JP2002275634A - Process for manufacturing semiconductor device - Google Patents

Process for manufacturing semiconductor device

Info

Publication number
JP2002275634A
JP2002275634A JP2001078820A JP2001078820A JP2002275634A JP 2002275634 A JP2002275634 A JP 2002275634A JP 2001078820 A JP2001078820 A JP 2001078820A JP 2001078820 A JP2001078820 A JP 2001078820A JP 2002275634 A JP2002275634 A JP 2002275634A
Authority
JP
Japan
Prior art keywords
gas
wafer
film
forming
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001078820A
Other languages
Japanese (ja)
Inventor
Tetsuya Wada
哲也 和田
Toshimitsu Miyata
敏光 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2001078820A priority Critical patent/JP2002275634A/en
Publication of JP2002275634A publication Critical patent/JP2002275634A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize a uniform film-formation based on a uniform distribution of film-forming gas concentration on a wafer which is a good film-forming atmosphere, by reducing the unevenness of the gas concentration distribution on the wafer caused by a disturbance of the film-forming atmosphere on the wafer that occurs at the introduction of a purge gas around the wafer. SOLUTION: In a process for manufacturing a semiconductor device, a film is formed on a wafer 9 by introducing a reactive gas 12, which is a film-forming gas, into a reaction chamber 10 while supplying a purge gas 11, which is a non-film-forming gas, around the wafer 9 to be treated. Here, other than the non-film-forming gas, at least one of the gases contained in the reactive gas 12 is contained as the purge gas 11 supplied around the wafer 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
方法に係り、特に、被処理体である基板上に薄膜を形成
したり、基板に不純物をドーピングしたり、基板表面を
酸化したりする半導体製造装置、例えば原料ガスを含む
多成分混合ガスを用いるCVD(ChemicalVapor Deposi
tion)装置における半導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a thin film on a substrate to be processed, doping a substrate with impurities, and oxidizing a substrate surface. Semiconductor manufacturing equipment, for example, CVD (Chemical Vapor Deposi) using a multi-component mixed gas containing a source gas.
The present invention relates to a method for manufacturing a semiconductor device in an apparatus.

【0002】[0002]

【従来の技術】図3、図4はMO−CVD(Metal Orga
nic Chemical Vapor Deposition:有機金属気相成長)
装置の構成を示す断面図で、図3はウェハ成膜位置、図
4はウェハ搬送位置の場合である。
2. Description of the Related Art FIGS. 3 and 4 show MO-CVD (Metal Orga).
nic Chemical Vapor Deposition)
FIG. 3 is a cross-sectional view showing the configuration of the apparatus, in which FIG. 3 shows a case of a wafer film formation position and FIG. 4 shows a case of a wafer transfer position.

【0003】10は反応室(すなわち、処理室)、9は
被処理体である基板、すなわち、ウェハ、1は成膜ガス
等の反応ガスを反応室10内に均一に分散して供給する
反応ガス供給手段であるシャワーヘッド、2はウェハ9
の支持体であるサセプタ、3はウェハ9の加熱用発熱体
であるプレートヒータ、4は反応室10の壁面加熱用発
熱体である側面ヒータ、5は反応ガス防着のため側面ヒ
ータ4を覆う側面カバー、6は反応ガス防着のためサセ
プタ2を覆うカバープレート、7はウェハ9の突き上げ
ピン、8は排気口、13は段付部、100はヒータユニ
ットである。
[0003] Reference numeral 10 denotes a reaction chamber (that is, a processing chamber), 9 denotes a substrate to be processed, ie, a wafer, and 1 denotes a reaction in which a reaction gas such as a deposition gas is uniformly dispersed and supplied into the reaction chamber 10. Shower head which is a gas supply means, 2 is wafer 9
Is a plate heater which is a heating element for heating the wafer 9, 4 is a side heater which is a heating element for heating the wall surface of the reaction chamber 10, and 5 is a side heater which covers the reaction gas to prevent reaction gas. A side cover, 6 is a cover plate for covering the susceptor 2 for preventing reaction gas deposition, 7 is a push-up pin for the wafer 9, 8 is an exhaust port, 13 is a stepped portion, and 100 is a heater unit.

【0004】以下、2〜7により構成される組立体をヒ
ータユニット100と総称する。
[0004] Hereinafter, an assembly composed of 2 to 7 will be generically referred to as a heater unit 100.

