JP2002285315A - Structural base material using volcanic ash and method of producing the same - Google Patents

Structural base material using volcanic ash and method of producing the same

Info

Publication number
JP2002285315A
JP2002285315A JP2001083324A JP2001083324A JP2002285315A JP 2002285315 A JP2002285315 A JP 2002285315A JP 2001083324 A JP2001083324 A JP 2001083324A JP 2001083324 A JP2001083324 A JP 2001083324A JP 2002285315 A JP2002285315 A JP 2002285315A
Authority
JP
Japan
Prior art keywords
volcanic ash
layer
base material
sprayed
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001083324A
Other languages
Japanese (ja)
Other versions
JP3488438B2 (en
Inventor
Takezo Sasaki
武三 佐々木
Akio Moto
昭夫 基
Seiji Kataoka
征二 片岡
Masaharu Nakamori
正治 中森
Katsuhiro Nagira
勝洋 柳楽
Takayuki Aisaka
隆行 相坂
Sadayoshi Nakajima
貞好 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Government
Osaka Fuji Corp
SankoTechno Co Ltd
Original Assignee
Tokyo Metropolitan Government
Osaka Fuji Corp
SankoTechno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Government, Osaka Fuji Corp, SankoTechno Co Ltd filed Critical Tokyo Metropolitan Government
Priority to JP2001083324A priority Critical patent/JP3488438B2/en
Publication of JP2002285315A publication Critical patent/JP2002285315A/en
Application granted granted Critical
Publication of JP3488438B2 publication Critical patent/JP3488438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a ceramic tile-like structural base material having sufficiently high finished dimension accuracy, which is obtained by utilizing volcanic ash and to provide a method for producing the same. SOLUTION: The structural base material is composed of a base material 11, an underlaying layer 12 and a thermally sprayed layer 15 of the volcanic ash. As the base material 11, a metal, a ceramic, concrete, a plastic, or the like, is used. The underlaying layer 12 is formed by gas thermal spraying or water plasma thermal spraying using a metal or a ceramic. The thermally sprayed layer 15 of the volcanic ash is formed by water plasma thermal spraying of the volcanic ash or a material containing the volcanic ash as a main component. It is preferable that the surface to be treated of the base material 1 is previously subjected to blasting and further the surface of the thermally sprayed layer 15 of the volcanic ash is subjected to melting treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、火山灰を利用した
構造用素材及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structural material using volcanic ash and a method for producing the same.

【0002】[0002]

【発明の背景】我が国は、世界有数の火山国として、三
宅島や有珠山を例に挙げるまでもなく、活発な火山活動
に悩まされてきた。特に、火山活動時に排出される火山
灰は、多量、微粉で、硫黄分等有害成分を含むため、人
畜や農産物に多大の被害を与えていることは周知であ
る。
BACKGROUND OF THE INVENTION As one of the world's leading volcanic countries, Japan has suffered from active volcanic activity, not to mention Miyakejima and Usuyama. In particular, it is well known that volcanic ash emitted during volcanic activity is a large amount, a fine powder, and contains harmful components such as sulfur, thus causing a great deal of damage to livestock and agricultural products.

【0003】このような火山灰の有効な用途はほとんど
なく、その大部分は比較的環境への影響が少ない場所へ
廃棄されているのが現状である。しかし、微粉で有害成
分を含むため、輸送時、埋立て時等において、ときとし
て環境破壊等深刻な問題を発生する。
[0003] There is almost no effective use of such volcanic ash, and at present, most of the ash is disposed of in a place having relatively little influence on the environment. However, since harmful components are contained in the fine powder, serious problems such as environmental destruction sometimes occur at the time of transportation and landfill.

【0004】[0004]

【従来の技術と課題】一方、土や石類の粉末と粘土との
混合物を原料とするセラミックタイルが提供されてお
り、これらは約800〜1300℃の高温にて焼成され
ている。しかし、セラミックタイルは高温焼成を必要と
するため、大型品や円形等の特殊構造物では熱変形が生
じ、仕上がり寸法の厳密な精度が保持できず、建築用の
素材としては使用しがたい問題点を有していた。
2. Description of the Related Art On the other hand, there have been provided ceramic tiles made of a mixture of earth and stone powder and clay, and these are fired at a high temperature of about 800 to 1300 ° C. However, ceramic tiles need to be fired at high temperatures, so large-sized products and special structures such as circular ones are subject to thermal deformation, failing to maintain the strict accuracy of finished dimensions, making them difficult to use as building materials. Had a point.

