JP2002280070A - Nonaqueous electrolyte secondary battery and its producing method - Google Patents

Nonaqueous electrolyte secondary battery and its producing method

Info

Publication number
JP2002280070A
JP2002280070A JP2001077554A JP2001077554A JP2002280070A JP 2002280070 A JP2002280070 A JP 2002280070A JP 2001077554 A JP2001077554 A JP 2001077554A JP 2001077554 A JP2001077554 A JP 2001077554A JP 2002280070 A JP2002280070 A JP 2002280070A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
secondary battery
electrolyte secondary
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001077554A
Other languages
Japanese (ja)
Inventor
Taizo Sunano
泰三 砂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001077554A priority Critical patent/JP2002280070A/en
Publication of JP2002280070A publication Critical patent/JP2002280070A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having superior properties while suppressing the deterioration of the properties resulting from electrolytic solutions. SOLUTION: The nonaqueous electrolyte secondary battery comprises a positive electrode, a negative electrode, a separator arranged between the positive and negative electrodes, a gelled electrolyte containing a liquid retaining polymer and the electrolytic solutions, and an external body storing the positive and negative electrodes, the separator and the gelled electrolyte. The electrolytic solutions having mutually different solvent compositions are arranged around the positive electrode and around the negative electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池に関するものであって、より詳しくはその電解質の改
良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to an improvement in the electrolyte.

【0002】[0002]

【従来の技術】リチウムイオン電池の電解質にはプロピ
レンカーボネート(以下、PCとする)、エチレンカー
ボネート(以下、ECとする)等の高誘電率溶媒が用い
られるが、いずれの溶媒にも種々の問題点がある。たと
えば、PCは粘度が高い。また、PCは、グラファイト
負極の場合には充電時に分解されるため単独で用いるこ
とはできない。ECは、融点が高く、常温では固体であ
る。また、ECは、酸化電位が低いため、充電状態で高
温保存すると正極において分解される。負極に炭素系材
料、とりわけグラファイトを用いると、溶媒によっては
リチウムイオンの導入脱離量が大きく変化する。たとえ
ば、γ−ブチロラクトン(以下、γ−BLとする)は、
充電時に負極表面にいわゆるパシベーション膜を形成す
ることから、電池のサイクル特性を低下させる。
2. Description of the Related Art A high dielectric constant solvent such as propylene carbonate (hereinafter, referred to as PC) or ethylene carbonate (hereinafter, referred to as EC) is used for an electrolyte of a lithium ion battery. There is a point. For example, PC has a high viscosity. In the case of a graphite negative electrode, PC is decomposed during charging and cannot be used alone. EC has a high melting point and is solid at room temperature. Further, EC has a low oxidation potential, and thus is decomposed at the positive electrode when stored at a high temperature in a charged state. When a carbon-based material, particularly graphite, is used for the negative electrode, the amount of lithium ions introduced and desorbed greatly varies depending on the solvent. For example, γ-butyrolactone (hereinafter referred to as γ-BL) is
Since a so-called passivation film is formed on the surface of the negative electrode during charging, the cycle characteristics of the battery are reduced.

【0003】そこで、粘度や融点を低くして高い電池特
性を確保するため、電解液には、上記の高沸点で高誘電
率の溶媒に低粘度で低融点の他の溶媒を加えた混合溶媒
が広く用いられている。たとえばEC、PC等の高沸点
溶媒に、低沸点溶媒として炭酸ジエチル(以下、DEC
とする)、炭酸ジメチル等のアルキルカーボネートを混
合したものが広く用いられている。
[0003] Therefore, in order to ensure high battery characteristics by lowering the viscosity and melting point, a mixed solvent obtained by adding another solvent having a low viscosity and a low melting point to the above-mentioned solvent having a high boiling point and a high dielectric constant is used as an electrolytic solution. Is widely used. For example, diethyl carbonate (hereinafter referred to as DEC) may be used as a low-boiling solvent in a high-boiling solvent such as EC or PC.
), And mixtures of alkyl carbonates such as dimethyl carbonate are widely used.

