JP2002276902A - Control device for dryness or wetness of two-phase fluid - Google Patents

Control device for dryness or wetness of two-phase fluid

Info

Publication number
JP2002276902A
JP2002276902A JP2001073770A JP2001073770A JP2002276902A JP 2002276902 A JP2002276902 A JP 2002276902A JP 2001073770 A JP2001073770 A JP 2001073770A JP 2001073770 A JP2001073770 A JP 2001073770A JP 2002276902 A JP2002276902 A JP 2002276902A
Authority
JP
Japan
Prior art keywords
dryness
fluid
wetness
phase fluid
detecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001073770A
Other languages
Japanese (ja)
Other versions
JP4602578B2 (en
Inventor
Masayoshi Harada
正義 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP2001073770A priority Critical patent/JP4602578B2/en
Publication of JP2002276902A publication Critical patent/JP2002276902A/en
Application granted granted Critical
Publication of JP4602578B2 publication Critical patent/JP4602578B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a control device for dryness or wetness of two-phase fluid to enable the execution of control through measurement of dryness or wetness of fluid in the whole of piping containing layered fluid present in a mixed state is fluid piping. SOLUTION: A flow velocity sensor 10, a pressure sensor 9, a Pitot tube, and an ultraviolet transmitter receive 2 are mounted, in the order, in vapor piping 3 through which vapor 5 and drain 6 flow down. A dryness or wetness adjusting means 4 is mounted in the vapor piping 3. By detecting the dynamic pressure of the system 5 to be measured in the Pitot tube 1, dryness X1 of the vapor 5 is detected. Meanwhile, the liquid level of drain 6 is measured by the ultrasonic transmitter receiver 2, and from weight conversion, a weight of the drain 6 is determined. Further, from the dryness X1 of the vapor 5 and the weight of the drain 6, dryness or wetness of the fluid in the whole of the piping is calculated. By adjusting the dryness or wetness adjusting means 4 based on the calculated value, dryness or wetness of feed vapor can be controlled optionally.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蒸気と凝縮液とし
てのドレン、あるいは、冷媒ガスと冷媒液などの気液二
相流体が混合した流体の乾き度又は湿り度を任意に制御
する装置に関する。例えば、蒸気の単位体積当りの全質
量に対する乾き飽和蒸気の占める質量の割合を乾き度X
と言い、乾き度がXの場合、湿り度は(1−X)で表さ
れる。各種ボイラや蒸気動力を利用する機器、乾燥設備
などでは、蒸気中の水分の含有量によって例えば稼動効
率や乾燥状態が変化してしまうために、乾き度あるいは
湿り度が測定され制御される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for arbitrarily controlling the dryness or wetness of a fluid as a mixture of vapor and liquid two-phase fluids such as a refrigerant and a condensate or a refrigerant gas and a refrigerant liquid. . For example, the ratio of the mass occupied by dry saturated steam to the total mass per unit volume of steam is expressed as dryness X
When the dryness is X, the wetness is represented by (1-X). In various boilers, equipment using steam power, drying equipment, and the like, for example, the operating efficiency and the drying state change depending on the moisture content in the steam, so that the dryness or wetness is measured and controlled.

【0002】[0002]

【従来の技術】従来の乾き度又は湿り度制御装置として
は、例えば特許第2873640号公報に記載されたも
のがある。これは、蒸気の乾き度を測定する絞り乾き度
計又は赤外線式湿り度計と、蒸気を加熱したり冷却する
乾き度及び湿り度調節装置から成るもので、供給蒸気の
乾き度又は湿り度を任意に制御することができるもので
ある。
2. Description of the Related Art A conventional dryness or wetness control device is disclosed in, for example, Japanese Patent No. 2873640. It consists of a squeezing dryness meter or infrared wetness meter for measuring the dryness of steam, and a dryness and wetness control device for heating and cooling the steam. It can be arbitrarily controlled.

【0003】[0003]

【発明が解決しようとする課題】上記従来の乾き度制御
装置に用いる絞り乾き度計や赤外線式湿り度計では、気
相としての蒸気の乾き度を測定することはできるが、流
体配管中に混在する層状の凝縮液としてのドレンを考慮
した、流体配管全体の乾き度を測定して制御することが
できない問題があった。
In the conventional dryness controller or the squeezed dryness meter or the infrared wetness meter used in the conventional dryness control device, the dryness of the vapor in the gas phase can be measured. There was a problem that it was not possible to measure and control the dryness of the entire fluid pipe in consideration of drainage as a mixed layered condensate.

【0004】例えば実際の蒸気配管においては、気相と
しての蒸気の層の下部に、液相としてのドレンの層が混
在した状態となっている場合が多々ある。上記従来の乾
き度計では、蒸気中に含まれる微細な水滴の量の多少に
基づいて変化する蒸気の乾き度を測定することはできる
が、下層のドレンを考慮した配管全体の乾き度を測定す
ることができず、従って、配管全体の乾き度を制御する
こともできないのである。
For example, in an actual steam pipe, there are many cases where a layer of a drain as a liquid phase is mixed below a layer of a vapor as a gas phase. With the above-mentioned conventional dryness meter, it is possible to measure the dryness of steam that changes based on the amount of fine water droplets contained in the steam, but it measures the dryness of the entire pipe taking into account the drain in the lower layer. And therefore cannot control the overall dryness of the piping.

