JPH1183580A - Thermal type air flow sensor - Google Patents

Thermal type air flow sensor

Info

Publication number
JPH1183580A
JPH1183580A JP9246475A JP24647597A JPH1183580A JP H1183580 A JPH1183580 A JP H1183580A JP 9246475 A JP9246475 A JP 9246475A JP 24647597 A JP24647597 A JP 24647597A JP H1183580 A JPH1183580 A JP H1183580A
Authority
JP
Japan
Prior art keywords
temperature
air flow
resistors
resistor
flow sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9246475A
Other languages
Japanese (ja)
Inventor
Masamichi Yamada
雅通 山田
Kaoru Uchiyama
内山  薫
Izumi Watanabe
渡辺  泉
Keiichi Nakada
圭一 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9246475A priority Critical patent/JPH1183580A/en
Publication of JPH1183580A publication Critical patent/JPH1183580A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve air temperature dependency and mechanical strength by constituting electrical heating and temperature-sensing resistors with a dope-treated polycrystalline silicon semiconductor thin film and setting the impurity concentration of the electrical heating resistor at least at a specific value and increasing it as compared with that of the temperature-sensing resistor. SOLUTION: Electrical heating resistors 4a and 4b have larger impurity concentration, at least 3×10<19> cm<-3> , for temperature-sensing resistors 5 and 6. The voltage of terminals F and G of a bridge circuit including the temperature-sensing resistors 5 and 6 and resistors 25b and 25c is inputted to a control circuit 26, and a temperature Th of the temperature- sensing resistor 5 heated by the electrical heating resistors 4a and 4b is controlled to be higher than a temperature Ta of an air temperature-sensing resistor 6 by a constant value by the control circuit 26. When the temperature of the temperature-sensing resistor 5 is lower than a set value, a transistor 24 is turned on and a heating current flows to the electrical heating resistors 4a and 4b. When the temperature becomes high, the transistor 24 is turned off. The heating current value of the electrical heating resistors 4a and 4b is an air flow rate. On the other hand, the direction of an air flow can be detected by comparing the temperatures of the electrical heating resistors 4a and 4b, thus achieving an accurate flow detection for detecting the direction of the air flow without being affected even if an air temperature changes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱式空気流量セン
サに係り、特に内燃機関の吸入空気量を測定するのに好
適な熱式空気流量センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal air flow sensor, and more particularly to a thermal air flow sensor suitable for measuring an intake air amount of an internal combustion engine.

【0002】[0002]

【従来の技術】従来より自動車などの内燃機関の電子制
御燃料噴射装置に設けられ吸入空気量を測定する空気流
量センサとして、熱式のものが質量空気量を直接検知で
きることから主流となってきている。この中で特に、半
導体マイクロマシニング技術により製造された空気流量
センサが、コストが低減でき且つ低電力で駆動すること
が出来ることから注目されてきた。このような従来の半
導体基板を用いた熱式空気流量センサとしては、例え
ば、特表平3−502966 号公報および特開平8−54269号公
報に開示されている。上記特開平8−54269号公報に記載
の技術では、発熱抵抗体として耐熱性および材料コスト
の利点から多結晶ケイ素(ポリシリコン)が使用されて
いるが、吸入空気量の測定に際して、空気温度の温度依
存に関して考慮されておらず流量計測精度が十分でない
こと、また、発熱抵抗体を支持する電気絶縁膜の機械強
度等に問題があった。また、特表平3−502966 号公報に
記載の技術では、発熱抵抗体の他に空気温度計測抵抗体
を設け空気温度の温度依存に考慮しているが、発熱抵抗
体を支持する電気絶縁膜の機械強度が十分でないという
問題があった。
2. Description of the Related Art Conventionally, as an air flow sensor which is provided in an electronic control fuel injection device of an internal combustion engine of an automobile or the like and measures an intake air amount, a thermal air flow sensor has become mainstream since it can directly detect a mass air amount. I have. Among them, an air flow sensor manufactured by a semiconductor micromachining technology has attracted particular attention because it can reduce cost and can be driven with low power. Such a conventional thermal air flow sensor using a semiconductor substrate is disclosed in, for example, Japanese Patent Publication No. 3-502966 and Japanese Patent Application Laid-Open No. Hei 8-54269. In the technique described in Japanese Patent Application Laid-Open No. 8-54269, polycrystalline silicon (polysilicon) is used as a heating resistor because of its advantages in heat resistance and material cost. There has been a problem that the flow rate measurement accuracy is not sufficient because the temperature dependency is not taken into consideration, and that the mechanical strength of the electrical insulating film supporting the heating resistor is different. In addition, in the technology described in Japanese Patent Publication No. 3-502966, an air temperature measuring resistor is provided in addition to the heating resistor to take into consideration the temperature dependency of the air temperature. However, there is a problem that the mechanical strength is not sufficient.

【0003】[0003]

【発明が解決しようとする課題】従来技術には次のよう
な課題がある。上記特開平8−54269号公報においては、
半導体基板上に電気絶縁膜を介して発熱抵抗体として多
結晶ケイ素(ポリシリコン)が使用されているが、空気
温度を検出する為の空気温度測温抵抗体が形成されてい
ない為に空気温度が変化した場合に被測定空気の流量に
対応した出力が誤差を持つという問題がある。
The prior art has the following problems. In the above JP-A-8-54269,
Polycrystalline silicon (polysilicon) is used as a heating resistor on a semiconductor substrate via an electrical insulating film, but since an air temperature measuring resistor for detecting air temperature is not formed, the air temperature is reduced. However, there is a problem that the output corresponding to the flow rate of the air to be measured has an error when the value changes.

【0004】また、発熱抵抗体が形成された電気絶縁膜
(ダイヤフラム)は、半導体基板との熱絶縁を図り且つ
応答性を高めるために熱容量を小さくするために全厚が
数ミクロンと薄く構成され、且つ半導体基板上に構成さ
れた空洞を架橋されている。このため、発熱抵抗体が加
熱冷却を繰り返した場合また空気流が増大した場合に
は、前記電気絶縁膜に応力が多大に加わり破壊される可
能性がある。
The electrical insulating film (diaphragm) on which the heating resistor is formed has a small overall thickness of several microns in order to achieve thermal insulation with a semiconductor substrate and to reduce heat capacity in order to increase responsiveness. The cavity formed on the semiconductor substrate is cross-linked. Therefore, when the heating resistor is repeatedly heated and cooled, or when the air flow is increased, the electric insulating film may be greatly stressed and broken.

【0005】一方、特表平3−502966 号公報に記載の従
来技術では、以下の様な問題がある。図12に、特表平
3−502966 号公報のFig.2に記載の空気流量センサの縦
断面を示す。図12の2が半導体基板、3は空洞8の周
辺部を囲む半導体基板2に所定の厚みで不純物ドープ処
理して形成したドープ層(リム)で、15,12a,1
2bが電気絶縁膜、4が発熱抵抗体、5c,5d,6
a,6bが測温抵抗体である。
On the other hand, the prior art described in Japanese Patent Publication No. 3-502966 has the following problems. FIG.
The longitudinal section of the air flow sensor described in Fig. 2 of 3-502966 is shown. Reference numeral 2 in FIG. 12 denotes a semiconductor substrate, and 3 denotes a doped layer (rim) formed by subjecting the semiconductor substrate 2 surrounding the cavity 8 to an impurity doping process with a predetermined thickness.
2b is an electric insulating film, 4 is a heating resistor, 5c, 5d, 6
Reference numerals a and 6b denote temperature measuring resistors.

