JP2002284590A - Ceramics-metal composite material - Google Patents
Ceramics-metal composite materialInfo
- Publication number
- JP2002284590A JP2002284590A JP2001086503A JP2001086503A JP2002284590A JP 2002284590 A JP2002284590 A JP 2002284590A JP 2001086503 A JP2001086503 A JP 2001086503A JP 2001086503 A JP2001086503 A JP 2001086503A JP 2002284590 A JP2002284590 A JP 2002284590A
- Authority
- JP
- Japan
- Prior art keywords
- composite material
- metal composite
- sic
- ceramic
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電気、通信、機
械、精密機械および自動車分野等で用いられるセラミッ
クス−金属複合材料に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic-metal composite material used in the fields of electricity, communications, machinery, precision instruments, and automobiles.
【0002】[0002]
【従来の技術】Al合金は軽量かつ耐食性に優れ、また
熱伝導性や電導性においても優れているため、近年、様
々な分野でAl合金の利用が進んでいる。特にセラミッ
クスの分野では、Al合金の上記特徴を生かしてマトリ
ックスにAl合金を用い、強化材にセラミックスを用い
て両者を複合させたセラミックス−金属複合材料が、軽
量ゆえに利用されるようになってきた。特にプリフォー
ム中にAl合金を溶融含浸させて作製される複合材料
は、複雑形状の作製に有利であるという特徴から、幅広
い分野での需要が見込まれている。また、金属−セラミ
ックス複合材料を各種の用途に適用・拡大させるために
は、さらに同種または異種の材料との接合が必要になる
場合が多い。2. Description of the Related Art Al alloys have been used in various fields in recent years because they are lightweight, excellent in corrosion resistance, and excellent in thermal conductivity and electrical conductivity. Particularly in the field of ceramics, ceramic-metal composite materials in which an Al alloy is used as a matrix and a ceramic is used as a reinforcing material to combine the two with the use of the above characteristics of the Al alloy have come to be used because of their light weight. . In particular, a composite material produced by melting and impregnating an Al alloy in a preform is expected to be demanded in a wide range of fields because it is advantageous for producing a complicated shape. In addition, in order to apply and expand the metal-ceramic composite material to various uses, it is often necessary to join the same or different materials.
【0003】しかし、接合される両材料の熱膨張係数に
大差がある場合は、内部応力や歪みが発生しやすく、特
に、上記のAl合金をマトリックスに用いたセラミック
ス−金属複合材料では熱膨張係数が大きいため、各種材
料との接合が難しいという問題があった。具体的には、
窒化アルミ(AlN)は熱伝導性の良い絶縁材料として
優れた性能を有するが熱膨張係数が5×10-6/℃(室
温)と小さいため、Al合金をマトリックスに用いたセ
ラミックス−金属複合材料と接合して導電性材料を製造
する場合には、上記の問題が顕在化する。加えて、当該
複合材料はAlを添加しているため部材の剛性は十分で
なく、また耐熱性も300℃程度と低く課題を残してい
た。However, when there is a large difference in the coefficient of thermal expansion between the two materials to be joined, internal stress and strain are likely to occur. Therefore, there is a problem that joining with various materials is difficult. In particular,
Aluminum nitride (AlN) has excellent performance as an insulating material with good thermal conductivity, but has a small coefficient of thermal expansion of 5 × 10 −6 / ° C. (room temperature), so a ceramic-metal composite material using an Al alloy as a matrix When a conductive material is manufactured by bonding to the above, the above-described problem becomes apparent. In addition, since the composite material contains Al, the rigidity of the member is not sufficient, and the heat resistance is as low as about 300 ° C., which leaves a problem.
【0004】[0004]
【発明が解決しようとする課題】したがって、本発明
は、接合相手である材料の熱膨張係数に対応して熱膨張
係数を制御でき、かつ剛性が大きく耐熱性に優れたセラ
ミックス−金属複合材料を提供することを目的とする。SUMMARY OF THE INVENTION Accordingly, the present invention provides a ceramic-metal composite material which can control the coefficient of thermal expansion in accordance with the coefficient of thermal expansion of the material to be joined, and has high rigidity and excellent heat resistance. The purpose is to provide.