【0005】従って、本発明の課題は、流体配管中に混
在する層状の液体も含めた配管全体の流体の乾き度又は
湿り度を測定し、制御することのできる、二相流体の乾
き度又は湿り度制御装置を提供することである。
[0005] Accordingly, an object of the present invention is to measure the dryness or wetness of a fluid in the entire piping including the layered liquid mixed in the fluid piping, and to control the dryness or dryness of a two-phase fluid. It is to provide a wetness control device.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに講じた本発明の手段は、配管を流下する流体の乾き
度又は湿り度を測定する乾き度又は湿り度測定手段と、
流体の乾き度又は湿り度を調節する乾き度又は湿り度調
節手段を備えて、供給する流体の乾き度又は湿り度を所
定値に制御するものにおいて、流体が気液の二相流体で
あり、且つ、流体の乾き度又は湿り度測定手段が、気相
流体の乾き度又は湿り度を検出する気相流体乾き度検出
手段と、流体配管中の層状の液相流体の液位から重量を
検出する液相流体液位重量検出手段と、から成ることを
特徴とする。
Means of the present invention taken to solve the above-mentioned problems are: a dryness or wetness measuring means for measuring the dryness or wetness of a fluid flowing down a pipe;
A device comprising a dryness or wetness adjustment means for adjusting the dryness or wetness of a fluid to control the dryness or wetness of a supplied fluid to a predetermined value, wherein the fluid is a gas-liquid two-phase fluid, In addition, the fluid dryness or wetness measuring means detects the dryness or wetness of the gaseous fluid and the gas phase fluid dryness detecting means, and detects the weight from the liquid level of the layered liquid phase fluid in the fluid piping. Liquid phase liquid level weight detecting means.

【0007】請求項2に係る発明は、請求項1に係る発
明を実施するのに好適な実施形態を特定するものであ
り、前記気相流体乾き度検出手段が、気相流体の動圧を
検知する動圧検知手段と、当該動圧検知手段で検知した
動圧値と気相流体の流速から気相流体の比重量又は比容
積を演算する比重量又は比容積演算手段と、当該気相流
体の比重量又は比容積と、乾き度又は湿り度との関係式
に基づいて、気相流体の乾き度又は湿り度を演算制御す
ることを特徴とするものである。
The invention according to claim 2 specifies an embodiment suitable for carrying out the invention according to claim 1, wherein the gas-phase fluid dryness detecting means detects the dynamic pressure of the gas-phase fluid. A dynamic pressure detecting means for detecting, a specific weight or specific volume calculating means for calculating a specific weight or a specific volume of the gas phase fluid from a dynamic pressure value detected by the dynamic pressure detecting means and a flow rate of the gas phase fluid; It is characterized in that the dryness or wetness of a gas-phase fluid is arithmetically controlled based on a relational expression between the specific weight or specific volume of the fluid and the dryness or wetness.

【0008】請求項3に係る発明は、請求項2の構成に
加えて、前記気相流体の流速を流速検出手段で検出し
て、検出した流速値を前記比重量又は比容積演算手段に
供給するように構成されていることを特徴とする。
According to a third aspect of the present invention, in addition to the configuration of the second aspect, the flow velocity of the gas-phase fluid is detected by a flow velocity detecting means, and the detected flow velocity value is supplied to the specific weight or specific volume calculating means. It is characterized by being constituted.

【0009】請求項4に係る発明は、請求項2の構成に
加えて、前記動圧検知手段がピトー管又は弾性付勢され
たフラップであると共に、流下する気相流体の静圧を検
知する静圧検知手段を設けたことを特徴とする。
According to a fourth aspect of the present invention, in addition to the configuration of the second aspect, the dynamic pressure detecting means is a pitot tube or an elastically urged flap, and detects the static pressure of the gas-phase fluid flowing down. A static pressure detecting means is provided.

【0010】請求項5に係る発明は、請求項2の構成に
加えて、前記動圧検知手段がピトー管である共に、当該
ピトー管で静圧も検知することを特徴とする。
According to a fifth aspect of the present invention, in addition to the configuration of the second aspect, the dynamic pressure detecting means is a pitot tube, and the static pressure is also detected by the pitot tube.

【0011】請求項6に係る発明は、請求項1に係る発
明を実施するのに好適な実施形態を特定するものであ
り、前記液相流体液位重量検出手段が、流体配管の底部
外面に取り付けられた超音波送受信器と、当該超音波送
受信器から上方に向けて放射された超音波が液面で反射
されて戻ってくるまでの時間から流体配管内の液位を検
出する液位検出手段を具備して、当該液位検出手段で検
出された液位から流体配管内の気相流体と液相流体の単
位容積を算出して、液相流体の単位容積から重量を演算
算出することを特徴とするものである。
The invention according to claim 6 specifies an embodiment suitable for carrying out the invention according to claim 1, wherein the liquid phase fluid level weight detecting means is provided on an outer surface at the bottom of a fluid pipe. Liquid level detection for detecting the liquid level in the fluid pipe from the attached ultrasonic transceiver and the time until the ultrasonic wave radiated upward from the ultrasonic transceiver is reflected by the liquid surface and returned. Means for calculating the unit volumes of the gas phase fluid and the liquid phase fluid in the fluid pipe from the liquid level detected by the liquid level detecting means, and calculating and calculating the weight from the unit volume of the liquid phase fluid. It is characterized by the following.

