを監視するようにしている。各単位電池の電圧を
検出するためには、一般に、図4に示すような構成が利
用される。ここでは、単位電池は図面の簡略化のために
4個のみ図示してあり、各単位電池E1〜E4の例えば
正極側の出力端子と、グランドラインGNDとの間に抵
抗RA,RBを直列接続してなる分圧回路P1〜P4が接
続されると共に、各分圧回路P1〜P4における抵抗R
A,RB間の共通接続点は、電圧検出用のCPU1に接続
されている。このCPU1では、単位電池E1の電圧V
1と、単位電池E1とE2とを合わせた電圧V2と、単
位電池E1〜E3を合わせた電圧V3と、単位電池E1
〜E4を合わせた電圧V4とを、順次にサンプリングし
て検出すると共に、これらV1〜V4をCPU1に備え
たA/D変換器にてデジタル信号化し、次式に従って各
単位電池E1〜E4の電圧VE1〜VE4を求める。なお、
下式においてkは分圧比で決まる比例常数である。 VE1=k・V1 VE2=k・(V2−V1) VE3=k・(V3−V2) VE4=k・(V4−V3)
2. Description of the Related Art For example, a power battery for an electric vehicle is composed of an assembled battery in which a large number of unit batteries are connected in series to secure a required high voltage. In such a battery system, if the voltage of each unit battery varies, the reliability of the battery system may be reduced. Therefore, the voltage of each unit battery is detected, and each unit battery is in a predetermined state. It monitors whether or not. In order to detect the voltage of each unit battery, a configuration as shown in FIG. 4 is generally used. Here, only four unit batteries are shown for simplicity of the drawing, and resistors RA and RB are connected in series between, for example, the output terminal on the positive electrode side of each of the unit batteries E1 to E4 and the ground line GND. The voltage dividing circuits P1 to P4 are connected together, and the resistors R in each of the voltage dividing circuits P1 to P4 are connected.
The common connection point between A and RB is connected to the CPU 1 for voltage detection. In this CPU 1, the voltage V of the unit battery E1 is
1, a voltage V2 combining the unit batteries E1 and E2, a voltage V3 combining the unit batteries E1 to E3, and a unit battery E1.
And E4 are sequentially sampled and detected, and these V1 to V4 are converted into digital signals by an A / D converter provided in the CPU 1. The voltages of the unit batteries E1 to E4 are calculated according to the following equations. Find VE1 to VE4. In addition,
In the following equation, k is a proportional constant determined by the partial pressure ratio. VE1 = k · V1 VE2 = k · (V2-V1) VE3 = k · (V3-V2) VE4 = k · (V4-V3)

【0003】[0003]

【発明が解決しようとする課題】ところで、上述のシス
テムでは、最終的に検出したいものは、各単位電池E1
〜E4の個々の電圧であるが、そのために複数の単位電
池が直列した大電圧(V2〜V4)を検出し、それらの
大電圧同士の差に基づいて単位電池の個々の電圧を算出
している。このため、組電池の単位電池の数が多くなる
と、高電位側の単位電池に対する分圧比を大きくとる必
要があり、CPU1の分解能が十分に発揮されず、検出
精度が低下するという問題が生じる。即ち、CPU1に
おけるA/D変換器の分解能を例えば10ビットとした
場合に、1つの単位電池の電圧を直にA/D変換器に取
り込むときと、単位電池を4つ直列した大電圧をA/D
変換器に取り込むときとを比較すると、前者では、1つ
の単位電池の電圧に210の分解能を割り当てることが
できるが、後者では、1つの単位電池の電圧に210
4の分解能しか割り当てることができず、前者に比べて
後者は分解能が低下し、従って、単位電池の個々の電圧
の検出精度が低くなる。
By the way, in the above-mentioned system, what is finally to be detected is each unit cell E1.
To E4. For this purpose, a large voltage (V2 to V4) in which a plurality of unit batteries are connected in series is detected, and individual voltages of the unit batteries are calculated based on a difference between the large voltages. I have. For this reason, when the number of unit batteries in the assembled battery increases, it is necessary to increase the voltage dividing ratio with respect to the unit battery on the high potential side, and the resolution of the CPU 1 is not sufficiently exhibited, and the detection accuracy is reduced. That is, when the resolution of the A / D converter in the CPU 1 is, for example, 10 bits, when the voltage of one unit battery is directly taken into the A / D converter, and when a large voltage in which four unit batteries are connected in series is A / D
Comparing the time to capture the transducer, in the former, but may be assigned a resolution of 2 10 to the voltage of one unit cell, the latter two to the voltage of one unit cell 10 /
Only the resolution of 4 can be assigned, and the resolution of the latter is lower than that of the former, and therefore, the detection accuracy of the individual voltage of the unit battery is lower.

【0004】本発明は上記事情に鑑みてなされたもの
で、その目的は、蓄電装置を構成する各単位電池又はコ
ンデンサの電圧を高い精度で検出することが可能な電圧
検出方法及び電圧検出装置を提供することにある。
The present invention has been made in view of the above circumstances, and has as its object to provide a voltage detection method and a voltage detection device capable of detecting the voltage of each unit battery or capacitor constituting a power storage device with high accuracy. To provide.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明に係る電圧検出方法は、A(Aは複
数)個の単位蓄電装置を直列接続して構成した蓄電装置
に関し、各単位蓄電装置の電圧を順次測定する方法であ
って、電圧測定手段の入力側に電圧記憶用コンデンサを
設け、蓄電装置の一端側と、その一端側に連なるn番目
の単位蓄電装置の一端側とは反対の出力端子との間に、
電圧測定手段を電圧記憶用コンデンサを介して接続する
ことでn番目の単位蓄電装置の電圧を測定する電圧測定
動作と、その後、蓄電装置の一端側と、その一端側に連
なるn番目の単位蓄電装置の一端側とは反対の出力端子
との間に電圧記憶用コンデンサを接続して充電する電圧
記憶動作とを、nが1からAになるまで繰り返すところ
に特徴を有する。
According to a first aspect of the present invention, there is provided a voltage detecting method, comprising: a plurality of unit power storage devices connected in series; A method for sequentially measuring the voltage of each unit power storage device, wherein a voltage storage capacitor is provided on an input side of a voltage measuring unit, and one end of the power storage device and one end of an n-th unit power storage device connected to the one end thereof Between the output terminal opposite to
A voltage measuring operation for measuring the voltage of the n-th unit power storage device by connecting the voltage measuring means via a voltage storage capacitor, and thereafter, an n-th unit power storage device connected to one end of the power storage device and one end thereof The voltage storage operation in which a voltage storage capacitor is connected between an output terminal opposite to one end of the device and charging is performed is repeated until n becomes 1 to A.