【0006】この様に構成された従来の空気流量センサ
は、空気温度を6a,6bの測温抵抗体により計測し、
計測された空気温度より発熱抵抗体4および発熱抵抗体
の温度を計測する測温抵抗体5dが一定温度高くなるよ
うに発熱抵抗体に加熱電流が供給される。測温抵抗体5
cは、空気温度となる測温抵抗体6aと空気温度より一
定温度高く設定された発熱抵抗体4の中間に位置し、空
気温度と発熱抵抗体4の加熱温度間の温度勾配の一点の
温度を検知するように配置される。空気流は図12の1
1に示す様に左から右に流れ、空気流量が増大すると測
温抵抗体5cが位置する部分の温度勾配が変化し、測温
抵抗体5cが空気流により冷却され温度が低下する。こ
の測温抵抗体5cの温度変化を空気温度と比較(温度
差)して空気流量を検出する。空気流量は測温抵抗体5
cの温度と空気温度を示す測温抵抗体6aの温度差から
検出されるので空気温度が変化した場合の影響を低減す
ることが出来る。
[0006] The conventional air flow sensor constructed as described above measures the air temperature with the resistance temperature detectors 6a and 6b.
The heating current is supplied to the heating resistor so that the temperature of the heating resistor 4 and the temperature measuring resistor 5d for measuring the temperature of the heating resistor become higher than the measured air temperature by a certain temperature. Resistance thermometer 5
c is located between the temperature measuring resistor 6a, which is the air temperature, and the heating resistor 4, which is set at a certain temperature higher than the air temperature, and is a temperature at one point of a temperature gradient between the air temperature and the heating temperature of the heating resistor 4. It is arranged to detect. The air flow is 1 in FIG.
As shown in FIG. 1, when the air flows from left to right and the air flow rate increases, the temperature gradient of the portion where the temperature measuring resistor 5c is located changes, and the temperature measuring resistor 5c is cooled by the air flow to lower the temperature. The temperature change of the resistance temperature detector 5c is compared with the air temperature (temperature difference) to detect the air flow rate. Air flow rate is measured with resistance temperature detector 5
Since the temperature is detected from the temperature difference between the temperature c and the temperature measuring resistor 6a indicating the air temperature, the influence of the change in the air temperature can be reduced.

【0007】しかし、抵抗体4,5c,5dが形成され
た電気絶縁膜12a,12bは、半導体基板2との熱絶
縁を図り且つ応答性を高めるために熱容量を小さくする
ために全厚が数ミクロンと薄く構成され、且つ空洞8を
架橋されている。空洞8の周辺部が半導体基板2に所定
の厚みで不純物ドープ処理して形成したドープ層(リ
ム)により囲まれてはいるが、空洞8上の電気絶縁膜1
2a,12bは薄く構成されたままであり、発熱抵抗体
が加熱冷却を繰り返した場合また空気流が増大した場合
には、前記電気絶縁膜に応力が多大に加わり破壊される
可能性がある。
However, the electrical insulating films 12a and 12b on which the resistors 4, 5c and 5d are formed have several thicknesses in order to achieve thermal insulation with the semiconductor substrate 2 and to reduce the heat capacity in order to increase the responsiveness. It is made as thin as a micron and the cavity 8 is bridged. Although the peripheral portion of the cavity 8 is surrounded by a doped layer (rim) formed by subjecting the semiconductor substrate 2 to impurity doping with a predetermined thickness, the electrical insulating film 1 on the cavity 8 is formed.
2a and 12b remain thin, and when the heating resistor is repeatedly heated and cooled, or when the air flow is increased, a great deal of stress is applied to the electric insulating film, and the electric insulating film may be broken.

【0008】従って、本発明の目的は、従来技術の課題
を解決した空気温度依存及び機械強度を改善した熱式空
気流量センサを低コストで提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a low-cost thermal air flow sensor which solves the problems of the prior art and has improved air temperature dependency and mechanical strength.

【0009】[0009]

【課題を解決するための手段】上記の目的は、半導体基
板上に電気絶縁膜を介して少なくとも発熱抵抗体及び測
温抵抗体を形成して空気流量を計測する熱式空気流量セ
ンサにおいて、前記発熱抵抗体及び測温抵抗体をドープ
処理された多結晶ケイ素(Si)半導体薄膜で構成し、
前記発熱抵抗体の不純物濃度を3×1019(cm-3)以上
とし、且つ、前記測温抵抗体の不純物濃度より大きく
し、更に、前記半導体基板は前記電気絶縁膜境界面より
下面に至る空洞を有し、前記空洞上の電気絶縁膜を前記
半導体基板に所定の深さに不純物をドープ処理され空洞
周辺部から突き出た梁状の支持部により支持補強したこ
とにより、空気温度依存及び機械強度を改善した熱式空
気流量センサを低コストで提供できる。
The object of the present invention is to provide a thermal air flow sensor for measuring an air flow rate by forming at least a heating resistor and a temperature measuring resistor on a semiconductor substrate via an electric insulating film. The heating resistor and the resistance temperature detector are composed of a doped polycrystalline silicon (Si) semiconductor thin film,
The impurity concentration of the heat generating resistor is set to 3 × 10 19 (cm −3 ) or more, and is higher than the impurity concentration of the temperature measuring resistor. Further, the semiconductor substrate extends from the boundary surface of the electric insulating film to the lower surface. Having a cavity, the electric insulating film on the cavity is doped with impurities to a predetermined depth in the semiconductor substrate, and is supported and reinforced by a beam-like supporting portion protruding from the periphery of the cavity, so that the air temperature dependence and the mechanical A thermal air flow sensor with improved strength can be provided at low cost.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施例について、
図面を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described.
This will be described with reference to the drawings.

【0011】図1は、本発明の第一の実施例の熱式空気
流量センサ素子1を示す平面図、図2は、図1の測定素
子1のA−A′断面図である。
FIG. 1 is a plan view showing a thermal air flow sensor element 1 according to a first embodiment of the present invention, and FIG. 2 is a sectional view of the measuring element 1 taken along line AA 'of FIG.

【0012】図1,図2において、素子1は、シリコン
等の半導体基板2,電気絶縁膜12(12a,12b)
の下面の半導体基板2を不純物ドープ処理したドープ層
3,ドープ層3と同じ構成材からなり空洞8上の電気絶
縁膜7を支持補強するために十字形の梁状の支持部3
a,3b、電気絶縁膜12a上に形成された上流側発熱
抵抗体4aと下流側発熱抵抗体4b,発熱抵抗体の温度
を検知するための測温抵抗体5,基板2の先端部に形成
された空気温度を計測する為の空気温度測温抵抗体6,
素子1の信号を外部回路と接続するための端子電極10
(10a,10b,10c,10d,10e,10f,
10g)、各抵抗体と端子電極10を接続するための配
線接続部9(9a,9b,9c,9d,9e,9f,9
g)、各抵抗体を保護するための電気絶縁膜12bより
なる。ここで、各抵抗体4a,4b,5,6は不純物ド
ープ処理された多結晶ケイ素(Si)半導体薄膜よりな
り、発熱抵抗体4a,4bは測温抵抗体5,6に対して
不純物濃度が大きく、且つ、不純物濃度が3×10
19(cm-3)以上となるように形成されている。
In FIG. 1 and FIG. 2, an element 1 comprises a semiconductor substrate 2 of silicon or the like and an electric insulating film 12 (12a, 12b).
And a dope layer 3 made of the same material as the dope layer 3 and the dope layer 3 in which the semiconductor substrate 2 on the lower surface of the semiconductor substrate 2 is doped with impurities.
a, 3b, an upstream-side heating resistor 4a and a downstream-side heating resistor 4b formed on the electric insulating film 12a, a temperature measuring resistor 5 for detecting the temperature of the heating resistor, and formed at the tip of the substrate 2. Air temperature measuring resistor for measuring the measured air temperature 6,
Terminal electrode 10 for connecting the signal of element 1 to an external circuit
(10a, 10b, 10c, 10d, 10e, 10f,
10g), wiring connection portions 9 (9a, 9b, 9c, 9d, 9e, 9f, 9) for connecting each resistor to the terminal electrode 10.
g), an electrical insulating film 12b for protecting each resistor. Here, each of the resistors 4a, 4b, 5, 6 is made of an impurity-doped polycrystalline silicon (Si) semiconductor thin film, and the heating resistors 4a, 4b have an impurity concentration that is lower than that of the temperature measuring resistors 5, 6. Large and impurity concentration is 3 × 10
It is formed to be 19 (cm -3 ) or more.

【0013】本発明の実施例である熱式空気流量センサ
は、以下の様な動作を行う。
The thermal air flow sensor according to the embodiment of the present invention operates as follows.