【0012】[0012]

【発明の実施の形態】気相流体乾き度検出手段で気相流
体の乾き度を検出し、液相流体液位重量検出手段で検出
した液位から流体配管内の液相と気相の単位容積を算出
して、気相の単位容積と乾き度から、気相流体中の気体
重量Sと液体重量Dを算出すると共に、液相の単位容積
から液相流体の重量D´を算出することによって、気液
二相流体の乾き度X=S/(S+D+D´)として流体
配管全体の乾き度又は湿り度を測定し制御することがで
きる。
BEST MODE FOR CARRYING OUT THE INVENTION The dryness of a gas phase fluid is detected by a gas phase fluid dryness detecting means, and the unit of the liquid phase and the gas phase in the fluid pipe is measured from the liquid level detected by the liquid phase fluid level detecting means. Calculating the volume, calculating the gas weight S and the liquid weight D in the gas phase fluid from the unit volume and dryness of the gas phase, and calculating the weight D 'of the liquid phase fluid from the unit volume of the liquid phase Accordingly, the dryness or wetness of the entire fluid pipe can be measured and controlled as the dryness X = S / (S + D + D ′) of the gas-liquid two-phase fluid.

【0013】動圧検知手段で流下する気相流体の動圧を
検知して、この検知した動圧値と気相流体の流速から、
比重量又は比容積演算手段で、動圧値=ρV2/2式に
より、比重量又は比容積を演算することができる。ここ
で、ρは気相流体の比重量で、Vは流速であり、比容
積:vはρの逆数として求めることができる。
The dynamic pressure of the gaseous fluid flowing down is detected by the dynamic pressure detecting means, and from the detected dynamic pressure value and the flow velocity of the gaseous phase fluid,
The specific weight or specific volume calculation means can calculate the specific weight or specific volume by the equation of dynamic pressure value = ρV2 / 2. Here, ρ is the specific weight of the gas phase fluid, V is the flow velocity, and the specific volume: v can be obtained as the reciprocal of ρ.

【0014】例えば気相流体としての蒸気の比重量又は
比容積と、蒸気の乾き度又は湿り度との間には、所定の
定義式で表される関係式があり、比重量又は比容積演算
手段で演算した値と、この関係式から、蒸気の乾き度又
は湿り度を算出して、供給蒸気の乾き度又は湿り度を任
意に制御することができる。
For example, there is a relational expression expressed by a predetermined definition equation between the specific weight or specific volume of steam as a gas phase fluid and the dryness or wetness of steam. The dryness or wetness of the steam is calculated from the value calculated by the means and this relational expression, and the dryness or wetness of the supplied steam can be arbitrarily controlled.

【0015】気相流体の流速が不明確な場合は、請求項
3に示すように、流速検出手段で気相流体の流速を検出
して、検出した流速値を前記比重量又は比容積演算手段
に供給して演算することができる。
When the flow rate of the gaseous phase fluid is unclear, the flow rate detecting means detects the flow rate of the gaseous phase fluid, and uses the detected flow rate value as the specific weight or specific volume calculating means. To be calculated.

【0016】気相流体の静圧が不明確な場合は、請求項
4に示すように、動圧検知手段としてピトー管又は弾性
付勢したフラップとに加えて、静圧検知手段を用いるこ
とにより、流下する気相流体の静圧も簡単に検知して、
乾き度を算出して制御することができる。また、ピトー
管に静圧管を備えた二重管とすることにより、ピトー管
で総圧と静圧の差としての動圧と、静圧の両方を検知し
て、乾き度を算出して制御することができる。
When the static pressure of the gas phase fluid is unclear, the static pressure detecting means may be used in addition to the pitot tube or the elastically urged flap as the dynamic pressure detecting means. , Also easily detects the static pressure of the flowing gas phase fluid,
The dryness can be calculated and controlled. In addition, by using a pitot tube as a double tube with a static pressure tube, the pitot tube detects both the dynamic pressure as the difference between the total pressure and the static pressure and the static pressure, and calculates and controls the dryness. can do.

