JP2002286521A - Method for manufacturing flow measuring instrument - Google Patents

Method for manufacturing flow measuring instrument

Info

Publication number
JP2002286521A
JP2002286521A JP2001087809A JP2001087809A JP2002286521A JP 2002286521 A JP2002286521 A JP 2002286521A JP 2001087809 A JP2001087809 A JP 2001087809A JP 2001087809 A JP2001087809 A JP 2001087809A JP 2002286521 A JP2002286521 A JP 2002286521A
Authority
JP
Japan
Prior art keywords
temperature
resistor
film
heat treatment
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001087809A
Other languages
Japanese (ja)
Inventor
Koichi Goto
晃一 後藤
Takao Iwaki
隆雄 岩城
Yasushi Kono
泰 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001087809A priority Critical patent/JP2002286521A/en
Publication of JP2002286521A publication Critical patent/JP2002286521A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent counter diffusion from developing between electrode pads and lead parts of metallic resistive layers even when the metallic resistive layers are heat-treated. SOLUTION: An under insulation film 3 is formed on a semiconductor substrate 2. A conductive film 4 is formed on the film 3. The film 4 is etched to form a heating resistor 5, a resistor 6 for flow detection, resistors 7 and 8 for fluid temperature detection, and the lead parts 9 to 14 of these resistors. An upper insulation film 15 is formed on the resistors 5 to 8 and lead parts 9 to 14. The film 15 is etched at portions where the electrode pads are to be formed. The electrode pads 16 to 21 are formed on the lead parts 9 to 14. A hollow part 2a is formed in the substrate 2 to form a diaphragm 22. The resistors 5 and 6 are heat-treated by irradiating the diaphragm 22 with light, with the pads 16 to 21 covered by a heat-shield material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流量測定装置の製
造方法に関する。
The present invention relates to a method for manufacturing a flow measuring device.

【0002】[0002]

【従来の技術】特開平6−120525号公報には、ヒ
ートワイヤの熱に対する抵抗値の特性の経時的な安定化
を図ることを目的とし、半導体基板上に絶縁膜を介して
金属抵抗層を形成し、次に金属抵抗層をパターンエッチ
ングしてヒートワイヤを形成し、さらにヒートワイヤの
下方部分における半導体基板をエッチングにより除去し
てヒートワイヤブリッジを形成し、その後、センサ動作
時よりも高い温度によって熱処理を施すことを特徴とす
る流量測定装置の製造方法が提案されている。
2. Description of the Related Art Japanese Unexamined Patent Publication No. Hei 6-120525 discloses an object of stabilizing the resistance of a heat wire to heat over time by forming a metal resistance layer on a semiconductor substrate via an insulating film. And then heat etching by pattern etching of the metal resistive layer to form a heat wire, further removing the semiconductor substrate by etching the lower portion of the heat wire to form a heat wire bridge, and then at a higher temperature than during sensor operation. There has been proposed a method of manufacturing a flow rate measuring device, wherein a heat treatment is performed by the method.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術によると、金属抵抗層の両側の電極部は、通常、
金属抵抗層のリード部の上に電極パッドを形成して構成
されるが、上記熱処理を施した際に、金属抵抗層のリー
ド部と電極パッドとの間で相互拡散が起こり、ワイヤボ
ンディングの密着強度が弱くなるという問題があった。
However, according to the above prior art, the electrode portions on both sides of the metal resistance layer are usually
An electrode pad is formed on the lead portion of the metal resistive layer. However, when the above heat treatment is performed, mutual diffusion occurs between the lead portion of the metal resistive layer and the electrode pad, and adhesion of wire bonding occurs. There was a problem that the strength was weakened.

【0004】本発明は、上記従来技術の問題点を解決
し、金属抵抗層に対して熱処理を施しても電極パッドと
金属抵抗層のリード部との間で相互拡散を起さず、ワイ
ヤボンディングの際の密着強度を保持することができる
流量測定装置の製造方法を提供することを目的とする。
The present invention solves the above-mentioned problems of the prior art, and does not cause interdiffusion between an electrode pad and a lead portion of a metal resistance layer even when a heat treatment is performed on the metal resistance layer. An object of the present invention is to provide a method for manufacturing a flow measuring device capable of maintaining the adhesion strength at the time of the above.

【0005】[0005]

【課題を解決するための手段】本発明による流量測定装
置の製造方法は、下記一連の工程〜からなることを
特徴とする。
A method of manufacturing a flow measuring device according to the present invention comprises the following series of steps.

【0006】半導体基板上に下部絶縁膜を形成する 前記下部絶縁膜上に導電膜を形成する 前記導電膜から複数の感温抵抗体と前記感温抵抗体の
各リード部とを形成するためのエッチングを行う 前記感温抵抗体及び前記リード部の上に上部絶縁膜を
形成する 前記上部絶縁膜の電極パッドを形成すべき部位をエッ
チングする 前記各リード部上に前記電極パッドを形成する 前記半導体基板に空洞部を形成して前記感温抵抗体の
一部又は全部を要素とするダイアフラムを形成する 前記電極パッドを除く領域に対し熱処理を行う ここで、前記熱処理を行う領域は前記ダイアフラム上に
ある前記感温抵抗体に対して行う。
Forming a lower insulating film on the semiconductor substrate, forming a conductive film on the lower insulating film, forming a plurality of temperature-sensitive resistors and respective leads of the temperature-sensitive resistor from the conductive film; Forming an upper insulating film on the temperature-sensitive resistor and the lead portion, etching a portion of the upper insulating film where an electrode pad is to be formed, forming the electrode pad on each of the lead portions, A cavity is formed in the substrate to form a diaphragm that includes part or all of the temperature-sensitive resistor. A heat treatment is performed on a region excluding the electrode pad. Here, the region where the heat treatment is performed is on the diaphragm. This is performed for a certain temperature-sensitive resistor.