【0005】ヒータユニット100は、反応室10内
で、図3に示すウェハ成膜位置と、図4に示すウェハ搬
送位置とを往復する図示しない上下駆動機構を有してい
る。
The heater unit 100 has a vertical drive mechanism (not shown) that reciprocates between a wafer deposition position shown in FIG. 3 and a wafer transfer position shown in FIG. 4 in the reaction chamber 10.

【0006】ウェハ9上に薄膜を形成するウェハ成膜処
理工程は、以下のようである。
A wafer film forming process for forming a thin film on the wafer 9 is as follows.

【0007】まず、シャワーヘッド1から反応室10
内にパージガスとしてNガスを流し、プレートヒータ
3、側面ヒータ4に給電して、成膜を行う所定温度にお
いて反応室10内が熱的に整定する環境をつくる。 図4に示すヒータユニット100のウェハ搬送位置に
おいて、ウェハ9をサセプタ2上に移載する。 ヒータユニット100を、図3に示すウェハ成膜位置
まで上昇させる。なお、カバープレート6は、段付部1
3に置かれており、カバープレート6以外の2〜7とい
っしょにウェハ成膜位置まで上昇する。 ウェハ9の温度が成膜を行う所定温度に到達するまで
予備加熱を行う。 Nパージガスに代えて、シャワーヘッド1から反応
室10内に反応ガス、例えば、原料ガス+酸素含有ガス
+Nキャリアガスを導入し、成膜を開始する(ウェハ
成膜処理工程)。 反応ガスに代えて、シャワーヘッド1から反応室10
内にNパージガスを導入し、反応室10内に残留する
ガスを除去する。 ヒータユニット100を、図4に示すウェハ搬送位置
まで降下させる。なお、カバープレート6は、段付部1
3に置いていかれ、その他の2〜7のみがウェハ搬送位
置まで降下する。 ウェハ9を反応室10内から取り出す。
First, the reaction chamber 10 is moved from the shower head 1 to the reaction chamber 10.
An N 2 gas is supplied as a purge gas thereinto, and power is supplied to the plate heater 3 and the side heater 4 to create an environment in which the inside of the reaction chamber 10 is thermally settled at a predetermined temperature at which a film is formed. The wafer 9 is transferred onto the susceptor 2 at the wafer transfer position of the heater unit 100 shown in FIG. The heater unit 100 is raised to the wafer deposition position shown in FIG. The cover plate 6 is provided with the stepped portion 1.
3 and rises to the wafer deposition position together with 2 to 7 other than the cover plate 6. Preheating is performed until the temperature of the wafer 9 reaches a predetermined temperature for forming a film. Instead of the N 2 purge gas, a reaction gas, for example, a raw material gas + oxygen-containing gas + N 2 carrier gas is introduced from the shower head 1 into the reaction chamber 10 to start film formation (wafer film formation processing step). Instead of the reaction gas, a shower head 1
A N 2 purge gas is introduced thereinto to remove the gas remaining in the reaction chamber 10. The heater unit 100 is lowered to the wafer transfer position shown in FIG. The cover plate 6 is provided with the stepped portion 1.
3 and only the other 2-7 fall to the wafer transfer position. The wafer 9 is taken out of the reaction chamber 10.

【0008】[0008]

【発明が解決しようとする課題】従来、ウェハ上の成膜
膜厚分布が不均一であるという課題に対しては、ウェハ
面内温度分布、ウェハ上ガス流速分布、ウェハ上ガス濃
度分布など、いくつか原因が考えられている。
Conventionally, the problem that the film thickness distribution on the wafer is non-uniform is solved by the temperature distribution in the wafer surface, the gas flow velocity distribution on the wafer, the gas concentration distribution on the wafer, and the like. There are several possible causes.

【0009】図5はウェハ周辺へのパージガスの導入例
を示す図3の要部拡大断面図、図6はウェハ周辺へのパ
ージガスの他の導入例を示す図3の要部拡大断面図であ
る。
FIG. 5 is an enlarged sectional view of an essential part of FIG. 3 showing an example of introduction of a purge gas to the periphery of the wafer, and FIG. 6 is an enlarged sectional view of an essential part of FIG. 3 showing another example of introduction of the purge gas to the periphery of the wafer. .

【0010】11はパージガス、12は反応ガスであ
る。
Reference numeral 11 denotes a purge gas, and 12 denotes a reaction gas.