【0017】液相流体液位重量検出手段において、流体
配管の底部外面に取り付けられた超音波送受信器から上
方に向けて放射された超音波が、液面で反射されて戻っ
てくるまでの時間から流体配管内の液位を検出する。こ
の検出された液位から液相部と気相部の面積を算出し流
体配管の単位長さにおける液相と気相の単位容積を算出
する。また、算出した液相の単位容積と比容積から液相
流体の重量を算出することができる。
In the liquid phase fluid level weight detecting means, the time required for the ultrasonic wave radiated upward from the ultrasonic transmitter / receiver attached to the bottom outer surface of the fluid pipe to be reflected by the liquid surface and returned. To detect the liquid level in the fluid pipe. From the detected liquid level, the areas of the liquid phase portion and the gas phase portion are calculated, and the unit volumes of the liquid phase and the gas phase at the unit length of the fluid pipe are calculated. Further, the weight of the liquid phase fluid can be calculated from the calculated unit volume and specific volume of the liquid phase.

【0018】[0018]

【実施例】本実施例においては、蒸気とドレンの気液二
相流体の乾き度を制御する例を説明する。また本実施例
においては、気相流体乾き度検出手段としてピトー管1
を用いた例を、及び、液相流体液位重量検出手段として
超音波送受信器2を用いた例を示す。
EXAMPLE In this example, an example of controlling the dryness of a gas-liquid two-phase fluid of steam and drain will be described. In the present embodiment, the pitot tube 1 is used as the gas-phase fluid dryness detecting means.
And an example in which the ultrasonic transceiver 2 is used as the liquid-phase fluid level weight detection means.

【0019】図1において、被制御流体としての蒸気と
ドレンの混合流体が左側から右側へ流下する上下の蒸気
配管3と、乾き度又は湿り度を調節する調節手段4と、
乾き度又は湿り度測定手段24とで二相流体の乾き度又
は湿り度制御装置を構成する。下部の蒸気配管3は、調
節手段4を通り、上部に拡大して図示した蒸気配管3と
連通する。蒸気配管3の中では、上部に蒸気5が、下部
にドレン6が層状に流下し、更に、上部の蒸気5は、乾
き飽和蒸気と微細な水滴が混合した所謂湿り蒸気状態の
ものである。
In FIG. 1, upper and lower steam pipes 3 through which a mixed fluid of steam and drain as a controlled fluid flows down from left to right, adjusting means 4 for adjusting dryness or wetness,
The dryness or wetness measuring means 24 constitutes a two-phase fluid dryness or wetness control device. The lower steam pipe 3 passes through the adjusting means 4 and communicates with the steam pipe 3 which is enlarged and shown in the upper part. In the steam pipe 3, the steam 5 flows down in a layered manner at the upper part and the drain 6 flows down in a layered manner.

【0020】動圧検知手段としてのピトー管1の端部開
口7を、蒸気配管3のほぼ中心部に配置して、上部の圧
力変換器8と連通する。本実施例のピトー管1は、流体
の総圧を検出することのできる一重管のものを使用す
る。
An end opening 7 of the pitot tube 1 serving as a dynamic pressure detecting means is disposed substantially at the center of the steam pipe 3 and communicates with the upper pressure transducer 8. The pitot tube 1 of the present embodiment uses a single tube capable of detecting the total pressure of the fluid.

【0021】ピトー管1の端部開口7の上方には、被測
定蒸気の静圧を検出する静圧検知手段としての圧力セン
サ9を取り付ける。ピトー管1で検出した総圧から圧力
センサ9で検知した静圧を減じることにより、蒸気の動
圧を求めることができる。尚、ピトー管1に静圧管を備
えて静圧を検知することのできる二重管方式のものを用
いる場合、圧力センサ9は必ずしも取り付ける必要はな
い。また、蒸気の静圧が既知の場合も、圧力センサ9は
必ずしも取り付ける必要はない。
A pressure sensor 9 is mounted above the end opening 7 of the pitot tube 1 as a static pressure detecting means for detecting the static pressure of the steam to be measured. The dynamic pressure of the steam can be obtained by subtracting the static pressure detected by the pressure sensor 9 from the total pressure detected by the pitot tube 1. When a pitot tube 1 is provided with a static pressure tube and is of a double tube type capable of detecting static pressure, the pressure sensor 9 does not necessarily need to be attached. Further, even when the static pressure of the steam is known, the pressure sensor 9 does not necessarily need to be attached.

【0022】圧力センサ9の更に上流側には、蒸気配管
3内を通過する蒸気の流速を検出する流速検出手段とし
ての流速センサ10を取り付ける。流速センサ10は、
内部を図示しないセンサ部10と流速変換器21とで構
成する。尚、流速センサ10は、通過蒸気の流速が既知
の場合は必ずしも取り付ける必要はない。
At a further upstream side of the pressure sensor 9, a flow velocity sensor 10 is mounted as flow velocity detecting means for detecting a flow velocity of the steam passing through the steam pipe 3. The flow rate sensor 10
The inside is constituted by a sensor unit 10 (not shown) and a flow velocity converter 21. The flow rate sensor 10 does not necessarily need to be attached when the flow rate of the passing steam is known.

【0023】蒸気配管3の底部外周に超音波送受信器2
を取り付ける。一方、流速センサ10の上流側には、冷
却流体の補給管22と排出管23を、それぞれ蒸気配管
3の上部と下部に接続する。
The ultrasonic transmitter / receiver 2 is mounted on the outer periphery of the bottom of the steam pipe 3.
Attach. On the other hand, on the upstream side of the flow velocity sensor 10, a supply pipe 22 and a discharge pipe 23 for the cooling fluid are connected to the upper and lower parts of the steam pipe 3, respectively.