【0007】また、前記電極パッドを遮温材で覆い前記
ダイアフラムに光線を照射して前記感温抵抗体に対して
前記熱処理を行う。
In addition, the electrode pad is covered with a heat insulating material, and the heat treatment is performed on the temperature-sensitive resistor by irradiating the diaphragm with a light beam.

【0008】あるいは、前記電極パッドを介して前記ダ
イアフラム上にある前記感温抵抗体の一部又は全部に通
電して前記熱処理を行う。
Alternatively, the heat treatment is performed by passing a current through a part or the entirety of the temperature-sensitive resistor on the diaphragm through the electrode pad.

【0009】あるいは、前記ダイアフラム上にある前記
感温抵抗体を加熱する加熱抵抗体を前記ダイアフラム上
に形成し前記加熱抵抗体に通電して前記熱処理を行う。
[0009] Alternatively, a heating resistor for heating the temperature-sensitive resistor on the diaphragm is formed on the diaphragm, and the heating resistor is energized to perform the heat treatment.

【0010】前記熱処理の温度は300℃以上とする。The temperature of the heat treatment is 300 ° C. or higher.

【0011】[0011]

【発明の実施の形態】図1は、本発明の第1実施形態に
係る製造方法によって製造される流量測定装置であって
内燃機関の吸気流量を測定するための吸気流量測定装置
の平面図、図2は、図1図示A−A線による断面図、図
3は、図1図示B部の拡大図、図4は、図2図示C部の
拡大図をそれぞれ示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a plan view of an intake flow rate measuring apparatus for measuring an intake flow rate of an internal combustion engine, which is a flow rate measuring apparatus manufactured by a manufacturing method according to a first embodiment of the present invention. 2 is a cross-sectional view taken along line AA in FIG. 1, FIG. 3 is an enlarged view of a portion B in FIG. 1, and FIG. 4 is an enlarged view of a portion C in FIG.

【0012】図1〜図4において、吸気流量測定装置1
は半導体基板2(例えばSi基板)を有する。半導体基
板2には、後述する発熱抵抗体5と流量検出用抵抗体6
の下方位置に空洞部2aが形成されている。半導体基板
2の上面全体に2層(例えばSi34 膜とSi O2 膜)
からなる下部絶縁膜3が形成されている。下部絶縁膜3
の2層は、圧縮応力膜と引張り応力膜との組み合わせか
らなり、これにより下部絶縁膜3に生じる応力の緩和を
図っている。下部絶縁膜3の上面に導電膜4(例えばP
t膜、ポリシリコン膜、Ni Cr 膜、Ta N膜、W膜又
はSi C膜)が形成されている。導電膜4は、抵抗体
5、6、7、8とリード部9、10、11、12、1
3、14とによって構成されている。抵抗体5〜8は、
例えば発熱抵抗体5、流量検出用抵抗体6、流体温度検
出用抵抗体としての第1吸気温検出用抵抗体7及び同じ
く流体温度検出用抵抗体としての第2吸気温検出用抵抗
体8からなる。また、リード部9〜14は、例えば発熱
抵抗体5のリード部9、流量検出用抵抗体6のリード部
10、第1吸気温検出用抵抗体7のリード部11、第2
吸気温検出用抵抗体8のリード部12、発熱抵抗体5と
第1吸気温検出用抵抗体7との共通リード部13及び流
量検出用抵抗体6と第2吸気温検出用抵抗体8との共通
リード部14からなる。導電膜4の上面には、各リード
部9〜14の端部を除いて下部絶縁膜3と同様な2層構
造の上部絶縁膜15が形成されており、各リード部9〜
14の端部の上面に、図示しない接続配線と接合可能な
電極パッド16、17、18、19、20、21(例え
ばAl からなる電極パッド)が形成されている。抵抗体
5〜8及びリード部9〜14は、半導体基板2の中央部
に配置してあり、また、下部絶縁膜3と上部絶縁膜15
は、抵抗体5〜8及びリード部9〜14を中心として上
下方向に対称に配置してある。このため、温度変化に対
して反り変動が発生しにくくなり熱ストレスに対して強
い構造になるとともに、半導体基板2にダイアフラム2
2(空洞部2aの真上部分)の構造体を形成可能にな
る。なお、下部絶縁膜3及び上部絶縁膜15は、絶縁性
を有しかつ導電膜4の保護膜として機能できるものであ
ればよいため、上記構成以外に、Ti O2膜、Al23
膜、Ta25 膜、Mg O膜などの単一膜又は多層膜であ
ってもよい。
In FIG. 1 to FIG.
Has a semiconductor substrate 2 (for example, a Si substrate). The semiconductor substrate 2 includes a heating resistor 5 and a flow rate detecting resistor 6 described later.
A cavity 2a is formed at a position below the space. Two layers (for example, a Si 3 N 4 film and a SiO 2 film) on the entire upper surface of the semiconductor substrate 2
A lower insulating film 3 is formed. Lower insulating film 3
These two layers are composed of a combination of a compressive stress film and a tensile stress film, thereby relaxing the stress generated in the lower insulating film 3. On the upper surface of the lower insulating film 3, a conductive film 4 (for example, P
t film, polysilicon film, NiCr film, TaN film, W film or SiC film). The conductive film 4 includes the resistors 5, 6, 7, 8 and the leads 9, 10, 11, 12, 1.
3 and 14. The resistors 5 to 8
For example, the heating resistor 5, the flow rate detection resistor 6, the first intake temperature detection resistor 7 as a fluid temperature detection resistor, and the second intake temperature detection resistor 8 also as a fluid temperature detection resistor Become. The leads 9 to 14 include, for example, the lead 9 of the heating resistor 5, the lead 10 of the flow detection resistor 6, the lead 11 of the first intake air temperature detection resistor 7, and the second
The lead portion 12 of the intake air temperature detecting resistor 8, the common lead portion 13 of the heating resistor 5 and the first intake air temperature detecting resistor 7, the flow rate detecting resistor 6, the second intake air temperature detecting resistor 8, Of the common lead portion 14. An upper insulating film 15 having the same two-layer structure as the lower insulating film 3 is formed on the upper surface of the conductive film 4 except for the ends of the leads 9 to 14.
Electrode pads 16, 17, 18, 19, 20, 21 (for example, electrode pads made of Al) are formed on the upper surface of the end portion of the substrate 14, which can be connected to a connection wiring (not shown). The resistors 5 to 8 and the leads 9 to 14 are arranged at the center of the semiconductor substrate 2, and the lower insulating film 3 and the upper insulating film 15
Are arranged symmetrically in the vertical direction about the resistors 5 to 8 and the leads 9 to 14. For this reason, the warp fluctuation hardly occurs due to the temperature change, and the structure becomes strong against the thermal stress.
2 (directly above the cavity 2a). The lower insulating layer 3 and the upper insulating film 15, because as long as it can function as a protective film of a and the conductive film 4 of insulating, in addition to the above configuration, Ti O 2 film, Al 2 O 3
It may be a single film or a multilayer film such as a film, a Ta 2 O 5 film, and a MgO film.