【0006】請求項の2の発明は、請求項1記載の電圧
検出方法において、電圧測定動作と電圧記憶動作とをn
が1からAになるまで繰り返した後、蓄電装置の一端側
と、その一端側に連なるn番目の単位蓄電装置の一端側
とは反対の出力端子との間に電圧記憶用コンデンサを接
続することにより単位蓄電装置を充電する充電動作を、
nがAから1になるまで繰り返すところに特徴を有す
る。
According to a second aspect of the present invention, in the voltage detecting method according to the first aspect, the voltage measuring operation and the voltage storing operation are performed by n.
Is repeated from 1 to A, and then a voltage storage capacitor is connected between one end of the power storage device and an output terminal opposite to one end of the n-th unit power storage device connected to the one end. Charging operation for charging the unit power storage device by
The feature is that it is repeated until n becomes 1 from A.

【0007】請求項の3の発明に係る蓄電装置の電圧検
出装置は、A(Aは複数)個の単位蓄電装置を直列接続
して構成した蓄電装置に関し、各単位蓄電装置の電圧を
順次測定するための装置であって、電圧測定手段と、こ
の電圧測定手段の入力側に設けられた電圧記憶用コンデ
ンサと、測定手段と電圧記憶用コンデンサとを蓄電装置
に対して次の(a),(b)の状態となるようにnが1
からAになるまで繰り返して切り換えるスイッチング手
段とを備えたところに特徴を有する。 (a)電圧測定手段を、蓄電装置の一端側と、その一端
側に連なるn番目の単位蓄電装置の一端側とは反対の出
力端子との間に電圧記憶用コンデンサを介して接続する
電圧測定状態 (b)その後、電圧記憶用コンデンサを、蓄電装置の一
端側と、その一端側に連なるn番目の単位蓄電装置の一
端側とは反対の出力端子との間に接続する電圧記憶状態
A voltage detecting device for a power storage device according to a third aspect of the present invention relates to a power storage device in which A (a plurality of A) unit power storage devices are connected in series, and sequentially measures the voltage of each unit power storage device. A voltage measuring means, a capacitor for voltage storage provided on the input side of the voltage measuring means, and a measuring means and a capacitor for voltage storage with respect to the power storage device as follows: N is 1 so that the state of FIG.
And a switching means for repeatedly switching from A to A. (A) Voltage measurement in which a voltage measuring means is connected via a voltage storage capacitor between one end of a power storage device and an output terminal opposite to one end of an n-th unit power storage device connected to the one end. State (b) Thereafter, the voltage storage capacitor is connected between one end of the power storage device and an output terminal opposite to one end of the n-th unit power storage device connected to the one end.

【0008】請求項の4の発明は、請求項3に記載の蓄
電装置の電圧検出装置において、スイッチング手段は、
電圧測定状態と電圧記憶状態とになるようにnが1から
Aになるまで繰り返し切り換えた後に、蓄電装置の一端
側と、その一端側に連なるn番目の単位蓄電装置の一端
側とは反対の出力端子との間に電圧記憶用コンデンサを
接続して単位蓄電装置を充電する充電状態を、nがAか
ら1になるまで繰り返すところに特徴を有する。
According to a fourth aspect of the present invention, in the voltage detecting device for a power storage device according to the third aspect, the switching means comprises:
After repeatedly switching from n to 1 to A so as to be in the voltage measurement state and the voltage storage state, one end of the power storage device and the one end of the n-th unit power storage device connected to the one end are opposite to each other. It is characterized in that a charging state in which a voltage storage capacitor is connected to the output terminal and the unit power storage device is charged is repeated until n changes from A to 1.

【0009】[0009]

【発明の作用及び効果】<請求項1及び請求項3の発明
>請求項1及び請求項3の構成によれば、最初に電圧記
憶用コンデンサを充分放電させておいて、まず蓄電装置
の一端側と、その一端側に連なる1番目の単位蓄電装置
(n=1)の前記一端側とは反対の出力端子との間に電
圧測定手段を電圧記憶用コンデンサを介して接続する電
圧測定動作(請求項3の「電圧測定状態」に相当する)
が行われると、電圧測定手段の入力側には、1番目の単
位蓄電装置の電圧(V1)と同レベルの電圧信号が与えられ
る。その後、蓄電装置の一端側と、1番目の単位蓄電装
置の前記一端側とは反対の出力端子との間に電圧記憶用
コンデンサを接続する電圧記憶動作(請求項3の「電圧
記憶状態」に相当する)が行われると、電圧記憶用コン
デンサは1番目の単位蓄電装置の電圧(V1)と同レベルに
なるまで充電される。次いで、その状態で2番目の単位
蓄電装置(n=2)について電圧測定動作が行われる
と、電圧測定手段の入力側には、1番目及び2番目の単
位蓄電装置の合計電圧(V1+V2)から電圧記憶用コンデン
サに充電された1個目の単位蓄電装置の電圧分(V1)が差
し引かれた2番目の単位蓄電装置の電圧(V2)と同レベル
の電圧信号が与えられることになる。その後、電圧記憶
動作が行われると、電圧記憶用コンデンサが1番目及び
2番目の単位蓄電装置の合計電圧(V1+V2)と同レベルに
なるまで充電される。このような動作を3番目の単位蓄
電装置(n=3)からA番目の単位蓄電装置(n=A)
まで繰り返して、各電圧測定動作時の電圧信号に基づい
て各単位蓄電装置(n=1〜A)の電圧を順次測定する
ことができる。
According to the first and third aspects of the present invention, the voltage storage capacitor is first sufficiently discharged, and then one end of the power storage device is started. Measuring operation in which voltage measuring means is connected via a voltage storage capacitor between the first side and an output terminal opposite to the one end side of the first unit power storage device (n = 1) connected to one end side thereof. (Corresponds to the “voltage measurement state” in claim 3)
Is performed, a voltage signal having the same level as the voltage (V1) of the first unit power storage device is supplied to the input side of the voltage measuring means. Thereafter, a voltage storage operation of connecting a voltage storage capacitor between one end of the power storage device and an output terminal opposite to the one end of the first unit power storage device (in the "voltage storage state" of claim 3). (Equivalent), the voltage storage capacitor is charged until it reaches the same level as the voltage (V1) of the first unit power storage device. Next, in this state, when the voltage measurement operation is performed on the second unit power storage device (n = 2), the total voltage (V1 + V2) of the first and second unit power storage devices is input to the input side of the voltage measurement unit. ) Is subtracted from the voltage (V1) of the first unit power storage device charged in the voltage storage capacitor, and a voltage signal of the same level as the voltage (V2) of the second unit power storage device is provided. . After that, when the voltage storage operation is performed, the voltage storage capacitor is charged until it reaches the same level as the total voltage (V1 + V2) of the first and second unit power storage devices. Such an operation is performed from the third unit power storage device (n = 3) to the A-th unit power storage device (n = A).
It is possible to sequentially measure the voltage of each unit power storage device (n = 1 to A) based on the voltage signal at the time of each voltage measurement operation.