【0004】しかしながら、混合溶媒を用いる手法も充
分な解決策にはならない。なぜなら、アルミニウム等の
ラミネート材を外装体に用いた場合には、わずかな溶媒
の分解によって外装体に膨れが生じ電池特性に悪影響を
与えるからである。これに対して、ゲル状ポリマー電池
は、正極、セパレータおよび負極がゲル状ポリマー電解
質により結合されているので、電解液系の電池と比べて
セパレータ間の接着が強固になされているが、それでも
依然、溶媒の分解による外装体の膨れは生じる。
However, a technique using a mixed solvent is not a sufficient solution. This is because, when a laminate material such as aluminum is used for the package, slight decomposition of the solvent causes swelling of the package, which adversely affects battery characteristics. On the other hand, in the gel polymer battery, since the positive electrode, the separator, and the negative electrode are bonded by the gel polymer electrolyte, the adhesion between the separators is stronger than in the electrolyte-based battery. In addition, swelling of the outer package due to decomposition of the solvent occurs.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記問題点
を解決するためのものであり、電解液に起因した特性の
悪化を抑制し、諸特性に優れた非水電解質二次電池を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and provides a non-aqueous electrolyte secondary battery which suppresses deterioration of characteristics due to an electrolytic solution and has excellent various characteristics. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】非水電解質二次電池にお
いて、正極活物質の周囲と負極活物質の周囲に互いに溶
媒の組成が異なる電解液を配することで、電解液の溶媒
成分が電極と反応して及ぼす悪影響を抑制する。
Means for Solving the Problems In a non-aqueous electrolyte secondary battery, by disposing electrolytic solutions having different solvent compositions around the positive electrode active material and the negative electrode active material, the solvent component of the electrolytic solution is reduced. And suppresses adverse effects.

【0007】[0007]

【発明の実施の形態】本発明は、正極と、負極と、正極
および負極の間に配されたセパレータと、保液性ポリマ
ーおよび電解液を含むゲル状電解質と、正極、負極、セ
パレータおよびゲル状電解質を内部に収容する外装体と
を備えた非水電解質二次電池において、正極活物質の周
囲と負極活物質の周囲に互いに溶媒の組成が異なる電解
液を配する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, a gel electrolyte containing a liquid-retaining polymer and an electrolyte, a positive electrode, a negative electrode, a separator and a gel. In a non-aqueous electrolyte secondary battery provided with an exterior body accommodating a state electrolyte therein, electrolytic solutions having different solvent compositions are disposed around a positive electrode active material and a negative electrode active material.

【0008】より具体的には、正極の表面および負極の
表面を電解液溶媒の組成が互いに異なるゲル状電解質に
よりそれぞれ被覆する。たとえば、所定の方法で作製さ
れた正極および負極うち少なくとも一方の表面に保液性
ポリマーのプレポリマーおよび電解液を含む混合液を含
浸させた後、プレポリマーを重合させる。ここで、両者
とも混合液による処理を施す場合には、両混合液に含ま
れる電解液の溶媒には互いに異なるものを用いる。正負
極のそれぞれに対して、悪影響を及ぼす溶媒は排除して
好ましい溶媒を含む電解液をその表面に配する。
More specifically, the surface of the positive electrode and the surface of the negative electrode are coated with gel electrolytes having different electrolyte solvent compositions. For example, at least one surface of a positive electrode and a negative electrode produced by a predetermined method is impregnated with a mixed solution containing a prepolymer of a liquid-retaining polymer and an electrolytic solution, and then the prepolymer is polymerized. Here, in the case where both are subjected to the treatment with the mixed solution, different solvents are used as the solvents of the electrolytic solution contained in both the mixed solutions. For each of the positive electrode and the negative electrode, an electrolytic solution containing a preferable solvent is disposed on the surface thereof while excluding a solvent having an adverse effect.