【0011】上記原因のうち、ウェハ上ガス濃度分布に
関しては、成膜時、すなわち、上記ウェハ成膜処理工程
において、図5または図6に示す通り、ウェハ9のエ
ッジヘの成膜を防止するため、ウェハ9の周辺部にパー
ジガス11の導入を行う。
Among the above-mentioned causes, regarding the gas concentration distribution on the wafer, as shown in FIG. 5 or FIG. Then, the purge gas 11 is introduced into the peripheral portion of the wafer 9.

【0012】しかしながら、従来のNのみからなるパ
ージガス11では、ウェハ9上の成膜雰囲気が擾乱さ
れ、ウェハ9の周辺部の他の成分ガス、例えばOガス
の濃度分布が、ウェハ9の周辺部以外の部分に比べ、低
下するという問題が生じた。
However, with the conventional purge gas 11 composed of only N 2 , the film formation atmosphere on the wafer 9 is disturbed, and the concentration distribution of other component gases, for example, O 2 gas around the wafer 9 is changed. There is a problem that the temperature is reduced as compared with portions other than the peripheral portion.

【0013】例えば、Ru膜の成膜処理工程において、
反応ガスに含ませるOガスは、それ自体は化合物とな
って生成膜には取り込まれないが、膜生成に寄与するガ
スである(HOやCOを生成していることから反応
はしている)。このため、ウェハ9上で濃度分布を均一
にする必要があると考えられる。
For example, in the process of forming a Ru film,
The O 2 gas contained in the reaction gas itself becomes a compound and is not taken into the formed film, but is a gas that contributes to film formation (the reaction is performed because H 2 O and CO 2 are generated. are doing). For this reason, it is considered necessary to make the concentration distribution uniform on the wafer 9.

【0014】本発明の目的は、従来技術の課題であるウ
ェハ周辺部へのパージガス導入によるウェハ上の成膜雰
囲気の擾乱によるウェハ上ガス濃度分布の不均一を低減
し、良好な成膜雰囲気であるウェハ上成膜ガス均一濃度
分布による均一成膜を実現できる半導体装置の製造方法
を提供することにある。
An object of the present invention is to reduce non-uniformity of gas concentration distribution on a wafer due to disturbance of a film forming atmosphere on a wafer due to introduction of a purge gas to a peripheral portion of the wafer, which is a problem of the prior art, and to provide a good film forming atmosphere. An object of the present invention is to provide a method of manufacturing a semiconductor device capable of realizing uniform film formation by a uniform concentration distribution of a film-forming gas on a certain wafer.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、ウェハ等の被処理体の周辺部に非成膜ガ
スを供給しつつ、成膜ガスを処理室に導入して、前記被
処理体上に成膜を行なう半導体装置の製造方法におい
て、前記被処理体の周辺部に供給するガスとして、前記
非成膜ガスの他に、前記成膜ガス中に含まれるガスのう
ちの少なくとも1種のガスを含有させることを特徴とす
る。
In order to solve the above-mentioned problems, the present invention provides a method in which a film-forming gas is introduced into a processing chamber while a non-film-forming gas is supplied to a peripheral portion of an object to be processed such as a wafer. In the method of manufacturing a semiconductor device for forming a film on the object to be processed, as a gas supplied to a peripheral portion of the object to be processed, in addition to the non-film forming gas, a gas contained in the film forming gas may be used. It is characterized in that at least one of them is contained.

【0016】本発明では、被処理体の周辺部に供給する
パージガスとして、非成膜ガスの他に、反応ガス中に含
まれるガスのうちの少なくとも1種のガスを含有させる
ことにより、被処理体の周辺の反応ガスの雰囲気の擾乱
を抑制し、被処理体上の安定、均一な成膜ガス雰囲気を
実現し、膜厚の均一な成膜が実現できる。
In the present invention, as the purge gas supplied to the peripheral portion of the object to be processed, at least one of the gases contained in the reaction gas is contained in addition to the non-deposition gas, so that the gas to be processed is contained. Disturbance of the atmosphere of the reaction gas around the body is suppressed, a stable and uniform film formation gas atmosphere on the object to be processed is realized, and film formation with a uniform film thickness can be realized.

【0017】[0017]

【発明の実施の形態】以下、図面を用いて本発明の実施
の形態について詳細に説明する。なお、本発明の半導体
装置の製造方法に使用するMO−CVD(Metal Organi
c Chemical Vapor Deposition:有機金属気相成長)装
置の構成は、図3、図4に示したとおりであり、また、
ウェハ成膜処理工程(前記〜の部分)は従来の技術
と同様であるので、説明は省略する。
Embodiments of the present invention will be described below in detail with reference to the drawings. The MO-CVD (Metal Organizer) used in the method of manufacturing a semiconductor device according to the present invention.
c Chemical Vapor Deposition: The configuration of the apparatus is as shown in FIG. 3 and FIG.
Since the wafer film forming process (the above-mentioned portions) is the same as that of the conventional technique, the description is omitted.

【0018】図5は本実施の形態において、ウェハ周辺
へのパージガスの導入例を示す図3の要部拡大断面図、
図6はウェハ周辺へのパージガスの他の導入例を示す図
3の要部拡大断面図である。
FIG. 5 is an enlarged sectional view of a main part of FIG. 3, showing an example of introduction of a purge gas to the periphery of a wafer in the present embodiment.
FIG. 6 is an enlarged cross-sectional view of a main part of FIG. 3 showing another example of introduction of a purge gas around a wafer.

【0019】11はパージガス、12は反応ガスであ
る。
Reference numeral 11 denotes a purge gas, and 12 denotes a reaction gas.

【0020】本実施の形態では、被処理体である例えば
ウェハ9の周辺部に非成膜ガスであるパージガス11を
供給しつつ、成膜ガス、すなわち、反応ガス12を処理
室、すなわち、反応室10に導入して、ウェハ9上に成
膜を行なう半導体装置の製造方法において、ウェハ9の
周辺部に供給するパージガス11として、非成膜ガスの
他に、反応ガス12中に含まれるガスのうちの少なくと
も1種のガスを含有させる。
In the present embodiment, a film forming gas, ie, a reaction gas 12 is supplied to a processing chamber, ie, a reaction chamber, while a purge gas 11, which is a non-film forming gas, is supplied to a peripheral portion of, for example, a wafer 9, which is an object to be processed. In the method of manufacturing a semiconductor device in which a film is formed on the wafer 9 by being introduced into the chamber 10, as a purge gas 11 supplied to a peripheral portion of the wafer 9, a gas contained in a reactive gas 12 in addition to a non-film forming gas At least one gas is contained.

【0021】1つの例について説明すると、反応ガス1
2=原料ガス(例えばRu(C 等の
Ru(ルテニウム)化合物)+酸素含有ガス(例えばO
)+上記原料ガス12を反応室10まで運ぶキャリア
ガス(例えばN)である。すなわち、反応ガス(成膜
ガス)12は、原料ガスと酸素原子を含有するガスとキ
ャリアガスとの混合ガスである。また、パージガス11
のうちの非成膜ガスは、不活性ガス(例えばN)であ
り、上記少なくとも1種のガスは、酸素原子を含有する
ガス(例えばO)である。
One example will be described.
2 = source gas (for example, Ru (C2H 5C5H4)2Etc.
Ru (ruthenium) compound) + oxygen-containing gas (for example, O
2+) Carrier that carries the source gas 12 to the reaction chamber 10
Gas (eg N2). That is, the reaction gas (film formation
Gas) 12 is a raw material gas and a gas containing oxygen atoms and a gas.
It is a mixed gas with carrier gas. Also, the purge gas 11
Of the non-film-forming gas is an inert gas (for example, N 22)
The at least one gas contains an oxygen atom
Gas (eg O2).

【0022】ウェハ9の周辺部に供給するパージガス1
1のうち、上記非成膜ガス(例えばN)と、上記反応
ガス12のうちの上記少なくとも1種のガス(例えばO
)との混合比は、上記反応ガス12のうち、酸素原子
を含有するガス(例えばO)および上記原料ガス(例
えば上記Ru(C等のRu(ルテニ
ウム)化合物)を除いたガス、すなわち、上記キャリア
ガス(例えばN)と、酸素原子を含有するガス(例え
ばO)との混合比とほぼ等しくする。
Purge gas 1 to be supplied to the periphery of wafer 9
1, the non-film-forming gas (for example, N 2 ) and the at least one gas (for example, O 2 ) of the reaction gas 12
The mixing ratio of 2), of the reaction gas 12, a gas containing oxygen atoms (e.g., O 2) and the raw material gas (e.g. the Ru (C 2 H 5 C 5 H 4) 2 or the like of Ru (ruthenium ) Compound), that is, the mixing ratio of the carrier gas (for example, N 2 ) and the gas containing oxygen atoms (for example, O 2 ) is made substantially equal.