【0014】一対の上下流側発熱抵抗体4a,4bは、
電気的に直列接続されており、接続点(中間タップ)D
は配線接続部9fにより端子電極10fに接続されてい
る。空洞8により熱絶縁された電気絶縁膜12a上に形
成された前記一対の発熱抵抗体4a,4bには、発熱抵
抗体4a,4bの温度を検出する測温抵抗体5の温度が
空気流11の温度を示す空気温度測温抵抗体6の温度よ
り一定温度高くなるように、加熱(傍熱)電気が流され
ている。
The pair of upstream and downstream heating resistors 4a and 4b are
Electrically connected in series, connection point (middle tap) D
Is connected to the terminal electrode 10f by the wiring connection portion 9f. The pair of heating resistors 4a and 4b formed on the electric insulating film 12a thermally insulated by the cavity 8 has a temperature of the temperature measuring resistor 5 for detecting the temperature of the heating resistors 4a and 4b. The heating (indirect heat) electricity is supplied so that the temperature becomes higher by a certain temperature than the temperature of the air temperature measuring resistor 6 indicating the above temperature.

【0015】空気流11の方向は、測温抵抗体5に対し
て対称に形成された発熱抵抗体4aおよび4bの温度
(抵抗値)を比較することにより検知される。つまり、
発熱抵抗体4a,4bは、空気流が零のときは測温抵抗
体5の温度とほぼ同じ温度を示し、温度差が生じない。
一方、図1の空気流11の方向(順流)ではおもに上流
側に配置された発熱抵抗体4aの方が下流側に配置され
た発熱抵抗体4bより空気流11による冷却効果が大き
いこと、また、発熱抵抗体4a,4bは直列接続であり
同じ加熱電流が流れていることから発熱量はほぼ一定で
あることから、上流側の発熱抵抗体4aの温度が発熱抵
抗体4bの温度より低い値となる。また、空気流11が
図1の方向と反対(逆流)のときには、今度は下流側の
発熱抵抗体4bの温度の方が上流側の発熱抵抗体4aの
温度より低くなる。このように、発熱抵抗体4a,4b
の温度(抵抗値)を比較することにより空気流11の方
向が検知できる。
The direction of the air flow 11 is detected by comparing the temperatures (resistance values) of the heating resistors 4a and 4b formed symmetrically with respect to the temperature measuring resistor 5. That is,
When the airflow is zero, the heating resistors 4a and 4b exhibit substantially the same temperature as the temperature of the temperature measuring resistor 5, and no temperature difference occurs.
On the other hand, in the direction (forward flow) of the airflow 11 in FIG. 1, the heating effect of the airflow 11 is larger in the heating resistor 4 a arranged mainly on the upstream side than in the heating resistor 4 b arranged in the downstream side. Since the heating resistors 4a and 4b are connected in series and the same heating current flows, the amount of heat generation is substantially constant, so that the temperature of the heating resistor 4a on the upstream side is lower than the temperature of the heating resistor 4b. Becomes Further, when the airflow 11 is opposite to the direction of FIG. 1 (backflow), the temperature of the downstream heating resistor 4b is lower than the temperature of the upstream heating resistor 4a. Thus, the heating resistors 4a, 4b
The direction of the airflow 11 can be detected by comparing the temperatures (resistance values) of the airflow.

【0016】一方、空気流量の計測は、測温抵抗体5の
空気温度測温抵抗体6より一定温度高く制御するため
に、発熱抵抗体4a,4bに流す加熱(傍熱)電流値よ
り計測する。この様に、本実施例では空気流の方向と流
量の検出が可能となっている。図3は、図1の素子1を
実装した熱式空気流量センサの実施例を示す断面図であ
る。例えば、自動車等の内燃機関の吸気通路に実装した
熱式空気流量センサの実施例を示す断面図である。熱式
空気流量センサは、図のように、素子1と支持体19と
外部回路20とを含み構成される。そして吸気主通路1
7の内部にある副通路18に素子1が配置される。外部
回路20は支持体19を介して素子1の端子電極10に
電気的に接続されている。ここで、通常では吸入空気は
11で示された方向に流れており、ある内燃機関の条件
によって11とは逆の方向(逆流)に吸入空気が流れる。
On the other hand, the air flow rate is measured from the heating (indirect heat) current value flowing through the heating resistors 4a and 4b in order to control the temperature of the temperature measuring resistor 5 higher than the air temperature measuring resistor 6 by a certain temperature. I do. As described above, in the present embodiment, the direction and the flow rate of the air flow can be detected. FIG. 3 is a sectional view showing an embodiment of a thermal air flow sensor on which the element 1 of FIG. 1 is mounted. FIG. 2 is a cross-sectional view illustrating an example of a thermal air flow sensor mounted in an intake passage of an internal combustion engine of an automobile or the like. As shown in the figure, the thermal air flow sensor includes an element 1, a support 19, and an external circuit 20. And the main intake passage 1
The element 1 is arranged in a sub-passage 18 inside the element 7. The external circuit 20 is electrically connected to the terminal electrode 10 of the device 1 via the support 19. Here, the intake air normally flows in the direction indicated by 11, and the intake air flows in the opposite direction (backflow) to 11 depending on the condition of a certain internal combustion engine.

【0017】図4は、図3の素子1および支持体19の
拡大図である。図4に見るように、素子1は、支持体1
9上に固定され、更に、アルミナ等の電気絶縁基板上に
端子電極21および信号処理回路が形成された外部回路
20が、同じく支持体19上に固定される。この素子1
と外部回路20は、端子電極10および21間を金線2
2等でワイヤボンディングにより電気的に接続された
後、前記の金線22,電極端子10,21や外部回路2
0を保護するために上側から支持体19(図示せず)に
より密封保護される。
FIG. 4 is an enlarged view of the element 1 and the support 19 of FIG. As shown in FIG. 4, the element 1 includes a support 1
An external circuit 20 having a terminal electrode 21 and a signal processing circuit formed on an electrically insulating substrate such as alumina is fixed on the support 19. This element 1
And the external circuit 20 connect the gold wire 2 between the terminal electrodes 10 and 21.
2 and the like, and then the above-described gold wire 22, electrode terminals 10, 21 and external circuit 2 are connected.
0 is protected from above by a support 19 (not shown).

【0018】次に、図5を参照し、本発明の実施例の回
路動作について説明する。図5は、図1の素子1の抵抗
体4a,4b,5,6と信号処理のための外部回路20
を示したものである。図中、23は電源、24は発熱抵
抗体4a,4bに加熱(傍熱)電流を流すためのトランジ
スタ、25a,25b,25cは抵抗、26はA/D変
換器等を含む入力回路とD/A変換器等を含む出力回路
と演算処理等を行うCPUからなる制御回路、27はメ
モリ回路である。
Next, the circuit operation of the embodiment of the present invention will be described with reference to FIG. FIG. 5 shows the resistors 4a, 4b, 5, 6 of the element 1 of FIG. 1 and an external circuit 20 for signal processing.
It is shown. In the figure, 23 is a power supply, 24 is a transistor for passing a heating (indirectly heated) current to the heating resistors 4a and 4b, 25a, 25b and 25c are resistors, 26 is an input circuit including an A / D converter and the like, and D A control circuit including an output circuit including an / A converter and a CPU for performing arithmetic processing and the like, and 27 is a memory circuit.

【0019】ここで、測温抵抗体5,空気温度測温抵抗
体6,抵抗25b,25cよりなるブリッジ回路の端子
F,Gの電圧が制御回路26に入力され、発熱抵抗体4
a,4bにより傍熱された測温抵抗体5の温度(Th)
が空気温度に対応する空気温度測温抵抗体6の温度(T
a)よりある一定値(例えばΔTh=150℃)高くな
るよう各抵抗値が設定され制御回路26により制御され
る。測温抵抗体5の温度が設定値より低い場合には、制
御回路26の出力によりトランジスタ24がオンし発熱
抵抗体4a,4bに加熱電流が流れ、設定温度より高く
なるとトランジスタ24がオフするように制御し設定値
に一定になるよう制御される。このときの発熱抵抗体4
a,4bに流す加熱電流値(抵抗25aの電位Eに対
応)が空気流量(Q)となる。
Here, the voltage of the terminals F and G of the bridge circuit composed of the temperature measuring resistor 5, the air temperature measuring resistor 6, and the resistors 25b and 25c is input to the control circuit 26, and the heating resistor 4
Temperature of the resistance temperature detector 5 indirectly heated by a and 4b (Th)
Is the temperature of the air temperature measuring resistor 6 corresponding to the air temperature (T
Each resistance value is set so as to be higher than a) by a certain fixed value (for example, ΔTh = 150 ° C.), and is controlled by the control circuit 26. When the temperature of the resistance temperature detector 5 is lower than the set value, the transistor 24 is turned on by the output of the control circuit 26, and a heating current flows through the heating resistors 4a and 4b. When the temperature becomes higher than the set temperature, the transistor 24 is turned off. And is controlled to be constant at the set value. Heating resistor 4 at this time
The heating current value (corresponding to the potential E of the resistor 25a) flowing through the a and 4b is the air flow rate (Q).