【0013】発熱抵抗体5、流量検出用抵抗体6、第1
吸気温検出用抵抗体7及び第2吸気温検出用抵抗体8
は、吸気の流れの順方向に対して、上流側から、第1吸
気温検出用抵抗体7、第2吸気温検出用抵抗体8、流量
検出用抵抗体6及び発熱抵抗体5の順に配置されてい
る。発熱抵抗体5は、後述するブリッジ回路52によ
り、第1吸気温検出用抵抗体7が検出する吸気温度より
も常に一定温度だけ高い基準温度に設定される。第1、
第2吸気温検出用抵抗体7、8は、吸気温度の検出にあ
たって発熱抵抗体5の発熱による抵抗値変化が生じない
よう発熱抵抗体5から比較的離れた位置に形成されてい
る。また、流量検出用抵抗体6は、発熱抵抗体5の発熱
によって作り出される温度環境下に置いて吸気流量及び
吸気流れ方向を検出可能なように吸気流れ順方向におい
て発熱抵抗体5の上流側近傍に形成されている。流量検
出用抵抗体6は、吸気流れ方向が順方向の場合は、その
検出温度が発熱抵抗体5の基準温度よりも低くなる。こ
れは、発熱抵抗体5の吸気流れ方向の長さが比較的長い
ため、発熱抵抗体5の吸気流れ上流部は吸気流れによっ
て冷却され基準温度よりも低い温度となり、また、流量
検出用抵抗体6の検出温度は、発熱抵抗体5の吸気流れ
上流部の温度と略等しいためである。一方、吸気流れ方
向が逆方向の場合は、発熱抵抗体5の吸気流れ下流部の
温度が基準温度よりも高くなるため、流量検出用抵抗体
6の検出温度は発熱抵抗体5の基準温度よりも高くな
る。したがって、検出温度を基準温度又は吸気温度と比
較することによって吸気流れ方向を検出することができ
る。また、吸気流れ方向に関わらず吸気流量が大きい程
検出温度と基準温度又は吸気温度との温度差が大きくな
ることから、検出温度によって吸気流量を検出すること
ができる。
Heating resistor 5, flow rate detecting resistor 6, first resistor
Intake temperature detection resistor 7 and second intake temperature detection resistor 8
Is arranged in the order of the first intake temperature detecting resistor 7, the second intake temperature detecting resistor 8, the flow rate detecting resistor 6, and the heating resistor 5 from the upstream side in the forward direction of the intake flow. Have been. The heating resistor 5 is set to a reference temperature that is always higher by a certain temperature than the intake air temperature detected by the first intake air temperature detecting resistor 7 by a bridge circuit 52 described later. First,
The second intake air temperature detecting resistors 7 and 8 are formed at positions relatively distant from the heat generating resistor 5 so that a change in resistance value due to heat generation of the heat generating resistor 5 does not occur when detecting the intake air temperature. Further, the flow rate detecting resistor 6 is located near the upstream side of the heating resistor 5 in the forward direction of the intake flow so that the intake flow rate and the direction of the intake flow can be detected under a temperature environment created by the heat generated by the heating resistor 5. Is formed. When the flow direction of the intake air flows in the forward direction, the detected temperature of the flow rate detection resistor 6 becomes lower than the reference temperature of the heating resistor 5. Since the length of the heating resistor 5 in the intake flow direction is relatively long, the upstream portion of the heating resistor 5 in the intake flow is cooled by the intake flow to a temperature lower than the reference temperature. This is because the detected temperature 6 is substantially equal to the temperature of the heating resistor 5 upstream of the intake air flow. On the other hand, when the direction of the intake air flow is opposite, the temperature of the downstream side of the intake flow of the heating resistor 5 becomes higher than the reference temperature, so that the detection temperature of the flow rate detection resistor 6 is higher than the reference temperature of the heating resistor 5. Will also be higher. Therefore, the intake air flow direction can be detected by comparing the detected temperature with the reference temperature or the intake air temperature. Also, regardless of the direction of intake air flow, the larger the intake air flow rate, the greater the temperature difference between the detected temperature and the reference temperature or intake air temperature, so that the intake air flow rate can be detected based on the detected temperature.