【0010】このような構成であれば、従来の電圧検出
方法のように大きな分圧抵抗を設ける必要がなく、多く
の単位蓄電装置を直列接続してなる大容量の蓄電装置で
あっても高精度の電圧検出を行うことができる。
With such a configuration, there is no need to provide a large voltage-dividing resistor unlike the conventional voltage detection method, and even if a large-capacity power storage device in which many unit power storage devices are connected in series, a high voltage can be obtained. Accurate voltage detection can be performed.

【0011】<請求項2及び請求項4の発明>ところ
で、上述した従来のシステムでは、各分圧回路P1〜P
4に流れる放電電流i1〜i4により、各単位電池E1〜
E4の容量にばらつきが発生する。すなわち、図4に示
すように、放電電流i1は単位電池E1にのみ流れる
が、放電電流i2は単位電池E1,E2の双方に流れ、
放電電流i3は単位電池E1,E2,E3に流れる…、
という関係になっているため、グランドラインGNDに
より近い単位電池E1,E2…には、より多くの電流が
常時流れることになる。このため、グランドラインに近
い単位電池ほど容量を低下させてしまうのである。
<Inventions of Claims 2 and 4> By the way, in the above-mentioned conventional system, each of the voltage dividing circuits P1 to P
4, the unit batteries E1 to i4 are generated by the discharge currents i1 to i4.
A variation occurs in the capacitance of E4. That is, as shown in FIG. 4, the discharge current i1 flows only to the unit cell E1, but the discharge current i2 flows to both the unit cells E1 and E2,
The discharge current i3 flows through the unit cells E1, E2, E3 ...
, More current always flows through the unit cells E1, E2,... Closer to the ground line GND. For this reason, the capacity decreases as the unit battery is closer to the ground line.

【0012】ところが、請求項2及び請求項4の構成に
よれば、上述した電圧測定動作及び電圧記憶動作とを全
単位蓄電装置(n=1〜A)について順次行った後の状
態では、電圧記憶用コンデンサは全単位蓄電装置の合計
電圧(V1+V2+…+VA)と同レベルまで充電されている。こ
こで、蓄電装置の一端側と、A−1番目の単位蓄電装置
の前記一端側とは反対の出力端子との間に電圧記憶用コ
ンデンサを接続する充電動作(請求項4の「充電状態」
に相当する)が行われると、電圧記憶用コンデンサも、
その両端電圧を1番目からA−1番目の単位蓄電装置の
合計電圧(V1+V2+…+VA-1)と同等レベルになるまで放電
し、これにより直列接続された1番目からA−1番目の
単位蓄電装置が充電されることになる。次いで、A−2
番目の単位蓄電装置について充電動作が行われると、今
度は電圧記憶用コンデンサも、同じくその両端電圧を1
番目からA−2番目の単位蓄電装置の合計電圧(V1+V2+
…+VA-2)と同等レベルになるまで放電し、もって1番目
からA−2番目の単位蓄電装置が充電されることにな
る。以後、A−3番目から1番目まで順次充電動作を行
うことで、各単位蓄電装置は、上記電圧測定動作及び電
圧記憶動作での放電回数より1回少ない回数分の充電が
行われることになる(例えば、1番目の単位蓄電装置な
らA−1回、2番目の単位蓄電装置ならA−2回…)。
このように、電圧測定動作及び電圧記憶動作を行った後
に、充電動作を行うことで、電圧測定に伴い出入りする
電気量を各単位蓄電装置間で均一化することができるか
ら、従来のような各単位蓄電装置の容量にばらつきが発
生することを抑えることが可能になる。
However, according to the configuration of claim 2 and claim 4, the voltage measurement operation and the voltage storage operation described above are sequentially performed for all unit power storage devices (n = 1 to A). The storage capacitor is charged to the same level as the total voltage (V1 + V2 +... + VA) of all the power storage devices. Here, a charging operation of connecting a voltage storage capacitor between one end of the power storage device and an output terminal opposite to the one end of the (A-1) th unit power storage device.
Is performed), the capacitor for voltage storage also becomes
The voltage between both ends is discharged until the voltage reaches the same level as the total voltage (V1 + V2 +... + VA-1) of the first to A-1st unit power storage devices. Are charged. Then, A-2
When the charging operation is performed on the unit storage device, the voltage storage capacitor also changes the voltage between both ends by one.
The total voltage (V1 + V2 +
.. + VA-2), and the first to A-2th unit power storage devices are charged. Thereafter, by performing the charging operation sequentially from A-3 to the first, each unit power storage device is charged one less number of times than the number of discharges in the voltage measurement operation and the voltage storage operation. (For example, A-1 times for the first unit power storage device, A-2 times for the second unit power storage device, and so on).
As described above, by performing the charging operation after performing the voltage measurement operation and the voltage storage operation, the amount of electricity that enters and exits with the voltage measurement can be made uniform among the unit power storage devices. Variations in the capacity of each unit power storage device can be suppressed.