【0024】乾き度又は湿り度調節手段4は、供給する
蒸気を加熱して乾き度を高めるための加熱器11と、反
対に蒸気に水滴を供給して乾き度を低めるための冷却器
12とで構成する。
The dryness or wetness adjusting means 4 includes a heater 11 for heating the supplied steam to increase the dryness, and a cooler 12 for supplying water droplets to the steam to reduce the dryness. It consists of.

【0025】加熱器本体13に、バルブ19を介して加
熱流体供給管14と排出管15を接続し、加熱流体の供
給量をコントロールして加熱器本体13内を通過する蒸
気を適宜加熱することによって、蒸気の乾き度を任意に
高めることができるものである。
A heater fluid supply pipe 14 and a discharge pipe 15 are connected to the heater body 13 via a valve 19 to control the supply amount of the heating fluid to appropriately heat the steam passing through the heater body 13. Thus, the dryness of steam can be arbitrarily increased.

【0026】冷却器本体16には、バルブ20を介して
冷却水供給管17を接続して、蒸気の乾き度を任意に低
めることができるものである。冷却器本体16の下部に
はスチームトラップ18を接続して、冷却器本体16内
の余剰の冷却水を外部に排出する。
A cooling water supply pipe 17 is connected to the cooler main body 16 via a valve 20, so that the dryness of steam can be arbitrarily reduced. A steam trap 18 is connected to a lower portion of the cooler body 16 to discharge excess cooling water in the cooler body 16 to the outside.

【0027】それぞれのバルブ19,20と、ピトー管
1の圧力変換器8と、圧力センサ9と、流速変換器2
1、及び、超音波送受信器2は、図示しない演算制御部
と電気接続する。
The valves 19 and 20, the pressure transducer 8 of the pitot tube 1, the pressure sensor 9, and the flow rate transducer 2
1 and the ultrasonic transceiver 2 are electrically connected to an arithmetic control unit (not shown).

【0028】気相流体乾き度検出手段としてのピトー管
1を用いて、蒸気5の乾き度X1又は湿り度(1−X
1)を測定するには、まず、ピトー管1で蒸気5の総圧
を検知し、この総圧と静圧の差としての動圧値と、蒸気
5の流速Vとから、比重量又は比容積演算手段で、動圧
値=ρV2/2式によって、蒸気5の比重量又は比容積
を演算する。尚、比容積vは、比重量ρの逆数として求
まる。
Using the pitot tube 1 as a gas phase fluid dryness detecting means, the dryness X1 or wetness (1-X
In order to measure 1), first, the total pressure of the steam 5 is detected by the pitot tube 1, and the specific weight or ratio is determined from the dynamic pressure value as a difference between the total pressure and the static pressure and the flow velocity V of the steam 5. The volume calculating means calculates the specific weight or specific volume of the steam 5 by the equation of dynamic pressure = ρV 2/2. Note that the specific volume v is obtained as the reciprocal of the specific weight ρ.

【0029】蒸気5の比重量又は比容積と、乾き度又は
湿り度との間には、所定の関係式が存在する。即ち、ρ
=X1/v〃+(1−X1)/v´式が成り立つ。ここ
で、ρは蒸気5の比重量、X1は蒸気5の乾き度、v〃
は飽和蒸気の比容積、v´は飽和水の比容積である。v
〃とv´は、被測定蒸気の静圧が判れば蒸気表から一義
的に求めることができる。従って、圧力センサ9で蒸気
配管3内の静圧を測定すると共に、予め記憶しておいた
蒸気表の各圧力ごとの、飽和蒸気の比容積と飽和水の比
容積から、v〃とv´を求めることができる。
A specific relational expression exists between the specific weight or specific volume of the steam 5 and the dryness or wetness. That is, ρ
= X1 / v〃 + (1−X1) / v ′ expression holds. Here, ρ is the specific weight of steam 5, X1 is the dryness of steam 5, v〃
Is the specific volume of saturated steam, and v 'is the specific volume of saturated water. v
〃 and v ′ can be uniquely obtained from the steam table if the static pressure of the measured steam is known. Accordingly, the static pressure in the steam pipe 3 is measured by the pressure sensor 9 and v〃 and v ′ are obtained from the specific volume of the saturated steam and the specific volume of the saturated water for each pressure in the steam table stored in advance. Can be requested.

【0030】上記の式、ρ=X1/v〃+(1−X1)
/v´において、ρとv〃とv´が求まることによっ
て、被測定蒸気5の乾き度X1を求めることができ、同
じく、湿り度(1−X1)を求めることができる。
The above equation, ρ = X1 / v〃 + (1-X1)
By determining ρ, v〃, and v ′ in / v ′, the dryness X1 of the measured steam 5 can be obtained, and similarly, the wetness (1−X1) can be obtained.