【0005】そこで、本発明の目的は、火山灰の有効利
用の一環として、また、仕上がり寸法の精度を充分に保
障できるセラミックタイル様の構造用素材及びその製造
方法を提供することにある。
Accordingly, an object of the present invention is to provide a ceramic tile-like structural material and a method for producing the same, which are capable of ensuring the accuracy of finished dimensions as part of the effective use of volcanic ash.

【0006】[0006]

【発明の構成、作用及び効果】以上の目的を達成するた
め、本発明に係る構造用素材は、金属、セラミック、コ
ンクリート、プラスチック等の基材と、その上に溶射さ
れた火山灰を主成分とする火山灰溶射層とを備えたこと
を特徴とする。基材と火山灰溶射層との間には1層又は
2層の下盛り層が介在されていてもよい。下盛り層とし
ては、NiAl合金等の金属又はジルコニア系セラミッ
ク等のセラミックを主成分とするガス溶射層及び/又は
水プラズマ溶射層であることが好ましい。
In order to achieve the above objects, the structural material according to the present invention comprises a base material such as metal, ceramic, concrete, plastic or the like, and a main component comprising volcanic ash sprayed thereon. And a sprayed volcanic ash layer. One or two underlayers may be interposed between the base material and the volcanic ash sprayed layer. The underlayer is preferably a gas sprayed layer and / or a water plasma sprayed layer mainly composed of a metal such as a NiAl alloy or a ceramic such as a zirconia ceramic.

【0007】また、本発明に係る前記構造用素材の製造
方法は、基材上に、直接、火山灰を主成分とする材料を
水プラズマ溶射して火山灰溶射層を形成することによっ
て、あるいは、基材上に金属又はセラミックを主成分と
する材料を溶射して下盛り層を形成した後、該下盛り層
上に火山灰を主成分とする材料を水プラズマ溶射して火
山灰溶射層を形成することを特徴とする。下盛り層はガ
ス溶射又は水プラズマ溶射される。
Further, the method for producing a structural material according to the present invention is characterized in that a material mainly composed of volcanic ash is directly subjected to water plasma spraying on a substrate to form a volcanic ash sprayed layer. After forming a lower layer by spraying a material mainly composed of metal or ceramic on the material, forming a volcanic ash sprayed layer by water plasma spraying a material mainly composed of volcanic ash on the lower layer. It is characterized by. The underlayer is gas-sprayed or water-plasma-sprayed.

【0008】前記基材の被処理表面をブラスト処理する
ことが好ましく、さらに、火山灰溶射層の表面を溶融処
理することがより好ましい。この表面溶融処理は、ガス
又は水プラズマ溶射機を使用し、その運転条件は溶射時
と同じでよく、溶射材料を供給しない状態で稼働させる
ことで実施すればよい。
Preferably, the surface of the substrate to be treated is blasted, and more preferably, the surface of the volcanic ash sprayed layer is melted. This surface melting treatment uses a gas or water plasma spraying machine, and its operating conditions may be the same as those at the time of spraying, and may be performed by operating without supplying a sprayed material.

【0009】ところで、火山灰の主成分は、アルミナ、
酸化珪素、酸化鉄等であり、概ね60〜70%の珪酸、
15%前後のアルミナと鉄やアルカリ土類などの酸化物
から構成されている。火山灰の粒度は、その降灰箇所に
よって異なるが、概ね0.01〜10mmであり、0.
1mm以下が約40%、0.1mm以上が約60%を占
めている。また、火山灰粒子に付着する火山ガスは硫酸
イオンや塩素イオンからなるため、水と結合して塩酸や
硫酸になりやすい。このため、一般にpHが4前後と低
く、酸性を呈することが知られている。
The main components of volcanic ash are alumina,
Silicon oxide, iron oxide, etc., and approximately 60 to 70% silicic acid;
It is composed of about 15% alumina and oxides such as iron and alkaline earth. The particle size of the volcanic ash varies depending on the location of the ash fall, but is generally 0.01 to 10 mm.
1 mm or less occupies about 40%, and 0.1 mm or more occupies about 60%. Further, since the volcanic gas adhering to the volcanic ash particles is composed of sulfate ions or chloride ions, it easily combines with water to form hydrochloric acid or sulfuric acid. For this reason, it is generally known that the pH is as low as about 4, and the acidity is exhibited.