【0013】[0013]

【発明の実施の形態】<第1実施形態>以下、本発明を
例えば電気自動車の動力用バッテリーシステムに適用し
た第1実施形態について図1〜2を参照しつつ説明す
る。本発明の蓄電装置に相当するバッテリー10は、図
1に示すように、例えば4つの単位電池E1,E2,E3,E4を
直列接続してなる。本実施形態の電圧検出装置は、これ
らの各単位電池E1,E2,E3,E4の電圧を順次測定するため
のものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS <First Embodiment> A first embodiment in which the present invention is applied to, for example, a power battery system of an electric vehicle will be described with reference to FIGS. As shown in FIG. 1, a battery 10 corresponding to a power storage device according to the present invention includes, for example, four unit batteries E1, E2, E3, and E4 connected in series. The voltage detection device of the present embodiment is for sequentially measuring the voltages of these unit batteries E1, E2, E3, E4.

【0014】電圧検出装置には、電圧測定手段として、
例えばA/Dコンバータを内蔵したCPU30が備えら
れ、このCPU30には、少なくともA/D変換用の入
力端子(以下、「A/D端子」という)及びGND端子
が設けられている。GND端子には、バッテリー10を
構成する単位電池E1の負極端子から引き出されたGND
ラインL1が接続されている。A/D端子には、電圧記
憶用としてのコンデンサ20の一端から引き出された計
測ラインL2が接続されている。そして、このコンデン
サの他端が、接続スイッチSW1を介して単位電池E1の正
極端子に、接続スイッチSW2を介して単位電池E2の正
極端子に、接続スイッチSW3を介して単位電池E3の正
極端子に、接続スイッチSW4を介して単位電池E4の正極
端子にそれぞれ接続されている。また、コンデンサの両
端はそれぞれ放電スイッチSW5及び充電SW6を介してGN
DラインL1に共通接続されている。なお、各スイッチ
SW1,SW2,SW3,SW4,SW5,SW6は、例えばアナログスイッチ
からなり、後述する動作説明で明らかにされるが、それ
らの制御入力端子が図示しない制御ラインを介してCP
U30の6つの信号出力端子にそれぞれ接続されてお
り、CPU30から所定のタイミングで与えられる信号
を受けてオンオフ制御される。
In the voltage detecting device, as voltage measuring means,
For example, a CPU 30 having a built-in A / D converter is provided. The CPU 30 is provided with at least an input terminal for A / D conversion (hereinafter, referred to as an “A / D terminal”) and a GND terminal. The GND terminal is connected to the GND pulled out from the negative terminal of the unit battery E1 constituting the battery 10.
Line L1 is connected. The A / D terminal is connected to a measurement line L2 drawn from one end of a capacitor 20 for voltage storage. The other end of the capacitor is connected to the positive terminal of the unit battery E1 via the connection switch SW1, to the positive terminal of the unit battery E2 via the connection switch SW2, and to the positive terminal of the unit battery E3 via the connection switch SW3. Are connected to the positive terminal of the unit battery E4 via the connection switch SW4. Also, both ends of the capacitor are GN via the discharge switch SW5 and the charge SW6, respectively.
Commonly connected to D line L1. In addition, each switch
SW1, SW2, SW3, SW4, SW5 and SW6 are composed of, for example, analog switches, and will be clarified in the operation description to be described later.
The signal is connected to the six signal output terminals of U30, respectively, and is turned on / off in response to a signal given at a predetermined timing from the CPU 30.

【0015】次いで、本実施形態の電圧検出装置の動作
について、図2を参照しつつ説明する。図2には、CP
U30により実行される各接続スイッチSW1,SW2,SW3,SW
4、放電スイッチSW5及び充電スイッチSW6のオンオフタ
イミングのタイムチャートが示されている。同図に示す
ように、まず放電スイッチSW5及び充電スイッチSW6のみ
オンしてコンデンサ20の両端をGNDラインL1に接
続することでコンデンサ20の蓄積電荷がない状態か
ら、両スイッチSW5,SW6をオフにすると共に接続スイッ
チSW1をオンする。これにより、単位電池E1の正極端子
とCPU30のA/D端子とがコンデンサ20を介して
接続されると共に、単位電池E1の負極端子とCPU30
のGND端子とが接続された「電圧測定状態」とな
り、もってA/D端子に単位電池E1の電圧(V1)と同レベ
ルの電圧信号S1が与えられる。その後、充電スイッチSW
6をオンしてコンデンサ20が単位電池E1の正極端子と
GNDラインL1との間に接続される「電圧記憶状態
」になると、その単位電池E1の電圧(V1)と同レベルま
でコンデンサ20が充電されることになる。
Next, the operation of the voltage detecting device according to the present embodiment will be described with reference to FIG. FIG.
Each connection switch SW1, SW2, SW3, SW executed by U30
4, a time chart of the on / off timing of the discharge switch SW5 and the charge switch SW6 is shown. As shown in the figure, first, only the discharge switch SW5 and the charge switch SW6 are turned on, and both ends of the capacitor 20 are connected to the GND line L1, so that both switches SW5 and SW6 are turned off from the state where there is no accumulated charge in the capacitor 20. And the connection switch SW1 is turned on. As a result, the positive terminal of the unit battery E1 and the A / D terminal of the CPU 30 are connected via the capacitor 20, and the negative terminal of the unit battery E1 is connected to the CPU 30.
Is connected to the GND terminal, and the A / D terminal is supplied with the voltage signal S1 at the same level as the voltage (V1) of the unit battery E1. Then charge switch SW
When the capacitor 20 is turned on and the capacitor 20 enters a "voltage storage state" in which the capacitor 20 is connected between the positive terminal of the unit battery E1 and the GND line L1, the capacitor 20 is charged to the same level as the voltage (V1) of the unit battery E1. Will be done.

【0016】次いで、接続スイッチSW1をオフして接続
スイッチSW2をオンすると、単位電池E2の正極端子とC
PU30のA/D端子とがコンデンサ20を介して接続
されると共に、単位電池E1の負極端子とCPU30のG
ND端子とが接続された「電圧測定状態」となり、A
/D端子には単位電池E1,E2の合計電圧(V1+V2)からコン
デンサ20に既に充電された単位電池E1の電圧分(V1)が
差し引かれた単位電池E2の電圧(V2)と同レベルの電圧信
号S2が与えられることになる。その後、充電スイッチSW
6をオンしてコンデンサ20が単位電池E2の正極端子と
GNDラインL1との間に接続される「電圧記憶状態
」になると、その単位電池E1及び単位電池E2の合計電
圧(V1+V2)と同レベルまでコンデンサ20が充電され
る。
Next, when the connection switch SW1 is turned off and the connection switch SW2 is turned on, the positive terminal of the unit cell E2 and C
The A / D terminal of the PU 30 is connected via the capacitor 20, and the negative terminal of the unit battery E1 and the G
The ND terminal is connected to “voltage measurement state”, and A
The / D terminal has the same level as the voltage (V2) of the unit battery E2 obtained by subtracting the voltage (V1) of the unit battery E1 already charged in the capacitor 20 from the total voltage (V1 + V2) of the unit batteries E1 and E2. Is applied. Then charge switch SW
6, when the capacitor 20 is in the "voltage storage state" in which the capacitor 20 is connected between the positive terminal of the unit battery E2 and the GND line L1, the total voltage (V1 + V2) of the unit battery E1 and the unit battery E2 is The capacitor 20 is charged to the same level.