【0020】一方、空気流の方向は、発熱抵抗体4a,
4bの温度差より検出する。前記したように測温抵抗体
5はある一定の基準温度(Th=Ta+ΔTh)に設定
されている。発熱抵抗体4a,4bは直列接続されてお
り同じ加熱電流が流れる構成であることから、空気流が
順流の場合には、上流側の発熱抵抗体4aがより空気流
により熱を奪われることから温度が低くなる。一方、空
気流が逆流の場合には、今度は逆に発熱抵抗体4bの温
度が低くなる。つまり、発熱抵抗体4a,4bの温度
(抵抗値)を比較することにより、空気流の方向が検知
できる。
On the other hand, the direction of the air flow depends on the heating resistors 4a,
It is detected from the temperature difference of 4b. As described above, the resistance temperature detector 5 is set to a certain reference temperature (Th = Ta + ΔTh). Since the heating resistors 4a and 4b are connected in series and have the same heating current flow, when the air flow is a forward flow, the heating resistor 4a on the upstream side loses heat by the air flow. The temperature decreases. On the other hand, when the air flow is the reverse flow, the temperature of the heating resistor 4b is lowered. That is, the direction of the air flow can be detected by comparing the temperatures (resistance values) of the heating resistors 4a and 4b.

【0021】図5の回路では、発熱抵抗体4a,4bの
温度(抵抗値)の比較を、直列接続された各抵抗体の両
端の電位により行う。上流側の発熱抵抗体4aの温度に
対応するのは図5のC,D点間の電位差であり、下流側
の発熱抵抗体4bの温度に対応するのはD,E間の電位
差である。従って、前記のC,D,E点の電位を制御回
路26に入力することにより各発熱抵抗体に対応する電
位差から空気流の方向が検知される。
In the circuit shown in FIG. 5, the temperatures (resistance values) of the heating resistors 4a and 4b are compared based on the potentials at both ends of each of the resistors connected in series. The potential difference between points C and D in FIG. 5 corresponds to the temperature of the upstream heating resistor 4a, and the potential difference between D and E corresponds to the temperature of the downstream heating resistor 4b. Therefore, by inputting the potentials at the points C, D and E to the control circuit 26, the direction of the air flow is detected from the potential difference corresponding to each heating resistor.

【0022】上記のように空気温度測温抵抗体6および
測温抵抗体5を追加して構成することにより、従来例の
熱式空気流量センサでは発熱抵抗体のみで構成されてい
たのに対して空気温度が変化したとしても影響を受けず
空気流の方向をも検知する高精度の流量検出が可能とな
る。
By adding the air temperature measuring resistor 6 and the temperature measuring resistor 5 as described above, the thermal air flow sensor of the conventional example is constituted by only the heating resistor, whereas the conventional thermal air flow sensor is constituted only by the heating resistor. Therefore, even if the air temperature changes, the flow rate can be detected with high accuracy by detecting the direction of the air flow without being affected.

【0023】次に、本実施例の熱式空気流量センサ素子
の製造工程の具体例について、図6を参照して説明す
る。
Next, a specific example of the manufacturing process of the thermal air flow sensor element of the present embodiment will be described with reference to FIG.

【0024】図6(a)にて、シリコン半導体基板2の
上下面に熱酸化処理により二酸化ケイ素(SiO2)層
13,14を約0.3ミクロン厚に形成する。
Referring to FIG. 6A, silicon dioxide (SiO 2 ) layers 13 and 14 are formed on the upper and lower surfaces of the silicon semiconductor substrate 2 by thermal oxidation to a thickness of about 0.3 μm.

【0025】次に(b)にて、上面の二酸化ケイ素層1
3を公知のホトリソグラフィ技術によりレジストを所定
の形状に形成した後反応性イオンエッチング等の方法に
よりエッチングした後、二酸化ケイ素層13をマスクと
してシリコン半導体基板2の表面に約5ミクロンの深さ
迄P(燐)あるいはB(ボロン)等の不純物を熱拡散あ
るいはイオン打ち込み等の方法によりドープ処理しドー
プ層3,3aを形成する。
Next, in (b), the silicon dioxide layer 1 on the upper surface
After forming a resist into a predetermined shape by a known photolithography technique and etching it by a method such as reactive ion etching, the silicon dioxide layer 13 is used as a mask to a depth of about 5 microns on the surface of the silicon semiconductor substrate 2. An impurity such as P (phosphorus) or B (boron) is doped by a method such as thermal diffusion or ion implantation to form the doped layers 3 and 3a.

【0026】(c)では、二酸化ケイ素層13,14を
エッチングにより取り除いた後、再度、シリコン半導体
基板2の上下面に二酸化ケイ素層よりなる電気絶縁膜1
2a,15を約0.5 ミクロン厚形成する。ここで、シ
リコン半導体基板2の上面形成した電気絶縁膜12aと
しては、前記の二酸化ケイ素以外の構成材でも可能であ
る。例えば、機械強度が高く熱膨張係数がシリコン半導
体基板2より若干大きい窒化ケイ素(Si34)を用い
ても、或いは熱膨張係数がシリコン半導体基板2の1/
10である二酸化ケイ素と熱膨張係数がシリコン半導体
基板2より若干大きい窒化ケイ素の多層構成とし熱膨張
係数のマッチングを図った構成とすることにより、温度
変化によるシリコン半導体基板2と電気絶縁膜12a間
の熱応力が低減でき強度向上が図られる。
In (c), after the silicon dioxide layers 13 and 14 are removed by etching, the electrical insulating film 1 made of the silicon dioxide layer is again formed on the upper and lower surfaces of the silicon semiconductor substrate 2.
2a, 15 is formed to a thickness of about 0.5 micron. Here, as the electric insulating film 12a formed on the upper surface of the silicon semiconductor substrate 2, a constituent material other than the above-described silicon dioxide can be used. For example, even if silicon nitride (Si 3 N 4 ) having a high mechanical strength and a thermal expansion coefficient slightly larger than that of the silicon semiconductor substrate 2 is used, or a thermal expansion coefficient of the silicon semiconductor substrate 2 is 1 /
By employing a multi-layer structure of silicon dioxide having a coefficient of thermal expansion of 10 and silicon nitride having a coefficient of thermal expansion slightly larger than that of the silicon semiconductor substrate 2 so as to match the coefficient of thermal expansion, a temperature change between the silicon semiconductor substrate 2 and the electrical insulating film 12a Can be reduced and the strength can be improved.

【0027】(d)では、電気絶縁膜12a上に発熱抵
抗体4a,4bと測温抵抗体5,6として多結晶ケイ素
(Si)半導体薄膜を約1ミクロンの厚さでCVD等の
方法で形成後、公知のホトリソグラフィ技術によりレジ
ストを所定の形状に形成した後反応性イオンエッチング
等の方法により半導体薄膜をパターニングする。ここ
で、多結晶ケイ素(Si)半導体薄膜は、プラズマを用
いたLPCVDあるいは電子サイクロトロン共鳴を用い
たECR−PCVD,マイクロ波を用いたCVD等の方
法にて形成する。原料ガスは、モノシラン(SiH4),
ホスフィン(PH3),水素(H2)を用い、不純物ドープ
材としての燐(P)の量はホスフィン(PH3)ガスの流量
により制御でき、不純物濃度としては3×1019(c
m-3)以下になるように制御する。ここで、不純物ドー
プ処理は上記以外の方法でも可能であり、未ボープ処理
の多結晶ケイ素(Si)半導体薄膜を形成した後、熱拡
散あるいはイオン打ち込み等の方法により不純物のドー
プ処理を行っても良い。
In (d), a polycrystalline silicon (Si) semiconductor thin film having a thickness of about 1 micron is formed on the electric insulating film 12a as the heating resistors 4a and 4b and the temperature measuring resistors 5 and 6 by a method such as CVD. After the formation, a resist is formed in a predetermined shape by a known photolithography technique, and then the semiconductor thin film is patterned by a method such as reactive ion etching. Here, the polycrystalline silicon (Si) semiconductor thin film is formed by a method such as LPCVD using plasma, ECR-PCVD using electron cyclotron resonance, CVD using microwave, or the like. The source gas is monosilane (SiH 4 ),
Using phosphine (PH 3 ) and hydrogen (H 2 ), the amount of phosphorus (P) as an impurity doping material can be controlled by the flow rate of phosphine (PH 3 ) gas, and the impurity concentration is 3 × 10 19 (c
m −3 ) It is controlled to be below. Here, the impurity doping process can be performed by a method other than the above method. Even after a non-bored polycrystalline silicon (Si) semiconductor thin film is formed, the impurity doping process is performed by a method such as thermal diffusion or ion implantation. good.