【0014】図5は、吸気流量測定装置1の等価回路図
を示す。
FIG. 5 shows an equivalent circuit diagram of the intake air flow measuring device 1.

【0015】図5において、バッテリ端子+Bとグラン
ドGNDとの間に、トランジスタ51とブリッジ回路5
2が直列に接続されている。ブリッジ回路52は、発熱
抵抗体5、第1吸気温検出用抵抗体7及び抵抗53、5
4、55によって構成され、ブリッジ回路52の検出端
52a、52bは、トランジスタ51のスイッチング動
作を制御する比較器56に接続されている。一定の吸気
温度下においては、発熱抵抗体5が基準温度より低くな
ると、その抵抗値の減少により検出端52a、52b間
に電位差が生じ比較器56の出力によりトランジスタ5
1が導通し、発熱抵抗体5に電流が流れて発熱抵抗体5
の温度が上昇する。そして、発熱抵抗体5の温度が基準
温度に達すると、その抵抗値の上昇、比較器56の出力
によりトランジスタ51は遮断し、発熱抵抗体5への通
電が停止し発熱抵抗体5の温度が低下する。このような
動作の繰り返しにより、発熱抵抗体5は発熱、冷却を繰
り返し発熱抵抗体5は吸気温度よりも一定温度高い基準
温度に保たれる。
In FIG. 5, a transistor 51 and a bridge circuit 5 are connected between a battery terminal + B and a ground GND.
2 are connected in series. The bridge circuit 52 includes a heating resistor 5, a first intake air temperature detection resistor 7, and resistors 53 and 5.
The detection terminals 52 a and 52 b of the bridge circuit 52 are connected to a comparator 56 that controls the switching operation of the transistor 51. At a constant intake air temperature, when the temperature of the heating resistor 5 becomes lower than the reference temperature, a decrease in the resistance value causes a potential difference between the detection ends 52a and 52b, and the output of the comparator 56 causes the transistor 5 to output.
1 conducts, a current flows through the heating resistor 5 and the heating resistor 5
Temperature rises. When the temperature of the heating resistor 5 reaches the reference temperature, the transistor 51 is shut off by the rise of the resistance value and the output of the comparator 56, the power supply to the heating resistor 5 is stopped, and the temperature of the heating resistor 5 decreases. descend. By repeating such an operation, the heating resistor 5 repeats heat generation and cooling, and the heating resistor 5 is maintained at the reference temperature that is higher by a certain temperature than the intake air temperature.

【0016】また、直流定電圧端子VccとグランドGN
Dとの間に、分圧回路57が接続されている。分圧回路
57は、流量検出用抵抗体6、第2吸気温検出用抵抗体
8及び抵抗58によって構成され、分圧回路57の出力
端57aは増幅器59の入力端に接続されている。増幅
器59の他方の入力端には基準電圧Vr が入力されてお
り、増幅器59は、分圧回路57の出力電位と基準電圧
Vr との電位差を増幅して出力する。分圧回路57の出
力電圧は、吸気温度の変動に対して第2吸気温検出用抵
抗体8の抵抗値及び流量検出用抵抗体6の抵抗値が各々
比例的に変化するため吸気温度が変動しても変化しない
が、吸気流れ方向及び吸気流量の変動によって変化す
る。このため、増幅器59の出力によって、吸気流れ方
向及び吸気流量を検出することができる。
Further, a DC constant voltage terminal Vcc and a ground GN
A voltage dividing circuit 57 is connected between the voltage dividing circuit 57 and D. The voltage dividing circuit 57 includes the flow rate detecting resistor 6, the second intake air temperature detecting resistor 8, and the resistor 58, and the output terminal 57 a of the voltage dividing circuit 57 is connected to the input terminal of the amplifier 59. The reference voltage Vr is input to the other input terminal of the amplifier 59, and the amplifier 59 amplifies and outputs the potential difference between the output potential of the voltage dividing circuit 57 and the reference voltage Vr. The output voltage of the voltage dividing circuit 57 varies in the intake air temperature because the resistance value of the second intake air temperature detection resistor 8 and the resistance value of the flow rate detection resistor 6 each change proportionally to the fluctuation of the intake air temperature. It does not change even if it changes, but it changes due to fluctuations in the intake flow direction and the intake flow rate. Therefore, the flow of the intake air and the flow of the intake air can be detected from the output of the amplifier 59.