【0017】以下、同様にして、単位電池E3について、
接続スイッチSW2をオフして接続スイッチSW3をオンする
「電圧測定状態」後、充電スイッチSW6をオンする
「電圧記憶状態」、そして、単位電池E4について、接
続スイッチSW3をオフして接続スイッチSW4をオンする
「電圧測定状態」で一通りの電圧測定(以下、「電圧
測定ルーチン」という)が終了し、この電圧測定ルーチ
ンを繰り返す。各電圧測定状態〜におけて電圧信号
S1,S2,S3,S4がCPU30に順次取り込まれて、例えば
デジタルデータ化されかつ所定のソフト処理を経て各単
位電池E1,E2,E3,E4の電圧値として検出され、例えば、
各単位電池の電圧の差が所定の電圧差に収まっているか
否かが監視される。
Hereinafter, similarly, regarding the unit battery E3,
After the connection switch SW2 is turned off and the connection switch SW3 is turned on, the voltage measurement state is turned on, then the charge switch SW6 is turned on in the voltage storage state.For the unit battery E4, the connection switch SW3 is turned off and the connection switch SW4 is turned off. One type of voltage measurement (hereinafter, referred to as “voltage measurement routine”) is completed in the “voltage measurement state” that is turned on, and the voltage measurement routine is repeated. Voltage signal in each voltage measurement state ~
S1, S2, S3, S4 are sequentially taken into the CPU 30, converted into digital data, for example, and detected as voltage values of the unit cells E1, E2, E3, E4 through predetermined software processing.
It is monitored whether or not the voltage difference between the unit batteries is within a predetermined voltage difference.

【0018】このように本実施形態によれば、コンデン
サ20とスイッチSW1,SW2,SW3,SW4,SW5,SW6とを設けて
それらのスイッチをオンオフ制御する構成で各単位電池
E1,E2,E3,E4の電圧測定が可能になり、従来の電圧検出
方法のように大きな分圧抵抗を設ける必要がなく、多く
の単位電池を直列接続してなる大容量のバッテリーであ
っても高精度の電圧検出を行うことができる。
As described above, according to the present embodiment, each unit battery has a configuration in which the capacitor 20 and the switches SW1, SW2, SW3, SW4, SW5, and SW6 are provided and the switches are on / off controlled.
Voltage measurement of E1, E2, E3, E4 becomes possible, and it is not necessary to provide a large voltage dividing resistor as in the conventional voltage detection method, and it is a large-capacity battery with many unit cells connected in series. Can also perform highly accurate voltage detection.

【0019】<第2実施形態>図3は(請求項2の発明
に対応する)第2実施形態のCPU30により実行され
るスイッチ制御のタイムチャートを示す。前記実施形態
との相違は、CPU30により実行されるオンオフ制御
のタイミングにあり、その他の点は前記第1実施形態と
同様である。従って、第1実施形態と同一符号を付して
詳細な説明を省略し、異なるところのみを次に説明す
る。
<Second Embodiment> FIG. 3 is a time chart of switch control executed by the CPU 30 of a second embodiment (corresponding to the second aspect of the present invention). The difference from the first embodiment lies in the timing of the on / off control executed by the CPU 30, and the other points are the same as in the first embodiment. Therefore, the same reference numerals as in the first embodiment denote the same parts, and a detailed description thereof will be omitted. Only different points will be described below.

【0020】前記第1実施形態では、前記電圧測定ルー
チンを繰り返す構成としたが、本実施形態では各電圧測
定ルーチンの後に、「充電ルーチン」を行う構成とし
た。より詳しくは、各電圧測定ルーチンの終了後、まず
接続スイッチSW4をオンしたままで充電スイッチSW6をオ
ンする。これによりコンデンサ20は単位電池E4の正極
端子とGNDラインL1との間に接続されて、全単位電
池E1〜E4の合計電圧(V1+V2+V3+V4)と同レベルまで充電
されている。ここで、接続スイッチSW4をオフして接続
スイッチSW3をオンすると、コンデンサ20の両端にか
かる電圧が単位電池E4の電圧分V4減るから、コンデンサ
20は、単位電池E1〜E3の合計電圧(V1+V2+V3)と同等レ
ベルになるまで放電する。そして、この放電により放出
された電荷によりコンデンサ20の両端に接続された単
位電池E1,E2,E3が充電されることになる。次いで、接続
スイッチSW3をオフして接続スイッチSW2をオンすると、
コンデンサ20の電圧が単位電池E3の電圧分V3更に減る
から、コンデンサ20は、単位電池E1,E2の合計電圧(V1
+V2)と同等レベルになるまで放電し、コンデンサ20の
両端に接続された単位電池E1,E2が充電されることにな
る。そして、接続スイッチSW2をオフして接続スイッチS
W1をオンすると、コンデンサ20の電圧が単位電池E2の
電圧分V2減るから、コンデンサ20は単位電池E1の電圧
(V1)と同等レベルになるまで放電し、コンデンサ20の
両端に接続された単位電池E1のみが充電されることにな
る。
In the first embodiment, the configuration is such that the voltage measurement routine is repeated. However, in this embodiment, the configuration is such that the "charge routine" is performed after each voltage measurement routine. More specifically, after the end of each voltage measurement routine, first, the charge switch SW6 is turned on while the connection switch SW4 is kept on. Thereby, the capacitor 20 is connected between the positive terminal of the unit battery E4 and the GND line L1, and is charged to the same level as the total voltage (V1 + V2 + V3 + V4) of all the unit batteries E1 to E4. Here, when the connection switch SW4 is turned off and the connection switch SW3 is turned on, the voltage applied to both ends of the capacitor 20 decreases by the voltage V4 of the unit battery E4, so that the capacitor 20 is connected to the total voltage (V1 + Discharge until the level becomes equal to V2 + V3). Then, the unit cells E1, E2, E3 connected to both ends of the capacitor 20 are charged by the electric charge released by this discharge. Next, when the connection switch SW3 is turned off and the connection switch SW2 is turned on,
Since the voltage of the capacitor 20 further decreases by the voltage V3 of the unit battery E3, the capacitor 20 is connected to the total voltage (V1
+ V2), and the unit batteries E1 and E2 connected to both ends of the capacitor 20 are charged. Then, the connection switch SW2 is turned off and the connection switch S
When W1 is turned on, the voltage of the capacitor 20 is reduced by V2 by the voltage of the unit battery E2.
The battery is discharged until the level becomes equal to (V1), and only the unit battery E1 connected to both ends of the capacitor 20 is charged.