【0010】ここで、普賢岳堆積物、始良しらす、桜島
火山灰の化学分析結果を以下の表1に示す。なお、本発
明者らが特に実験を行った三宅島の火山灰の成分に関し
ては表1とは別に後に記載する実施形態で詳細に示す。
Here, the results of chemical analysis of the Fugendake sediment, Shirahashi Shirasu and Sakurajima volcanic ash are shown in Table 1 below. The components of the volcanic ash of Miyakejima, on which the present inventors particularly conducted experiments, will be described in detail in an embodiment described later separately from Table 1 separately from Table 1.

【0011】[0011]

【表1】 [Table 1]

【0012】各種火山灰はいずれも通常の溶射成分に近
く、特に、コーティング時の溶射性に支障はない。ま
た、火山灰中には、有害成分として硫黄分(硫酸塩では
なく、硫黄単体や硫化物)やその他の成分が含まれる
が、水プラズマ溶射は火炎温度が30,000℃にも達
するため、分解蒸発して除去される。
Each type of volcanic ash is close to a normal spray component, and does not particularly hinder the spray property at the time of coating. In addition, volcanic ash contains harmful components such as sulfur (not sulfuric acid but simple sulfur or sulfide) and other components. However, water plasma spraying has a flame temperature of up to 30,000 ° C, so it is decomposed. It is removed by evaporation.

【0013】本発明で用いられる前記水プラズマ溶射
は、水安定化プラズマ溶射とも称され、プラズマ安定化
ガスとして水蒸気を使用するもので、通常のArや
2、H2,Heガス等を使用するガスプラズマ溶射と比
較して、溶射能力が高く(時間当たりの溶射量が約10
倍)、それらのガスの代わりに水を使用するために溶射
時の費用が低減できる。
The water plasma spraying used in the present invention is also called water-stabilized plasma spraying and uses water vapor as a plasma stabilizing gas, and uses ordinary Ar, N 2 , H 2 , He gas or the like. Spraying capability compared to gas plasma spraying (spraying amount per hour is about 10
Times), the cost of spraying can be reduced because water is used instead of those gases.

【0014】本発明においては、基材が最終製品の形状
の基礎となるため、基材としてアルミニウム等の金属材
料を用いれば、大型の構造素材であっても寸法精度よく
製作することができる。さらに、強度を有する鉄鋼等を
機材として使用することにより、セラミックタイル様の
外観を有しながら高強度の構造用素材を得ることができ
る。
In the present invention, since the base material is the basis of the shape of the final product, if a metal material such as aluminum is used as the base material, even a large structural material can be manufactured with high dimensional accuracy. Furthermore, by using steel or the like having strength as a device, it is possible to obtain a high-strength structural material having a ceramic tile-like appearance.

【0015】[0015]

【発明の実施の形態】以下、本発明に係る構造用素材及
びその製造方法の実施形態について、添付図面を参照し
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a structural material and a method for manufacturing the same according to the present invention will be described below with reference to the accompanying drawings.

【0016】(三宅島火山灰の化学組成)まず、三宅島
火山灰の化学組成について、水プラズマ溶射前後に分け
て表2に示す。以下に説明する実施例1〜6で使用した
火山灰とはこの三宅島火山灰である。
(Chemical Composition of Miyakejima Volcanic Ash) First, Table 2 shows the chemical composition of Miyakejima volcanic ash before and after water plasma spraying. The volcanic ash used in Examples 1 to 6 described below is the Miyakejima volcanic ash.

【0017】[0017]

【表2】 [Table 2]

【0018】(溶射の条件)次に、以下の実施例1〜6
で行われた水プラズマ溶射とガス溶射の条件を表3に示
す。なお、ここで示されている条件はそれぞれの溶射で
通常処理される条件と同様である。
(Conditions for thermal spraying) Next, the following Examples 1 to 6
Table 3 shows the conditions of the water plasma spraying and the gas spraying performed in the above. The conditions shown here are the same as the conditions usually processed in each thermal spraying.

【0019】[0019]

【表3】 [Table 3]

【0020】(実施例1、図1参照)炭素鋼からなる円
管11の外表面をアルミナにてブラストした後、外円管
11を回転台に取り付け、ガス溶射機にて80%Ni−
20%Al(wt%)を100μmの厚さを目標に溶射
して下盛り層12を形成した。
(Example 1, see FIG. 1) After the outer surface of a circular pipe 11 made of carbon steel was blasted with alumina, the outer circular pipe 11 was mounted on a turntable, and 80% Ni--
20% Al (wt%) was thermally sprayed to a thickness of 100 µm to form the lower embossed layer 12.