【0028】次に(e)では、発熱抵抗体4a,4bの
不純物濃度を3×1019(cm-3)以上に高めるために更
に不純物ドープ処理を加える。発熱抵抗体4a,4b以
外の測温抵抗体5,6は、二酸化ケイ素等のマスク材1
6により被覆された後、発熱抵抗体4a,4bに対して
熱拡散あるいはイオン打ち込み等の方法により更にP
(燐)等の不純物ドープ処理がなされ不純物濃度を3×
1019(cm-3)以上の高濃度にドープ処理された発熱抵抗
体4a,4bが得られる。その後、図示していないが端
子電極10(10a,10b,10c,10d,10
e,10f,10g)、各抵抗体と端子電極10を接続
するための配線接続部9(9a,9b,9c,9d,9
e,9f,9g)が、アルミニウム,金等で形成され
る。
Next, in (e), impurity doping is further performed to increase the impurity concentration of the heating resistors 4a and 4b to 3 × 10 19 (cm −3 ) or more. The temperature measuring resistors 5 and 6 other than the heating resistors 4a and 4b are made of a mask material 1 such as silicon dioxide.
6, the heating resistors 4a and 4b are further diffused by heat diffusion or ion implantation.
(Phosphorus) and other impurity doping treatments are performed to reduce the impurity concentration to 3 ×
Heating resistors 4a and 4b doped at a high concentration of 10 19 (cm −3 ) or more are obtained. Then, although not shown, the terminal electrodes 10 (10a, 10b, 10c, 10d, 10
e, 10f, 10g), and wiring connection portions 9 (9a, 9b, 9c, 9d, 9) for connecting each resistor to the terminal electrode 10.
e, 9f, 9g) are formed of aluminum, gold or the like.

【0029】(f)では、端子電極10以外の部分を保
護する為に電気絶縁膜12bを先の電気絶縁膜12aと
同様に約0.5 ミクロンの厚さに形成する。次に、シリ
コン半導体基板2に空洞8を形成する為に、エッチング
のマスク材15の所定の形状にパターニングし半導体基
板2のエッチング部のみを露出させる。マスク材として
は二酸化ケイ素あるいはよりエッチング選択比の高い窒
化ケイ素等が用いられる。
In (f), the electric insulating film 12b is formed to a thickness of about 0.5 μm in order to protect portions other than the terminal electrode 10, like the electric insulating film 12a. Next, in order to form the cavity 8 in the silicon semiconductor substrate 2, the etching mask material 15 is patterned into a predetermined shape to expose only the etched portion of the semiconductor substrate 2. As the mask material, silicon dioxide or silicon nitride having a higher etching selectivity is used.

【0030】(g)では、最後に、シリコン半導体基板
2の裏面より二酸化ケイ素あるいは窒化ケイ素等をマス
ク材16として、水酸化カリウム(KOH)等のエッチ
ング液を用いて異方性エッチングすることにより空洞8
を形成する。ここで、シリコンよりなる半導体基板2の
エッチング速度は不純物濃度に依存しており、不純物濃
度が高くなるとエッチング速度が遅くなることから、不
純物ドープ処理されたドープ層3および空洞8上の電気
絶縁膜7を支持補強するために十字形の梁状の支持部3
a,3bを残して空洞8領域のシリコン半導体基板2だ
けがエッチングされる。前記の不純物ドープ処理された
十字形の梁状の支持部3a,3bは、幅が約5〜30ミ
クロンで厚みが約2〜5ミクロンであり機械強度が十分
保てるよう選択される。
In (g), finally, anisotropic etching is performed from the back surface of the silicon semiconductor substrate 2 using silicon dioxide or silicon nitride as a mask material 16 using an etching solution such as potassium hydroxide (KOH). Cavity 8
To form Here, the etching rate of the semiconductor substrate 2 made of silicon depends on the impurity concentration, and the etching rate decreases as the impurity concentration increases. 7 to support and reinforce the cross beam
Only the silicon semiconductor substrate 2 in the cavity 8 region is etched leaving a and 3b. The cross-shaped support portions 3a and 3b doped with impurities are selected to have a width of about 5 to 30 microns and a thickness of about 2 to 5 microns so that sufficient mechanical strength can be maintained.

【0031】上記実施例の不純物はP(燐)としたが、
同じくn形の不純物としてはN(窒素),Sb(アンチ
モン),As(ヒ素)あるいはp形の不純物としてはA
l(アルミニウム),B(ボロン)等を用いても良い。
Although the impurity in the above embodiment was P (phosphorus),
Similarly, N (nitrogen), Sb (antimony), As (arsenic) as an n-type impurity or A as a p-type impurity
l (aluminum), B (boron) or the like may be used.

【0032】上記の様に構成したことにより、発熱抵抗
体4a,4bおよび測温抵抗体5が形成された空洞8上
の電気絶縁膜7は、半導体基板2との熱絶縁を図り且つ
応答性を高めるために熱容量を小さくするために全厚が
約1ミクロンと薄く構成された場合においても、電気絶
縁膜7を支持補強するために形成された不純物ドープ処
理された十字形の梁状の支持部3a,3bにより半導体
基板2と一体化されたことにより、発熱抵抗体が加熱冷
却を繰り返した場合また空気流が増大した場合における
応力が多大に加わった場合においても機械強度が十分保
てる。
With the above configuration, the electric insulating film 7 on the cavity 8 in which the heating resistors 4a and 4b and the temperature measuring resistor 5 are formed achieves thermal insulation with the semiconductor substrate 2 and has high responsiveness. Even if the overall thickness is made as thin as about 1 micron to reduce the heat capacity to increase the heat capacity, an impurity-doped cruciform beam-shaped support formed to support and reinforce the electrical insulating film 7 By being integrated with the semiconductor substrate 2 by the portions 3a and 3b, sufficient mechanical strength can be maintained even when the heating resistor is repeatedly heated and cooled or when a large amount of stress is applied when the air flow is increased.

【0033】また、発熱抵抗体4a,4b及び測温抵抗
体5,6をドープ処理された多結晶ケイ素(Si)半導
体薄膜で構成し、発熱抵抗体4a,4bの不純物濃度を
3×1019(cm-3)以上とし、且つ、前記測温抵抗体
5,6の不純物濃度より大きく構成したことにより、発
熱抵抗体4a,4bの抵抗率(ρ)を比較的小さく出来
ることから発熱抵抗体の抵抗値の設計自由度が向上する
とともに、測温抵抗体5,6の抵抗温度係数(α)を比較
的大きく保つことが出来、測温感度の向上が図られる。
更に、上記の発熱抵抗体4a,4bと測温抵抗体5,6
を、各々不純物濃度を変えた多結晶ケイ素(Si)半導
体薄膜で構成したことにより、高価な白金等の様に別個
の材料で構成する必要がなく、一括して同時に多結晶ケ
イ素(Si)半導体薄膜を形成できるので低コストな熱式
空気流量センサが提供できる。
The heating resistors 4a and 4b and the temperature measuring resistors 5 and 6 are formed of doped polycrystalline silicon (Si) semiconductor thin films, and the impurity concentration of the heating resistors 4a and 4b is 3 × 10 19. (Cm −3 ) or more and higher than the impurity concentration of the temperature measuring resistors 5 and 6, the resistivity (ρ) of the heating resistors 4 a and 4 b can be made relatively small. And the resistance temperature coefficient (α) of the resistance temperature detectors 5 and 6 can be kept relatively large, thereby improving the temperature measurement sensitivity.
Further, the heating resistors 4a and 4b and the temperature measuring resistors 5 and 6 are used.
Are made of polycrystalline silicon (Si) semiconductor thin films with different impurity concentrations, so that there is no need to use a separate material such as expensive platinum or the like, and the polycrystalline silicon (Si) semiconductor Since a thin film can be formed, a low-cost thermal air flow sensor can be provided.