【0021】このような充電ルーチンを実行することに
より、各単位電池E1,E2,E3,E4は、電圧測定ルーチンに
おける電圧測定動作及び電圧記憶動作での放電回数より
1回少ない回数分の充電が行われることになる(例え
ば、単位電池E1なら3回、単位電池E2なら2回…)。こ
れにより、電圧測定に伴い出入りする電気量を各単位蓄
電装置間で均一化することができるから、従来のような
各単位電池間の容量にばらつきが発生するのを抑えるこ
とが可能になる。
By executing such a charging routine, each of the unit batteries E1, E2, E3, and E4 is charged one less number of times than the number of discharges in the voltage measurement operation and the voltage storage operation in the voltage measurement routine. (For example, three times for the unit battery E1, two times for the unit battery E2, etc.). This makes it possible to equalize the amount of electricity that enters and exits with the voltage measurement among the unit power storage devices, thereby suppressing the occurrence of variations in the capacity between the unit batteries as in the related art.

【0022】<他の実施形態>本発明は、前記実施形態
に限定されるものではなく、例えば、以下に説明するよ
うな実施形態も本発明の技術的範囲に含まれ、さらに、
下記以外にも要旨を逸脱しない範囲内で種々変更して実
施することができる。 (1)上記各実施形態では、バッテリー10は4つの単
位電池E1,E2,E3,E4を直列接続してなるとしたが、それ
以外の数の単位電池を直接接続したバッテリーであって
もよい。本発明は、従来の電圧検出装置のような分圧抵
抗を設ける必要がないから、多くの単位電池を直列接続
してなる大容量のバッテリーであっても高精度の電圧検
出を行うことができる。
<Other Embodiments> The present invention is not limited to the above embodiments. For example, the following embodiments are also included in the technical scope of the present invention.
In addition to the following, various changes can be made without departing from the scope of the invention. (1) In each of the above embodiments, the battery 10 is configured by connecting the four unit batteries E1, E2, E3, and E4 in series. However, a battery in which another number of unit batteries are directly connected may be used. According to the present invention, since it is not necessary to provide a voltage dividing resistor unlike a conventional voltage detecting device, it is possible to detect a voltage with high accuracy even with a large-capacity battery formed by connecting many unit batteries in series. .

【0023】(2)上記各実施形態では、単位電池を直
列接続して構成したバッテリー10に適用した場合を接
続したが、これに限られず、例えば複数のコンデンサを
直列接続した蓄電装置であっても本発明の効果を得るこ
とができる。
(2) In the above embodiments, the case where the present invention is applied to the battery 10 configured by connecting unit batteries in series is connected. However, the present invention is not limited to this. For example, a power storage device in which a plurality of capacitors are connected in series is provided. Can also obtain the effect of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係る電圧検出装置の簡
略回路図
FIG. 1 is a simplified circuit diagram of a voltage detection device according to a first embodiment of the present invention.

【図2】CPU30による各スイッチのオンオフタイミ
ングを示したタイムチャート
FIG. 2 is a time chart showing on / off timing of each switch by a CPU 30;

【図3】第2実施形態におけるCPU30による各スイ
ッチのオンオフタイミングを示したタイムチャート
FIG. 3 is a time chart showing on / off timing of each switch by a CPU 30 in a second embodiment.

【図4】従来の電圧検出装置の回路図FIG. 4 is a circuit diagram of a conventional voltage detection device.

【符号の説明】[Explanation of symbols]

E1,E2,E3,E4… 単位電池(単位蓄電装置) SW1,SW2,SW3,SW4…接続スイッチ SW5…放電スイッチ SW6…充電スイッチ 10…バッテリー(蓄電装置) 20…コンデンサ 30…CPU E1, E2, E3, E4 ... Unit batteries (unit power storage device) SW1, SW2, SW3, SW4 ... Connection switch SW5 ... Discharge switch SW6 ... Charge switch 10 ... Battery (power storage device) 20 ... Capacitor 30 ... CPU

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G035 AA01 AB03 AC01 AC15 AD11 AD13 AD28 AD45 AD65 5G003 BA03 CA11 FA06 GC05 5H030 AA01 AS08 BB01 FF43  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G035 AA01 AB03 AC01 AC15 AD11 AD13 AD28 AD45 AD65 5G003 BA03 CA11 FA06 GC05 5H030 AA01 AS08 BB01 FF43