【0017】次に、上記吸気流量測定装置1の製造方法
の一例を図6〜図9に基づいて説明する。
Next, an example of a method of manufacturing the above-mentioned intake air flow measuring device 1 will be described with reference to FIGS.

【0018】まず、図6に示すように、半導体基板2と
してSi 基板を用い、Si 基板2上に下部絶縁膜3とし
てSi34 膜とSi O2 膜の2層を形成し、次に、下部
絶縁膜3の上に、接着層として50ÅのTi 層を用い2
00℃で真空蒸着機により導電膜4としてPt 膜を20
00Å堆積させ、次に、Pt 膜4から抵抗体5〜8とリ
ード部9〜14を形成するためのエッチングを行う。そ
の後、図7に示すように、抵抗体5〜8及びリード部9
〜14の上に上部絶縁膜15として下部絶縁膜3と同様
なSi34 膜とSi O2 膜の2層を形成し、次に、上部
絶縁膜15の電極パッド16〜21を形成すべき部位つ
まり電極パッド形成部位をエッチングする。上部絶縁膜
15は、抵抗体5〜8及びリード部9〜14を中心とし
て下部絶縁膜3と上下方向に対称な位置に配置される。
その後、図8に示すように、電極パッド16〜21とし
て7000ÅのAl 層を形成し、次に、TMAH溶液を
用い異方性エッチングによりSi 基板2に空洞部2aを
形成してダイアフラム22を形成する。その後、図9に
示すように、電極パッド16〜21を遮温材60で覆い
ダイアフラム22にレーザ光線を照射して熱処理を行
う。この熱処理により発熱抵抗体5及び流量検出用抵抗
体6の抵抗値の経時変化を抑えることができるととも
に、電極パッド16〜21に対して熱処理が行われない
ことから電極パッド16〜21とリード部9〜14との
相互拡散を防止することができる。
First, as shown in FIG. 6, a Si substrate is used as the semiconductor substrate 2, and two layers of a Si 3 N 4 film and a SiO 2 film are formed as the lower insulating film 3 on the Si substrate 2, A 50 ° Ti layer as an adhesive layer on the lower insulating film 3;
At 00 ° C., a Pt film was formed as a conductive film 4 by a vacuum evaporation machine to form a 20
Then, etching for forming resistors 5 to 8 and leads 9 to 14 is performed from the Pt film 4. Thereafter, as shown in FIG.
, Two layers of a Si 3 N 4 film and a SiO 2 film similar to the lower insulating film 3 are formed as the upper insulating film 15, and then the electrode pads 16 to 21 of the upper insulating film 15 are formed. A part to be formed, that is, a part for forming an electrode pad is etched. The upper insulating film 15 is disposed at a position vertically symmetric with respect to the lower insulating film 3 with the resistors 5 to 8 and the leads 9 to 14 as centers.
Thereafter, as shown in FIG. 8, an Al layer of 7000 ° is formed as electrode pads 16 to 21, and then a cavity 2a is formed in the Si substrate 2 by anisotropic etching using a TMAH solution to form a diaphragm 22. I do. Thereafter, as shown in FIG. 9, the electrode pads 16 to 21 are covered with a heat insulating material 60, and the diaphragm 22 is irradiated with a laser beam to perform a heat treatment. This heat treatment can suppress the temporal change of the resistance values of the heating resistor 5 and the flow rate detecting resistor 6, and since the heat treatment is not performed on the electrode pads 16 to 21, the electrode pads 16 to 21 and the lead portion Interdiffusion with 9 to 14 can be prevented.

【0019】上記吸気流量測定装置1によると、図10
に示すように、ワイヤボンディング強度において電極パ
ッド16〜21を含む全体に対して熱処理を行った場合
と比べ膜剥れを防止でき、また、図11に示すように、
発熱抵抗体5及び流量検出用抵抗体6の抵抗値の経時変
化が少ないことから経時的な出力変化を殆ど生じること
がなく、また、図12に示すように、熱処理温度を30
0℃以上に設定した場合に出力変化が殆ど生じない。
According to the intake air flow measuring device 1, FIG.
As shown in FIG. 11, film peeling can be prevented in comparison with the case where heat treatment is performed on the entirety including the electrode pads 16 to 21 in wire bonding strength, and as shown in FIG.
Since the resistance values of the heat generating resistor 5 and the flow rate detecting resistor 6 have little change with time, there is almost no change in output over time, and as shown in FIG.
When the temperature is set to 0 ° C. or higher, almost no output change occurs.

【0020】なお、図1図示の吸気流量測定装置1の製
造工程において、ダイアフラム22に対して熱処理を行
う代わりに、電極パッド16等を介して少なくとも発熱
抵抗体5に通電して熱処理を行うようにしてもよい。
In the manufacturing process of the intake air flow measuring device 1 shown in FIG. 1, instead of performing heat treatment on the diaphragm 22, at least heat is applied to the heating resistor 5 via the electrode pad 16 or the like to perform heat treatment. It may be.

【0021】図13は、第2実施形態に係る製造方法に
よって製造される吸気流量測定装置の平面図、図14
は、図13図示D部の拡大図を示す。
FIG. 13 is a plan view of an intake air flow measuring device manufactured by the manufacturing method according to the second embodiment, and FIG.
Shows an enlarged view of the D part shown in FIG.