【0021】次に、円管11を回転させて管内面に冷却
空気を送気しながら、水プラズマ溶射機にて火山灰を5
00μmの厚さを目標に溶射を行い、火山灰溶射層15
を形成した。溶射後は大気中に放置し、自然冷却した。
Next, while rotating the circular pipe 11 to supply cooling air to the inner surface of the pipe, 5 volcanic ash is removed by a water plasma spraying machine.
Thermal spraying is performed with a target thickness of 00 μm,
Was formed. After thermal spraying, it was left in the air and cooled naturally.

【0022】(実施例2、図2参照)炭素鋼板21の片
面をアルミナにてブラスとした後、ガス溶射機にて80
%Ni−20%Al(wt%)を100μmの厚さを目
標に溶射して下盛り層22を形成した。さらに、水プラ
ズマ溶射機にてZrO2−8%Y23(wt%)を30
0μmの厚さを目標に溶射して下盛り層23を形成し
た。
(Example 2, see FIG. 2) One side of a carbon steel plate 21 was brassed with alumina, and then 80% with a gas spraying machine.
% Ni-20% Al (wt%) was thermally sprayed with a target thickness of 100 μm to form the lower filling layer 22. Further, ZrO 2 -8% Y 2 O 3 (wt%) was added to 30
The underfill layer 23 was formed by thermal spraying with a target thickness of 0 μm.

【0023】次に、水プラズマ溶射機にて火山灰を1m
mの厚さを目標に溶射を行い、火山灰溶射層25を形成
した。その後、火山灰の供給を止めて水プラズマ溶射機
で加熱し、表層を溶融状態とした。その後は大気中に放
置し、自然冷却した。
Next, the volcanic ash was measured for 1 m using a water plasma spraying machine.
Thermal spraying was performed with a target thickness of m to form a volcanic ash sprayed layer 25. After that, the supply of the volcanic ash was stopped, and the surface layer was melted by heating with a water plasma spraying machine. After that, it was left in the air and cooled naturally.

【0024】(実施例3、図3参照)Fe−13%Cr
(wt%)鋼管31の外表面をアルミナにてブラスとし
た後、ガス溶射機にて80%Ni−20%Cr(wt
%)を200μmの厚さを目標に溶射して下盛り層32
を形成した。さらに、水プラズマ溶射機にてZrO2
8%Y23(wt%)を300μmの厚さを目標に溶射
して下盛り層33を形成した。
(See Example 3, FIG. 3) Fe-13% Cr
(Wt%) After the outer surface of the steel pipe 31 was brassed with alumina, 80% Ni-20% Cr (wt
%) With a target thickness of 200 μm,
Was formed. Further, ZrO 2
8% Y 2 O 3 (wt%) was sprayed with a target of a thickness of 300 μm to form the lower filling layer 33.

【0025】次に、水プラズマ溶射機にて火山灰を1.
5mmの厚さを目標に溶射を行い、火山灰溶射層35を
形成した。溶射後は大気中に放置し、自然冷却した。
Next, volcanic ash was removed by a water plasma spraying machine.
Thermal spraying was performed with a target thickness of 5 mm to form a volcanic ash sprayed layer 35. After thermal spraying, it was left in the air and cooled naturally.

【0026】(実施例4、図4参照)アルミニウム鋼管
41の外表面をアルミナにてブラスとした後、ガス溶射
機にて80%Al−20%Ni(wt%)を100μm
の厚さを目標に溶射して下盛り層42を形成した。さら
に、水プラズマ溶射機にてAl23と火山灰の等重量混
合物を500μmの厚さを目標に溶射して下盛り層43
を形成した。
(Example 4, see FIG. 4) After the outer surface of the aluminum steel pipe 41 was brassed with alumina, 80% Al-20% Ni (wt%) was 100 μm with a gas spraying machine.
The lower embossed layer 42 was formed by thermal spraying with the target thickness. Further, an equal weight mixture of Al 2 O 3 and volcanic ash was sprayed with a water plasma spraying machine to a thickness of 500 μm as a target, and the lower layer 43 was sprayed.
Was formed.