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 A(Aは複数)個の単位蓄電装置を直列
接続して構成した蓄電装置に関し、前記各単位蓄電装置
の電圧を順次測定する方法であって、 電圧測定手段の入力側に電圧記憶用コンデンサを設け、 前記蓄電装置の一端側と、その一端側に連なるn番目の
単位蓄電装置の前記一端側とは反対の出力端子との間
に、前記電圧測定手段を前記電圧記憶用コンデンサを介
して接続することで前記n番目の単位蓄電装置の電圧を
測定する電圧測定動作と、その後、前記蓄電装置の一端
側と、その一端側に連なるn番目の単位蓄電装置の前記
一端側とは反対の出力端子との間に前記電圧記憶用コン
デンサを接続して充電する電圧記憶動作とを、前記nが
1からAになるまで繰り返すことを特徴とする電圧検出
方法。
1. A method for sequentially measuring the voltage of each of the unit power storage devices, wherein the power storage device is configured by connecting A (A is a plurality of) unit power storage devices in series. A voltage storage capacitor provided between the one end of the power storage device and an output terminal opposite to the one end of the n-th unit power storage device connected to the one end of the power storage device; A voltage measuring operation of measuring the voltage of the n-th unit power storage device by connecting via a capacitor, and thereafter, one end of the power storage device and the one end of the n-th unit power storage device connected to the one end thereof A voltage storage operation of connecting the voltage storage capacitor between the output terminal and the output terminal and charging the voltage storage capacitor until n becomes 1 to A.
【請求項2】 請求項1記載の電圧検出方法において、
前記電圧測定動作と前記電圧記憶動作とを前記nが1か
らAになるまで繰り返した後、前記蓄電装置の一端側
と、その一端側に連なるn番目の単位蓄電装置の前記一
端側とは反対の出力端子との間に前記電圧記憶用コンデ
ンサを接続することにより前記単位蓄電装置を充電する
充電動作を、前記nがAから1になるまで繰り返すこと
を特徴とする電圧検出方法。
2. The voltage detecting method according to claim 1, wherein
After repeating the voltage measurement operation and the voltage storage operation until n becomes 1 to A, one end of the power storage device and the one end of the n-th unit power storage device connected to the one end are opposite to each other. A charging operation for charging the unit power storage device by connecting the voltage storage capacitor between the voltage storage capacitor and the output terminal of the voltage storage device until the value of n changes from A to 1.
【請求項3】 A(Aは複数)個の単位蓄電装置を直列
接続して構成した蓄電装置に関し、前記各単位蓄電装置
の電圧を順次測定するための装置であって、 電圧測定手段と、 この電圧測定手段の入力側に設けられた電圧記憶用コン
デンサと、 前記測定手段と前記電圧記憶用コンデンサとを前記蓄電
装置に対して次の(a),(b)の状態となるようにn
が1からAになるまで繰り返して切り換えるスイッチン
グ手段とを備えた蓄電装置の電圧検出装置。 (a)前記電圧測定手段を、前記蓄電装置の一端側と、
その一端側に連なるn番目の単位蓄電装置の前記一端側
とは反対の出力端子との間に前記電圧記憶用コンデンサ
を介して接続する電圧測定状態 (b)その後、前記電圧記憶用コンデンサを、前記蓄電
装置の一端側と、その一端側に連なるn番目の単位蓄電
装置の前記一端側とは反対の出力端子との間に接続する
電圧記憶状態
3. A power storage device comprising a plurality (A) of unit power storage devices connected in series, which is a device for sequentially measuring the voltage of each of the unit power storage devices, comprising: voltage measurement means; The voltage storage capacitor provided on the input side of the voltage measurement means, and the measurement means and the voltage storage capacitor are connected to the power storage device so as to be in the following states (a) and (b).
And a switching means for repeatedly switching from 1 to A. (A) the voltage measuring means includes one end of the power storage device;
A voltage measurement state in which the voltage storage capacitor is connected via the voltage storage capacitor between the one end side and the output terminal opposite to the one end side of the n-th unit power storage device. (B) Then, the voltage storage capacitor is A voltage storage state connected between one end of the power storage device and an output terminal opposite to the one end of the n-th unit power storage device connected to the one end.
【請求項4】 前記スイッチング手段は、前記電圧測定
状態と前記電圧記憶状態とになるようにnが1からAに
なるまで繰り返し切り換えた後に、前記蓄電装置の一端
側と、その一端側に連なるn番目の単位蓄電装置の前記
一端側とは反対の出力端子との間に前記電圧記憶用コン
デンサを接続して前記単位蓄電装置を充電する充電状態
を、前記nがAから1になるまで繰り返すことを特徴と
する請求項3に記載の蓄電装置の電圧検出装置。
4. The switching means is connected to one end of the power storage device and one end of the power storage device after repeatedly switching from n to 1 to A so as to be in the voltage measurement state and the voltage storage state. A charging state in which the voltage storage capacitor is connected between the one end side and the output terminal opposite to the one end side of the n-th unit power storage device to charge the unit power storage device is repeated until the n becomes 1 from A. The voltage detection device for a power storage device according to claim 3, wherein:
JP2001085023A 2001-03-23 2001-03-23 Voltage detection method and voltage detection apparatus Expired - Fee Related JP4540029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001085023A JP4540029B2 (en) 2001-03-23 2001-03-23 Voltage detection method and voltage detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001085023A JP4540029B2 (en) 2001-03-23 2001-03-23 Voltage detection method and voltage detection apparatus

Publications (2)

Publication Number Publication Date
JP2002286766A true JP2002286766A (en) 2002-10-03
JP4540029B2 JP4540029B2 (en) 2010-09-08

Family

ID=18940605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001085023A Expired - Fee Related JP4540029B2 (en) 2001-03-23 2001-03-23 Voltage detection method and voltage detection apparatus

Country Status (1)

Country Link
JP (1) JP4540029B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145180A (en) * 2006-12-07 2008-06-26 Sanyo Electric Co Ltd Battery voltage detection circuit
JP2008232735A (en) * 2007-03-19 2008-10-02 Sanyo Electric Co Ltd Battery voltage detection circuit
JP2009063511A (en) * 2007-09-07 2009-03-26 Sanyo Electric Co Ltd Battery voltage detection circuit
JP2009174961A (en) * 2008-01-23 2009-08-06 Sanyo Electric Co Ltd Cell voltage detection circuit
EP2104858A2 (en) * 2007-01-07 2009-09-30 EnerDel, Inc. System and method to measure series-connected cell voltages and verify measurement accuracy
EP2122380A2 (en) * 2007-01-07 2009-11-25 EnerDel, Inc. Method and system to measure series-connected cell voltages using a flying capacitor
JP2011503559A (en) * 2007-11-07 2011-01-27 ブラウン ゲーエムベーハー Circuit configuration with battery cascade
US7902830B2 (en) 2006-05-04 2011-03-08 Enerdel, Inc. System to measure series-connected cell voltages using a flying capacitor
JP2011112643A (en) * 2009-11-23 2011-06-09 Samsung Sdi Co Ltd Battery pack and method of sensing voltage of battery pack
JP2011234550A (en) * 2010-04-28 2011-11-17 Mitsubishi Heavy Ind Ltd Cell voltage detection device and cell voltage detection method
US8188750B2 (en) 2007-11-26 2012-05-29 Honda Motor Co., Ltd. Battery module voltage detector
JP2012149907A (en) * 2011-01-17 2012-08-09 Toshiba Corp Cell monitoring circuit, and cell monitoring system
JP2013192371A (en) * 2012-03-14 2013-09-26 Sumitomo Electric Ind Ltd Power storage device, charging method, and discharging method
JP2014033526A (en) * 2012-08-02 2014-02-20 Toyota Industries Corp Voltage monitoring apparatus
US8711536B2 (en) 2011-03-30 2014-04-29 Denso Corporation Voltage detection apparatus and combination circuit
EP3203252A1 (en) * 2016-01-30 2017-08-09 Andreas Stihl AG & Co. KG Circuit assembly for determining the cell voltage of a single cell in a cell assembly