【0022】図13において、吸気流量測定装置1は、
図1図示の吸気流量測定装置1に、発熱抵抗体5を加熱
するための加熱抵抗体71、加熱抵抗体71のリード部
72、73及び電極パッド74、75を追加したことを
特徴としており、その他の構成は図1図示の吸気流量測
定装置1と同様に構成されている。
Referring to FIG. 13, an intake air flow measuring device 1 comprises:
A heating resistor 71 for heating the heating resistor 5, lead portions 72 and 73 of the heating resistor 71, and electrode pads 74 and 75 are added to the intake flow rate measuring device 1 shown in FIG. Other configurations are the same as those of the intake flow rate measuring device 1 shown in FIG.

【0023】そして、この吸気流量測定装置1の製造方
法においては、上述した第1実施形態の製造方法におい
て導電膜4にエッチングを施して抵抗体5〜8、リード
部9〜14を形成する際に加熱抵抗体71及びリード部
72、73も同時に形成するようにし、また、上部絶縁
膜15にエッチングを施す際にリード部72、73の電
極パッド形成部位に対してもエッチングを施すように
し、さらに、リード部9〜14の電極パッド形成部位上
に電極パッド16〜21を形成する際に電極パッド7
4、75も同時に形成するようにする。そして、第1実
施形態ではダイアフラム22に対する熱処理をレーザ光
線を用いて行っているのに対し、第2実施形態では電極
パッド74、75を介して加熱抵抗体71に電流を流し
その発熱によって発熱抵抗体5を加熱するようにして熱
処理を行う。その他の製造工程については、第1実施形
態と同様である。この製造方法によると、図1図示の吸
気流量測定装置1の製造工程において、ダイアフラム2
2に対して熱処理を行う代わりに、電極パッド16等を
介して少なくとも発熱抵抗体5に通電して熱処理を行う
ようにした場合と比べ、発熱抵抗体5の劣化を抑えるこ
とができる。なお、流量検出用抵抗体6を加熱するため
の加熱抵抗体を形成し、この加熱抵抗体に通電してその
発熱により流量検出用抵抗体6を加熱して熱処理を行う
ようにしてもよい。
In the method of manufacturing the intake flow rate measuring apparatus 1, the conductive film 4 is etched to form the resistors 5 to 8 and the leads 9 to 14 in the manufacturing method of the first embodiment. In addition, the heating resistor 71 and the lead portions 72 and 73 are also formed at the same time, and when the upper insulating film 15 is etched, the etching is also performed on the electrode pad formation portions of the lead portions 72 and 73, Further, when forming the electrode pads 16 to 21 on the electrode pad formation sites of the leads 9 to 14, the electrode pads 7
4 and 75 are also formed at the same time. In the first embodiment, the heat treatment of the diaphragm 22 is performed using a laser beam, whereas in the second embodiment, a current flows through the heating resistor 71 via the electrode pads 74 and 75, and the heat is generated by the heat generated. Heat treatment is performed so as to heat the body 5. Other manufacturing steps are the same as in the first embodiment. According to this manufacturing method, in the manufacturing process of the intake air flow measuring device 1 shown in FIG.
Instead of performing the heat treatment on the heat-generating resistor 2, deterioration of the heat-generating resistor 5 can be suppressed as compared with the case where at least the heat-generating resistor 5 is energized through the electrode pad 16 or the like to perform the heat treatment. Note that a heating resistor for heating the flow detection resistor 6 may be formed, and the heat treatment may be performed by applying a current to the heating resistor and heating the flow detection resistor 6 by the generated heat.

【0024】[0024]

【発明の効果】本発明によると、電極パッドを遮温材で
覆いダイアフラムに光線を照射して発熱抵抗体及び流量
検出用抵抗体に対し熱処理を行い、あるいは、電極パッ
ドを介して加熱抵抗体に通電し少なくとも発熱抵抗体に
対し熱処理を行うようにしたため、発熱抵抗体等に対し
て熱処理を施しても電極パッドとリード部との間で相互
拡散が起きなくなり、ワイヤボンディングの際の密着強
度を保持することができる。上記複数の実施形態では、
流量検出用抵抗体6を発熱抵抗体5の片側に配設した場
合について説明したが、発熱抵抗体5の両側に流量検出
用抵抗体6を配設して両流量検出用抵抗体6の抵抗値の
差により吸気流量を検出する場合や、発熱抵抗体5の吸
気流量に対する放熱量の差から吸気流量を検出する場合
など、半導体基板上に感温抵抗体を形成したものであれ
ば同様の効果が得られる。
According to the present invention, the electrode pad is covered with a heat insulating material, and the diaphragm is irradiated with light rays to perform heat treatment on the heating resistor and the flow rate detecting resistor, or the heating resistor is connected via the electrode pad. And heat treatment is performed on at least the heating resistor, so that even if heat treatment is performed on the heating resistor and the like, mutual diffusion does not occur between the electrode pad and the lead portion, and the adhesion strength during wire bonding is reduced. Can be held. In the above embodiments,
The case where the flow detection resistor 6 is disposed on one side of the heating resistor 5 has been described. However, the flow detection resistor 6 is disposed on both sides of the heating resistor 5 so that the resistance of the two flow detection resistors 6 can be reduced. The same applies to the case where a temperature-sensitive resistor is formed on a semiconductor substrate, such as a case where an intake flow rate is detected based on a difference in value, or a case where an intake flow rate is detected based on a difference in heat radiation amount with respect to the intake flow rate of the heating resistor 5. The effect is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係る製造方法によって
製造される流量測定装置であって内燃機関の吸気流量を
測定するための吸気流量測定装置の平面図である。
FIG. 1 is a plan view of an intake flow rate measurement device for measuring an intake flow rate of an internal combustion engine, which is a flow measurement device manufactured by a manufacturing method according to a first embodiment of the present invention.