【0009】好ましくは、正極表面には、溶媒がプロピ
レンカーボネートまたはγ−ブチロラクトンを含む電解
液を配する。また、負極表面には、溶媒がエチレンカー
ボネートを含む電解液を配する。正極または負極の表面
に付着したゲル状電解質内では、セパレータを挟んで正
極および負極を重ねあわせて外装体に収容された後も各
領域において電解液成分の変動が規制される。したがっ
て、充放電サイクルを繰り返した後も良好な電池特性が
得られる。
Preferably, an electrolytic solution containing a solvent containing propylene carbonate or γ-butyrolactone is provided on the surface of the positive electrode. In addition, an electrolytic solution containing a solvent containing ethylene carbonate is disposed on the surface of the negative electrode. In the gel electrolyte adhered to the surface of the positive electrode or the negative electrode, the fluctuation of the electrolyte component is regulated in each region even after the positive electrode and the negative electrode are overlapped with each other with the separator interposed therebetween and accommodated in the outer package. Therefore, good battery characteristics can be obtained even after repeated charge / discharge cycles.

【0010】好ましくは、セパレータの表面も、正極お
よび負極と同様にゲル状電解質で被覆する。セパレータ
の周囲に配する電解液は、正極または負極の表面に配さ
れるそれと同じであってもよい。たとえば、溶媒として
エチレンカーボネート、プロピレンカーボネートまたは
γ−ブチロラクトンを含む。本発明は、表面に絶縁層を
備えたラミネート材からなる外装体を用いたいわゆるラ
ミネート電池に有用である。負極は、たとえば黒鉛を主
体とする。
[0010] Preferably, the surface of the separator is coated with a gel electrolyte similarly to the positive electrode and the negative electrode. The electrolytic solution disposed around the separator may be the same as that disposed on the surface of the positive electrode or the negative electrode. For example, the solvent includes ethylene carbonate, propylene carbonate or γ-butyrolactone. INDUSTRIAL APPLICABILITY The present invention is useful for a so-called laminated battery using an outer package made of a laminate having an insulating layer on the surface. The negative electrode is mainly composed of, for example, graphite.

【0011】[0011]

【実施例】以下、本発明の好ましい実施例を、図面を用
いて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings.

【0012】《実施例1》正極板の作製は以下のように
して作製される。正極活物質としてのLiCoO2を9
0質量部、炭素系導電材としてのアセチレンブラックま
たはグラファイトを5質量部、結着剤としてのポリビニ
リデンフルオライド(以下、PVDFとする)を5質量
部含むスラリーまたはペーストを調製する。溶剤にはた
とえばN−メチルピロリドンを用いる。次いで、たとえ
ば厚さ20μmのアルミニウム箔またはアルミニウムメ
ッシュからなる正極芯体の両面に、正極活物質を均一に
付着させる。スラリーの場合には、たとえばダイコータ
やドクターブレードを用い、粘性の高いペーストの場合
は、たとえばローラコーティングにより芯体に塗布した
後、乾燥機を用いて溶剤を除去する。乾燥後、ロールプ
レス機を用いて、この正極活物質が充填された芯体を圧
延して、正極板を得る。
Example 1 A positive electrode plate is manufactured as follows. LiCoO 2 as positive electrode active material
A slurry or paste containing 0 parts by mass, 5 parts by mass of acetylene black or graphite as a carbon-based conductive material, and 5 parts by mass of polyvinylidene fluoride (hereinafter, referred to as PVDF) as a binder is prepared. For example, N-methylpyrrolidone is used as the solvent. Next, the positive electrode active material is uniformly attached to both surfaces of a positive electrode core made of, for example, an aluminum foil or aluminum mesh having a thickness of 20 μm. In the case of a slurry, for example, a die coater or a doctor blade is used. In the case of a highly viscous paste, the solvent is removed by using a dryer, for example, after applying the paste to a core by roller coating. After drying, the core filled with the positive electrode active material is rolled using a roll press to obtain a positive electrode plate.