【0023】前述のように、従来、反応ガス12は、あ
る混合比の成分ガスからなる混合ガスであるため、ウェ
ハ9の周辺部に導入される単一成分のパージガス11に
よって、ウェハ9の周辺の成膜雰囲気が擾乱され、ウェ
ハ9上の反応ガス12の濃度分布が不均一になる。
As described above, conventionally, since the reaction gas 12 is a mixed gas composed of component gases having a certain mixing ratio, a single component purge gas 11 introduced into the peripheral portion of the wafer 9 causes Is disturbed, and the concentration distribution of the reaction gas 12 on the wafer 9 becomes non-uniform.

【0024】そこで、パージガス11の導入によっても
反応ガス12の濃度分布、特に、反応ガス12中に含ま
れるガスのうちの少なくとも1種のガス(例えばO
の濃度分布を維持する方法として、パージガス11の非
成膜ガス(例えばN)に上記少なくとも1種のガス
(例えばO)を含有させ、例えば上記原料ガスを除い
た反応ガス12の各成分ガス混合比とほぼ等しい混合比
の混合ガスをウェハ9の周辺にパージガス11として導
入する方法を提案する。
Therefore, the concentration distribution of the reaction gas 12, especially at least one of the gases contained in the reaction gas 12 (for example, O 2 ) can also be obtained by introducing the purge gas 11.
As a method for maintaining the concentration distribution, the non-film-forming gas (eg, N 2 ) of the purge gas 11 contains at least one kind of gas (eg, O 2 ), for example, each component of the reaction gas 12 excluding the source gas. A method is proposed in which a mixed gas having a mixing ratio substantially equal to the gas mixing ratio is introduced as a purge gas 11 around the wafer 9.

【0025】この方法に関する効果について検証するた
め、数値解析を行った。
In order to verify the effect of this method, a numerical analysis was performed.

【0026】図1は、本発明の実施の形態の半導体装置
の製造方法において、数値解析によるウェハ9の周辺の
上記少なくとも1種のガス(ここではO)の濃度分布
(kg/m)を示す図で、(a)は従来のパージガス
11がNのみの場合(流量500sccm)、(b)
は本発明によるNにOを含有させた場合(N:O
の重量比=0.46:0.54(反応ガス12の上記
原料ガスを除いたN:Oの混合比と同一))(流量
500sccm)、(c)はOのみの場合(流量50
0sccm)である。本図の解析例は、図5に示したパ
ージガスの導入例の場合である。
FIG. 1 shows a concentration distribution (kg / m 3 ) of the at least one gas (here, O 2 ) around the wafer 9 by numerical analysis in the method of manufacturing a semiconductor device according to the embodiment of the present invention. (A), when the conventional purge gas 11 is only N 2 (flow rate 500 sccm), (b)
Is the case where O 2 is contained in N 2 according to the present invention (N 2 : O
2 = 0.46: 0.54 (same as the mixture ratio of N 2 : O 2 excluding the above-mentioned source gas of the reaction gas 12) (flow rate 500 sccm), (c) is the case of only O 2 ( Flow rate 50
0 sccm). The analysis example of this figure is a case of the introduction example of the purge gas shown in FIG.

【0027】すなわち、パージガス11として上記
(a)〜(c)の3種類のガスに関して、ウェハ9の周
辺部のOガス濃度分布を調べた。
That is, with respect to the three kinds of gases (a) to (c) as the purge gas 11, the O 2 gas concentration distribution around the wafer 9 was examined.

【0028】(a)のパージガス11がNのみの従来
の場合では、予想通り、ウェハ9の周辺部の反応ガス1
2の雰囲気が乱され、O濃度がウェハ9の他の部分よ
りも低下する現象が見られた。
In the conventional case (a) in which the purge gas 11 is only N 2 , the reaction gas 1 around the wafer 9 is expected, as expected.
2 was disturbed, and a phenomenon was observed in which the O 2 concentration was lower than in other portions of the wafer 9.

【0029】(b)のパージガス11のNにOを含
有させ、N+Oの混合比を、原料ガスを除く反応ガ
ス12のNとOとの混合比と同一にした本発明によ
る場合では、ウェハ9の周辺の反応ガス12の雰囲気の
擾乱は見受けられず、ウェハ9上のO濃度分布はウェ
ハ9全領域にわたって均一であった。
[0029] N 2 purge gas 11 (b) is contained O 2, present the mixing ratio of N 2 + O 2, which is the same as the mixing ratio of N 2 and O 2 reactive gas 12 with the exception of the raw material gas In the case of the present invention, no disturbance of the atmosphere of the reaction gas 12 around the wafer 9 was observed, and the O 2 concentration distribution on the wafer 9 was uniform over the entire area of the wafer 9.

【0030】(c)のパージガス11がOのみの場合
では、ウェハ9の周辺部の反応ガス12の雰囲気が乱さ
れ、(a)とは対照的にO濃度がウェハ9の他の部分
よりも増加する現象が見られた。
In the case (c) where the purge gas 11 is only O 2 , the atmosphere of the reaction gas 12 around the wafer 9 is disturbed, and in contrast to the case (a), the O 2 concentration is changed to other parts of the wafer 9. Phenomena increased.

【0031】また、図2は、図6に示したパージガスの
導入例に対応するウェハ9の周辺のO濃度分布(kg
/m)を示す図である。本図では、本発明によるN
にO を含有させた場合(N:Oの重量比=0.4
6:0.54(反応ガス12の上記原料ガスを除いたN
:Oの混合比と同一))(流量500sccm)の
みを示し、パージガス11がNのみの従来の場合、O
のみの場合は図示省略する。
FIG. 2 shows the purge gas shown in FIG.
O around the wafer 9 corresponding to the introduction example2Concentration distribution (kg
/ M3FIG. In this figure, N according to the present invention2
To O 2(N2: O2Weight ratio of 0.4
6: 0.54 (N excluding the source gas of the reaction gas 12)
2: O2The same as the mixing ratio)) (500 sccm flow rate)
And the purge gas 11 is N2Only the conventional case, O
2Illustration is omitted in the case of only.

【0032】本図においても、パージガス11のN
を含有させ、N+Oの混合比を、原料ガスを除
く反応ガス12のNとOとの混合比と同一にした本
発明による場合では、ウェハ9の周辺の反応ガス12の
雰囲気の擾乱は見受けられず、ウェハ9上のO濃度分
布はウェハ9全領域にわたって均一であった。
[0032] In this diagram, the N 2 purge gas 11 is contained O 2, the mixing ratio of N 2 + O 2, was the same as the mixing ratio of N 2 and O 2 reactive gas 12 excluding raw material gas In the case of the present invention, no disturbance of the atmosphere of the reaction gas 12 around the wafer 9 was observed, and the O 2 concentration distribution on the wafer 9 was uniform over the entire area of the wafer 9.

【0033】以上の結果から、ウェハ9の周辺部に供給
するパージガス11として、非成膜ガスNの他に、反
応ガス12中に含まれるガスのうちの少なくとも1種の
ガス、例えばOを含有させ、さらに、その非成膜ガス
とOとの混合比を、反応ガス12の原料ガスを除
くNとOとの混合比とほぼ等しくすることによっ
て、ウェハ9の周辺の反応ガス12の雰囲気の擾乱が抑
制され、ウェハ9上の安定、均一な成膜雰囲気を実現
し、膜厚の均一な成膜が実現できたことがわかった。
[0033] From the above results, as a purge gas 11 is supplied to the peripheral portion of the wafer 9, in addition to the non-film gas N 2, at least one gas of the gas contained in the reaction gas 12, for example O 2 And the mixing ratio of the non-film-forming gas N 2 and O 2 is made substantially equal to the mixing ratio of N 2 and O 2 excluding the source gas of the reaction gas 12, so that the periphery of the wafer 9 is It was found that the disturbance of the atmosphere of the reaction gas 12 was suppressed, a stable and uniform film formation atmosphere on the wafer 9 was realized, and a film formation with a uniform film thickness was realized.