【図2】図1図示A−A線による断面図である。FIG. 2 is a sectional view taken along line AA in FIG.

【図3】図1図示B部の拡大図である。FIG. 3 is an enlarged view of a portion B shown in FIG. 1;

【図4】図2図示C部の拡大図である。FIG. 4 is an enlarged view of a portion C shown in FIG. 2;

【図5】流量測定装置の等価回路図である。FIG. 5 is an equivalent circuit diagram of the flow measuring device.

【図6】図7、図8及び図9と共に一連の製造工程を示
す断面図である。
FIG. 6 is a sectional view showing a series of manufacturing steps together with FIGS. 7, 8 and 9;

【図7】図6、図8及び図9と共に一連の製造工程を示
す断面図である。
FIG. 7 is a sectional view showing a series of manufacturing steps together with FIGS. 6, 8 and 9;

【図8】図6、図7及び図9と共に一連の製造工程を示
す断面図である。
FIG. 8 is a sectional view showing a series of manufacturing steps together with FIGS. 6, 7 and 9;

【図9】図6、図7及び図8と共に一連の製造工程を示
す断面図である。
FIG. 9 is a sectional view showing a series of manufacturing steps together with FIGS. 6, 7 and 8;

【図10】ワイヤボンディングにおける本実施形態の効
果を示すグラフである。
FIG. 10 is a graph showing the effect of the present embodiment on wire bonding.

【図11】抵抗の経時変化における本実施形態の効果を
示すグラフである。
FIG. 11 is a graph showing the effect of the present embodiment on the change over time in resistance.

【図12】熱処理温度による本実施形態の効果を示すグ
ラフである。
FIG. 12 is a graph showing an effect of the present embodiment depending on a heat treatment temperature.

【図13】第2実施形態に係る製造方法によって製造さ
れる吸気流量測定装置の平面図である。
FIG. 13 is a plan view of an intake air flow measuring device manufactured by a manufacturing method according to a second embodiment.

【図14】図13図示D部の拡大図である。FIG. 14 is an enlarged view of a D part shown in FIG. 13;

【符号の説明】[Explanation of symbols]

1 吸気流量測定装置 2 半導体基板 3 下部絶縁膜 4 導電膜 5 発熱抵抗体 6 流量検出用抵抗体 7 流体温度検出用抵抗体(第1吸気温検出用抵抗
体) 8 流体温度検出用抵抗体(第2吸気温検出用抵抗
体) 9〜14 リード部 15 上部絶縁膜 16〜21 電極パッド 22 ダイアフラム 22a 空洞部 60 遮温材 71 加熱抵抗体 72、73 リード部 74、75 電極パッド
REFERENCE SIGNS LIST 1 intake air flow measuring device 2 semiconductor substrate 3 lower insulating film 4 conductive film 5 heating resistor 6 flow detection resistor 7 fluid temperature detection resistor (first intake temperature detection resistor) 8 fluid temperature detection resistor ( 9-14 Lead part 15 Upper insulating film 16-21 Electrode pad 22 Diaphragm 22a Cavity part 60 Heat shield 71 Heating resistor 72, 73 Lead part 74, 75 Electrode pad

フロントページの続き (72)発明者 河野 泰 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 2F035 AA02 EA08 EA09 Continued on the front page (72) Inventor Yasushi Kono 1-1-1 Showa-cho, Kariya-shi, Aichi F-term in DENSO Corporation (reference) 2F035 AA02 EA08 EA09