【0013】PCを15質量部、γ−BLを15質量
部、DECを70質量部含む混合溶媒を調製した。得ら
れた混合溶媒にLiPF6とLiN(C25SO2)が
5:95のモル比となる電解質塩を1モル/リットル溶
解させて電解液を調製した。この電解液とポリエチレン
グリコールジアクリレートを90:10の質量比で混合
したものに上記のようにして得られた厚さが0.17m
mの正極板を含浸させた後、加熱してポリエチレングリ
コールジアクリレートを重合させた。
A mixed solvent containing 15 parts by mass of PC, 15 parts by mass of γ-BL, and 70 parts by mass of DEC was prepared. 1 mol / liter of an electrolyte salt having a molar ratio of LiPF 6 and LiN (C 2 F 5 SO 2 ) of 5:95 was dissolved in the obtained mixed solvent to prepare an electrolytic solution. This electrolyte and polyethylene glycol diacrylate were mixed at a mass ratio of 90:10 to a thickness of 0.17 m obtained as described above.
m, and heated to polymerize the polyethylene glycol diacrylate.

【0014】一方、負極板の作製は以下のようにして作
製される。活物質としての天然黒鉛(層間距離d=3.
36Å)および結着剤としてのPVDFをN−メチルピ
ロリドンに混合してスラリーまたはペーストを調製す
る。たとえば負極芯体としての厚さが20μmの銅箔に
上記の正極板の場合と同様にして負極活物質を付着させ
た後、乾燥、圧延して負極板を得る。
On the other hand, the negative electrode plate is manufactured as follows. Natural graphite as an active material (interlayer distance d = 3.
36)) and PVDF as a binder are mixed with N-methylpyrrolidone to prepare a slurry or paste. For example, after a negative electrode active material is adhered to a copper foil having a thickness of 20 μm as a negative electrode core in the same manner as in the case of the positive electrode plate, the negative electrode plate is obtained by drying and rolling.

【0015】ECを30質量部およびDECを70質量
部含む混合溶媒を調製した。得られた混合溶媒にLiP
6とLiN(C25SO2)が5:95のモル比となる
電解質塩を1モル/リットル溶解させて電解液を調製し
た。この電解液とポリエチレングリコールジアクリレー
トを90:10の質量比で混合したものを上記のように
して得られた厚さが0.14mmの負極板に含浸させた
後、加熱してポリエチレングリコールジアクリレートを
重合させた。
A mixed solvent containing 30 parts by mass of EC and 70 parts by mass of DEC was prepared. LiP is added to the obtained mixed solvent.
An electrolyte was prepared by dissolving 1 mol / liter of an electrolyte salt in which F 6 and LiN (C 2 F 5 SO 2 ) had a molar ratio of 5:95. A mixture of the electrolyte and polyethylene glycol diacrylate at a mass ratio of 90:10 was impregnated into the negative electrode plate having a thickness of 0.14 mm obtained as described above, and then heated to obtain polyethylene glycol diacrylate. Was polymerized.

【0016】さらに、ECを15質量部、PCを15質
量部、DECを70質量部含む混合溶媒を調製した。得
られた混合溶媒にLiPF6とLiN(C25SO2)が
5:95のモル比となる電解質塩を1モル/リットル溶
解させて電解液を調製した。この電解液とポリエチレン
グリコールジアクリレートを90:10の質量比で混合
したものにセパレータとしてのポリオレフィン樹脂製で
あって厚さが0.025mmの微多孔膜を含浸させた
後、加熱してポリエチレングリコールジアクリレートを
重合させた。ここで、ポリオレフィン樹脂は電解液に対
して安定であって、その微多孔膜は安価で入手できる。
Further, a mixed solvent containing 15 parts by mass of EC, 15 parts by mass of PC, and 70 parts by mass of DEC was prepared. 1 mol / liter of an electrolyte salt having a molar ratio of LiPF 6 and LiN (C 2 F 5 SO 2 ) of 5:95 was dissolved in the obtained mixed solvent to prepare an electrolytic solution. A mixture of this electrolyte solution and polyethylene glycol diacrylate at a mass ratio of 90:10 was impregnated with a microporous membrane made of polyolefin resin having a thickness of 0.025 mm as a separator, and then heated to obtain polyethylene glycol. The diacrylate was polymerized. Here, the polyolefin resin is stable with respect to the electrolytic solution, and its microporous membrane can be obtained at low cost.

【0017】以上のようにしてゲル状ポリマーにより被
覆された正極板、負極板およびセパレータを用いて非水
電解液電池を組み立てた。まず、正極板および負極板を
その長さ方向に平行な中心線が互いに一致するようにし
て、両者の間にセパレータを挟んで重ね合わせた後、こ
れらを捲回し、その最外周をテープにより固定して渦巻
状電極体を得た。ついで、この電極体をアルミニウムを
芯材とするラミネート外装体に挿入し、さらに電極体の
正極板および負極板に設けられた集電タブをそれぞれ外
装体に溶着した後、外装体の開口部を液密に封口して、
ラミネート電池を得た。これを実施例の電池とする。
A nonaqueous electrolyte battery was assembled using the positive electrode plate, the negative electrode plate and the separator coated with the gel polymer as described above. First, the positive electrode plate and the negative electrode plate are overlapped with each other so that the center lines parallel to the length direction thereof coincide with each other with a separator interposed therebetween, and then wound, and the outermost periphery thereof is fixed with tape. Thus, a spiral electrode body was obtained. Then, the electrode body was inserted into a laminate exterior body having aluminum as a core material, and the current collection tabs provided on the positive electrode plate and the negative electrode plate of the electrode body were respectively welded to the exterior body. Seal it tightly,
A laminated battery was obtained. This is the battery of the example.

【0018】《比較例1》上記と同様にして正極芯体お
よび負極芯体の表面にそれぞれ活物質層を形成して得ら
れた正極および負極と、上記と同様のセパレータを挟ん
で捲回して電極体とした。得られた電極体をアルミニウ
ムを芯材とするラミネート外装体に挿入し、さらに電極
体の正極板および負極板に設けられた集電タブをそれぞ
れ外装体に溶着した。実施例に用いたものと同様であっ
て、ECを30質量部およびDECを70質量部含む混
合溶媒にLiPF6とLiN(C25SO2)のモル比が
5:95となる電解質塩を1モル/リットル溶解させて
調製した電解液を外装体の開口部よりその内部に注入し
た後、外装体開口部を液密に封口してラミネート電池を
得た。これを比較例1の電池とする。
Comparative Example 1 A positive electrode and a negative electrode obtained by forming active material layers on the surfaces of a positive electrode core and a negative electrode core, respectively, in the same manner as described above were wound around the same separator as above. An electrode body was used. The obtained electrode body was inserted into a laminate exterior body using aluminum as a core material, and current collecting tabs provided on a positive electrode plate and a negative electrode plate of the electrode body were welded to the exterior body, respectively. Electrolyte salt which is the same as that used in the example, and in which a mixed solvent containing 30 parts by mass of EC and 70 parts by mass of DEC has a molar ratio of LiPF 6 and LiN (C 2 F 5 SO 2 ) of 5:95. Was dissolved in 1 mol / liter, and the electrolyte solution was injected into the interior of the exterior body through the opening, and then the exterior body opening was liquid-tightly sealed to obtain a laminated battery. This is referred to as a battery of Comparative Example 1.

【0019】《比較例2》比較例1と同様にして電極体
をアルミニウムを芯材とするラミネート外装体に挿入
し、さらに電極体の正極板および負極板に設けられた集
電タブをそれぞれ外装体に溶着した。その後、実施例で
用いたものと同様であって、ECを30質量部およびD
ECを70質量部含む混合溶媒にLiPF6とLiN
(C25SO2)のモル比が5:95となる電解質塩を
1モル/リットル溶解させて調製した電解液と、ポリエ
チレングリコールジアクリレートを90:10の質量比
で混合して得られた混合液を外装体の開口部よりその内
部に注入した。その後、加熱してポリエチレングリコー
ルジアクリレートを重合させ、さらに外装体開口部を液
密に封口してラミネート電池を得た。これを比較例2の
電池とする。
Comparative Example 2 In the same manner as in Comparative Example 1, the electrode body was inserted into a laminate exterior body made of aluminum as the core material, and the current collecting tabs provided on the positive electrode plate and the negative electrode plate of the electrode body were respectively exteriorized. Welded to the body. Thereafter, it is the same as that used in the examples, and EC is 30 parts by mass and D
LiPF 6 and LiN in a mixed solvent containing 70 parts by mass of EC
An electrolytic solution prepared by dissolving 1 mol / l of an electrolyte salt having a molar ratio of (C 2 F 5 SO 2 ) of 5:95 and polyethylene glycol diacrylate are mixed at a mass ratio of 90:10. The mixed solution was injected into the exterior through the opening of the exterior body. Thereafter, the mixture was heated to polymerize the polyethylene glycol diacrylate, and the opening of the outer package was closed in a liquid-tight manner to obtain a laminated battery. This is referred to as a battery of Comparative Example 2.

【0020】以上のようにして得られた実施例の電池お
よび比較例の電池の充電保存特性を測定した。4.2V
までは500mAの定電流で、それ以降は定電圧で合計
3時間充電した後、20日間、60℃の温度環境下で保
存した。保存前後の電池容量の変化と、厚さの変化を表
1に示す。
The charge storage characteristics of the batteries of Examples and Comparative Examples obtained as described above were measured. 4.2V
Thereafter, the battery was charged at a constant current of 500 mA and thereafter at a constant voltage for a total of 3 hours, and then stored at a temperature of 60 ° C. for 20 days. Table 1 shows changes in battery capacity before and after storage and changes in thickness.

【0021】[0021]

【表1】 [Table 1]

【0022】表より明らかなように、実施例の電池は、
容量維持率および厚さ変化量の双方において比較例の電
池よりも優れた特性を示すことがわかる。
As is clear from the table, the batteries of the examples are
It can be seen that both the capacity retention ratio and the thickness change show superior characteristics to the battery of the comparative example.

【0023】なお、プレポリマーとして上記実施例で用
いたポリエチレングリコールジアクリレート以外に、ポ
リエチレングリコールジメタクリレート、ポリプロピレ
ングリコールジアクリレート、ポリプロピレングリコー
ルジメタクリレート等、電解液に対して安定であって保
液性を有するポリマーが得られる他のプレポリマーを用
いることもできる。また、必ずしも上記実施例のように
正極、負極およびセパレータのいずれに対するゲル状電
解質においてもプレポリマーを同量用いる必要は無く、
異なる量用いてもよい。電極体には、上記実施例のよう
な正極および負極をセパレータを挟んで捲回したものの
ほか、正極セパレータおよび負極をこの順に積み重ねた
ものを用いることができる。
In addition, in addition to the polyethylene glycol diacrylate used as the prepolymer in the above examples, polyethylene glycol dimethacrylate, polypropylene glycol diacrylate, polypropylene glycol dimethacrylate, and the like are stable with respect to the electrolytic solution and have good liquid retention properties. Other prepolymers from which the resulting polymer can be obtained can also be used. In addition, it is not always necessary to use the same amount of prepolymer in the gel electrolyte for any of the positive electrode, the negative electrode and the separator as in the above example,
Different amounts may be used. As the electrode body, besides the one obtained by winding the positive electrode and the negative electrode with the separator interposed therebetween as in the above-described embodiment, the one obtained by stacking the positive electrode separator and the negative electrode in this order can be used.

【0024】正極活物質には、上記実施例で用いたLi
CoO2のほかに、LiMn24、LiNiO2、これら
の混合物等を用いることもできる。負極活物質には、上
記実施例で用いた天然黒鉛のほかに、人造黒鉛、カーボ
ンブラック、コークス、ガラス状炭素、炭素繊維、これ
らの焼結体等を用いることができる。電解質塩には、上
記実施例で用いたLiPF6およびLiN(C25
22のほか、LiBF4、LiCF3SO3、LiCl
4、LiN(CF3SO22、これらの混合物等を用い
ることができる。
As the positive electrode active material, Li used in the above example was used.
In addition to CoO 2 , LiMn 2 O 4 , LiNiO 2 , a mixture thereof and the like can also be used. As the negative electrode active material, artificial graphite, carbon black, coke, glassy carbon, carbon fiber, a sintered body thereof, or the like can be used in addition to the natural graphite used in the above embodiment. The electrolyte salt includes LiPF 6 and LiN (C 2 F 5 S) used in the above example.
O 2 ) 2 , LiBF 4 , LiCF 3 SO 3 , LiCl
O 4 , LiN (CF 3 SO 2 ) 2 , a mixture thereof and the like can be used.

【0025】[0025]

【発明の効果】本発明によると、電解液に起因した特性
の悪化を抑制し、諸特性に優れた非水電解質二次電池を
提供することができる。
According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery which suppresses deterioration of characteristics due to the electrolyte and has excellent various characteristics.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 正極と、負極と、前記正極および負極の
間に配されたセパレータと、保液性ポリマーおよび電解
液を含むゲル状電解質と、前記正極、負極、セパレータ
およびゲル状電解質を内部に収容する外装体とを具備
し、正極活物質の周囲に配された前記電解液の溶媒の組
成が負極活物質の周囲に配された前記電解液の溶媒の組
成と異なる非水電解質二次電池。
1. A positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, a gel electrolyte containing a liquid-retaining polymer and an electrolytic solution, and the inside of the positive electrode, the negative electrode, the separator and the gel electrolyte. A non-aqueous electrolyte secondary in which the composition of the solvent of the electrolytic solution disposed around the positive electrode active material is different from the composition of the solvent of the electrolytic solution disposed around the negative electrode active material. battery.
【請求項2】 前記正極および負極の表面が前記ゲル状
電解質によりそれぞれ被覆された請求項1記載の非水電
解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the surfaces of the positive electrode and the negative electrode are respectively coated with the gel electrolyte.
【請求項3】 前記正極活物質の周囲の前記電解液の溶
媒がプロピレンカーボネートまたはγ−ブチロラクトン
を含み、前記負極活物質の周囲の前記電解液の溶媒がエ
チレンカーボネートを含む請求項1記載の非水電解質二
次電池。
3. The method according to claim 1, wherein the solvent of the electrolyte around the positive electrode active material contains propylene carbonate or γ-butyrolactone, and the solvent of the electrolyte around the negative electrode active material contains ethylene carbonate. Water electrolyte secondary battery.
【請求項4】 前記セパレータに含浸した前記電解液
が、溶媒としてエチレンカーボネート、プロピレンカー
ボネートおよびγ−ブチロラクトンからなる群より選択
される少なくとも一種を含む請求項1記載の非水電解質
二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the electrolytic solution impregnated in the separator contains at least one selected from the group consisting of ethylene carbonate, propylene carbonate, and γ-butyrolactone as a solvent.
【請求項5】 前記セパレータの表面が前記ゲル状電解
質により被覆された請求項1記載の非水電解質二次電
池。
5. The non-aqueous electrolyte secondary battery according to claim 1, wherein the surface of the separator is covered with the gel electrolyte.
【請求項6】 前記外装体がフィルム状であることを特
徴とする請求項1記載の非水電解質二次電池。
6. The non-aqueous electrolyte secondary battery according to claim 1, wherein said exterior body is in the form of a film.
【請求項7】 前記負極が黒鉛を主体とする請求項1記
載の非水電解質二次電池。
7. The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode mainly comprises graphite.
【請求項8】 前記正極および負極が前記セパレータを
挟んで積層された請求項1記載の非水電解質二次電池。
8. The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode and the negative electrode are stacked with the separator interposed therebetween.
【請求項9】 正極、負極またはセパレータに保液性ポ
リマーのプレポリマーおよび電解液を含む混合液を含浸
させる工程と、 前記正極、負極またはセパレータに付着した前記プレポ
リマーを重合させる工程と、 前記正極および負極を前記セパレータを挟んで重ねあわ
せて電極体を作製する工程とを含む非水電解質二次電池
の製造方法。
9. a step of impregnating a positive electrode, a negative electrode or a separator with a mixed solution containing a prepolymer of a liquid-retaining polymer and an electrolytic solution; a step of polymerizing the prepolymer attached to the positive electrode, the negative electrode or the separator; Producing a non-aqueous electrolyte secondary battery by laminating a positive electrode and a negative electrode with the separator interposed therebetween.
JP2001077554A 2001-03-19 2001-03-19 Nonaqueous electrolyte secondary battery and its producing method Pending JP2002280070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001077554A JP2002280070A (en) 2001-03-19 2001-03-19 Nonaqueous electrolyte secondary battery and its producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001077554A JP2002280070A (en) 2001-03-19 2001-03-19 Nonaqueous electrolyte secondary battery and its producing method

Publications (1)

Publication Number Publication Date
JP2002280070A true JP2002280070A (en) 2002-09-27

Family

ID=18934293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001077554A Pending JP2002280070A (en) 2001-03-19 2001-03-19 Nonaqueous electrolyte secondary battery and its producing method

Country Status (1)

Country Link
JP (1) JP2002280070A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003308877A (en) * 2002-04-11 2003-10-31 Ind Technol Res Inst Method of manufacturing polymer secondary battery
JP6954499B1 (en) * 2020-11-18 2021-10-27 昭和電工マテリアルズ株式会社 Lithium ion secondary battery and separation membrane
WO2022107255A1 (en) * 2020-11-18 2022-05-27 昭和電工マテリアルズ株式会社 Lithium ion secondary battery and separation membrane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003308877A (en) * 2002-04-11 2003-10-31 Ind Technol Res Inst Method of manufacturing polymer secondary battery
JP6954499B1 (en) * 2020-11-18 2021-10-27 昭和電工マテリアルズ株式会社 Lithium ion secondary battery and separation membrane
WO2022107253A1 (en) * 2020-11-18 2022-05-27 昭和電工マテリアルズ株式会社 Lithium ion secondary battery and separation membrane
WO2022107255A1 (en) * 2020-11-18 2022-05-27 昭和電工マテリアルズ株式会社 Lithium ion secondary battery and separation membrane
EP4195344A4 (en) * 2020-11-18 2023-10-18 LG Energy Solution, Ltd. Lithium ion secondary battery and separation membrane
EP4235936A3 (en) * 2020-11-18 2023-10-25 LG Energy Solution, Ltd. Lithium ion secondary battery and separation membrane

Similar Documents

Publication Publication Date Title
JP6656718B2 (en) Negative electrode including multiple protective layers and lithium secondary battery including the same
KR100587437B1 (en) Nonaqueous Secondary Battery
KR100547085B1 (en) Manufacturing method of polymer porous separator and lithium ion polymer battery
JP2018198131A (en) Lithium ion secondary battery
CN111066189B (en) Solid electrolyte composition, solid electrolyte-containing sheet, method for producing and storing solid electrolyte-containing sheet, method for producing solid electrolyte-containing sheet, method for storing solid electrolyte-containing sheet, and kit for producing solid electrolyte-containing sheet
JP2000149906A (en) Lithium secondary battery
JP2007200695A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP2015125948A (en) Lithium ion secondary battery
JP2002151156A (en) Method of manufacturing lithium secondary battery
US20180241085A1 (en) Nonaqueous electrolytic solution and nonaqueous electrolytic solution battery using the same
KR20080029897A (en) Polymer electrolyte secondary battery
JP4180335B2 (en) Non-aqueous electrolyte battery
US20200144609A1 (en) Battery member for secondary battery, secondary battery, and production methods therefor
JP2002280070A (en) Nonaqueous electrolyte secondary battery and its producing method
JP2007172878A (en) Battery and its manufacturing method
JP5516700B2 (en) Lithium secondary battery
US20020136958A1 (en) High ionic conductivity gel polymer electrolyte for rechargeable polymer batteries
WO2013047502A1 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary cell
JP2003263984A (en) Nonaqueous electrolyte cell and manufacturing method thereof
JP2016081707A (en) Negative electrode and lithium ion secondary battery using the same
JP2002280071A (en) Nonaqueous electrolyte secondary battery and its producing method
JP2015125950A (en) Lithium ion secondary battery
JP5217066B2 (en) Lithium secondary battery
JP2015125949A (en) Lithium ion secondary battery
JP2002367677A (en) Manufacturing method of non-aqueous secondary battery