【0031】次に、超音波送受信器2で、蒸気5とドレ
ン6の単位容積を検出する例を説明する。蒸気配管3の
底部外面に取り付けた超音波送受信器2を、図示しない
演算制御部に接続する。演算制御部には予め飽和蒸気及
び飽和水の比容積と蒸気圧力の関係を記憶しておく。
Next, an example in which the ultrasonic transceiver 2 detects the unit volumes of the steam 5 and the drain 6 will be described. The ultrasonic transceiver 2 attached to the bottom outer surface of the steam pipe 3 is connected to an arithmetic control unit (not shown). The relation between the specific volume of the saturated steam and the saturated water and the steam pressure is stored in the arithmetic control unit in advance.

【0032】超音波送受信器2から、所定時間毎に蒸気
配管3の底部外面から上方に向けて超音波を放射し、ド
レン6の上液面で反射されて戻ってくるまでの時間から
蒸気配管3内のドレンの液位を検出し、検出した液位か
ら所定管径を有する蒸気配管3の蒸気部5の面積とドレ
ン部6の面積を算出し、蒸気配管3の単位長さにおける
蒸気5の単位容積V1とドレン6の単位容積V2を算出
する。
The ultrasonic transmitter / receiver 2 emits ultrasonic waves upward from the bottom outer surface of the steam pipe 3 every predetermined time, and is reflected from the upper liquid surface of the drain 6 and returns from the steam pipe 3. 3, the area of the steam section 5 of the steam pipe 3 having a predetermined pipe diameter and the area of the drain section 6 are calculated from the detected liquid level, and the steam 5 in the unit length of the steam pipe 3 is calculated. And the unit volume V2 of the drain 6 are calculated.

【0033】次に、算出した蒸気5の単位容積V1と乾
き度X1から、蒸気5中の乾き飽和蒸気の重量Sと、蒸
気5中に含まれている微細な水滴状のドレンの重量Dを
算出する。即ち、X1=S/(S+D)で表され、X1
が既に求まっており、同様に既知のV1におけるSとD
の比率からSとDを算出することができる。
Next, based on the calculated unit volume V1 of the steam 5 and the dryness X1, the weight S of the dry saturated steam in the steam 5 and the weight D of the fine water-drop-shaped drain contained in the steam 5 are calculated. calculate. That is, X1 = S / (S + D), and X1
Have already been determined, and similarly, S and D at known V1
S and D can be calculated from the ratio of.

【0034】次に、算出したドレン6の単位容積V2
に、蒸気配管3の圧力に基づく飽和水の比容積の逆数を
掛け合わせてドレン6の重量D´を算出して、蒸気5と
ドレン6から成る二相流体の乾き度XをX=S/(S+
D+D´)として、流体配管3全体の乾き度を求めるこ
とができる。
Next, the calculated unit volume V2 of the drain 6
Is multiplied by the reciprocal of the specific volume of the saturated water based on the pressure of the steam pipe 3 to calculate the weight D 'of the drain 6, and the dryness X of the two-phase fluid composed of the steam 5 and the drain 6 is calculated as X = S / (S +
D + D '), the dryness of the entire fluid pipe 3 can be obtained.

【0035】更に、演算制御部で求まった全体の乾き度
又は湿り度と、設定入力された設定値とが比較され、両
者の偏差を例えば零にするように演算制御部からバルブ
19,20への開度信号が発せられバルブ19,20が
開閉制御されて、供給蒸気の乾き度又は湿り度が任意に
制御される。
Further, the overall dryness or wetness determined by the arithmetic and control unit is compared with the set value inputted, and the arithmetic and control unit sends the values to the valves 19 and 20 so that the deviation between them is set to, for example, zero. And the valves 19 and 20 are controlled to open and close, and the dryness or wetness of the supplied steam is arbitrarily controlled.

【0036】本実施例においては、動圧検知手段として
ピトー管1を用いた例を示したが、その他にバネ等で弾
性付勢した所定面積を有する抵抗板としてのフラップを
取り付けて、被測定蒸気の動圧に基づくフラップの変位
を検出することにより、動圧検知手段とすることができ
る。
In this embodiment, an example is shown in which the pitot tube 1 is used as the dynamic pressure detecting means. In addition, a flap as a resistance plate having a predetermined area elastically urged by a spring or the like is attached, and the measurement is performed. By detecting the displacement of the flap based on the dynamic pressure of the steam, a dynamic pressure detecting means can be provided.

【0037】本実施例における流速センサ10として
は、電磁式や超音波式、渦式、熱式、タービン式、ある
いは、レーザードップラー式等従来公知のものを使用す
ることができるものである。
As the flow velocity sensor 10 in this embodiment, a conventionally known one such as an electromagnetic type, an ultrasonic type, a vortex type, a thermal type, a turbine type, or a laser Doppler type can be used.