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109515251B (en) * 2018-12-26 2021-07-23 中国船舶重工集团公司第七一九研究所 Lithium battery pack balance control method for hybrid power

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248755A (en) * 1998-03-06 1999-09-17 Matsushita Electric Ind Co Ltd Stacked voltage measuring apparatus
JP2001056350A (en) * 1999-08-17 2001-02-27 Japan Storage Battery Co Ltd Circuit for detecting voltage of a set of electric cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248755A (en) * 1998-03-06 1999-09-17 Matsushita Electric Ind Co Ltd Stacked voltage measuring apparatus
JP2001056350A (en) * 1999-08-17 2001-02-27 Japan Storage Battery Co Ltd Circuit for detecting voltage of a set of electric cell

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7902830B2 (en) 2006-05-04 2011-03-08 Enerdel, Inc. System to measure series-connected cell voltages using a flying capacitor
JP2008145180A (en) * 2006-12-07 2008-06-26 Sanyo Electric Co Ltd Battery voltage detection circuit
EP2104858A4 (en) * 2007-01-07 2014-01-08 Enerdel Inc System and method to measure series-connected cell voltages and verify measurement accuracy
EP2122380A4 (en) * 2007-01-07 2014-01-08 Enerdel Inc Method and system to measure series-connected cell voltages using a flying capacitor
EP2104858A2 (en) * 2007-01-07 2009-09-30 EnerDel, Inc. System and method to measure series-connected cell voltages and verify measurement accuracy
EP2122380A2 (en) * 2007-01-07 2009-11-25 EnerDel, Inc. Method and system to measure series-connected cell voltages using a flying capacitor
JP2008232735A (en) * 2007-03-19 2008-10-02 Sanyo Electric Co Ltd Battery voltage detection circuit
JP2009063511A (en) * 2007-09-07 2009-03-26 Sanyo Electric Co Ltd Battery voltage detection circuit
KR101244493B1 (en) * 2007-11-07 2013-03-18 브라운 게엠베하 Circuit arrangement having battery cascade
JP2011503559A (en) * 2007-11-07 2011-01-27 ブラウン ゲーエムベーハー Circuit configuration with battery cascade
US8188750B2 (en) 2007-11-26 2012-05-29 Honda Motor Co., Ltd. Battery module voltage detector
JP2009174961A (en) * 2008-01-23 2009-08-06 Sanyo Electric Co Ltd Cell voltage detection circuit
US8659265B2 (en) 2009-11-23 2014-02-25 Samsung Sdi Co., Ltd. Battery pack and method of sensing voltage of battery pack
JP2011112643A (en) * 2009-11-23 2011-06-09 Samsung Sdi Co Ltd Battery pack and method of sensing voltage of battery pack
JP2011234550A (en) * 2010-04-28 2011-11-17 Mitsubishi Heavy Ind Ltd Cell voltage detection device and cell voltage detection method
JP2012149907A (en) * 2011-01-17 2012-08-09 Toshiba Corp Cell monitoring circuit, and cell monitoring system
US8711536B2 (en) 2011-03-30 2014-04-29 Denso Corporation Voltage detection apparatus and combination circuit
JP2013192371A (en) * 2012-03-14 2013-09-26 Sumitomo Electric Ind Ltd Power storage device, charging method, and discharging method
JP2014033526A (en) * 2012-08-02 2014-02-20 Toyota Industries Corp Voltage monitoring apparatus
EP3203252A1 (en) * 2016-01-30 2017-08-09 Andreas Stihl AG & Co. KG Circuit assembly for determining the cell voltage of a single cell in a cell assembly
US10401437B2 (en) 2016-01-30 2019-09-03 Andreas Stihl Ag & Co. Kg Circuit arrangement for determining the cell voltage of an individual cell in a cell grouping

Also Published As

Publication number Publication date
JP4540029B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
JP2002286766A (en) Voltage detection method and voltage detection device
JP5687484B2 (en) Insulation state detection unit flying capacitor fault detection device
US8305035B2 (en) Energy storage device
EP1976090A1 (en) Protection device for assembled battery, and battery pack unit
US10693301B2 (en) Semiconductor device and battery voltage measuring method that prevents measurement error caused by parametric capacitance
JP2002156392A (en) Device for detecting voltage of battery assembly
JP4171049B2 (en) Apparatus and method for measuring individual cell voltages of cells of a cell stack of an energy store
JP4719972B2 (en) Charge / discharge current measuring device
JP2001242200A (en) Monitor signal output circuit, cell pack, cell voltage monitor circuit, cell system, apparatus, cell voltage monitoring method, medium for recording cell voltage monitor program
CN108663622B (en) Battery pack voltage measuring circuit and voltage measuring system
JP2001201522A (en) Cell voltage detecting circuit of multi-cell series battery and battery pack by using it
JP2008082731A (en) Laminated voltage detection device
JP2001204141A (en) Detector for cell voltage of set battery and detecting method therefor
JP2003014792A (en) Voltage detector for flying capacitor type combined battery
JP2000137062A (en) Method and device for detecting residual capacity of secondary battery
JP2007240300A (en) Insulation detection method and device
JP2001056350A (en) Circuit for detecting voltage of a set of electric cell
JP4616875B2 (en) Voltage detector
JP2002325371A (en) Voltage detecting apparatus of battery pack
JP5561049B2 (en) Battery voltage measuring device
JP2003282158A (en) Battery voltage measuring circuit
US20050206364A1 (en) Apparatus and method for switch control, and voltage measuring device
JP3543579B2 (en) Method and apparatus for detecting charge / discharge current of secondary battery
JP7395240B2 (en) Ground fault detection device
JP2009148125A (en) Storage apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4540029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees