JP2002285135A - Anisotropic electroconductive adhesive and connecting structure using the same - Google Patents

Anisotropic electroconductive adhesive and connecting structure using the same

Info

Publication number
JP2002285135A
JP2002285135A JP2001090340A JP2001090340A JP2002285135A JP 2002285135 A JP2002285135 A JP 2002285135A JP 2001090340 A JP2001090340 A JP 2001090340A JP 2001090340 A JP2001090340 A JP 2001090340A JP 2002285135 A JP2002285135 A JP 2002285135A
Authority
JP
Japan
Prior art keywords
anisotropic conductive
fine particles
conductive adhesive
adhesive
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001090340A
Other languages
Japanese (ja)
Inventor
Toshihiko Egawa
敏彦 江川
Kazuyoshi Yoshida
一義 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2001090340A priority Critical patent/JP2002285135A/en
Publication of JP2002285135A publication Critical patent/JP2002285135A/en
Pending legal-status Critical Current

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Combinations Of Printed Boards (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anisotropic electroconductive adhesive capable of easily peeling from an electrode and making unnecessary the disposal of electronic parts or electric and electronic equipment, and a connecting structure using the same. SOLUTION: This anisotropic electroconductive adhesive is obtained by dispersing electroconductive fine particles 2 and insulating resin fine particles 3 in an adhesive resin binder 1. Since the insulating resin fine particles 3 are soluble in a general-purpose solvent and fine and thereby have excellent dispersibility in a resin, the insulating resin fine particles 3 are surely readily soluble because the Tg is <=160 deg.C during hot-pressing. Thereby, the adhesive can simply be peeled from the electrode to repair electronic parts even when the positional shift, etc., of the electrode occurs during connecting operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶ディスプレイ
(以下、LCDという)とテープキャリアパッケージ(以
下、TCPという)との電気的な接続 、TCPとプリン
ト回路基板(以下、PCBという) 、フレキシブル回路
基板(以下、FPCという)との電気的な接続、チップ・
オン・ガラス(以下、COGという)接続法における対向
するフリップ・チップのバンプ部と液晶回路基板の電極
との電気的な接続等に使用される異方導電性接着剤及び
これを用いた接続構造に関するものである。
The present invention relates to a liquid crystal display.
(Hereinafter referred to as LCD) and electrical connection between tape carrier package (hereinafter referred to as TCP), electrical connection between TCP and printed circuit board (hereinafter referred to as PCB), flexible circuit board (hereinafter referred to as FPC) , Chips
Anisotropic conductive adhesive used for electrical connection between opposing flip chip bumps and electrodes of a liquid crystal circuit board in an on-glass (hereinafter referred to as COG) connection method and a connection structure using the same It is about.

【0002】[0002]

【従来の技術】近年、半導体素子の高密度実装法とし
て、フリップ・チップ等のベアチップによるダイレクト
・チップアタッチ方式が採用されている。フリップ・チ
ップ法(flip chip mounting)におい
ては、相対向する配線基板の電極とフリップ・チップと
の間に、異方導電性接着剤を介在塗布してこれを加熱加
圧し、配線基板の電極とフリップ・チップとを電気的に
導通接続するようにしている。
2. Description of the Related Art In recent years, a direct chip attach method using a bare chip such as a flip chip has been adopted as a high-density mounting method of a semiconductor element. In the flip chip method (flip chip mounting), an anisotropic conductive adhesive is interposed between the electrodes of the wiring board and the flip chip, which are opposed to each other, and this is heated and pressurized. The flip chip is electrically connected to the flip chip.

【0003】異方導電性接着剤の材料としては、接続信
頼性に優れる熱硬化性樹脂組成物が主に使用されてい
る。また、異方導電性接着剤だけではなく、熱硬化性樹
脂組成物に導電性微粒子を混在・分散させた異方導電性
フィルム接着剤が代わりに使用される場合もある。この
ような異方導電性接着剤や異方導電性フィルム接着剤
は、LCDとTCPのリードとの導通接続 、COG接
続法における対向するフリップ・チップのバンプ部と液
晶回路基板の電極との導通接続等に使用される。
[0003] As a material of the anisotropic conductive adhesive, a thermosetting resin composition having excellent connection reliability is mainly used. In addition to the anisotropic conductive adhesive, an anisotropic conductive film adhesive in which conductive fine particles are mixed and dispersed in a thermosetting resin composition may be used instead. Such an anisotropic conductive adhesive or an anisotropic conductive film adhesive is used for the conductive connection between the LCD and the lead of the TCP, and the conductive connection between the bump portion of the opposite flip chip and the electrode of the liquid crystal circuit board in the COG connection method. Used for connection etc.

【0004】[0004]

【発明が解決しようとする課題】従来の異方導電性接着
剤等は、以上のように熱硬化性樹脂組成物を主成分と
し、加熱加圧により硬化した後には接着力が非常に強い
ので、接続作業中に電極の位置ズレ等に代表される接続
不良が発生した場合には、電極からの剥離がきわめて困
難となる。このため、電子部品をリペア(修復)すること
ができず、そのまま電子部品を廃棄せざるを得ないとい
う問題がある。さらに、電子部品を搭載した電気電子機
器の市場流通後に導通接続部に故障が発生した場合で
も、電子部品をリペアすることができないので、電気電
子機器自体を廃棄せざるを得ないという問題もある。こ
のような問題は、近年、地球環境保全に向け、リサイク
ル性が強く要求されている関係上、極力解消する必要が
ある。
As described above, conventional anisotropic conductive adhesives mainly contain a thermosetting resin composition, and have an extremely strong adhesive strength after being cured by heating and pressing. In the case where a connection failure typified by misalignment of the electrode occurs during the connection work, it is extremely difficult to peel off the electrode. For this reason, there is a problem that the electronic component cannot be repaired (repaired) and the electronic component must be discarded as it is. Furthermore, even if a failure occurs in the conductive connection portion after the market distribution of the electric / electronic device equipped with the electronic component, the electronic component cannot be repaired, so that the electric / electronic device itself has to be discarded. . In recent years, it is necessary to eliminate such a problem as much as possible because of the strong demand for recyclability for global environmental protection.

【0005】本発明は、上記に鑑みなされたもので、電
極からの剥離を容易とし、電子部品や電気電子機器の廃
棄を抑制することのできる異方導電性接着剤及びこれを
用いた接続構造を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and has an anisotropic conductive adhesive capable of facilitating separation from an electrode and suppressing disposal of electronic components and electric / electronic devices, and a connection structure using the same. It is intended to provide.

【0006】[0006]

【課題を解決するための手段】請求項1記載の発明にお
いては、上記課題を達成するため、接着性樹脂バインダ
中に、導電性微粒子と絶縁性樹脂微粒子とを分散したこ
とを特徴としている。なお、上記絶縁性樹脂微粒子は汎
用溶剤で溶解でき、該絶縁性樹脂微粒子のガラス転移点
が160℃以下の樹脂とすることができる。また、0.
01〜400nmの波長で製膜あるいは硬化することが
できる。
According to the first aspect of the present invention, in order to achieve the above object, conductive fine particles and insulating resin fine particles are dispersed in an adhesive resin binder. The insulating resin fine particles can be dissolved in a general-purpose solvent, and the resin having a glass transition point of 160 ° C. or less can be used. Also, 0.
A film can be formed or cured at a wavelength of from 01 to 400 nm.

【0007】また、請求項4記載の発明においては、上
記課題を達成するため、対向する第一、第二の電気接合
物を異方導電性接着剤により接続するものであって、上
記異方導電性接着剤を請求項1、2、又は3記載の異方
導電性接着剤とし、この異方導電性接着剤を0.01〜
400nmの波長で製膜してこれを加熱加圧し、上記第
一、第二の電気接合物を導通接続するようにしたことを
特徴としている。
Further, in order to achieve the above object, the first and second electric joints facing each other are connected by an anisotropic conductive adhesive. The conductive adhesive is the anisotropic conductive adhesive according to claim 1, 2, or 3, and the anisotropic conductive adhesive is 0.01 to
A film is formed at a wavelength of 400 nm, and the film is heated and pressurized to electrically connect the first and second electric joints.

【0008】ここで、特許請求の範囲における第一、第
二の電気接合物には、少なくとも各種の電気電子機器
(例えば、通信端末やコンピュータ機器等)に使用される
LCD、TCP、PCB、FPC、COG、COF基
板、液晶回路基板等が含まれる。
Here, the first and second electric joints in the claims include at least various electric and electronic devices.
It includes an LCD, a TCP, a PCB, an FPC, a COG, a COF substrate, a liquid crystal circuit substrate, and the like used for a communication terminal or a computer device.

【0009】[0009]

【発明の実施の形態】以下、図面を参照して本発明の好
ましい実施形態を説明すると、本実施形態における異方
導電性接着剤は、図1や図2に示すように、無溶剤型の
接着性樹脂バインダ1中に、多数の導電性微粒子2と絶
縁性樹脂微粒子3とが分散され、相対向する電気接合物
であるガラス基板4と基板5との間に介在塗布され、そ
の後、0.01〜400nmの波長で製膜されて加熱加
圧されることにより、ガラス基板4と基板5との電極間
を電気的に導通する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1 and FIG. A large number of conductive fine particles 2 and insulating resin fine particles 3 are dispersed in an adhesive resin binder 1 and applied between glass substrates 4 and 5 which are opposing electric joints. A film is formed at a wavelength of 0.01 to 400 nm and heated and pressurized, thereby electrically connecting the electrodes of the glass substrate 4 and the substrate 5 to each other.

【0010】接着性樹脂バインダ1は、絶縁性樹脂微粒
子3の溶けないことが前提となるため、無溶剤型の光硬
化型樹脂、ラジカル重合開始剤、エポキシ樹脂、潜在性
硬化剤、公知のフィラーやシランカップリング剤等の添
加剤で構成される。光硬化型樹脂は、紫外線や電子線の
照射により、重合硬化する液状樹脂であればいずれでも
良い。
The adhesive resin binder 1 is based on the premise that the insulating resin fine particles 3 are not dissolved. Therefore, a solventless photo-curable resin, a radical polymerization initiator, an epoxy resin, a latent curing agent, a known filler And silane coupling agents. The photo-curable resin may be any liquid resin that is polymerized and cured by irradiation with ultraviolet rays or electron beams.

【0011】種類としては、エポキシアクリレートオリ
ゴマー、ウレタンアクリレートオリゴマー、ポリエーテ
ルアクリレートオリゴマー、ポリエステルアクリレート
オリゴマー等の光重合体オリゴマー、トリメチロールプ
ロパントリアクリレート、ポリエチレングリコールジア
クリレート、ポリアルキレングリコールジアクリレー
ト、ペンタエリスリトールアクリレート2‐シアノエチ
ルアクリレート、シクロヘキシルアクリレート、ジシク
ロペンテニルアクリレート、ジシクロペンテニロキシエ
チルアクリレート、2(2‐エトキシエトキシ)エチルア
クリレート、2‐エトキシエチルアクリレート、2‐エ
チルヘキシルアクリレート、n‐ヘキシルアクリレー
ト、2‐ヒドロキシエチルアクリレート、ヒドロキシプ
ロピルアクリレート、イソボルニルアクリレート、イソ
デシルアクリレート、イソオクチルアクリレート、n‐
ラウリルアクリレート、2‐メトキシエチルアクリレー
ト、2‐フェノキシエチルアクリレート、テトラヒドロ
フルフリールアクリレート、ネオペンチルグリコールジ
アクリレート、ジペンタエリスリトールヘキサアクリレ
ート等の光重合性単官能基、及び多官能アクリレートモ
ノマー等といったアクリル酸エステル等、及びこれらと
類似したt‐ブチルアミノエチルメタクリレート、シク
ロヘキシルメタクリレート、ジシクロペンテニロキシエ
チルメタクリレート、2‐ヒドロキシエチルメタクリレ
ート、イソボルニルメタクリレート、イソデシルメタク
リレート、n‐ラウリルアクリレート、ステアリルメタ
クリレート、トリデシルメタクリレート、グリシジルメ
タクリレート等の光重合性単官能基、及び多官能メタク
リレートモノマーといったメタクリル酸エステルに代表
される光重合型の樹脂がある。
[0011] Types include photopolymer oligomers such as epoxy acrylate oligomer, urethane acrylate oligomer, polyether acrylate oligomer, polyester acrylate oligomer, trimethylolpropane triacrylate, polyethylene glycol diacrylate, polyalkylene glycol diacrylate, and pentaerythritol acrylate. 2-cyanoethyl acrylate, cyclohexyl acrylate, dicyclopentenyl acrylate, dicyclopentenyloxyethyl acrylate, 2 (2-ethoxyethoxy) ethyl acrylate, 2-ethoxyethyl acrylate, 2-ethylhexyl acrylate, n-hexyl acrylate, 2-hydroxy Ethyl acrylate, hydroxypropyl acrylate, Seo isobornyl acrylate, isodecyl acrylate, isooctyl acrylate, n-
Acrylic acid such as photopolymerizable monofunctional group such as lauryl acrylate, 2-methoxyethyl acrylate, 2-phenoxyethyl acrylate, tetrahydrofurfuryl acrylate, neopentyl glycol diacrylate, dipentaerythritol hexaacrylate, and polyfunctional acrylate monomer Esters and the like, and t-butylaminoethyl methacrylate, cyclohexyl methacrylate, dicyclopentenyloxyethyl methacrylate, 2-hydroxyethyl methacrylate, isobornyl methacrylate, isodecyl methacrylate, n-lauryl acrylate, stearyl methacrylate, Photopolymerizable monofunctional groups such as decyl methacrylate and glycidyl methacrylate, and polyfunctional methacrylate monomers Is photopolymerization type resin represented by said methacrylic acid ester.

【0012】これらの樹脂は、必要に応じて単独で使用
したり、混合して使用することができる。また、上記光
重合性オリゴマーは、高粘度であるため、粘度調整のた
めに低粘度の光重合性アクリレートモノマーを1種、2
種以上混合することができる。光重合樹脂に使用するラ
ジカル重合開始剤としては、公知のベンゾフェノン、ア
セトフェノン等のケトン類、及びその誘導体ベンゾイン
エチルエーテル、イソプロピルベンゾインエチルエーテ
ル等のベンゾインエーテル類、ベンジル、ヒドロキシシ
クロヘキシルフェニルケトン等のベンジルケタール類、
チオキサントン類、ビスイミダゾール類、リン化合物等
があげられる。これらの光開始剤には、アミン類、イオ
ウ化合物、リン化合物等の増感剤を必要に応じて任意の
比で添加しても良い。
These resins can be used alone or as a mixture as needed. In addition, since the photopolymerizable oligomer has a high viscosity, one kind of low-viscosity photopolymerizable acrylate monomer is used for adjusting the viscosity.
More than one species can be mixed. Examples of the radical polymerization initiator used in the photopolymerizable resin include known benzophenones, ketones such as acetophenone, and derivatives thereof, benzoin ethers such as benzoin ethyl ether and isopropyl benzoin ethyl ether, and benzyl ketals such as benzyl and hydroxycyclohexyl phenyl ketone. Kind,
Thioxanthones, bisimidazoles, phosphorus compounds and the like. Sensitizers such as amines, sulfur compounds and phosphorus compounds may be added to these photoinitiators at any ratio as needed.

【0013】硬化用の光としては、一般的に使用されて
いる紫外線や電子線、具体的には波長のピークが0.0
1〜400nmの紫外線や電子線を使用することができ
る。具体的には、主波長を365nmとし、254、3
03、313nmの紫外線を効率的に照射する高圧水銀
灯、200〜400nmの広範囲にわたり紫外線スペク
トルを放射するメタルハライドランプ、無電極ランプ、
レーザ光線、電子ビームの加速エネルギーが1MeV未
満のEB硬化装置で発生させることができる。
The light for curing may be a commonly used ultraviolet ray or electron beam, and more specifically, a light having a wavelength peak of 0.0.
Ultraviolet light or an electron beam of 1 to 400 nm can be used. Specifically, the dominant wavelength is 365 nm,
03, a high-pressure mercury lamp that efficiently irradiates ultraviolet rays of 313 nm, a metal halide lamp that emits an ultraviolet spectrum over a wide range of 200 to 400 nm, an electrodeless lamp,
The laser beam or the electron beam can be generated by an EB curing device having an acceleration energy of less than 1 MeV.

【0014】接着性樹脂バインダに配合されるエポキシ
樹脂としては、特に限定されるものではないが、粘度調
整が可能な液状のビスA、ビスFタイプエポキシ樹脂、
固形のエポキシ樹脂、ビスフェノール以外のエポキシ樹
脂を用いることができる。好ましくは、電子部品関係に
有害な塩素の少ないタイプのエポキシ樹脂が良い。エポ
キシ樹脂に反応する硬化剤としては、ジシアンアミド、
二塩基酸ジヒドラジド類、イミダゾール類、イミダゾー
ル・エポキシ付加物、三弗化ホウ素・アミン錯体等、一
般に使用される潜在性硬化剤を用いることができる。
The epoxy resin to be mixed with the adhesive resin binder is not particularly limited, but is a liquid bis-A or bis-F type epoxy resin whose viscosity can be adjusted.
Solid epoxy resins and epoxy resins other than bisphenol can be used. Preferably, a type of epoxy resin containing less chlorine, which is harmful to electronic components, is preferable. As a curing agent that reacts with the epoxy resin, dicyanamide,
Commonly used latent curing agents such as dibasic acid dihydrazides, imidazoles, imidazole / epoxy adducts, and boron trifluoride / amine complexes can be used.

【0015】導電性微粒子2としては、Au、Ag、N
i、Cu、ハンダ等の金属粒子やカーボン等があげられ
る。また、これら及び非導電性のガラス、セラミック、
プラスチック等にAu、Ag、Ni、Cu、ハンダ、I
TO等の導通層を被覆等の手段で形成したものでも良
い。プラスチックを核としたり、熱溶融金属粒子を導電
性微粒子2とする場合、加熱加圧で変形性を示すので、
接続時に電極との接触面積が増加し、信頼性が向上す
る。導電性微粒子2は、接着剤の成分100体積部に対
して0.1〜30体積部の広範囲で用途により使い分け
る。但し、過剰な導電性微粒子2による隣接回路の短絡
を防止するため、0.2〜15体積部とするのが良い。
この場合の導電性微粒子2の平均粒径は、その添加量に
もよるが、1〜15μmが最適である。
As the conductive fine particles 2, Au, Ag, N
Metal particles such as i, Cu, and solder, and carbon. In addition, these and non-conductive glass, ceramic,
Au, Ag, Ni, Cu, solder, I
A conductive layer such as TO may be formed by means such as coating. When plastic is used as the nucleus or when the hot-melt metal particles are used as the conductive fine particles 2, since they exhibit deformability under heating and pressing,
The contact area with the electrode at the time of connection increases, and the reliability improves. The conductive fine particles 2 are properly used in a wide range of 0.1 to 30 parts by volume based on 100 parts by volume of the component of the adhesive. However, in order to prevent a short circuit in an adjacent circuit due to excessive conductive fine particles 2, the volume is preferably 0.2 to 15 parts by volume.
In this case, the average particle size of the conductive fine particles 2 is optimally 1 to 15 μm, though it depends on the amount of the fine particles added.

【0016】絶縁性樹脂微粒子3としては、汎用溶剤で
あるアセトン、MEK等のケトン系溶剤、トルエン、キ
シレン等の炭化水素系溶剤、酢酸エチル等のエステル系
溶剤、アルコール類、エーテル系溶剤で溶解し、かつガ
ラス転移点(以下、Tgという)が160℃以下の熱可塑
性樹脂を微粒子化したものが使用される。熱可塑性樹脂
としては、ポリエステル樹脂、アクリル樹脂、ポリウレ
タン樹脂、ポリスチレン樹脂、ブチラール樹脂、フェノ
キシ樹脂、ポリサルホン樹脂、エチレンと酢酸ビニール
の共重合物、スチレンとブタジエンの共重合物等の1
種、2種以上の混合物、シリコーン変性樹脂(例えば、
アクリルシリコーン、エポキシシリコーン、ポリイミド
シリコーン)等があげられる。これらの樹脂は、冷凍粉
砕、ジェットミル粉砕、ケミカル粉砕し、異方導電性接
着剤を薄い膜にした時の厚みを超えない平均粒子径50
μm以下、好ましくは20μm以下に粉砕分級して使用
する。
The insulating resin fine particles 3 are dissolved in ketone solvents such as acetone and MEK, hydrocarbon solvents such as toluene and xylene, ester solvents such as ethyl acetate, alcohols and ether solvents which are general-purpose solvents. A thermoplastic resin having a glass transition point (hereinafter, referred to as Tg) of 160 ° C. or lower is finely divided. Examples of the thermoplastic resin include polyester resins, acrylic resins, polyurethane resins, polystyrene resins, butyral resins, phenoxy resins, polysulfone resins, copolymers of ethylene and vinyl acetate, and copolymers of styrene and butadiene.
Species, a mixture of two or more, a silicone-modified resin (for example,
Acrylic silicone, epoxy silicone, polyimide silicone). These resins are subjected to freeze pulverization, jet mill pulverization, and chemical pulverization, and have an average particle diameter of not more than 50 μm when the anisotropic conductive adhesive is formed into a thin film.
It is used after pulverized and classified to a size of at most 20 μm, preferably at most 20 μm.

【0017】また、異方導電性接着剤に配合するため、
接着強度を可能な限り落とさないよう選定し、上記熱可
塑性樹脂を1種類以上混合しても良い。接着強度を落と
さず、リペアが可能となる取り扱いの容易な樹脂とし
て、フェノキシ樹脂のケミカル粉砕品を使用するのが好
ましい。また、絶縁性樹脂微粒子3は、硬化剤と加熱硬
化反応するエポキシ樹脂を粉砕し、混合しても良い。こ
の際の配合量は、樹脂全体の1〜50重量%、好ましく
は3〜40重量%が適切である。
Further, in order to be blended with the anisotropic conductive adhesive,
One or more kinds of the above-mentioned thermoplastic resins may be mixed so that the adhesive strength is not reduced as much as possible. It is preferable to use a chemically pulverized phenoxy resin as a resin that can be easily repaired without reducing the adhesive strength. Further, the insulating resin fine particles 3 may be obtained by pulverizing and mixing an epoxy resin which undergoes a heat curing reaction with a curing agent. The compounding amount at this time is appropriately 1 to 50% by weight, preferably 3 to 40% by weight of the whole resin.

【0018】なお、異方導電性接着剤には、用途に応じ
て無機充填剤、有機充填剤、白色顔料、重合抑制剤、増
感剤、シランカップリング剤、耐熱性、吸水性・密着性
を上げるための改質剤、及びその組み合わせから選択さ
れる添加物を含有しても良い。この場合の添加量として
は、異方導電性接着剤の樹脂成分100重量部に対して
0.1〜100重量部が好ましい。但し、この場合、添
加物の種類や性質が得られる回路板の信頼性に悪影響を
及ぼす可能性のない、又は著しく低くなる範囲で使用す
るよう留意する必要がある。
The anisotropic conductive adhesive includes an inorganic filler, an organic filler, a white pigment, a polymerization inhibitor, a sensitizer, a silane coupling agent, heat resistance, water absorption / adhesion, depending on the application. And an additive selected from a combination thereof. In this case, the addition amount is preferably 0.1 to 100 parts by weight based on 100 parts by weight of the resin component of the anisotropic conductive adhesive. However, in this case, care must be taken to use the additive within a range in which the type and properties of the additive do not adversely affect the reliability of the obtained circuit board or are significantly reduced.

【0019】本実施形態によれば、異方導電性接着剤の
絶縁性樹脂微粒子3が汎用溶剤に溶け易く、しかも、細
かいので樹脂中の分散に優れ、加熱加圧時にはTgが1
60℃以下のため実に溶けやすい。したがって、接続作
業中に電極の位置ズレ等に代表される接続不良が発生し
た場合でも、電極から簡単に剥離することができ、電子
部品をリペアすることができる。また、電子部品を搭載
した電気電子機器の市場流通後に導通接続部に故障が発
生した場合でも、電子部品をリペアすることができるか
ら、電気電子機器自体を直ちに廃棄する必要性に乏し
く、近年のリサイクル性を満たすことが可能になる。さ
らに、光硬化性樹脂を使用するので、0.01〜400
nm以下の波長で製膜したり、硬化させることができ、
接着剤の無溶剤化が可能であり、製造工程で環境にも優
しい。
According to the present embodiment, the insulating resin fine particles 3 of the anisotropic conductive adhesive are easily dissolved in a general-purpose solvent, and are fine, so that they are excellent in dispersion in the resin.
Because it is 60 ° C or less, it is very easy to melt. Therefore, even if a connection failure typified by a displacement of the electrode occurs during the connection work, the connection can be easily separated from the electrode, and the electronic component can be repaired. Also, even if a failure occurs in the conductive connection part after the market distribution of the electric / electronic device equipped with the electronic component, the electronic component can be repaired. Therefore, it is not necessary to immediately dispose of the electric / electronic device itself. Recyclability can be satisfied. Furthermore, since a photocurable resin is used, 0.01 to 400
can be formed or cured at wavelengths below nm.
The adhesive can be solvent-free, and is environmentally friendly in the manufacturing process.

【0020】[0020]

【実施例】以下、本発明に係る異方導電性接着剤及びこ
れを用いた接続構造の実施例を比較例と共に説明する。 実施例1 光重合性エポキシアクリレート樹脂〔共栄社化学株式会
社製 商品名3002A〕20g、モノアクリレート樹
脂〔共栄社化学株式会社製 商品名IB‐XA〕20
g、開始剤〔チバスペシャルティケミカルズ製 商品名
IRGACURE651〕2.0g、エポキシ樹脂〔ジ
ャパンエポキシレジン株式会社製 商品名エピコートY
L‐983U〕10g、潜在性硬化剤〔旭化成エポキシ
株式会社製商品名ノバキュアHX‐3941HP〕30
g、シランカップリング剤〔信越化学株式会社製 商品
名KBM403〕2g、絶縁性樹脂微粒子であるフェノ
キシ樹脂〔インケム株式会社製 商品名PKHC、Tg
=95℃〕をケミカル粉砕法で粉砕し、平均粒子径5μ
mとしたもの20gに、導電性微粒子〔積水ファインケ
ミカル株式会社製 商品名ミクロパールAU‐205〕
を5体積部混合して異方導電性接着剤を調製した。
EXAMPLES Examples of the anisotropic conductive adhesive according to the present invention and a connection structure using the same will be described together with comparative examples. Example 1 20 g of a photopolymerizable epoxy acrylate resin (trade name 3002A, manufactured by Kyoeisha Chemical Co., Ltd.) and a monoacrylate resin (trade name IB-XA, manufactured by Kyoeisha Chemical Co., Ltd.) 20
g, initiator [trade name IRGACURE651 manufactured by Ciba Specialty Chemicals] 2.0 g, epoxy resin [trade name Epicoat Y manufactured by Japan Epoxy Resin Co., Ltd.]
L-983U] 10 g, latent curing agent [Available from Asahi Kasei Epoxy Co., Ltd. under the trade name Novacure HX-3941HP] 30
g, 2 g of a silane coupling agent (trade name: KBM403 manufactured by Shin-Etsu Chemical Co., Ltd.), and a phenoxy resin that is fine particles of insulating resin [trade name: PKHC, Tg manufactured by Inchem Corporation]
= 95 ° C] by a chemical pulverization method, and the average particle size is 5μ.
The conductive fine particles [Micropearl AU-205 manufactured by Sekisui Fine Chemical Co., Ltd.]
Was mixed in 5 parts by volume to prepare an anisotropic conductive adhesive.

【0021】次いで、係る異方導電性接着剤を厚さ50
μmの離型処理PETフィルムに塗工装置で塗布し、高
圧水銀灯下で2.0J/cm2の紫外線を照射し、接着
剤の厚さが18μmのフィルム形の異方導電性接着剤を
得た。こうして異方導電性接着剤を得たら、異方導電性
接着剤を使用してライン幅75μm、ピッチ150μ
m、厚さ18μmの銅回路を300本有するFPCと、
酸化インジウム(以下、ITOという)の薄層を備えたI
TOガラス(厚さ1.1mm、表面抵抗30Ω/□)とを
熱圧着装置で加熱加圧し、幅2mmにわたり接続して回
路の接続体を作製した。熱圧着装置としては、コンスタ
ントヒートタイプを使用した。また、加熱加圧作業は、
180℃、4MPa、20秒の条件で実施した。
Next, the anisotropic conductive adhesive is applied to a thickness of 50
A film-type anisotropic conductive adhesive having an adhesive thickness of 18 μm was obtained by applying the coating film to a μm release-treated PET film using a coating device and irradiating it with 2.0 J / cm 2 ultraviolet light under a high-pressure mercury lamp. Was. After obtaining the anisotropic conductive adhesive in this manner, the line width is 75 μm and the pitch is 150 μm using the anisotropic conductive adhesive.
m, an FPC having 300 copper circuits having a thickness of 18 μm;
I with a thin layer of indium oxide (hereinafter ITO)
TO glass (thickness: 1.1 mm, surface resistance: 30 Ω / □) was heated and pressed by a thermocompression device and connected over a width of 2 mm to produce a circuit connection body. As the thermocompression bonding apparatus, a constant heat type was used. In addition, the heating and pressing work
The test was performed at 180 ° C. and 4 MPa for 20 seconds.

【0022】回路の接続体作製の際、予めITOガラス
上にフィルム形の異方導電性接着剤の接着面を貼着し、
70℃、0.5MPa、5秒の条件で加熱加圧して仮接
続し、その後、離型処理PETフィルムを剥離してもう
一方の被着体であるFPCを接続した。
At the time of manufacturing a circuit connection body, an adhesive surface of a film-shaped anisotropic conductive adhesive is pasted on ITO glass in advance,
Temporary connection was performed by heating and pressurizing under conditions of 70 ° C., 0.5 MPa, and 5 seconds, and then the release-treated PET film was peeled off, and another FPC as an adherend was connected.

【0023】実施例2 基本的には実施例1と同様であるが、光重合性エポキシ
アクリレート樹脂をウレタンアクリレートオリゴマー
〔共栄社化学株式会社製 商品名AH‐600〕に変更
した。 実施例3 基本的には実施例1と同様であるが、絶縁性樹脂微粒子
をポリエステル樹脂〔ユニチカ株式会社製 商品名UE
3230、Tg=3℃〕に変更した。このポリエステル
樹脂は、ケミカル粉砕法で粉砕し、平均粒子径8μmと
した。 実施例4 基本的には実施例1と同様であるが、絶縁性樹脂微粒子
をポリイミドシリコーン樹脂〔信越化学株式会社製 商
品名X‐22‐8951、Tg=60℃〕に変更した。
このポリイミドシリコーン樹脂は、ケミカル粉砕法で粉
砕し、平均粒子径4μmとした。
Example 2 Basically the same as in Example 1, except that the photopolymerizable epoxy acrylate resin was changed to a urethane acrylate oligomer (AH-600 manufactured by Kyoeisha Chemical Co., Ltd.). Example 3 Basically the same as Example 1, except that the insulating resin fine particles were made of a polyester resin [product name UE manufactured by Unitika Ltd.
3230, Tg = 3 ° C.]. This polyester resin was pulverized by a chemical pulverization method to have an average particle diameter of 8 μm. Example 4 Basically the same as Example 1, except that the insulating resin fine particles were changed to polyimide silicone resin (trade name: X-22-8951, manufactured by Shin-Etsu Chemical Co., Ltd., Tg = 60 ° C.).
This polyimide silicone resin was pulverized by a chemical pulverization method to have an average particle diameter of 4 μm.

【0024】実施例5 基本的には実施例1と同様だが、液状のエポキシ樹脂の
代わりに、固形のエポキシ樹脂〔ジャパンエポキシレジ
ン株式会社製 商品名エピコート1010〕をジェット
ミルで平均粒子径7μmに粉砕したものを用いた。ま
た、フェノキシ樹脂〔東都化成株式会社製 商品名YP
‐70、Tg=70℃〕をケミカル粉砕法で粉砕し、平
均粒子径5μmとした。 実施例6 基本的には実施例1と同様だが、導電性微粒子を平均粒
子径8μmのニッケル粉に変更した。 実施例7 基本的には実施例1と同様だが、潜在性硬化剤をPN‐
23〔味の素ファインテクノ株式会社製 商品名〕に変
更した。
Example 5 Basically the same as in Example 1, but instead of a liquid epoxy resin, a solid epoxy resin [Epicoat 1010 manufactured by Japan Epoxy Resin Co., Ltd.] was jet-milled to an average particle diameter of 7 μm. The crushed one was used. In addition, a phenoxy resin [trade name YP manufactured by Toto Kasei Co., Ltd.]
−70, Tg = 70 ° C.] by a chemical grinding method to obtain an average particle diameter of 5 μm. Example 6 Basically the same as Example 1, except that the conductive fine particles were changed to nickel powder having an average particle diameter of 8 μm. Example 7 Basically the same as Example 1, except that the latent curing agent was PN-
23 [trade name of Ajinomoto Fine Techno Co., Ltd.].

【0025】実施例8 異方導電性接着剤に市販のフィラー用シリカを加え、こ
の異方導電性接着剤を、ライン幅40μm、ピッチ70
μm、厚さ9μmの銅回路を中央部に有するチップオン
フィルム基板(COF基板)にスクリーン印刷で厚さ20
μmに塗布形成し、紫外線硬化装置で製膜した。こうし
て異方導電性接着剤を製膜したら、COF圧着装置で高
さ20μmの金メッキバンプを有するテスト用ICチッ
プを加熱加圧し、導通接続した。加熱加圧作業は、18
0℃、3MPa、20秒の条件で実施した。また、紫外
線の照射は、高圧水銀灯2.0J/cm2の条件で実施
した。
Example 8 Commercially available silica for filler was added to the anisotropic conductive adhesive, and this anisotropic conductive adhesive was applied to a line width of 40 μm and a pitch of 70 μm.
μm, a thickness of 20 μm by screen printing on a chip-on-film substrate (COF substrate) having a copper circuit of 9 μm thickness
It was applied and formed to a thickness of μm, and formed into a film with an ultraviolet curing device. After the anisotropic conductive adhesive was formed in this manner, the test IC chip having the gold-plated bumps having a height of 20 μm was heated and pressurized by a COF crimping apparatus to make a conductive connection. Heat and press work is 18
The test was performed at 0 ° C., 3 MPa, and 20 seconds. Irradiation with ultraviolet rays was performed under the conditions of a high-pressure mercury lamp of 2.0 J / cm 2 .

【0026】実施例9 実施例1で得た異方導電性接着剤を使用し、ライン幅7
5μm、ピッチ150μm、厚さ18μmの銅回路を3
00本有するFPCと、ITOの薄層を備えたITOガ
ラス(厚さ1.1mm、表面抵抗30Ω/□)とを紫外線
照射併用型熱圧着装置で加熱加圧するとともに、ITO
ガラス側から紫外線を同時に照射して幅2mmにわたり
接続し、回路の接続体を作製した。紫外線照射併用型熱
圧着装置として、加熱方法はコンスタントヒートタイプ
を使用し、高圧水銀灯で紫外線を照射するようにした。
加熱加圧作業は、180℃、3MPa、20秒の条件で
実施した。また、異方導電性接着剤に照射する紫外線の
照射量は2.0J/cm2とした。上記作業の際、加熱
加圧のみを開始して3秒経過後に紫外線を17秒間照射
し、加熱加圧後20秒後に2工程が同時に終了するよう
にした。
Example 9 Using the anisotropic conductive adhesive obtained in Example 1, a line width of 7
5 μm, 150 μm pitch, 18 μm thick copper circuit
FPC having a thickness of 100 and an ITO glass (thickness: 1.1 mm, surface resistance: 30 Ω / □) provided with a thin layer of ITO are heated and pressed by a thermocompression bonding apparatus combined with ultraviolet irradiation.
Ultraviolet rays were simultaneously irradiated from the glass side and connected over a width of 2 mm to prepare a circuit connection body. As a thermocompression bonding apparatus combined with ultraviolet irradiation, a constant heat type heating method was used, and ultraviolet irradiation was performed using a high-pressure mercury lamp.
The heating and pressurizing operation was performed under the conditions of 180 ° C., 3 MPa, and 20 seconds. Further, the irradiation amount of the ultraviolet light applied to the anisotropic conductive adhesive was set to 2.0 J / cm 2 . At the time of the above operation, ultraviolet rays were irradiated for 17 seconds after 3 seconds had elapsed only after heating and pressurization, and the two processes were simultaneously completed 20 seconds after heating and pressurization.

【0027】実施例10 実施例1で得た異方導電性接着剤を、ライン幅75μ
m、ピッチ150μm、厚さ18μmの銅回路を300
本有するFPCの端子部上にスクリーン印刷するととも
に、2.0J/cm2の照射量の紫外線を高圧水銀灯で
照射し、厚さ18μmのヒートシールコネクタ(異方導
電性接着剤付きのFPC)を得た。ヒートシールコネク
タを得たら、ITOの薄層を備えたITOガラス(厚さ
1.1mm、表面抵抗30Ω/□)に熱圧着装置で加熱
加圧し、回路の接続体を作製した。熱圧着装置として、
コンスタントヒートタイプを使用し、高圧水銀灯で紫外
線を照射するようにした。また、加熱加圧作業は180
℃、4MPa、20秒の条件で実施した。
Example 10 The anisotropic conductive adhesive obtained in Example 1 was applied to a line width of 75 μm.
m, pitch 150μm, thickness 18μm copper circuit 300
Along with the screen printing on the terminal portion of the FPC having the present invention, an ultraviolet ray having an irradiation amount of 2.0 J / cm 2 was irradiated with a high pressure mercury lamp to form a heat seal connector (FPC with an anisotropic conductive adhesive) having a thickness of 18 μm. Obtained. After the heat seal connector was obtained, it was heated and pressed by a thermocompression bonding apparatus on ITO glass (thickness: 1.1 mm, surface resistance: 30 Ω / □) provided with a thin layer of ITO to produce a circuit connection body. As a thermocompression bonding device,
A constant heat type was used, and ultraviolet light was irradiated from a high-pressure mercury lamp. The heating and pressing operation is 180
C., 4 MPa, 20 seconds.

【0028】実施例11 実施例1の配合材料から開始剤を除いて異方導電性接着
剤を調製し、この異方導電性接着剤を厚さ50μmの離
型処理PETフィルムに塗工装置で塗布し、300ke
Vまでの加速電圧装置で50kGyの吸収線量を与え、
接着剤の厚さが18μmのフィルム形の異方導電性接着
剤を得た。こうして異方導電性接着剤を得たら、この異
方導電性接着剤を使用してライン幅75μm、ピッチ1
50μm、厚さ18μmの銅回路を300本有するFP
Cと、ITOの薄層を備えたITOガラス(厚さ1.1
mm、表面抵抗30Ω/□)とを熱圧着装置で加熱加圧
し、幅2mmにわたり接続して回路の接続体を作製し
た。熱圧着装置としては、コンスタントヒートタイプを
使用した。また、加熱加圧作業は、180℃、4MP
a、20秒の条件で実施した。
Example 11 An anisotropic conductive adhesive was prepared from the compounded material of Example 1 by removing the initiator, and this anisotropic conductive adhesive was applied to a 50 μm-thick release-treated PET film by a coating apparatus. Apply, 300 ke
Giving an absorbed dose of 50 kGy with an accelerating voltage device up to V
A film-shaped anisotropic conductive adhesive having an adhesive thickness of 18 μm was obtained. After obtaining the anisotropic conductive adhesive in this way, the line width of 75 μm and the pitch of 1
FP having 300 copper circuits of 50 μm and 18 μm thickness
C and ITO glass with a thin layer of ITO (thickness 1.1
mm and a surface resistance of 30 Ω / □) were heated and pressed by a thermocompression bonding apparatus and connected over a width of 2 mm to produce a circuit connection body. As the thermocompression bonding apparatus, a constant heat type was used. The heating and pressurizing operation is 180 ° C, 4MP
a, 20 seconds.

【0029】比較例1 実施例1で使用した材料から絶縁性樹脂微粒子を除く異
方導電性接着剤を調製し、実施例1と同様に回路の接続
体を作製した。
Comparative Example 1 An anisotropic conductive adhesive was prepared from the material used in Example 1 except for the fine particles of the insulating resin, and a circuit connecting body was produced in the same manner as in Example 1.

【0030】実施例1〜11、及び比較例1における回
路の接続体の初期抵抗値とリペア性についてそれぞれ評
価し、結果を表1にまとめた。初期抵抗値については、
回路の接続体の接続後、接続部を含むFPCの隣接回路
間の抵抗値をマルチメータで測定することとした。ま
た、リペア性については、汎用溶剤のアセトンを沁み込
ませた綿棒を擦り付け、剥がしやすさを三段階に分けて
評価することとした。
The initial resistance value and the repairability of the connection bodies of the circuits in Examples 1 to 11 and Comparative Example 1 were evaluated, and the results are summarized in Table 1. For the initial resistance value,
After the connection of the circuit connection body, the resistance between adjacent circuits of the FPC including the connection portion was measured by a multimeter. As for the repairability, a cotton swab impregnated with acetone, a general-purpose solvent, was rubbed, and the ease of peeling was evaluated in three stages.

【0031】[0031]

【表1】 [Table 1]

【0032】表1から明らかなように、実施例1〜11
における回路の接続体の初期抵抗値とリペア性は良好で
あった。これに対し、比較例1で得られた回路の接続体
は、リペアすることができなかった。
As is clear from Table 1, Examples 1 to 11
The initial resistance value and the repairability of the connection body of the circuit in were good. In contrast, the connection of the circuit obtained in Comparative Example 1 could not be repaired.

【0033】[0033]

【発明の効果】以上のように本発明によれば、電極から
の剥離を容易とし、これを通じて電子部品や電気電子機
器の廃棄を抑制することができるという効果がある。
As described above, according to the present invention, there is an effect that the separation from the electrode can be facilitated and the disposal of the electronic component or the electric / electronic device can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る異方導電性接着剤の実施形態を示
す断面説明図である。
FIG. 1 is an explanatory sectional view showing an embodiment of an anisotropic conductive adhesive according to the present invention.

【図2】本発明に係る異方導電性接着剤及びこれを用い
た接続構造の実施形態を示す断面説明図である。
FIG. 2 is an explanatory sectional view showing an embodiment of an anisotropic conductive adhesive according to the present invention and a connection structure using the same.

【符号の説明】[Explanation of symbols]

1 接着性樹脂バインダ 2 導電性微粒子 3 絶縁性樹脂微粒子 4 ガラス基板(第一の電気接合物) 5 基板(第二の電気接合物) DESCRIPTION OF SYMBOLS 1 Adhesive resin binder 2 Conductive fine particles 3 Insulating resin fine particles 4 Glass substrate (1st electric joint) 5 Substrate (2nd electric joint)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 1/14 H05K 1/14 A 3/36 3/36 A Fターム(参考) 4J040 EC001 EC002 FA141 FA142 FA151 FA152 FA161 FA162 FA181 FA182 FA261 FA262 FA281 FA282 FA291 FA292 HB18 HC24 HD21 JB07 JB10 KA03 LA06 LA11 MA05 MA10 NA19 NA20 PA30 PA32 PA33 5E344 AA01 AA02 AA22 BB03 BB04 CD04 DD06 EE21 EE30 5G301 DA02 DA03 DA05 DA06 DA10 DA18 DA29 DA57 DD03 5G307 HA02 HB01 HB03 HB05 HC01──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H05K 1/14 H05K 1/14 A 3/36 3/36 A F term (Reference) 4J040 EC001 EC002 FA141 FA142 FA151 FA152 FA161 FA162 FA181 FA182 FA261 FA262 FA281 FA282 FA291 FA292 HB18 HC24 HD21 JB07 JB10 KA03 LA06 LA11 MA05 MA10 NA19 NA20 PA30 PA32 PA33 5E344 AA01 AA02 AA22 BB03 BB04 CD04 DD06 EE21 EE30 5G301 DA02 DA03 DA05 DA06 DA03 DA03 DA03 DA03 DA03 HB05 HC01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 接着性樹脂バインダ中に、導電性微粒子
と絶縁性樹脂微粒子とを分散したことを特徴とする異方
導電性接着剤。
1. An anisotropic conductive adhesive characterized in that conductive fine particles and insulating resin fine particles are dispersed in an adhesive resin binder.
【請求項2】 上記絶縁性樹脂微粒子は汎用溶剤で溶解
でき、該絶縁性樹脂微粒子のガラス転移点が160℃以
下の樹脂とした請求項1記載の異方導電性接着剤。
2. The anisotropic conductive adhesive according to claim 1, wherein the insulating resin fine particles can be dissolved in a general-purpose solvent, and the glass transition point of the insulating resin fine particles is 160 ° C. or lower.
【請求項3】 0.01〜400nmの波長で製膜ある
いは硬化するようにした請求項1又は2記載の異方導電
性接着剤。
3. The anisotropic conductive adhesive according to claim 1, wherein a film is formed or cured at a wavelength of 0.01 to 400 nm.
【請求項4】 対向する第一、第二の電気接合物を異方
導電性接着剤により接続する異方導電性接着剤を用いた
接続構造であって、 上記異方導電性接着剤を請求項1、2、又は3記載の異
方導電性接着剤とし、この異方導電性接着剤を0.01
〜400nmの波長で製膜してこれを加熱加圧し、上記
第一、第二の電気接合物を導通接続するようにしたこと
を特徴とする異方導電性接着剤を用いた接続構造。
4. A connection structure using an anisotropic conductive adhesive for connecting opposing first and second electric joints with an anisotropic conductive adhesive, wherein the anisotropic conductive adhesive is used. Item 1. The anisotropic conductive adhesive according to item 1, 2, or 3, wherein the anisotropic conductive adhesive is 0.01
A connection structure using an anisotropic conductive adhesive, characterized in that a film is formed at a wavelength of 400 nm and heated and pressurized to electrically connect the first and second electric joints.
JP2001090340A 2001-03-27 2001-03-27 Anisotropic electroconductive adhesive and connecting structure using the same Pending JP2002285135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001090340A JP2002285135A (en) 2001-03-27 2001-03-27 Anisotropic electroconductive adhesive and connecting structure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001090340A JP2002285135A (en) 2001-03-27 2001-03-27 Anisotropic electroconductive adhesive and connecting structure using the same

Publications (1)

Publication Number Publication Date
JP2002285135A true JP2002285135A (en) 2002-10-03

Family

ID=18945133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001090340A Pending JP2002285135A (en) 2001-03-27 2001-03-27 Anisotropic electroconductive adhesive and connecting structure using the same

Country Status (1)