【0005】[0005]
【課題を解決するための手段】本発明は、上記の課題を
解決するため鋭意研究した結果、SiCおよびAl2O3
の粉末または繊維からなるプリフォームにSi合金を浸
透させてなるセラミックス−金属複合材料は、熱膨張係
数を広範囲で制御できることに加え、高い剛性と耐熱性
を併有することを見出し、本発明を完成した。Means for Solving the Problems The present invention has been made as a result of intensive studies to solve the above-mentioned problems. As a result, SiC and Al 2 O 3
Found that a ceramic-metal composite material obtained by infiltrating a Si alloy into a preform made of a powder or a fiber can control the thermal expansion coefficient over a wide range and has both high rigidity and heat resistance, and completed the present invention. did.
【0006】即ち本発明は、以下の構成を特徴とする複
合材料を提供する。 (1)マトリックスがSiを90atomic%以上含むSi
合金からなり、強化材がAl2O3およびSiCの粉末ま
たは繊維からなることを特徴とするセラミックス−金属
複合材料(請求項1)。 (2)Al2O3およびSiCの粉末または繊維の充填率
が40〜80体積%であって、かつSiCの充填率が3
体積%以上80体積%未満であることを特徴とする請求
項1に記載のセラミックス−金属複合材料(請求項
2)。 (3)Al2O3およびSiCの粉末または繊維の充填率
とSiCの充填率を制御することにより、250GPa
以上のヤング率と2.8×10-6/℃〜6.5×10-6
/℃の熱膨張係数を有することを特徴とする請求項1ま
たは2に記載のセラミックス−金属複合材料(請求項
3)。That is, the present invention provides a composite material characterized by the following constitution. (1) Si whose matrix contains 90 atomic% or more of Si
An alloy, a ceramic reinforcing material is characterized in that it consists of Al 2 O 3 and SiC powder or fiber - metal composite material (claim 1). (2) a Al 2 O 3 and SiC powder or fiber packing ratio 40 to 80% by volume, and filling rate of SiC 3
2. The ceramic-metal composite material according to claim 1, wherein the content is not less than 80% by volume. (3) 250 GPa by controlling the filling ratio of powder or fiber of Al 2 O 3 and SiC and the filling ratio of SiC.
The above Young's modulus and 2.8 × 10 −6 / ° C. to 6.5 × 10 −6
The ceramic-metal composite material according to claim 1 or 2, wherein the ceramic-metal composite material has a thermal expansion coefficient of / ° C.
【0007】[0007]
【発明の実施の態様】以下、本発明を詳細に説明する。
本発明のセラミックス−金属複合材料のマトリックス
は、Siを90atomic%以上含むSi合金が好ましい。
Siは複合材料の剛性を高める効果があり、Siの含有
率が90atomic%未満では、複合材料のヤング率が低下
する場合がある。また、Si合金におけるSi以外の残
分は、軽量かつ耐食性に優れることからAlが好まし
い。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The matrix of the ceramic-metal composite material of the present invention is preferably a Si alloy containing 90 atomic% or more of Si.
Si has the effect of increasing the rigidity of the composite material, and if the content of Si is less than 90 atomic%, the Young's modulus of the composite material may decrease. The remainder of the Si alloy other than Si is preferably Al because of its light weight and excellent corrosion resistance.
【0008】本発明のセラミックス−金属複合材料の強
化材は、Al2O3およびSiCの粉末または繊維が好ま
しい。Al2O3およびSiCは、セラミックス−金属複
合材料のヤング率および熱膨張係数を調整する上でいず
れも必要であり、後述するように両者の混合比および充
填率を制御することにより、当該両特性の調整が可能と
なる。また、Al2O3、SiCの使用形態は、粉末また
は繊維のいずれでも使用できる。The reinforcing material for the ceramic-metal composite material of the present invention is preferably powder or fiber of Al 2 O 3 and SiC. Al 2 O 3 and SiC are both necessary for adjusting the Young's modulus and the coefficient of thermal expansion of the ceramic-metal composite material. Adjustment of characteristics becomes possible. The form of use of Al 2 O 3 or SiC can be either powder or fiber.
【0009】本発明のセラミックス−金属複合材料にお
けるAl2O3およびSiCの粉末または繊維の充填率は
40〜80体積%であって、かつSiCの充填率が3体
積%以上80体積%未満が好ましい。Al2O3およびS
iCの粉末または繊維の充填率が40体積%以下ではプ
リフォームの強度が不十分であり、80体積%以上では
プリフォームの作製が困難になる。また、SiCの充填
率が3体積%未満ではSi合金がプリフォーム中へ含浸
し難くポアが発生し易い。In the ceramic-metal composite material of the present invention, the filling ratio of Al 2 O 3 and SiC powder or fiber is 40 to 80% by volume, and the filling ratio of SiC is 3% by volume or more and less than 80% by volume. preferable. Al 2 O 3 and S
If the filling ratio of the iC powder or fiber is less than 40% by volume, the strength of the preform is insufficient, and if it is more than 80% by volume, it becomes difficult to produce the preform. If the filling rate of SiC is less than 3% by volume, the preform is hardly impregnated with the Si alloy, and pores are easily generated.
【0010】Al2O3およびSiCの粉末または繊維の
充填率とSiCの充填率を以下の特定の範囲に制御する
ことにより、ヤング率が250GPa以上、熱膨張係数
が2.8×10-6/℃〜6.5×10-6/℃に調整でき
る。具体的には、Al2O3およびSiCの粉末または繊
維の混合比と充填率は、Al2O3およびSiCの粉末ま
たは繊維の合計の充填率が40〜80体積%であって、
かつSiCの充填率が3体積%以上80体積%未満が好
ましい。By controlling the filling ratio of Al 2 O 3 and SiC powder or fiber and the filling ratio of SiC to the following specific ranges, the Young's modulus is 250 GPa or more and the thermal expansion coefficient is 2.8 × 10 -6. / ° C to 6.5 × 10 -6 / ° C. Specifically, the mixing ratio and the filling rate of powder or fibers of Al 2 O 3 and SiC is, Al 2 O 3 and SiC powder or fiber total packing ratio of of a 40 to 80% by volume,
Further, the filling rate of SiC is preferably 3% by volume or more and less than 80% by volume.
【0011】プリフォームを作製する方法として、慣用
の方法を使用できる。例えば、Al 2O3粉末または繊維
に必要量のSiC粒子または繊維を混合し、必要に応じ
て更に含浸助材であるCまたは焼成してCとなる有機バ
インダーを添加混合する。次に、この混合物を成形用型
に充填しプレスした後、所定の操作によりバインダーを
硬化させプリフォームを作製する。なお、プリフォーム
中のAl2O3およびSiCの粉末または繊維の充填率
は、適切な粒度分布を選択することにより調整する。As a method for producing a preform, a conventional method is used.
Can be used. For example, Al TwoOThreePowder or fiber
Mix the required amount of SiC particles or fibers with
And C as an impregnating aid or organic bar
Add and mix the inders. Next, this mixture is used in a molding die.
After filling and pressing, the binder is
It is cured to produce a preform. In addition, preform
Al insideTwoOThreeOf SiC and SiC powder or fiber
Is adjusted by selecting an appropriate particle size distribution.
【0012】このようにして作製したプリフォームにS
i合金を接触させ、非酸化雰囲気中で、Si合金の融点
以上(例えば1500℃以上)に加熱・溶融し、プリフ
ォーム中にSi合金を含浸させてセラミックス−金属複
合材料を得る。この複合材料は、必要に応じて機械加工
して、任意の形状に加工できる。The preform prepared in this manner has S
The i-alloy is brought into contact, heated and melted in a non-oxidizing atmosphere to a temperature equal to or higher than the melting point of the Si alloy (for example, 1500 ° C. or higher), and the preform is impregnated with the Si alloy to obtain a ceramic-metal composite material. This composite material can be machined as required to be processed into an arbitrary shape.