【0034】図7は、多結晶ケイ素(Si)半導体薄膜
の抵抗率(ρ)と不純物濃度の関係を示したものであ
る。また、図8は、多結晶ケイ素(Si)半導体薄膜の
抵抗温度係数(α)と抵抗率(ρ)の関係を示したもの
である。図7,図8を見て分かるように、不純物濃度が
高くなるに従い多結晶ケイ素(Si)半導体薄膜の抵抗
率(ρ)および抵抗温度係数(α)ともは小さくなる。
FIG. 7 shows the relationship between the resistivity (ρ) of the polycrystalline silicon (Si) semiconductor thin film and the impurity concentration. FIG. 8 shows the relationship between the temperature coefficient of resistance (α) and the resistivity (ρ) of a polycrystalline silicon (Si) semiconductor thin film. As can be seen from FIGS. 7 and 8, as the impurity concentration increases, both the resistivity (ρ) and the temperature coefficient of resistance (α) of the polycrystalline silicon (Si) semiconductor thin film decrease.

【0035】多結晶ケイ素(Si)半導体膜は一般的に
サーミスタ的な抵抗−温度特性を示すが、温度範囲が比
較的狭く且つ不純物ドープ処理された場合には金属的な
抵抗−温度特性(1)式を示す。
A polycrystalline silicon (Si) semiconductor film generally exhibits a thermistor-like resistance-temperature characteristic. However, when the temperature range is relatively narrow and is doped with impurities, a metallic resistance-temperature characteristic (1) is obtained. ) Shows the equation.

【0036】 R=R0(1+α(T+T0)) …(1) ここで、Rは温度(T)における半導体膜の抵抗値、R
0は温度(T0)における半導体膜の抵抗膜、αは抵抗
温度係数である。抵抗温度係数(α)が大きいほうが温
度に対しての抵抗値の変化が大きくとれることから、測
温抵抗体5,6としては抵抗温度係数(α)が大きいほ
うが検出感度が上がり空気流量の測定精度が向上するこ
とから望まれる。測温抵抗体5,6としては、図8で示
される領域30の抵抗温度係数(α)が1000(×1
-6/℃)以上で、図7で見れば不純物濃度を3×10
19(cm-3)以下の30の領域が選択される。
R = R0 (1 + α (T + T0)) (1) where R is a resistance value of the semiconductor film at a temperature (T), and R
0 is the resistance film of the semiconductor film at the temperature (T0), and α is the temperature coefficient of resistance. The larger the temperature coefficient of resistance (α), the greater the change in resistance value with respect to temperature. Therefore, the larger the temperature coefficient of resistance (α), the higher the detection sensitivity and the measurement of the air flow rate. It is desired because the accuracy is improved. As the temperature measuring resistors 5 and 6, the temperature coefficient of resistance (α) of the region 30 shown in FIG.
0 −6 / ° C.) or more, and as shown in FIG.
Thirty regions below 19 (cm -3 ) are selected.

【0037】一方、発熱抵抗体4a,4bとしては、前
記の測温抵抗体5,6と同じ不純物濃度領域30では抵
抗率(ρ)が大きくなり過ぎる。所望の温度(例えば2
00℃)に発熱抵抗体4a,4bを加熱しようとする
と、発熱抵抗体4a,4bの抵抗値が大きくなり高い駆
動電圧が必要となり十分に加熱出来ないという問題が生
ずる。発熱抵抗体4a,4bの抵抗値を下げるために
は、多結晶ケイ素(Si)半導体膜の膜厚を厚くする対
応が考えられるが、膜厚を厚くすると所望のパターンに
精度良くエッチングすることが難しくなり材料コストの
面からも好ましくない。エッチングが精度良く実現出来
る多結晶ケイ素(Si)半導体膜の膜厚は約1ミクロン
が限界であり、この厚さで10ボルト以下の駆動電圧で
駆動出来る発熱抵抗体4a,4bの抵抗値は1kΩ以下
であり、図7の領域29で示した不純物濃度が3×10
19(cm-3)以上で抵抗率(ρ)が30(×10-4Ω−c
m)以下の領域が選択される。
On the other hand, as the heating resistors 4a and 4b, the resistivity (ρ) becomes too large in the same impurity concentration region 30 as the temperature measuring resistors 5 and 6. The desired temperature (eg 2
When the heating resistors 4a and 4b are heated to (00 ° C.), the resistance values of the heating resistors 4a and 4b become large, and a high driving voltage is required, which causes a problem that the heating cannot be performed sufficiently. In order to reduce the resistance values of the heat generating resistors 4a and 4b, it is conceivable to increase the thickness of the polycrystalline silicon (Si) semiconductor film. However, if the thickness is increased, it is possible to perform accurate etching to a desired pattern. It becomes difficult and is not preferable in terms of material cost. The thickness of a polycrystalline silicon (Si) semiconductor film that can be accurately etched is about 1 micron, and the heating resistors 4a and 4b that can be driven with a driving voltage of 10 volts or less at this thickness have a resistance value of 1 kΩ. 7 and the impurity concentration shown in the region 29 of FIG.
A resistivity (ρ) of 30 (× 10 −4 Ω-c) at 19 (cm −3 ) or more
m) The following areas are selected.

【0038】この様に、発熱抵抗体4a,4bの不純物
濃度を3×1019(cm-3)以上とし、且つ、前記測温抵
抗体5,6の不純物濃度より大きく構成したことによ
り、発熱抵抗体4a,4bの抵抗率(ρ)を比較的小さ
く出来ることから発熱抵抗体の抵抗値の設計自由度が向
上するとともに、測温抵抗体5,6の抵抗温度係数(α)
を比較的大きく保つことが出来、測温感度の向上が図ら
れる。
As described above, since the impurity concentration of the heating resistors 4a and 4b is set to 3 × 10 19 (cm −3 ) or more and higher than the impurity concentrations of the temperature measuring resistors 5 and 6, heat generation is achieved. Since the resistivity (ρ) of the resistors 4a and 4b can be made relatively small, the degree of freedom in designing the resistance value of the heating resistor is improved, and the temperature coefficient of resistance (α) of the temperature measuring resistors 5 and 6 is increased.
Can be kept relatively large, and the temperature measurement sensitivity can be improved.

【0039】本実施例の発熱抵抗体4a,4bの抵抗値
としては、電源電圧および発熱量の関係から50〜90
0Ω、測温抵抗体5,6の抵抗値としては1〜5kΩを
選択した。
The resistance values of the heat generating resistors 4a and 4b of this embodiment are 50 to 90 based on the relationship between the power supply voltage and the heat generation amount.
0 Ω and 1 to 5 kΩ were selected as resistance values of the resistance temperature detectors 5 and 6.

【0040】次に、本発明の第二,第三の実施例につい
て説明する。図9および図10は、本発明の第二および
第三の実施例で、空洞8上の電気絶縁膜7まで形成した
熱式空気流量センサの素子1の平面図である。電気絶縁
膜7を支持補強する為に下面に形成された半導体基板2
に所定の深さに不純物ドープ処理され空洞周辺部から突
き出た梁状の支持部3b,3c,3d,3e,3fを破
線で示している。
Next, second and third embodiments of the present invention will be described. FIG. 9 and FIG. 10 are plan views of the element 1 of the thermal air flow sensor formed up to the electric insulating film 7 on the cavity 8 in the second and third embodiments of the present invention. Semiconductor substrate 2 formed on the lower surface to support and reinforce electric insulating film 7
The supporting portions 3b, 3c, 3d, 3e and 3f in the form of beams which are doped with impurities to a predetermined depth and protrude from the periphery of the cavity are indicated by broken lines.