【0027】次に、水プラズマ溶射機にて火山灰を0.
8mmの厚さを目標に溶射を行い、火山灰溶射層45を
形成した。溶射後は大気中に放置し、自然冷却した。
Next, the volcanic ash was reduced to 0 by a water plasma spraying machine.
Thermal spraying was performed with a target of 8 mm in thickness to form a volcanic ash sprayed layer 45. After thermal spraying, it was left in the air and cooled naturally.

【0028】(実施例5、図5参照)ALC(軽量発泡
コンクリート)板51の表面に、直接、水プラズマ溶射
機にて火山灰を1mmの厚さを目標に溶射を行い、火山
灰溶射層55を形成した。その後、火山灰の供給を止め
て水プラズマ溶射機で加熱し、表層を溶融状態とした。
その後は大気中に放置し、自然冷却した。
(See Example 5, FIG. 5) The surface of an ALC (lightweight foamed concrete) plate 51 is directly sprayed with volcanic ash with a target of 1 mm in thickness by a water plasma spraying machine, and a volcanic ash sprayed layer 55 is formed. Formed. After that, the supply of the volcanic ash was stopped, and the surface layer was melted by heating with a water plasma spraying machine.
After that, it was left in the air and cooled naturally.

【0029】(実施例6、図6参照)FRP(ガラス繊
維強化プラスチック)板61の表面に、ガス溶射機にて
Znを200μmの厚さを目標に溶射して下盛り層62
を形成した。さらに、ガス溶射機にて80%Ni−20
%Al(wt%)を200μmの厚さを目標に溶射して
下盛り層63を形成した。
(See Example 6, FIG. 6) Zn was sprayed on the surface of an FRP (glass fiber reinforced plastic) plate 61 with a gas spraying machine to a thickness of 200 μm as a target, and an underlayer 62 was formed.
Was formed. In addition, 80% Ni-20 by gas spraying
% Al (wt%) was thermally sprayed with a target thickness of 200 μm to form the lower filling layer 63.

【0030】次に、水プラズマ溶射機にて火山灰を0.
6mmの厚さを目標に溶射を行い、火山灰溶射層65を
形成した。溶射後は大気中に放置し、自然冷却した。
Next, the volcanic ash was reduced to 0 by a water plasma spraying machine.
Thermal spraying was performed with a target thickness of 6 mm to form a volcanic ash sprayed layer 65. After thermal spraying, it was left in the air and cooled naturally.

【0031】(実施例の外観状況)前記実施例1〜4の
外観状況の観察結果を表4にまとめて示す。いずれも黒
色を呈し、火山灰溶射層の剥離や脱落は見られず、異常
は認められなかった。
(Appearance of Examples) The results of observation of the appearance of Examples 1 to 4 are summarized in Table 4. All of them were black, and no delamination or falling off of the sprayed volcanic ash layer was observed, and no abnormality was observed.

【0032】[0032]

【表4】 [Table 4]

【0033】(ヒートサイクル試験)前記実施例1〜4
について、耐久性(耐食性)を評価するため、105℃
の空気中に50分間保持した後、常温水中へ10分間浸
漬することを1サイクルとするヒートサイクル試験を、
10サイクルごとにチェックしつつ50サイクル実施
し、その結果を表5にまとめて示す。なお、比較例とし
て通常の炭素鋼(SPCC)を加えて試験を行い、その
結果を表5に併せて示す。
(Heat cycle test) Examples 1 to 4
About 105 ° C. to evaluate durability (corrosion resistance)
A heat cycle test in which one cycle of holding in air for 50 minutes and then immersing in normal temperature water for 10 minutes,
50 cycles were performed while checking every 10 cycles, and the results are summarized in Table 5. As a comparative example, a test was conducted by adding ordinary carbon steel (SPCC), and the results are shown in Table 5.

【0034】ヒートサイクル試験の結果、比較例として
の炭素鋼片には顕著な赤錆が認められたのに対し、実施
例1〜4は外観上、割れ、剥離等の異常はなく、発錆も
認められなかった。
As a result of the heat cycle test, remarkable red rust was observed in the carbon steel slab as a comparative example, whereas in Examples 1-4, there was no abnormality such as cracking or peeling, and no rust was generated. I was not able to admit.

【0035】[0035]

【表5】 [Table 5]

【0036】(引っ張り試験)素材強度に与える影響を
調査するため、JIS5号試験片を炭素鋼(SPCC)
で作製し、引っ張り試験を実施した。その結果を表6に
まとめて示す。各実施例1〜4共に基材の炭素鋼に比較
して特に強度低下等有意な差は認められなかった。
(Tensile test) In order to investigate the effect on the material strength, a JIS No. 5 test piece was prepared using carbon steel (SPCC).
And a tensile test was performed. The results are summarized in Table 6. In each of Examples 1 to 4, no significant difference such as a decrease in strength was observed as compared with the carbon steel as the base material.

【0037】[0037]

【表6】 [Table 6]

【0038】(実施例5,6の評価)実施例5に関して
は、外観上ひび割れやその他の異常は見られず、健全で
あった。また、JISA5416に基づいて曲げ試験を
実施したところ、特に有意な差は認められなかった。
(Evaluation of Examples 5 and 6) In Example 5, no cracks or other abnormalities were observed in appearance, and the samples were sound. When a bending test was performed based on JIS A5416, no significant difference was found.

【0039】実施例6に関しても、外観上ひび割れやそ
の他の異常は見られず、健全であった。また、JISK
6919に基づいて曲げ試験を実施したところ、特に有
意な差は認められなかった。
In Example 6, no cracks or other abnormalities were observed in appearance, and the sound was sound. Also, JISK
When a bending test was performed based on 6919, no significant difference was found.

【0040】(他の実施形態)なお、本発明に係る構造
用素材及びその製造方法は、前記実施形態に限定するも
のではなく、その要旨の範囲内で種々に変更することが
できる。
(Other Embodiments) The structural material and the method for manufacturing the same according to the present invention are not limited to the above-described embodiments, but can be variously modified within the scope of the invention.

【0041】特に、水プラズマ溶射、ガスプラズマ溶射
の条件は任意であり、基材や下盛り層等の材料は好まし
いものを任意に選択することができる。
In particular, the conditions of water plasma spraying and gas plasma spraying are arbitrary, and preferable materials such as a base material and an underlayer can be arbitrarily selected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施例を示す断面図。FIG. 1 is a sectional view showing a first embodiment.

【図2】第2実施例を示す断面図。FIG. 2 is a sectional view showing a second embodiment.

【図3】第3実施例を示す断面図。FIG. 3 is a sectional view showing a third embodiment.

【図4】第4実施例を示す断面図。FIG. 4 is a sectional view showing a fourth embodiment.

【図5】第5実施例を示す断面図。FIG. 5 is a sectional view showing a fifth embodiment.

【図6】第6実施例を示す断面図。FIG. 6 is a sectional view showing a sixth embodiment.

【符号の説明】[Explanation of symbols]

11,21,31,41,51,61…基材 12,22,23,32,33,42,43,62,6
3…下盛り層 15,25,35,45,55,65…火山灰溶射層
11, 21, 31, 41, 51, 61 ... base material 12, 22, 23, 32, 33, 42, 43, 62, 6
3 ... Lower layer 15,25,35,45,55,65 ... Volcanic ash sprayed layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 武三 東京都北区西が丘3丁目13番10号 東京都 立産業技術研究所内 (72)発明者 基 昭夫 東京都北区西が丘3丁目13番10号 東京都 立産業技術研究所内 (72)発明者 片岡 征二 東京都北区西が丘3丁目13番10号 東京都 立産業技術研究所内 (72)発明者 中森 正治 兵庫県尼崎市常光寺1丁目9番1号 大阪 富士工業株式会社内 (72)発明者 柳楽 勝洋 兵庫県尼崎市常光寺1丁目9番1号 大阪 富士工業株式会社内 (72)発明者 相坂 隆行 兵庫県尼崎市常光寺1丁目9番1号 大阪 富士工業株式会社内 (72)発明者 中島 貞好 東京都荒川区東日暮里1丁目24番10号 サ ンコーテクノ株式会社内 Fターム(参考) 4K031 AA01 AA05 AA08 AB02 AB03 AB04 AB08 CB14 CB18 CB26 CB42 CB43 CB48 DA01 DA04 EA03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takezo Sasaki 3-13-10 Nishigaoka, Kita-ku, Tokyo Inside the Tokyo Metropolitan Industrial Research Institute (72) Inventor Akio Moto 3-13-10 Nishigaoka, Kita-ku, Tokyo No. Tokyo Metropolitan Industrial Technology Research Institute (72) Inventor Seiji Kataoka 3-13-10 Nishigaoka, Kita-ku, Tokyo Tokyo Metropolitan Industrial Technology Research Institute (72) Inventor Masaharu Nakamori 1-9-9 Jokoji Temple, Amagasaki City, Hyogo Prefecture No. 1 Inside Osaka Fuji Industrial Co., Ltd. (72) Katsuhiro Yanagura, Inventor 1-9-1, Jokoji Temple, Amagasaki City, Hyogo Prefecture Inside Osaka Fuji Industry Co., Ltd. (72) Takayuki Aisaka 1-9-1, Jokoji Temple, Amagasaki City, Hyogo Prefecture Osaka Fuji Industrial Co., Ltd. (72) Inventor Sadayoshi Nakajima 1-24-10 Higashi-Nippori, Arakawa-ku, Tokyo Sanko Techno Co., Ltd. F-term (reference) 4K0 31 AA01 AA05 AA08 AB02 AB03 AB04 AB08 CB14 CB18 CB26 CB42 CB43 CB48 DA01 DA04 EA03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基材と、 前記基材上に溶射された火山灰を主成分とする火山灰溶
射層と、 を備えたことを特徴とする構造用素材。
A structural material comprising: a base material; and a sprayed volcanic ash layer mainly composed of volcanic ash sprayed on the base material.
【請求項2】 基材と、 前記基材上に溶射された金属又はセラミックを主成分と
する下盛り層と、 前記下盛り層上に溶射された火山灰を主成分とする火山
灰溶射層と、 を備えたことを特徴とする構造用素材。
2. A base material, a base layer mainly composed of metal or ceramic sprayed on the base material, and a volcanic ash sprayed layer mainly composed of volcanic ash sprayed on the base layer, A structural material comprising:
【請求項3】 前記下盛り層は、金属又はセラミックを
主成分とするガス溶射層及び/又は水プラズマ溶射層で
あることを特徴とする請求項2記載の構造用素材。
3. The structural material according to claim 2, wherein the underfill layer is a gas-sprayed layer mainly composed of metal or ceramic and / or a water-plasma-sprayed layer.
【請求項4】 基材上に火山灰を主成分とする材料を水
プラズマ溶射して火山灰溶射層を形成することを特徴と
する構造用素材の製造方法。
4. A method for producing a structural material, wherein a material mainly composed of volcanic ash is sprayed on a substrate with water plasma to form a volcanic ash sprayed layer.
【請求項5】 基材上に金属又はセラミックを主成分と
する材料を溶射して下盛り層を形成する工程と、 前記下盛り層上に火山灰を主成分とする材料を水プラズ
マ溶射して火山灰溶射層を形成することを特徴とする構
造用素材の製造方法。
5. A step of spraying a material containing metal or ceramic as a main component on a base material to form a lower filling layer, and performing a water plasma spraying of a material containing volcanic ash as a main component on the lower filling layer. A method for producing a structural material, comprising forming a volcanic ash sprayed layer.
【請求項6】 さらに、前記基材の被処理表面をブラス
ト処理することを特徴とする請求項4又は請求項5記載
の構造用素材の製造方法。
6. The method according to claim 4, further comprising blasting the surface of the base material to be treated.
【請求項7】 さらに、火山灰溶射層の表面を溶融処理
することを特徴とする請求項4、請求項5又は請求項6
記載の構造用素材の製造方法。
7. The method according to claim 4, wherein the surface of the volcanic ash sprayed layer is subjected to a melting treatment.
A method for producing the structural material described in the above.
JP2001083324A 2001-03-22 2001-03-22 Manufacturing method of structural materials using volcanic ash Expired - Fee Related JP3488438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001083324A JP3488438B2 (en) 2001-03-22 2001-03-22 Manufacturing method of structural materials using volcanic ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001083324A JP3488438B2 (en) 2001-03-22 2001-03-22 Manufacturing method of structural materials using volcanic ash

Publications (2)

Publication Number Publication Date
JP2002285315A true JP2002285315A (en) 2002-10-03
JP3488438B2 JP3488438B2 (en) 2004-01-19

Family

ID=18939158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001083324A Expired - Fee Related JP3488438B2 (en) 2001-03-22 2001-03-22 Manufacturing method of structural materials using volcanic ash

Country Status (1)