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 下記一連の工程〜からなることを特
徴とする流量測定装置の製造方法。 半導体基板上に下部絶縁膜を形成する 前記下部絶縁膜上に導電膜を形成する 前記導電膜から複数の感温抵抗体と前記感温抵抗体の
各リード部とを形成するためのエッチングを行う 前記感温抵抗体及び前記リード部の上に上部絶縁膜を
形成する 前記上部絶縁膜の電極パッドを形成すべき部位をエッ
チングする 前記各リード部上に前記電極パッドを形成する 前記半導体基板に空洞部を形成して前記感温抵抗体の
一部又は全部を要素とするダイアフラムを形成する 前記電極パッドを除く領域に対し熱処理を行う
1. A method for manufacturing a flow measuring device, comprising the following series of steps. Forming a lower insulating film on a semiconductor substrate forming a conductive film on the lower insulating film performing etching for forming a plurality of temperature-sensitive resistors and respective leads of the temperature-sensitive resistor from the conductive film; Forming an upper insulating film on the temperature-sensitive resistor and the lead portion; etching a portion of the upper insulating film where an electrode pad is to be formed; forming the electrode pad on each of the lead portions; a cavity in the semiconductor substrate. Forming a diaphragm with a part or all of the temperature-sensitive resistor as an element, performing heat treatment on a region excluding the electrode pad
【請求項2】 前記熱処理を行う領域は前記ダイアフラ
ム上にある前記感温抵抗体に対して行うことを特徴とす
る請求項1記載の流量測定装置の製造方法。
2. The method according to claim 1, wherein the region in which the heat treatment is performed is performed on the temperature-sensitive resistor on the diaphragm.
【請求項3】 前記電極パッドを遮温材で覆い前記ダイ
アフラムに光線を照射して前記感温抵抗体に対して前記
熱処理を行うことを特徴とする請求項1又は2記載の流
量測定装置の製造方法。
3. The flow rate measuring apparatus according to claim 1, wherein the electrode pad is covered with a heat insulating material, and the heat treatment is performed on the temperature-sensitive resistor by irradiating the diaphragm with a light beam. Production method.
【請求項4】 前記電極パッドを介して前記ダイアフラ
ム上にある前記感温抵抗体の一部又は全部に通電して前
記熱処理を行うことを特徴とする請求項1又は2記載の
流量測定装置の製造方法。
4. The flow rate measuring apparatus according to claim 1, wherein the heat treatment is performed by energizing a part or all of the temperature-sensitive resistor on the diaphragm through the electrode pad. Production method.
【請求項5】 前記ダイアフラム上にある前記感温抵抗
体を加熱する加熱抵抗体を前記ダイアフラム上に形成し
前記加熱抵抗体に通電して前記熱処理を行うことを特徴
とする請求項1又は2記載の流量測定装置の製造方法。
5. A heating resistor for heating the temperature-sensitive resistor on the diaphragm is formed on the diaphragm, and the heat treatment is performed by supplying a current to the heating resistor. A manufacturing method of the flow rate measuring device according to the above.
【請求項6】 前記熱処理の温度は300℃以上とする
ことを特徴とする請求項1から5のいずれか一項記載の
流量測定装置の製造方法。
6. The method according to claim 1, wherein the temperature of the heat treatment is set to 300 ° C. or higher.
JP2001087809A 2001-03-26 2001-03-26 Method for manufacturing flow measuring instrument Withdrawn JP2002286521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001087809A JP2002286521A (en) 2001-03-26 2001-03-26 Method for manufacturing flow measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001087809A JP2002286521A (en) 2001-03-26 2001-03-26 Method for manufacturing flow measuring instrument

Publications (1)

Publication Number Publication Date
JP2002286521A true JP2002286521A (en) 2002-10-03

Family

ID=18943004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001087809A Withdrawn JP2002286521A (en) 2001-03-26 2001-03-26 Method for manufacturing flow measuring instrument

Country Status (1)

Country Link
JP (1) JP2002286521A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117446A1 (en) * 2011-03-02 2012-09-07 日立オートモティブシステムズ株式会社 Heat-type flow meter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117446A1 (en) * 2011-03-02 2012-09-07 日立オートモティブシステムズ株式会社 Heat-type flow meter
CN103380353A (en) * 2011-03-02 2013-10-30 日立汽车系统株式会社 Heat-type flow meter
US20130313675A1 (en) * 2011-03-02 2013-11-28 Hitachi Automotive Systems ,Ltd. Thermal Type Flowmeter
EP2682720A1 (en) * 2011-03-02 2014-01-08 Hitachi Automotive Systems, Ltd. Heat-type flow meter
EP2682720A4 (en) * 2011-03-02 2014-08-27 Hitachi Automotive Systems Ltd Heat-type flow meter
CN103380353B (en) * 2011-03-02 2015-08-05 日立汽车系统株式会社 Thermal flowmeter
JP5857032B2 (en) * 2011-03-02 2016-02-10 日立オートモティブシステムズ株式会社 Thermal flow meter

Similar Documents

Publication Publication Date Title
KR960015067B1 (en) Silicon-based mass airflow sensor
JPH10197309A (en) Measuring element for thermal air flowmeter and thermal air flowmeter
JP2001027558A (en) Thermal type flowrate sensor
JP2000213973A (en) Flow rate sensor
US7617723B2 (en) Thermal type flow rate measuring apparatus having decrease in coupling capacitance between wiring portions of detection element
JP2000131112A (en) Heat-sensitive flow sensor
US7225669B2 (en) Heating resistance flow rate measuring apparatus
US6644113B2 (en) Flow-rate detecting device for heat-sensitive type flow sensor
US6684693B2 (en) Heat generation type flow sensor
JP2006258678A (en) Thermal flow meter
JP2003315131A (en) Fluid flow measuring instrument
JP2002286521A (en) Method for manufacturing flow measuring instrument
JP2001012985A (en) Thermal air flow rate sensor and controller for internal combustion engine
US7185539B2 (en) Flow sensor
JP2010197285A (en) Humidity sensor
JP5029509B2 (en) Flow sensor
JPH11354302A (en) Thin-film resistor element
JP6951225B2 (en) Humidity sensor
JPH102773A (en) Thermal air flowmeter
JP3160782B2 (en) Manufacturing method of semiconductor fluid sensor
JP3510803B2 (en) Flow rate detecting device and manufacturing method thereof
JP5458935B2 (en) Air flow measurement device
JP6990165B2 (en) Thermal sensors and their manufacturing methods and semiconductor devices
JP3569129B2 (en) Flow detector
JPH1183580A (en) Thermal type air flow sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070515

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090714