【0034】以上本発明を実施の形態に基づいて具体的
に説明したが、本発明は上記実施の形態に限定されるも
のではなく、その要旨を逸脱しない範囲において種々変
更可能であることは勿論である。例えば、非成膜ガスと
少なくとも1種のガスとの混合比を、反応ガスの原料ガ
スを除くキャリアガスと少なくとも1種のガスとの混合
比と必ずしもほぼ等しくさせなくても、非成膜ガスに少
なくとも1種のガスを含有させることによって本発明に
よる効果は得られる。また、上記反応ガス=原料ガス
(例えばRu(C等のRu(ルテニ
ウム)化合物)+酸素含有ガスO+Nキャリアガ
ス)はあくまで1つの例であって、他の場合にも適用可
能であることは言うまでもない。例えば、少なくとも1
種のガスがO 等の酸素含有ガスの場合では、上記実施
の形態におけるRu成膜プロセスのような熱CVDによ
るMOCVDプロセスであって、Ta成膜や、Z
rO成膜等にも適用可能である。さらに、酸素含有ガ
ス以外の場合では、Si(OC (TEOSテ
トラエトキシシラン)+O(オゾン)→SiO+α
や、SiH(モノシラン)+NO→SiO+αの
成膜等にも適用可能である。ここで、αとは、ウェハ上
に堆積されなかった残ガスや、残ガスどうしが結合した
物質のことである。
The present invention has been described in detail based on the embodiments.
However, the present invention is not limited to the above embodiment.
Instead, various changes will be made without departing from the spirit of the invention.
Of course, it is possible. For example, with non-deposition gas
The mixing ratio of at least one gas with the raw material gas
Mixture of carrier gas excluding gas and at least one gas
Ratio is not required to be almost equal to the
By including at least one gas, the present invention
The effect is obtained. In addition, the above reaction gas = raw material gas
(For example, Ru (C2H5C5H4)2Ru (Luteni, etc.)
Um) compound) + oxygen-containing gas O2+ N2Carrier Ga
Is only an example and can be applied to other cases
Needless to say, it is noh. For example, at least one
Seed gas is O 2In the case of oxygen-containing gas such as
Thermal CVD as in the Ru film formation process in the embodiment
MOCVD process, comprising:2O5Film formation, Z
rO2It is also applicable to film formation and the like. In addition, oxygen-containing gas
In other cases, Si (OC 2H5)4(TEOS TE
Traethoxysilane) + O3(Ozone) → SiO2+ Α
And SiH4(Monosilane) + N2O → SiO2+ Α
It is also applicable to film formation and the like. Here, α is on the wafer
Residual gas that was not deposited on
It is a substance.

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
被処理体の周辺部に供給するパージガスとして、非成膜
ガスの他に、反応ガス中に含まれるガスのうちの少なく
とも1種のガスを含有させることによって、被処理体の
周辺の反応ガスの雰囲気の擾乱を抑制し、被処理体上の
安定、均一な成膜ガス雰囲気を実現し、膜厚の均一な成
膜が実現できる。
As described above, according to the present invention,
As a purge gas supplied to the peripheral portion of the object to be processed, at least one of the gases contained in the reaction gas is contained in addition to the non-deposition gas, so that the reaction gas around the object to be processed can be removed. A disturbance in the atmosphere is suppressed, a stable and uniform film forming gas atmosphere on the object to be processed is realized, and a film having a uniform film thickness can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態において、図5のパージガ
スの導入例に対応するウェハ周辺のO濃度分布を示す
図で、(a)はパージガスがNのみの場合、(b)は
にOを含有させた場合、(c)はOのみの場合
である。
1A and 1B are diagrams showing an O 2 concentration distribution around a wafer corresponding to an example of introduction of a purge gas in FIG. 5 in an embodiment of the present invention, wherein FIG. 1A shows a case where the purge gas is only N 2 , and FIG. If the N 2 is contained O 2, (c) shows the case of only O 2.

【図2】図6のパージガスの導入例に対応するNにO
を含有させた場合のウェハ周辺のO濃度分布を示す
図である。
FIG. 2 shows an example in which N 2 corresponds to O.
FIG. 4 is a diagram showing an O 2 concentration distribution around a wafer when the compound contains 2 ;

【図3】本発明の半導体装置の製造方法に使用するMO
−CVD装置の構成例を示す断面図で、ウェハ成膜位置
の場合である。
FIG. 3 shows an MO used in the method of manufacturing a semiconductor device according to the present invention.
-It is sectional drawing which shows the example of a structure of a CVD apparatus, and is a case of the wafer film-forming position.

【図4】図3と同じ断面図で、ウェハ搬送位置の場合で
ある。
FIG. 4 is the same cross-sectional view as FIG. 3, but in the case of a wafer transfer position.

【図5】ウェハ周辺へのパージガスの導入例を示す図3
の要部拡大断面図である。
FIG. 5 is a view showing an example of introduction of a purge gas around a wafer.
3 is an enlarged sectional view of a main part of FIG.

【図6】ウェハ周辺へのパージガスの他の導入例を示す
図3の要部拡大断面図である。
FIG. 6 is an enlarged sectional view of a main part of FIG. 3, showing another example of introduction of a purge gas around a wafer.