【0013】[0013]
【実施例】以下に、実施例により本発明を説明する。The present invention will be described below with reference to examples.
【0014】試験体の作製および評価 表1に記載の充填率になるように、SiC粉末(平均粒
径14μm、信濃電気精錬製)およびAl2O3粉末(平均
粒径14μm、大平洋ランダム製)を混合した混合物1
00重量部に対し有機バインダーとしてフェノール樹脂
を10重量部(炭素換算3重量部)添加してプレス後、
真空中500℃で3時間加熱してプリフォームを得た。
得られたプリフォームとSi合金を接触させた状態で、
Ar中1600℃で3時間加熱して、プリフォーム中に
Si合金の溶融物を含浸させ、セラミックス−金属複合
材料を作製した。次に、当該複合材料を切削して3×4
×40mmの大きさの試験片を作製し、含浸不良の有無
を目視により観察するとともに、ヤング率および熱膨張
係数を測定した。この結果を表1に示す。 Preparation and Evaluation of Test Specimens SiC powder (average particle size: 14 μm, manufactured by Shinano Electric Refining Co.) and Al 2 O 3 powder (average particle size: 14 μm, manufactured by Pacific Ocean Random Co., Ltd.) Mixture 1)
After adding 10 parts by weight (3 parts by weight in terms of carbon) of a phenol resin as an organic binder to 00 parts by weight and pressing,
The preform was obtained by heating in vacuum at 500 ° C. for 3 hours.
With the obtained preform and the Si alloy in contact with each other,
The preform was heated at 1600 ° C. for 3 hours in Ar to impregnate the melt of the Si alloy to produce a ceramic-metal composite material. Next, the composite material was cut into 3 × 4
A test piece having a size of × 40 mm was prepared, the presence or absence of impregnation failure was visually observed, and the Young's modulus and the coefficient of thermal expansion were measured. Table 1 shows the results.
【0015】[0015]
【表1】 [Table 1]
【0016】実施例1〜3では、SiCおよびAl2O3
の充填率、SiCの充填率およびSi合金中のSiの含
有率が請求項に示した範囲内にあり、ヤング率および熱
膨張係数ともに良好な値を示した。一方、比較例1およ
び2では、試験片中にポアが多く存在し、試験片の部位
によってヤング率や熱膨張係数が大きく変動して、試験
片全体としてのヤング率や熱膨張係数は測定できなかっ
た。In Examples 1 to 3, SiC and Al 2 O 3
And the content of Si in the Si alloy were within the ranges shown in the claims, and both the Young's modulus and the coefficient of thermal expansion showed good values. On the other hand, in Comparative Examples 1 and 2, there were many pores in the test piece, and the Young's modulus and the coefficient of thermal expansion varied greatly depending on the part of the test piece. Did not.
【0017】[0017]
【発明の効果】本発明によれば、接合相手である材料の
熱膨張係数に対応して熱膨張係数を制御でき、かつ剛性
が大きく耐熱性に優れたセラミックス−金属複合材料を
提供することができる。According to the present invention, it is possible to provide a ceramic-metal composite material which can control the coefficient of thermal expansion in accordance with the coefficient of thermal expansion of the material to be joined, and has high rigidity and excellent heat resistance. it can.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) (C22C 49/02 101:14) (72)発明者 青木 一郎 千葉県佐倉市大作2−4−2 太平洋セメ ント株式会社中央研究所内 Fターム(参考) 4K020 AA06 AA08 AA22 AC07 BA05 BB02 BB22 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court (Reference) (C22C 49/02 101: 14) (72) Inventor Ichiro Aoki 2-4-2 Daisaku, Sakura City, Chiba Prefecture Pacific 4K020 AA06 AA08 AA22 AC07 BA05 BB02 BB22
Claims (3)
含むSi合金からなり、強化材がAl2O3およびSiC
の粉末または繊維からなることを特徴とするセラミック
ス−金属複合材料。The matrix is made of a Si alloy containing 90 atomic% or more of Si, and the reinforcing material is Al 2 O 3 and SiC.
A ceramic-metal composite material comprising a powder or a fiber of the above.