【0041】図9では、図1の第一の実施例の十字形の
梁状の支持部3a,3bに変わり、支持部3c,3d,
3e,3fを周辺部(四方)から中心に向かって途中ま
で電気絶縁膜7を支持補強する梁状の支持部で構成して
いる。この様に構成することにより、特に応力が集中す
る電気絶縁膜7と半導体基板2との境界部分を補強する
と共に半導体基板2との熱絶縁を図ることが出来る。図
10では、図1の第一の実施例と図9の第二の実施例の
中間的な構造となっており、空洞8間を連結する支持部
3bと周辺部から中心に向う支持部3c,3eにより電
気絶縁膜7を支持補強する構造となっている。この様に
構成することにより、第一の実施例と第二の実施例の中
間的な効果を得ることが出来る。この他にも、電気絶縁
膜7を支持補強する梁状の支持部としては、より多数の
支持部を周辺部から形成しても、周辺部から中心に向か
うに従い支持部断面積が小さくなるように形成しても、
支持部と半導体基板2との接続部を応力集中を防止する
為に丸みを付ける等の構成にすることにより、更に強固
に支持補強することが可能となる。
In FIG. 9, the support members 3a, 3b of the first embodiment shown in FIG.
Each of 3e and 3f is composed of a beam-shaped support portion for supporting and reinforcing the electrical insulating film 7 from the peripheral portion (square) to the center partway. With this configuration, it is possible to reinforce the boundary portion between the electrical insulating film 7 where the stress is concentrated and the semiconductor substrate 2, and to achieve thermal insulation with the semiconductor substrate 2. FIG. 10 shows an intermediate structure between the first embodiment shown in FIG. 1 and the second embodiment shown in FIG. 9, and a supporting portion 3b connecting between the cavities 8 and a supporting portion 3c extending from the peripheral portion toward the center. , 3e to support and reinforce the electrical insulating film 7. With this configuration, an intermediate effect between the first embodiment and the second embodiment can be obtained. In addition to this, even when a larger number of support portions are formed from the peripheral portion as the beam-shaped support portions for supporting and reinforcing the electric insulating film 7, the cross-sectional area of the support portion decreases from the peripheral portion toward the center. Even if formed
By making the connection between the support and the semiconductor substrate 2 rounded to prevent stress concentration, it is possible to further reinforce the support.

【0042】図11は、本発明の第四の実施例である熱
式空気流量センサの素子1の平面図である。図1の第一
の実施例と異なるのは、発熱抵抗体4の上下流に測温抵
抗体5a,5bを形成したことである。この様に、発熱
抵抗体4の上下流に測温抵抗体5a,5bを配置し、上
下流の測温抵抗体5a,5bの温度差から空気流量を計
測する温度差検知方式の様な場合にも、発熱抵抗体4の
不純物濃度を3×1019(cm-3)以上とし、且つ、測温抵
抗体5a,5bの不純物濃度より大きくし、電気絶縁膜
7を梁状の支持部3a,3bにより支持補強することに
より、空気温度依存及び機械強度を改善した熱式空気流
量センサを低コストで提供できる。その他いかなる方式
の場合においても、半導体基板2上に発熱抵抗体および
測温抵抗体で構成された熱式空気流量センサに対して前
記した本発明が適用できることは自明である。
FIG. 11 is a plan view of the element 1 of the thermal air flow sensor according to the fourth embodiment of the present invention. The difference from the first embodiment of FIG. 1 is that the temperature measuring resistors 5a and 5b are formed upstream and downstream of the heating resistor 4. Thus, in the case of a temperature difference detection method in which the temperature measuring resistors 5a and 5b are arranged upstream and downstream of the heating resistor 4 and the air flow rate is measured from the temperature difference between the upstream and downstream temperature measuring resistors 5a and 5b. In addition, the impurity concentration of the heating resistor 4 is set to 3 × 10 19 (cm −3 ) or more and higher than the impurity concentrations of the temperature measuring resistors 5a and 5b, and the electric insulating film 7 is formed in a beam-like supporting portion 3a. , 3b can provide a low-cost thermal air flow sensor with improved air temperature dependence and mechanical strength. In any other method, it is obvious that the above-described present invention can be applied to a thermal air flow sensor formed of a heating resistor and a temperature measuring resistor on the semiconductor substrate 2.

【0043】[0043]

【発明の効果】本発明によれば、半導体基板上に電気絶
縁膜を介して少なくも発熱抵抗体及び測温抵抗体を形成
して空気流量を計測する熱式空気流量センサにおいて、
前記発熱抵抗体及び測温抵抗体をドープ処理された多結
晶ケイ素(Si)半導体薄膜で構成し、前記発熱抵抗体
の不純物濃度を3×1019(cm-3)以上とし、且つ、前
記測温抵抗体の不純物濃度より大きくし、更に、前記半
導体基板は前記電気絶縁膜境界面より下面に至る空洞を
有し、前記空洞上の電気絶縁膜を前記半導体基板に所定
の深さに不純物をドープ処理され空洞周辺部から突き出
た梁状の支持部により支持補強したことにより、空気温
度依存及び機械強度を改善した熱式空気流量センサを低
コストで提供できる。
According to the present invention, there is provided a thermal air flow sensor for measuring an air flow rate by forming at least a heating resistor and a temperature measuring resistor on a semiconductor substrate via an electric insulating film.
The heating resistor and the temperature measuring resistor are composed of a doped polycrystalline silicon (Si) semiconductor thin film, the impurity concentration of the heating resistor is 3 × 10 19 (cm −3 ) or more, and The impurity concentration is set higher than the impurity concentration of the temperature resistor, and the semiconductor substrate has a cavity extending from the boundary surface of the electric insulating film to the lower surface. By supporting and reinforcing with a beam-shaped supporting portion that is doped and protrudes from the periphery of the cavity, a thermal air flow sensor with improved air temperature dependence and mechanical strength can be provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施例の熱式空気流量センサ素
子1の平面を示す図である。
FIG. 1 is a diagram showing a plan view of a thermal air flow sensor element 1 according to a first embodiment of the present invention.

【図2】図1の素子のA−A′断面を示す図である。FIG. 2 is a diagram showing an AA ′ cross section of the device of FIG. 1;

【図3】図1の素子を実装した熱式空気流量センサの断
面を示す図である。
FIG. 3 is a diagram showing a cross section of a thermal air flow sensor on which the element of FIG. 1 is mounted.

【図4】図3の測定素子部を拡大した図である。FIG. 4 is an enlarged view of a measuring element unit in FIG. 3;

【図5】抵抗体4a,4b,5,6と外部回路20の電
気回路を示す図である。
FIG. 5 is a diagram showing an electric circuit of resistors 4a, 4b, 5, 6 and an external circuit 20.

【図6】素子1の製造工程を説明する図である。FIG. 6 is a diagram illustrating a manufacturing process of the element 1.

【図7】多結晶ケイ素半導体薄膜の抵抗率(ρ)と不純
物濃度の関係を示す図である。
FIG. 7 is a diagram showing the relationship between the resistivity (ρ) of a polycrystalline silicon semiconductor thin film and the impurity concentration.

【図8】多結晶ケイ素(Si)半導体薄膜の抵抗温度係
数(α)と抵抗率(ρ)の関係を示す図である。
FIG. 8 is a diagram showing the relationship between the temperature coefficient of resistance (α) and the resistivity (ρ) of a polycrystalline silicon (Si) semiconductor thin film.

【図9】本発明の第二の実施例で、空洞8上の電気絶縁
膜7まで形成した熱式空気流量センサ素子1の平面を示
す図である。
FIG. 9 is a view showing a plane of the thermal air flow sensor element 1 formed up to the electric insulating film 7 on the cavity 8 in the second embodiment of the present invention.

【図10】本発明の第三の実施例で、空洞8上の電気絶
縁膜7まで形成した熱式空気流量センサ素子1の平面を
示す図である。
FIG. 10 is a view showing a plane of the thermal air flow sensor element 1 formed up to the electric insulating film 7 on the cavity 8 in the third embodiment of the present invention.

【図11】本発明の第四の実施例である熱式空気流量セ
ンサ素子1の平面を示す図である。
FIG. 11 is a view showing a plane of a thermal air flow sensor element 1 according to a fourth embodiment of the present invention.