【符号の説明】[Explanation of symbols]

1…シャワーヘッド、2…サセプタ(ウェハ支持体)、
3…プレートヒータ、4…側面ヒータ、5…側面カバ
ー、6…カバープレート、7…ウェハ突き上げピン、8
…排気口、9…ウェハ(被処理体)、10…反応室(処
理室)、11…パージガス、12…反応ガス(成膜ガ
ス)、100…ヒータユニット。
1. Shower head, 2. Susceptor (wafer support),
3 ... plate heater, 4 ... side heater, 5 ... side cover, 6 ... cover plate, 7 ... wafer push-up pin, 8
... Exhaust port, 9 ... Wafer (object to be processed), 10 ... Reaction chamber (processing chamber), 11 ... Purge gas, 12 ... Reaction gas (film forming gas), 100 ... Heater unit.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K030 AA11 AA14 AA18 BA01 CA04 CA12 JA06 5F045 AA04 AB31 AB32 AB40 AC07 AC11 AC15 BB02 DP03 EC10 EE12 EE13  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K030 AA11 AA14 AA18 BA01 CA04 CA12 JA06 5F045 AA04 AB31 AB32 AB40 AC07 AC11 AC15 BB02 DP03 EC10 EE12 EE13

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】被処理体の周辺部に非成膜ガスを供給しつ
つ、成膜ガスを処理室に導入して、前記被処理体上に成
膜を行なう半導体装置の製造方法において、 前記被処理体の周辺部に供給するガスとして、前記非成
膜ガスの他に、前記成膜ガス中に含まれるガスのうちの
少なくとも1種のガスを含有させることを特徴とする半
導体装置の製造方法。
1. A method of manufacturing a semiconductor device, wherein a film forming gas is introduced into a processing chamber while a non-film forming gas is supplied to a peripheral portion of an object to be processed, and a film is formed on the object to be processed. A method for manufacturing a semiconductor device, comprising, as a gas supplied to a peripheral portion of an object to be processed, at least one kind of gas contained in the film-forming gas, in addition to the non-film-forming gas. Method.
JP2001078820A 2001-03-19 2001-03-19 Process for manufacturing semiconductor device Withdrawn JP2002275634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001078820A JP2002275634A (en) 2001-03-19 2001-03-19 Process for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001078820A JP2002275634A (en) 2001-03-19 2001-03-19 Process for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2002275634A true JP2002275634A (en) 2002-09-25

Family

ID=18935379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001078820A Withdrawn JP2002275634A (en) 2001-03-19 2001-03-19 Process for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2002275634A (en)

Similar Documents

Publication Publication Date Title
US7094708B2 (en) Method of CVD for forming silicon nitride film on substrate
US7300885B2 (en) Film formation apparatus and method for semiconductor process
US5352636A (en) In situ method for cleaning silicon surface and forming layer thereon in same chamber
TWI391996B (en) Overall defect reduction for pecvd films
US7758920B2 (en) Method and apparatus for forming silicon-containing insulating film
US7462571B2 (en) Film formation method and apparatus for semiconductor process for forming a silicon nitride film
US9005459B2 (en) Film deposition method and film deposition apparatus
EP1505172B9 (en) Device and method for manufacturing thin films
JP5564311B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and substrate manufacturing method
US7993705B2 (en) Film formation apparatus and method for using the same
US20060207504A1 (en) Film formation method and apparatus for semiconductor process
US20070234961A1 (en) Vertical plasma processing apparatus and method for semiconductor process
KR100983452B1 (en) Method for forming silicon nitride film
KR19980087180A (en) Deposition Method and Apparatus
CN109950177B (en) Vertical heat treatment device
KR20090131384A (en) Top plate and apparatus for depositing thin film on wafer using the same
JPS592374B2 (en) Plasma vapor phase growth equipment
JP2002275634A (en) Process for manufacturing semiconductor device
JP2004296820A (en) Method of manufacturing semiconductor device and substrate treatment equipment
US6514869B2 (en) Method for use in manufacturing a semiconductor device
JP2004296887A (en) Manufacturing method of semiconductor device and substrate treatment equipment
KR20110045652A (en) Apparatus and method for atomic layer deposition
JP3495501B2 (en) Vapor phase growth equipment
JPH10223620A (en) Semiconductor manufacturing device
JP2002289615A (en) Method and apparatus for forming thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080325