の充填率が40〜80体積%であって、かつSiCの充
填率が3体積%以上80体積%未満であることを特徴と
する請求項1に記載のセラミックス−金属複合材料。2. The method according to claim 1, wherein the filling rate of Al 2 O 3 and SiC powder or fiber is 40 to 80% by volume, and the filling rate of SiC is 3% by volume or more and less than 80% by volume. Item 2. The ceramic-metal composite material according to Item 1.
の充填率とSiCの充填率を制御することにより、25
0GPa以上のヤング率と2.8×10-6/℃〜6.5
×10-6/℃の熱膨張係数を有することを特徴とする請
求項1または2に記載のセラミックス−金属複合材料。3. By controlling the filling rate of powder or fiber of Al 2 O 3 and SiC and the filling rate of SiC, 25
Young's modulus of 0 GPa or more and 2.8 × 10 −6 / ° C. to 6.5
The ceramic-metal composite material according to claim 1, having a coefficient of thermal expansion of × 10 −6 / ° C. 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001086503A JP2002284590A (en) | 2001-03-26 | 2001-03-26 | Ceramics-metal composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001086503A JP2002284590A (en) | 2001-03-26 | 2001-03-26 | Ceramics-metal composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002284590A true JP2002284590A (en) | 2002-10-03 |
Family
ID=18941870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001086503A Pending JP2002284590A (en) | 2001-03-26 | 2001-03-26 | Ceramics-metal composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002284590A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006336076A (en) * | 2005-06-02 | 2006-12-14 | Taiheiyo Cement Corp | Method for manufacturing metal-ceramics composite material |
-
2001
- 2001-03-26 JP JP2001086503A patent/JP2002284590A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006336076A (en) * | 2005-06-02 | 2006-12-14 | Taiheiyo Cement Corp | Method for manufacturing metal-ceramics composite material |
JP4585379B2 (en) * | 2005-06-02 | 2010-11-24 | 太平洋セメント株式会社 | Method for producing metal-ceramic composite material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5990025A (en) | Ceramic matrix composite and method of manufacturing the same | |
US4268314A (en) | High density refractory composites and method of making | |
CN103725947B (en) | A kind of ceramic particle reinforced magnesium-based composite material and preparation method thereof | |
JP2002284590A (en) | Ceramics-metal composite material | |
JP4907777B2 (en) | Metal-ceramic composite material | |
KR20190003901A (en) | Manufacturing method of fiber reinforced ceramic matrix composites containing metal carbide filler | |
CN102815957A (en) | Nonferrous metal alloy-toughened aluminum nitride ceramic-based composite material and preparation method thereof | |
JP2000344582A (en) | Fiber/reinforced composite material | |
JP4573484B2 (en) | Metal-ceramic composite material and manufacturing method thereof | |
Chung | Composite material structure and processing | |
JP2001335899A (en) | Ceramics/metal composite material having continuously changed thermal expansion coefficient, and its manufacturing method | |
JPH09268079A (en) | Ceramic-based fiber composite material and its production | |
JPH11228261A (en) | Material for heat sink and its production | |
JP7382105B1 (en) | High-strength metal matrix composite and method for producing high-strength metal matrix composite | |
JPH0920572A (en) | Composite material of ceramic-based fiber and its production | |
JP2003064429A (en) | Al-Si ALLOY MATRIX COMPOSITE MATERIAL | |
JP2002266039A (en) | Ceramics/metal composite material and its manufacturing method | |
JP2001316184A (en) | Metal-ceramuc compound material and its manufacturing method | |
JP2002293654A (en) | JOINED BODY OF SiC-Si COMPOSITES AND METHOD OF MANUFACTURING THE SAME | |
JPH0881276A (en) | Production of filament-reinforced ceramic composite material | |
JP2000072550A (en) | Sliding member | |
JPH03109269A (en) | Sialon-based ceramics composite material reinforced with carbon fiber | |
JPH09202930A (en) | Metal-ceramics composite material and its production | |
JP2003138353A (en) | Ceramics/metal composite material | |
JPS6096742A (en) | Carbon fiber composite material and preparation thereof |