【図12】従来例の熱式空気流量センサ素子1の断面を
示す図である。
FIG. 12 is a diagram showing a cross section of a conventional thermal air flow sensor element 1.

【符号の説明】[Explanation of symbols]

1…素子、2…半導体基板、3,3a,3b,3c,3
d,3e,3f…ドープ層(支持部)、4,4a,4b
…発熱抵抗体、5,5a,5b…測温抵抗体、6,6a,
6b…空気温度測温抵抗体、7,12a,12b,1
3,14,15…電気絶縁膜、8…空洞、9,9a,9
b,9c,9d,9e,9f,9g…配線接続部、1
0,10a,10b,10c,10d,10e,10
f,10g,21…端子電極、11…空気流、16…マ
スク材、17…吸気主通路、18…副通路、19…支持
体、20…外部回路、22…金線、23…電源、24…
トランジスタ、25a,25b,25c…抵抗、26…
制御回路、27…メモリ。
DESCRIPTION OF SYMBOLS 1 ... Element, 2 ... Semiconductor substrate, 3, 3a, 3b, 3c, 3
d, 3e, 3f: doped layer (supporting portion), 4, 4a, 4b
... heating resistor, 5, 5a, 5b ... temperature measuring resistor, 6, 6a,
6b: Air temperature measuring resistor, 7, 12a, 12b, 1
3, 14, 15 ... electric insulating film, 8 ... cavity, 9, 9a, 9
b, 9c, 9d, 9e, 9f, 9g ... wiring connection part, 1
0, 10a, 10b, 10c, 10d, 10e, 10
f, 10 g, 21 terminal electrode, 11 air flow, 16 mask material, 17 main intake passage, 18 sub passage, 19 support, 20 external circuit, 22 gold wire, 23 power supply, 24 …
Transistors, 25a, 25b, 25c ... resistors, 26 ...
Control circuit, 27 ... memory.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中田 圭一 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Keiichi Nakata 2520 Odaiba, Hitachinaka-city, Ibaraki Pref. Inside the Automotive Equipment Division of Hitachi, Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に電気絶縁膜を介して少なく
も発熱抵抗体及び測温抵抗体を形成して空気流量を計測
する熱式空気流量センサにおいて、前記発熱抵抗体及び
測温抵抗体をドープ処理された多結晶ケイ素(Si)半
導体薄膜で構成し、且つ前記発熱抵抗体の不純物濃度を
前記測温抵抗体の不純物濃度より大きくしたことを特徴
とする熱式空気流量センサ。
1. A thermal air flow sensor for measuring an air flow rate by forming at least a heating resistor and a temperature measuring resistor on a semiconductor substrate via an electric insulating film, wherein the heating resistor and the temperature measuring resistor are provided. A thermal air flow sensor, comprising a polycrystalline silicon (Si) semiconductor thin film doped with Pb, and wherein the impurity concentration of the heating resistor is higher than the impurity concentration of the temperature measuring resistor.
【請求項2】請求項1に記載の発熱抵抗体のドープ処理
された多結晶ケイ素(Si)半導体薄膜の不純物濃度が
3×1019(cm-3)以上であることを特徴とする熱式空
気流量センサ。
2. The thermal method according to claim 1, wherein the doped polycrystalline silicon (Si) semiconductor thin film of the heating resistor according to claim 1 has an impurity concentration of 3 × 10 19 (cm −3 ) or more. Air flow sensor.
【請求項3】上面に電気絶縁膜が形成され且つ該電気絶
縁膜境界面より下面に至る空洞を有する半導体基板と、
前記空洞上の電気絶縁膜上に少なくも発熱抵抗体を形成
して空気流量を計測する熱式空気流量センサにおいて、
前記空洞上の電気絶縁膜を前記半導体基板から構成され
た空洞周辺部から突き出た梁状の支持部により支持補強
したことを特徴とする熱式空気流量センサ。
3. A semiconductor substrate having an electrical insulating film formed on an upper surface and having a cavity extending from the boundary surface of the electrical insulating film to a lower surface;
In a thermal air flow sensor for measuring an air flow rate by forming at least a heating resistor on the electric insulating film on the cavity,
A thermal air flow sensor, wherein the electrical insulating film on the cavity is supported and reinforced by a beam-like supporting portion protruding from the periphery of the cavity formed of the semiconductor substrate.
【請求項4】請求項3において、前記梁状の支持部は、
前記半導体基板の上面に所定の深さに不純物をドープ処
理された層より構成されてなることを特徴とする熱式空
気流量センサ。
4. The method according to claim 3, wherein the beam-shaped support portion comprises:
A thermal air flow sensor comprising a layer on an upper surface of the semiconductor substrate, which is doped with impurities to a predetermined depth.
JP9246475A 1997-09-11 1997-09-11 Thermal type air flow sensor Pending JPH1183580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9246475A JPH1183580A (en) 1997-09-11 1997-09-11 Thermal type air flow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9246475A JPH1183580A (en) 1997-09-11 1997-09-11 Thermal type air flow sensor

Publications (1)

Publication Number Publication Date
JPH1183580A true JPH1183580A (en) 1999-03-26

Family

ID=17148962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9246475A Pending JPH1183580A (en) 1997-09-11 1997-09-11 Thermal type air flow sensor

Country Status (1)

Country Link
JP (1) JPH1183580A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001084088A1 (en) * 2000-05-02 2001-11-08 Hitachi, Ltd. Device for measuring physical quantity, method of manufacture thereof, and vehicle control system using device for measuring physical quantity
US6490915B2 (en) 2000-01-14 2002-12-10 Hitachi, Ltd. Thermal type air flow sensor and control device for a vehicle
DE102010044110A1 (en) 2009-12-18 2011-06-22 DENSO CORPORATION, Aichi-pref. Air flow measuring device
WO2021260987A1 (en) * 2020-06-22 2021-12-30 日立Astemo株式会社 Thermal flow rate sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6490915B2 (en) 2000-01-14 2002-12-10 Hitachi, Ltd. Thermal type air flow sensor and control device for a vehicle
WO2001084088A1 (en) * 2000-05-02 2001-11-08 Hitachi, Ltd. Device for measuring physical quantity, method of manufacture thereof, and vehicle control system using device for measuring physical quantity
US6988399B1 (en) 2000-05-02 2006-01-24 Hitachi, Ltd. Physical quantity detecting device having second lead conductors connected to the electrodes and extending to the circumference of the substrate
DE102010044110A1 (en) 2009-12-18 2011-06-22 DENSO CORPORATION, Aichi-pref. Air flow measuring device
WO2021260987A1 (en) * 2020-06-22 2021-12-30 日立Astemo株式会社 Thermal flow rate sensor

Similar Documents

Publication Publication Date Title
JP3468731B2 (en) Thermal air flow sensor, element, and internal combustion engine controller
JP3461469B2 (en) Thermal air flow sensor and internal combustion engine controller
JP3698679B2 (en) Gas flow meter and manufacturing method thereof
JP4975972B2 (en) Physical quantity sensor
US9188470B2 (en) Thermal flow meter
JP3355127B2 (en) Thermal air flow sensor
US4733559A (en) Thermal fluid flow sensing method and apparatus for sensing flow over a wide range of flow rates
US4633578A (en) Miniature thermal fluid flow sensors and batch methods of making same
US20060207320A1 (en) Thermal flow meter
JPH0854269A (en) Thermal type microflow sensor and manufacture thereof
US6684693B2 (en) Heat generation type flow sensor
JP2001012985A (en) Thermal air flow rate sensor and controller for internal combustion engine
JP2002048616A (en) Thermal air flow rate sensor and control device for internal combustion engine
JP2005003468A (en) Flow sensor
JPH1183580A (en) Thermal type air flow sensor
EP3184970A1 (en) Sensor device
JP2002071416A (en) Thermal air flow rate sensor and apparatus for controlling internal combustion engine
JPH11258021A (en) Thermal type air flow sensor
JP5109777B2 (en) Flow sensor
JPH10311750A (en) Thermal air-flow-rate sensor
JP2001021401A (en) Heat type air flowmeter
JP4526766B2 (en) Semiconductor sensor and manufacturing method thereof
JP2003075222A (en) Gas flowmeter and method of manufacturing the same
JP2004205353A (en) Flow sensor and its manufacturing method
JP2842485B2 (en) Thermal flow sensor