【0038】[0038]

【発明の効果】上記のように本発明によれば、気相流体
乾き度検出手段と液相流体液位重量検出手段を具備し
て、それぞれの検出手段の検出値から、配管全体の流体
の乾き度又は湿り度を測定することができ、従って配管
全体の流体の乾き度又は湿り度を制御することができ
る。
As described above, according to the present invention, a gas-phase fluid dryness detecting means and a liquid-phase fluid level weight detecting means are provided, and the detection value of each of the detecting means is used to determine the fluid of the entire pipe. Dryness or wetness can be measured, and therefore the dryness or wetness of the fluid throughout the piping can be controlled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による二相流体の乾き度又は湿り度制御
装置の一部断面構成図。
FIG. 1 is a partial cross-sectional configuration diagram of an apparatus for controlling dryness or wetness of a two-phase fluid according to the present invention.

【符号の説明】[Explanation of symbols]

1 ピトー管 2 超音波送受信器 3 蒸気配管 4 乾き度又は湿り度調節手段 11 加熱器本体 14 加熱流体供給管 16 冷却器本体 17 冷却流体供給管 24 乾き度又は湿り度測定手段 DESCRIPTION OF SYMBOLS 1 Pitot tube 2 Ultrasonic transceiver 3 Steam piping 4 Dryness or wetness adjustment means 11 Heater main body 14 Heating fluid supply pipe 16 Cooler main body 17 Cooling fluid supply pipe 24 Dryness or wetness measurement means

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 配管を流下する流体の乾き度又は湿り度
を測定する乾き度又は湿り度測定手段と、流体の乾き度
又は湿り度を調節する乾き度又は湿り度調節手段を備え
て、供給する流体の乾き度又は湿り度を所定値に制御す
るものにおいて、流体が気液の二相流体であり、且つ、
流体の乾き度又は湿り度測定手段が、気相流体の乾き度
又は湿り度を検出する気相流体乾き度検出手段と、流体
配管中の層状の液相流体の液位から重量を検出する液相
流体液位重量検出手段と、から成ることを特徴とする二
相流体の乾き度又は湿り度制御装置。
1. A supply system comprising a dryness or wetness measurement means for measuring the dryness or wetness of a fluid flowing down a pipe, and a dryness or wetness adjustment means for adjusting the dryness or wetness of a fluid. In controlling the dryness or wetness of the fluid to a predetermined value, the fluid is a gas-liquid two-phase fluid, and
The fluid dryness or wetness measuring means detects the dryness or wetness of the gaseous fluid, and a liquid which detects the weight from the liquid level of the layered liquid phase fluid in the fluid piping. A two-phase fluid dryness or wetness controller.
【請求項2】 前記気相流体乾き度検出手段が、気相流
体の動圧を検知する動圧検知手段と、当該動圧検知手段
で検知した動圧値と気相流体の流速から気相流体の比重
量又は比容積を演算する比重量又は比容積演算手段と、
当該気相流体の比重量又は比容積と乾き度又は湿り度と
の関係式に基づいて気相流体の乾き度又は湿り度を算出
する演算制御部と、を具備することを特徴とする請求項
1に記載の二相流体の乾き度又は湿り度制御装置。
2. The method according to claim 1, wherein said gas phase fluid dryness detecting means detects a dynamic pressure of the gas phase fluid, and a dynamic pressure value detected by the dynamic pressure detecting means and a flow rate of the gas phase fluid. Specific weight or specific volume calculating means for calculating the specific weight or specific volume of the fluid,
An arithmetic control unit that calculates the dryness or wetness of the gaseous fluid based on a relational expression between the specific weight or specific volume of the gaseous fluid and the dryness or wetness. 2. The apparatus for controlling dryness or wetness of a two-phase fluid according to claim 1.
【請求項3】 前記気相流体の流速を流速検出手段で検
出して、検出した流速値を前記比重量又は比容積演算手
段に供給することを特徴とする請求項2に記載の二相流
体の乾き度又は湿り度制御装置。
3. The two-phase fluid according to claim 2, wherein the flow rate of the gas-phase fluid is detected by a flow rate detecting means, and the detected flow rate value is supplied to the specific weight or specific volume calculating means. Dryness or wetness control device.
【請求項4】 前記動圧検知手段がピトー管又は弾性付
勢されたフラップであると共に、気相流体の静圧を検知
する静圧検知手段を設けたことを特徴とする請求項2に
記載の二相流体の乾き度又は湿り度制御装置。
4. The apparatus according to claim 2, wherein said dynamic pressure detecting means is a pitot tube or an elastically urged flap, and further comprises a static pressure detecting means for detecting a static pressure of a gas phase fluid. A two-phase fluid dryness or wetness control device.
【請求項5】 前記動圧検知手段がピトー管である共
に、当該ピトー管で静圧も検知することを特徴とする請
求項2に記載の二相流体の乾き度又は湿り度制御装置。
5. The dryness or wetness control apparatus for a two-phase fluid according to claim 2, wherein the dynamic pressure detection means is a pitot tube, and the static pressure is also detected by the pitot tube.
【請求項6】 前記液相流体液位重量検出手段が、流体
配管の底部外面に取り付けられた超音波送受信器と、当
該超音波送受信器から上方に向けて放射された超音波が
液面で反射されて戻ってくるまでの時間から流体配管内
の液位を検出する液位検出手段を具備して、当該液位検
出手段で検出された液位から流体配管内の気相流体と液
相流体の単位容積を算出して、液相流体の単位容積から
重量を演算算出することを特徴とする請求項1に記載の
二相流体の乾き度又は湿り度制御装置。
6. An ultrasonic transmitter / receiver attached to a bottom outer surface of a fluid pipe, wherein an ultrasonic wave radiated upward from the ultrasonic transmitter / receiver is at a liquid level. A liquid level detecting means for detecting a liquid level in the fluid pipe from a time until it is reflected and returned, and a gas phase fluid and a liquid phase in the fluid pipe based on the liquid level detected by the liquid level detecting means. The dryness or wetness control device for a two-phase fluid according to claim 1, wherein a unit volume of the fluid is calculated, and a weight is calculated from the unit volume of the liquid phase fluid.
JP2001073770A 2001-03-15 2001-03-15 Control device for dryness or wetness of two-phase fluid Expired - Fee Related JP4602578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001073770A JP4602578B2 (en) 2001-03-15 2001-03-15 Control device for dryness or wetness of two-phase fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001073770A JP4602578B2 (en) 2001-03-15 2001-03-15 Control device for dryness or wetness of two-phase fluid