Country Link
JP (1) JP2002285135A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005011718A1 (en) * 2003-05-30 2006-11-16 サントリー株式会社 Anti-stress agent
JP2007224228A (en) * 2006-02-27 2007-09-06 Hitachi Chem Co Ltd Circuit-connecting material, connection structure of circuit terminal, and method for connecting circuit terminal
JP2008084545A (en) * 2006-09-25 2008-04-10 Sumitomo Electric Ind Ltd Adhesive for electrode connection
JP2008150573A (en) * 2006-08-25 2008-07-03 Hitachi Chem Co Ltd Circuit connecting material, connection structure for circuit member using the same and method for production thereof
JP2009074066A (en) * 2007-08-29 2009-04-09 Hitachi Chem Co Ltd Adhesive composition, film-shaped adhesive, adhesive for connecting circuits, connected body, and semiconductor device
JP2010135255A (en) * 2008-12-08 2010-06-17 Sony Chemical & Information Device Corp Anisotropic conductive film, joint body, and manufacturing method thereof
JP2010183049A (en) * 2008-04-28 2010-08-19 Hitachi Chem Co Ltd Circuit connecting material, film-like adhesive, adhesive reel, and circuit connection structure
JP2011003924A (en) * 2006-08-25 2011-01-06 Hitachi Chem Co Ltd Circuit connecting material, connection structure for circuit member using the same, and method for production thereof
US7968196B2 (en) 1997-03-31 2011-06-28 Hitachi Chemical Company, Ltd. Circuit-connecting material and circuit terminal connected structure and connecting method
CN102127386A (en) * 2010-12-29 2011-07-20 东莞市新懿电子材料技术有限公司 Photocuring and thermocuring conductive adhesive and preparation method
JP2011157552A (en) * 2009-05-13 2011-08-18 Hitachi Chem Co Ltd Adhesive composition, adhesive sheet for connecting circuit member, and method for producing semiconductor device
JP2011202187A (en) * 2011-07-19 2011-10-13 Hitachi Chem Co Ltd Circuit connecting material, and structure and method for connecting circuit terminal
JP2012140594A (en) * 2010-12-31 2012-07-26 Cheil Industries Inc Anisotropic conductive film composition, anisotropic conductive film produced therefrom, and device including the anisotropic conductive film
JP5012903B2 (en) * 2007-08-08 2012-08-29 日立化成工業株式会社 Circuit connection adhesive composition, circuit connection film adhesive and circuit member connection structure
JP2013229314A (en) * 2012-03-30 2013-11-07 Sekisui Chem Co Ltd Conductive material, connection structure, and method for manufacturing connection structure
CN107384282A (en) * 2017-08-02 2017-11-24 浙江大学 A kind of flexible electronic substrate adhesive and its preparation method and application
JP2020043198A (en) * 2018-09-10 2020-03-19 積水化学工業株式会社 Conductive adhesive material and dye-sensitized solar cell
WO2020103228A1 (en) * 2018-11-23 2020-05-28 惠科股份有限公司 Adhesive composition, and electronic product and preparation method therefor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7968196B2 (en) 1997-03-31 2011-06-28 Hitachi Chemical Company, Ltd. Circuit-connecting material and circuit terminal connected structure and connecting method
US8142605B2 (en) 1997-03-31 2012-03-27 Hitachi Chemical Company, Ltd. Circuit-connecting material and circuit terminal connected structure and connecting method
US7967943B2 (en) 1997-03-31 2011-06-28 Hitachi Chemical Company, Ltd. Circuit-connecting material and circuit terminal connected structure and connecting method
JPWO2005011718A1 (en) * 2003-05-30 2006-11-16 サントリー株式会社 Anti-stress agent
JP2007224228A (en) * 2006-02-27 2007-09-06 Hitachi Chem Co Ltd Circuit-connecting material, connection structure of circuit terminal, and method for connecting circuit terminal
JP2008150573A (en) * 2006-08-25 2008-07-03 Hitachi Chem Co Ltd Circuit connecting material, connection structure for circuit member using the same and method for production thereof
JP2011003924A (en) * 2006-08-25 2011-01-06 Hitachi Chem Co Ltd Circuit connecting material, connection structure for circuit member using the same, and method for production thereof
JP4650456B2 (en) * 2006-08-25 2011-03-16 日立化成工業株式会社 Circuit connection material, circuit member connection structure using the same, and manufacturing method thereof
EP2339695A1 (en) * 2006-08-25 2011-06-29 Hitachi Chemical Company, Ltd. Circuit connecting material, connection structure for circuit member using the same and production method thereof
JP2008084545A (en) * 2006-09-25 2008-04-10 Sumitomo Electric Ind Ltd Adhesive for electrode connection
JP5012903B2 (en) * 2007-08-08 2012-08-29 日立化成工業株式会社 Circuit connection adhesive composition, circuit connection film adhesive and circuit member connection structure
JP2009074066A (en) * 2007-08-29 2009-04-09 Hitachi Chem Co Ltd Adhesive composition, film-shaped adhesive, adhesive for connecting circuits, connected body, and semiconductor device
JP2010183049A (en) * 2008-04-28 2010-08-19 Hitachi Chem Co Ltd Circuit connecting material, film-like adhesive, adhesive reel, and circuit connection structure
JP2010135255A (en) * 2008-12-08 2010-06-17 Sony Chemical & Information Device Corp Anisotropic conductive film, joint body, and manufacturing method thereof
JP2011157552A (en) * 2009-05-13 2011-08-18 Hitachi Chem Co Ltd Adhesive composition, adhesive sheet for connecting circuit member, and method for producing semiconductor device
CN102127386A (en) * 2010-12-29 2011-07-20 东莞市新懿电子材料技术有限公司 Photocuring and thermocuring conductive adhesive and preparation method
CN102127386B (en) * 2010-12-29 2013-11-20 东莞市新懿电子材料技术有限公司 Photocuring and thermocuring conductive adhesive and preparation method
JP2012140594A (en) * 2010-12-31 2012-07-26 Cheil Industries Inc Anisotropic conductive film composition, anisotropic conductive film produced therefrom, and device including the anisotropic conductive film
JP2011202187A (en) * 2011-07-19 2011-10-13 Hitachi Chem Co Ltd Circuit connecting material, and structure and method for connecting circuit terminal
JP2013229314A (en) * 2012-03-30 2013-11-07 Sekisui Chem Co Ltd Conductive material, connection structure, and method for manufacturing connection structure
CN107384282A (en) * 2017-08-02 2017-11-24 浙江大学 A kind of flexible electronic substrate adhesive and its preparation method and application
CN107384282B (en) * 2017-08-02 2019-08-23 浙江大学 A kind of flexible electronic substrate adhesive and its preparation method and application
JP2020043198A (en) * 2018-09-10 2020-03-19 積水化学工業株式会社 Conductive adhesive material and dye-sensitized solar cell
WO2020103228A1 (en) * 2018-11-23 2020-05-28 惠科股份有限公司 Adhesive composition, and electronic product and preparation method therefor

Similar Documents

Publication Publication Date Title
JP2002285135A (en) Anisotropic electroconductive adhesive and connecting structure using the same
KR100875411B1 (en) Low-temperature setting adhesive and anisotropically electroconductive adhesive film using the same
KR100483565B1 (en) Circuit adhesive
JP4998635B2 (en) Adhesive composition, circuit connection material and circuit member connection structure
US7528488B2 (en) Method for connecting electrodes, surface-treated wiring board and adhesive film used in the method, and electrode-connected structure
KR20090092796A (en) Anisotropic conductive film and method for producing the same, and bonded body
US20070068622A1 (en) Method for establishing anisotropic conductive connection and anisotropic conductive adhesive film
JP2003064324A (en) Anisotropic electroconductive adhesive film, connection method for circuit board using the same and circuit board connected body
CN101230241A (en) Adhesive for electrode connection and connecting method using it
KR20050088946A (en) Adhesives and adhesive films
KR20180039608A (en) Manufacturing method of mounting device, connecting method and anisotropic conductive film
JP5070748B2 (en) Adhesive composition, circuit connection material, connection body and semiconductor device
JP2002367692A (en) Anisotropy conductive adhesive and connection structure using the same
JP2008252098A (en) Method of manufacturing circuit board apparatus
JPH11306861A (en) Conductive adhesive composition, anisortropic adhesive film provied with the same, and connecting method using the film
JP4513147B2 (en) Circuit connection method
JP2003249287A (en) Anisotropically conductive adhesive, heat seal connector and connection structure
KR100922658B1 (en) Anisotropic conductive film and circuit board using the same
JP2003277694A (en) Adhesive composition for circuit connection and connected circuit structure produced by using the same
JP3871095B2 (en) Circuit board device manufacturing method
JP2002167569A (en) Adhesive composition, adhesive composition for connecting circuit, connected unit and semiconductor device
JP2001297631A (en) Anisotropic conductive film
JPH06223633A (en) Conductivity-anisotropic electrode connecting composition and its hardened film
JP2001184949A (en) Anisotropy conductive material
JP2009290231A (en) Method of manufacturing circuit board apparatus