Country Link
JP (1) JP3488438B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2869917A1 (en) * 2004-05-10 2005-11-11 Daniel Bernard Fabrication of a construction material with a base of concrete, terracotta or wood coated with a layer of metal or alloy to provide an aesthetic and/or protective finish for a wide range of building applications
JP2006021946A (en) * 2004-07-07 2006-01-26 Kansai Electric Power Co Inc:The Structural base material and method of manufacturing the same
EP1780297A2 (en) * 2005-10-18 2007-05-02 T.W.R. Sas Di Mario Doda & C. Process for coating and/or decorating ceramic articles and articles thus obtainable
JP2016037641A (en) * 2014-08-08 2016-03-22 ホウムラ産業株式会社 Three-dimensional molded article and production method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2869917A1 (en) * 2004-05-10 2005-11-11 Daniel Bernard Fabrication of a construction material with a base of concrete, terracotta or wood coated with a layer of metal or alloy to provide an aesthetic and/or protective finish for a wide range of building applications
JP2006021946A (en) * 2004-07-07 2006-01-26 Kansai Electric Power Co Inc:The Structural base material and method of manufacturing the same
EP1780297A2 (en) * 2005-10-18 2007-05-02 T.W.R. Sas Di Mario Doda & C. Process for coating and/or decorating ceramic articles and articles thus obtainable
EP1780297A3 (en) * 2005-10-18 2007-07-04 T.W.R. Sas Di Mario Doda & C. Process for coating and/or decorating ceramic articles and articles thus obtainable
JP2016037641A (en) * 2014-08-08 2016-03-22 ホウムラ産業株式会社 Three-dimensional molded article and production method thereof

Also Published As

Publication number Publication date
JP3488438B2 (en) 2004-01-19

Similar Documents

Publication Publication Date Title
Ganvir et al. Comparative study of suspension plasma sprayed and suspension high velocity oxy-fuel sprayed YSZ thermal barrier coatings
Mack et al. Lifetime and failure modes of plasma sprayed thermal barrier coatings in thermal gradient rig tests with simultaneous CMAS injection
JP5230434B2 (en) How to reduce porosity
EP0455419B1 (en) Coating steel articles
Ouyang et al. Enhancement of high temperature oxidation resistance and spallation resistance of SiC-self-healing thermal barrier coatings
VV et al. Role of bond coat processing methods on the durability of plasma sprayed thermal barrier systems
Ashokkumar et al. An overview of cold spray coating in additive manufacturing, component repairing and other engineering applications
CN103874580A (en) Thermal barrier coating systems and processes therefor
Wolf et al. Resistance of pure and mixed rare earth silicates against calcium‐magnesium‐aluminosilicate (CMAS): A comparative study
Gateman et al. Corrosion of one-step superhydrophobic stainless-steel thermal spray coatings
WO2014034395A1 (en) Paint for exhaust system component and exhaust system component
Zhang et al. Enhanced properties of Al-modified EB-PVD 7YSZ thermal barrier coatings
Bahamirian et al. Thermal durability of YSZ/nanostructured Gd2Zr2O7 TBC undergoing thermal cycling
Bal et al. The effect of CMAS interaction on thermal cycle lifetime of YSZ based thermal barrier coatings
Cheng et al. Microstructure and Tribocorrosion behavior of Al 2 O 3/Al composite coatings: Role of Al 2 O 3 addition
Suleiman et al. Surface characterisation, corrosion and mechanical properties of polyester-polyester/snail shell powder coatings of steel pipeline for naval applications
Moropoulou et al. Evaluation of cleaning procedures on the facades of the Bank of Greece historical building in the center of Athens
JP2002285315A (en) Structural base material using volcanic ash and method of producing the same
CN104928674B (en) Bury and cover the coating production that Combined Processing improves thermal barrier coating and basal body binding force
Dong et al. Multi-layered thermal barrier coatings fabricated by plasma-spraying and dry-ice blasting: Microstructure characterization and prolonged lifetime
Shinozaki et al. The effect of vermiculite on the degradation and spallation of plasma sprayed thermal barrier coatings
Jafari et al. Wetting Behavior and Functionality Restoration of Cold-Sprayed Aluminum-Quasicrystalline Composite Coatings
CN106929793A (en) A kind of composite, on metallic matrix spray-on coating method and corrosion-inhibiting coating
Yamano et al. Oxidation control with chromate pretreatment of MCrAlY unmelted particle and bond coat in thermal barrier systems
JP5188104B2 (en) How to remove uneven color on concrete surface

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370