Publications (2)

Publication Number Publication Date
JP2002276902A true JP2002276902A (en) 2002-09-25
JP4602578B2 JP4602578B2 (en) 2010-12-22

Family

ID=18931146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001073770A Expired - Fee Related JP4602578B2 (en) 2001-03-15 2001-03-15 Control device for dryness or wetness of two-phase fluid

Country Status (1)

Country Link
JP (1) JP4602578B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084075A (en) * 2004-09-15 2006-03-30 Tlv Co Ltd Steam attemperator
JP2014235116A (en) * 2013-06-04 2014-12-15 株式会社テイエルブイ Dryness measuring apparatus
CN111103144A (en) * 2019-12-20 2020-05-05 中国北方发动机研究所(天津) Evaporation amount testing device
CN113670396A (en) * 2021-07-27 2021-11-19 北京空间飞行器总体设计部 Gas-liquid two-phase fluid dryness measuring device and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05141615A (en) * 1991-11-15 1993-06-08 Tlv Co Ltd Controlling device for quality of steam
JP2001027595A (en) * 1999-07-15 2001-01-30 Tlv Co Ltd Steam dryness measuring apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05141615A (en) * 1991-11-15 1993-06-08 Tlv Co Ltd Controlling device for quality of steam
JP2001027595A (en) * 1999-07-15 2001-01-30 Tlv Co Ltd Steam dryness measuring apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084075A (en) * 2004-09-15 2006-03-30 Tlv Co Ltd Steam attemperator
JP2014235116A (en) * 2013-06-04 2014-12-15 株式会社テイエルブイ Dryness measuring apparatus
CN111103144A (en) * 2019-12-20 2020-05-05 中国北方发动机研究所(天津) Evaporation amount testing device
CN113670396A (en) * 2021-07-27 2021-11-19 北京空间飞行器总体设计部 Gas-liquid two-phase fluid dryness measuring device and method
CN113670396B (en) * 2021-07-27 2023-11-07 北京空间飞行器总体设计部 Device and method for measuring dryness of gas-liquid two-phase fluid

Also Published As

Publication number Publication date
JP4602578B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
US11614425B2 (en) Determination of the mixing ratio in particular of a water/glycol mixture by means of ultrasound and a heat flow measurement based thereon
Fiedler et al. Experimental and theoretical investigation of reflux condensation in an inclined small diameter tube
Mitrovic et al. Vapor condensation heat transfer in a thermoplate heat exchanger
JP2002276902A (en) Control device for dryness or wetness of two-phase fluid
JP2001027595A (en) Steam dryness measuring apparatus
JP2002243612A (en) Control device for vapor dryness or wetness
JP2002277370A (en) Instrument for measuring dryness or wetness of two- phase fluid
JP5575579B2 (en) Steam dryness measuring device
JP2002277449A (en) Measuring apparatus for degree of dryness or wetness of two phase fluid
JP2002276901A (en) Vapor dryness or wetness measuring device
JP5575580B2 (en) Steam dryness measuring device
JP4204756B2 (en) Steam dryness or wetness measuring device
JP2002243611A (en) Measurement device for vapor dryness or wetness
JP3878344B2 (en) Fluid dryness measuring device
JP3878342B2 (en) Fluid dryness measuring device
JP3381122B2 (en) Steam dryness measuring device
JP2004190996A (en) Control device for dryness of steam
JP2004190994A (en) Control device for dryness of vapor
JP7300916B2 (en) Clamp-on type ultrasonic flowmeter and clamp-on type ultrasonic flow measurement method
JP2004190995A (en) Control device for dryness of vapor
JP2863967B2 (en) Wetness measuring device
CN113188624B (en) Wet steam measuring device and method based on vortex shedding flowmeter and uniform velocity tube flowmeter
JPH0227220A (en) Differential pressure type steam flowmeter
JP2002243675A (en) Vapor dryness measuring instrument
JP4011473B2 (en) Steam dryness measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4602578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees