JP2002275617A - Corrosion resistant coating material and method for manufacturing the same - Google Patents

Corrosion resistant coating material and method for manufacturing the same

Info

Publication number
JP2002275617A
JP2002275617A JP2001077674A JP2001077674A JP2002275617A JP 2002275617 A JP2002275617 A JP 2002275617A JP 2001077674 A JP2001077674 A JP 2001077674A JP 2001077674 A JP2001077674 A JP 2001077674A JP 2002275617 A JP2002275617 A JP 2002275617A
Authority
JP
Japan
Prior art keywords
corrosion
resistant
base material
coating
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001077674A
Other languages
Japanese (ja)
Other versions
JP3497483B2 (en
Inventor
Masaki Uekado
正樹 上門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2001077674A priority Critical patent/JP3497483B2/en
Publication of JP2002275617A publication Critical patent/JP2002275617A/en
Application granted granted Critical
Publication of JP3497483B2 publication Critical patent/JP3497483B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prolong the life of corrosion resistance by forming a coating and covering as thick films and to form the coating and covering layers which are excellent in an adhesion property even if the film thickness is increased. SOLUTION: Austenitic stainless steel is previously formed with intergranular corrosion or stress corrosion crack more deeply than the crystal grain boundaries of a base metal, and the surface thereof is subjected to diffusion coating in order to increase the film thickness of the coating or covering layer and to improve the adhesion property. The surface is otherwise subjected to thermal spraying and plating, then to heat treatment. As a result, the components effective for the corrosion resistance (for example, Cr, Al, Si, or the like) are eventually diffused deeply into the base metal through segments subjected to the occurrence of the intergranular corrosion or stress corrosion crack, and the treatment layers can be applied like wedges to the base metal at the front ends of the intergranular corrosion or stress corrosion crack.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ボイラ、熱交換
器、化学プラント機器、石炭ガス化プラント機器、ガス
タービン機器等の配管、伝熱管、プレート、翼材、ボル
ト等の部材に使用される高耐食性、高耐摩耗性、超耐久
性を有するコーティングあるいは被覆を施工した材料及
びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for piping, heat transfer tubes, plates, blades, bolts, and other members of boilers, heat exchangers, chemical plant equipment, coal gasification plant equipment, gas turbine equipment, and the like. The present invention relates to a material provided with a coating or covering having high corrosion resistance, high abrasion resistance and ultra durability, and a method for producing the same.

【0002】[0002]

【従来の技術】ボイラ、熱交換器、化学プラント機器の
配管や伝熱管は、耐食性、強度、加工性が必要とされて
いるため、材料としてオーステナイト系ステンレス鋼が
一般的に使用されている。しかし、配管や伝熱管が過酷
な使用環境にさらされる場合は、オーステナイト系ステ
ンレス鋼でも腐食などにより著しく減肉することが知ら
れている。それを解決する方法として、拡散被覆、溶
射、メッキ等によりさらに耐食性の優れたコーティング
や被覆を配管や伝熱管に施工することが行われている。
この場合、被覆層は母材に対してほぼ均一な膜となり、
母材界面で剥離しやすいという欠点がある。例えば、図
7に示すように、母材10表面に施工された被覆層12
は、ほぼ均一で、しかも膜厚が薄いものである。
2. Description of the Related Art Austenitic stainless steel is generally used as a material for pipes and heat transfer tubes of boilers, heat exchangers, and chemical plant equipment because corrosion resistance, strength, and workability are required. However, it is known that when a pipe or a heat transfer pipe is exposed to a severe use environment, even austenitic stainless steel is significantly reduced in thickness due to corrosion or the like. As a method for solving the problem, a coating or a coating having more excellent corrosion resistance is applied to a pipe or a heat transfer pipe by diffusion coating, thermal spraying, plating, or the like.
In this case, the coating layer becomes a substantially uniform film with respect to the base material,
There is a disadvantage that it is easily peeled off at the interface of the base material. For example, as shown in FIG. 7, the coating layer 12
Are almost uniform and have a thin film thickness.

【0003】また、特開平8−93773号公報には、
鋼製の母材表面に粒界腐食処理を施し、その表面に耐摩
耗用めっき膜を被覆形成させた軸受部品が開示されてお
り、その効果として、軸受部品に対する耐摩耗用めっき
膜の密着性が高まり、母材界面での剥離が防止されるこ
とが挙げられている。
[0003] Also, JP-A-8-93773 discloses that
A bearing component in which a surface of a steel base material is subjected to intergranular corrosion treatment and the surface thereof is coated with a wear-resistant plating film is disclosed. As an effect, the adhesion of the wear-resistant plating film to the bearing component is disclosed. And peeling at the interface of the base material is prevented.

【0004】[0004]

【発明が解決しようとする課題】上述した配管や伝熱管
等に施工する拡散被覆、溶射、メッキ等によるコーティ
ングや被覆は、腐食防止に一定の効果を有するが、膜厚
が薄く、長期間の耐食寿命が期待できない。また、耐食
寿命を延ばすために膜厚を厚くすると、密着性が悪くな
り、母材界面で剥離する可能性がある。また、上記の特
開平8−93773号公報に記載された技術では、粒界
腐食処理による粒界腐食層の深さが母材の結晶粒径より
小さいものとしており、このような薄い膜では耐食寿命
の向上は期待できない。このことは、上記公報の技術が
耐摩耗性の向上を目的とした被覆を行うもので、耐食性
に関しては何ら考慮されていないことからも明らかであ
る。さらに、耐摩耗用膜の形成方法についてもメッキに
限定されている。
The diffusion coating, thermal spraying, plating and the like applied to pipes, heat transfer tubes and the like described above have a certain effect in preventing corrosion, but have a small film thickness and a long term. Corrosion life cannot be expected. Further, when the film thickness is increased to extend the corrosion resistance life, the adhesiveness is deteriorated, and there is a possibility that the film may peel off at the interface of the base material. In the technique described in Japanese Patent Application Laid-Open No. 8-93773, the depth of the intergranular corrosion layer formed by the intergranular corrosion treatment is set to be smaller than the crystal grain size of the base material. Life extension cannot be expected. This is clear from the fact that the technique disclosed in the above-mentioned publication performs coating for the purpose of improving wear resistance, and no consideration is given to corrosion resistance. Further, the method of forming the wear-resistant film is also limited to plating.

【0005】本発明は上記の諸点に鑑みなされたもの
で、本発明の目的は、コーティングや被覆層の厚膜化と
密着性の向上を同時に実現することができ、これによっ
て耐食寿命及び剥離寿命の両方の長寿命化が期待できる
耐食コーティング材及びその製造方法を提供することに
ある。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to simultaneously increase the thickness of a coating or a coating layer and to improve adhesion, thereby achieving a corrosion resistance life and a peel life. It is an object of the present invention to provide a corrosion-resistant coating material which can be expected to have a long life, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の耐食コーティング材は、粒界腐食層を形
成させた母材表面に、拡散被覆処理を施して耐食拡散被
覆層を形成させた構成としている。また、本発明の耐食
コーティング材は、粒界腐食層を形成させた母材表面
に、溶射による被覆層を加熱処理により拡散させた耐食
拡散被覆層を形成させてなることを特徴としている。ま
た、本発明の耐食コーティング材は、粒界腐食層を形成
させた母材表面に、メッキによる被覆層を加熱処理によ
り拡散させた耐食拡散被覆層を形成させてなることを特
徴としている。
In order to achieve the above-mentioned object, a corrosion-resistant coating material of the present invention is provided with a diffusion coating treatment on a surface of a base material on which an intergranular corrosion layer is formed to form a corrosion-resistant diffusion coating layer. It is configured to be formed. Further, the corrosion-resistant coating material of the present invention is characterized in that a corrosion-resistant diffusion coating layer in which a coating layer formed by thermal spraying is diffused by heat treatment is formed on a surface of a base material on which a grain boundary corrosion layer is formed. Further, the corrosion-resistant coating material of the present invention is characterized in that a corrosion-resistant diffusion coating layer in which a coating layer formed by plating is diffused by heat treatment is formed on a surface of a base material on which a grain boundary corrosion layer is formed.

【0007】また、本発明の耐食コーティング材は、応
力腐食割れを生じさせた母材表面に、拡散被覆処理を施
して耐食拡散被覆層を形成させてなることを特徴として
いる。また、本発明の耐食コーティング材は、応力腐食
割れを生じさせた母材表面に、溶射による被覆層を加熱
処理により拡散させた耐食拡散被覆層を形成させてなる
ことを特徴としている。また、本発明の耐食コーティン
グ材は、応力腐食割れを生じさせた母材表面に、メッキ
による被覆層を加熱処理により拡散させた耐食拡散被覆
層を形成させてなることを特徴としている。これらの本
発明の耐食コーティング材において、母材としては、一
例として、オーステナイト系ステンレス鋼などが用いら
れる。
[0007] Further, the corrosion-resistant coating material of the present invention is characterized in that a corrosion-resistant diffusion coating layer is formed by performing a diffusion coating treatment on a surface of a base material having undergone stress corrosion cracking. Further, the corrosion-resistant coating material of the present invention is characterized in that a corrosion-resistant diffusion coating layer in which a coating layer formed by thermal spraying is diffused by heat treatment is formed on the surface of a base material in which stress corrosion cracking has occurred. Further, the corrosion-resistant coating material of the present invention is characterized in that a corrosion-resistant diffusion coating layer in which a coating layer formed by plating is diffused by a heat treatment is formed on the surface of a base material in which stress corrosion cracking has occurred. In these corrosion-resistant coating materials of the present invention, austenitic stainless steel or the like is used as a base material, for example.

【0008】本発明の耐食コーティング材の製造方法
は、母材に粒界腐食処理を施して表面に粒界腐食層を形
成させ、その表面に拡散被覆処理により耐食拡散被覆層
を形成させることを特徴としている。また、本発明の製
造方法は、母材に粒界腐食処理を施して表面に粒界腐食
層を形成させ、その表面を溶射により被覆した後、加熱
処理して拡散させることにより耐食拡散被覆層を形成さ
せることを特徴としている。また、本発明の製造方法
は、母材に粒界腐食処理を施して表面に粒界腐食層を形
成させ、その表面をメッキにより被覆した後、加熱処理
して拡散させることにより耐食拡散被覆層を形成させる
ことを特徴としている。これらの本発明の製造方法にお
いては、母材に粒界腐食処理を施して表面に粒界腐食層
を形成させた後、一定の引張応力を付加し、粒界の間隙
を拡げることにより、その後の処理で耐食拡散被覆層を
深く形成させる(深く拡散させる)ことが可能である。
また、これらの本発明の製造方法においては、粒界腐食
層を母材の結晶粒径より深く形成させることが好まし
い。
The method for producing a corrosion-resistant coating material according to the present invention comprises subjecting a base material to intergranular corrosion treatment to form a grain boundary corrosion layer on the surface, and forming a corrosion-resistant diffusion coating layer on the surface by diffusion coating treatment. Features. Further, the production method of the present invention provides a corrosion-resistant diffusion coating layer by subjecting a base material to grain boundary corrosion treatment to form a grain boundary corrosion layer on the surface, coating the surface by thermal spraying, and then diffusing by heating. Is formed. Further, the production method of the present invention provides a corrosion-resistant diffusion coating layer by subjecting a base material to grain boundary corrosion treatment to form a grain boundary corrosion layer on the surface, coating the surface by plating, and then diffusing by heating. Is formed. In these production methods of the present invention, after subjecting the base material to intergranular corrosion treatment to form an intergranular corrosion layer on the surface, a certain tensile stress is applied to widen the intergranular gap, and thereafter, It is possible to deeply form (deeply diffuse) the corrosion-resistant diffusion coating layer by the treatment described in (1).
In the production method of the present invention, it is preferable that the intergranular corrosion layer is formed deeper than the crystal grain size of the base material.

【0009】また、本発明の耐食コーティング材の製造
方法は、母材に応力腐食割れを起こさせて、その表面に
拡散被覆処理により耐食拡散被覆層を形成させることを
特徴としている。また、本発明の製造方法は、母材に応
力腐食割れを起こさせて、その表面を溶射により被覆し
た後、加熱処理して拡散させることにより耐食拡散被覆
層を形成させることを特徴としている。また、本発明の
製造方法は、母材に応力腐食割れを起こさせて、その表
面をメッキにより被覆した後、加熱処理して拡散させる
ことにより耐食拡散被覆層を形成させることを特徴とし
ている。これらの本発明の製造方法においては、応力腐
食割れを母材の結晶粒径より深く発生させることが好ま
しい。
Further, the method for producing a corrosion-resistant coating material of the present invention is characterized in that stress corrosion cracking is caused in a base material, and a corrosion-resistant diffusion coating layer is formed on the surface thereof by diffusion coating treatment. Further, the manufacturing method of the present invention is characterized in that stress corrosion cracking is caused in the base material, the surface thereof is coated by thermal spraying, and then heat treatment is performed to diffuse the base material, thereby forming a corrosion resistant diffusion coating layer. Further, the manufacturing method of the present invention is characterized in that stress corrosion cracking is caused in the base material, the surface thereof is coated by plating, and then heat treatment is performed to diffuse the base material, thereby forming a corrosion resistant diffusion coating layer. In these production methods of the present invention, it is preferable that stress corrosion cracking is generated deeper than the crystal grain size of the base material.

【0010】このように、本発明では、コーティングや
被覆層の厚膜化、密着性の向上を図るために、母材であ
るオーステナイト系ステンレス鋼にあらかじめ粒界腐食
又は応力腐食割れを母材の結晶粒径より深く形成させ、
その表面に拡散被覆処理を行う。あるいは、拡散被覆の
代わりに、溶射、メッキを行い、その後、加熱処理を行
う。この結果、粒界腐食又は応力腐食割れを生じさせた
部分を通して、耐食性に有効な成分(例えば、Cr、A
l、Si等)が母材に内部まで深く拡散することにな
り、かつ、粒界腐食又は応力腐食割れの先端部では、母
材にくさび状に処理層を施すことができ、コーティング
や被覆層の厚膜化、母材との密着性の向上が実現でき
る。
As described above, in the present invention, in order to increase the thickness of the coating and the coating layer and to improve the adhesion, the austenitic stainless steel as the base material is subjected to intergranular corrosion or stress corrosion cracking in advance. Formed deeper than the crystal grain size,
The surface is subjected to diffusion coating. Alternatively, instead of diffusion coating, thermal spraying and plating are performed, and then heat treatment is performed. As a result, components effective for corrosion resistance (eg, Cr, A
1, Si, etc.) diffuses deeply into the base material, and at the tip of intergranular corrosion or stress corrosion cracking, the base material can be treated in a wedge-like manner to form a coating or coating layer. Can be realized, and the adhesion to the base material can be improved.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明するが、本発明は下記の実施の形態に何ら限定さ
れるものではなく、適宜変更して実施することが可能な
ものである。図1は、本発明の実施の第1形態による耐
食コーティング材の一例であり、オーステナイト系ステ
ンレス鋼の母材10に、Cr、Al、Si等のコーティ
ング層(被覆層)14が形成されている。図1におい
て、16はコーティング又は被覆の前にあった粒界腐食
部であり、拡散被覆等の処理後は消失している。コーテ
ィング層(被覆層)14の先端部18は、粒界腐食部1
6の先端部までくさび状に深く入り込んでおり、コーテ
ィング層(被覆層)14の厚膜化、母材10との密着性
の向上が実現できる。なお、20が元々の母材の表面
で、22がコーティング層(被覆層)の表面である。前
述した図7に示す従来のコーティング材と比較してみる
と、図7では、オーステナイト系ステンレス鋼の母材1
0表面に施工された被覆層12は、ほぼ均一で、しかも
膜厚が薄いものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications. . FIG. 1 shows an example of a corrosion-resistant coating material according to a first embodiment of the present invention, in which a coating layer (coating layer) 14 of Cr, Al, Si, or the like is formed on a base material 10 of austenitic stainless steel. . In FIG. 1, reference numeral 16 denotes a grain boundary corroded portion before coating or coating, and has disappeared after treatment such as diffusion coating. The tip 18 of the coating layer (coating layer) 14 is
6 penetrates deeply in the form of a wedge to the tip of the coating layer 6, and the coating layer (coating layer) 14 can be made thicker and the adhesion to the base material 10 can be improved. Here, 20 is the surface of the original base material, and 22 is the surface of the coating layer (coating layer). In comparison with the conventional coating material shown in FIG. 7 described above, FIG. 7 shows that the base material 1 of austenitic stainless steel was used.
The coating layer 12 applied to the zero surface is substantially uniform and thin.

【0012】本実施の形態における粒界腐食処理は、例
えば、次のようなものである。まず、オーステナイト系
ステンレス鋼に鋭敏化熱処理を行う。この鋭敏化熱処理
は、オーステナイト系ステンレス鋼を500〜800℃
程度に加熱して保持するものである。加熱保持後に冷却
したオーステナイト系ステンレス鋼を酸性溶液中に浸漬
すれば、粒界腐食が生じることになる。粒界腐食の方法
としては、一例として、JIS規格で定められた硫酸−
硫酸銅腐食試験方法を用いることができる。この方法の
概要は、所定の濃度に調製した硫酸・硫酸銅溶液(16
%H2SO4+5.7%CuSO4+(Cu))の中に材
料を入れ、連続で16時間、24時間又は72時間沸騰
させるものである。なお、粒界腐食の方法として、他の
方法、例えば、しゅう酸エッチ試験方法、硫酸−硫酸第
二鉄腐食試験方法、65%硝酸腐食試験方法、硝酸−フ
ッ化水素酸腐食試験方法などを利用することも可能であ
る。図2は、粒界腐食を生じさせた状態を示しており、
オーステナイト系ステンレス鋼の母材10に粒界腐食部
24が形成されている。20は母材の表面である。この
場合、粒界腐食部24は母材10の結晶粒径より深く形
成させる。
The intergranular corrosion treatment in the present embodiment is, for example, as follows. First, sensitization heat treatment is performed on austenitic stainless steel. This sensitization heat treatment is performed by austenitic stainless steel at 500 to 800 ° C.
It is heated to a certain degree and held. If the austenitic stainless steel cooled after heating and holding is immersed in an acidic solution, intergranular corrosion will occur. As an example of the method of intergranular corrosion, sulfuric acid defined by JIS standards can be used.
A copper sulfate corrosion test method can be used. The outline of this method is as follows: a sulfuric acid / copper sulfate solution (16
% H 2 SO 4 + 5.7% CuSO 4 + (Cu)) and boil continuously for 16 hours, 24 hours or 72 hours. Other methods such as oxalic acid etch test, sulfuric acid-ferric sulfate corrosion test, 65% nitric acid corrosion test, and nitric acid-hydrofluoric acid corrosion test are used as the method of grain boundary corrosion. It is also possible. FIG. 2 shows a state where intergranular corrosion has occurred,
An intergranular corrosion portion 24 is formed in a base material 10 of austenitic stainless steel. Reference numeral 20 denotes the surface of the base material. In this case, the grain boundary corrosion portion 24 is formed deeper than the crystal grain size of the base material 10.

【0013】次に、粒界腐食を生じさせたオーステナイ
ト系ステンレス鋼の表面に拡散被覆処理を行う。例え
ば、アルミニウムの拡散被覆処理を行う場合は、800
〜1200℃程度で10分間〜48時間程度の加熱保持
を行う。あるいは、拡散被覆の代わりに、溶射、メッキ
を行い、その後、加熱処理を行う。これにより、母材表
面及び粒界腐食部を通して、耐食性に有効な成分(A
l、Cr、Si等)が母材に内部まで深く拡散すること
になり、かつ、粒界腐食の先端部では、母材にくさび状
に処理層を施すことができる。この場合、粒界腐食層を
形成させた後、一定の引張応力を付加し、粒界の間隔を
拡げることにより、その後の処理を容易に行う(深く拡
散させる)ことが可能である。なお、粒界は拡散するア
ルミニウム等で充填され、粒界腐食部は消失し、前述し
た図1に示す本発明の耐食コーティング材が得られる。
また、拡散処理と同時にオーステナイト系ステンレス鋼
が再固溶化されて、鋭敏化組織は消失し、オーステナイ
ト系ステンレス鋼の強度、耐食性等の特性は回復する。
Next, the surface of the austenitic stainless steel in which intergranular corrosion has occurred is subjected to diffusion coating. For example, when aluminum diffusion coating is performed, 800
Heating and holding at about 1200 ° C. for about 10 minutes to 48 hours are performed. Alternatively, instead of diffusion coating, thermal spraying and plating are performed, and then heat treatment is performed. Thereby, the component (A) effective for corrosion resistance passes through the base material surface and the intergranular corrosion portion.
1, Cr, Si, etc.) diffuses deeply into the base material, and at the tip of intergranular corrosion, the base material can be treated in a wedge-like manner. In this case, after forming the intergranular corrosion layer, a certain tensile stress is applied to increase the interval between the grain boundaries, so that the subsequent processing can be easily performed (deeply diffused). The grain boundaries are filled with diffusing aluminum or the like, and the grain boundary corroded portions disappear, and the above-described corrosion-resistant coating material of the present invention shown in FIG. 1 is obtained.
At the same time as the diffusion treatment, the austenitic stainless steel is solid-solutioned again, the sensitized structure disappears, and the properties of the austenitic stainless steel such as strength and corrosion resistance are restored.

【0014】本実施の形態では、オーステナイト系ステ
ンレス鋼に粒界腐食を生じさせる場合について説明した
が、粒界腐食の代わりに、オーステナイト系ステンレス
鋼に応力腐食割れを生じさせてもよい。応力腐食割れ
は、環境、材料、応力の3因子が同時に適度に関与する
ときに発生するが、オーステナイト系ステンレス鋼で
は、引張応力下にて塩化物等を含む環境で発生しやす
い。オーステナイト系ステンレス鋼に応力腐食割れを起
こさせるには、塩化物水溶液、海水、高温水、苛性アル
カリ水溶液、ポリチオン酸水溶液、H2SO4+NaC
l、HCl、H2SO4+CuSO4、H2S水溶液などの
環境下におけばよい。例えば、沸騰42%MgCl2
液(143℃)の中にオーステナイト系ステンレス鋼を
入れて応力腐食割れを生じさせることができる。応力腐
食割れを生じさせたオーステナイト系ステンレス鋼に拡
散被覆等を行うことにより、粒界腐食の場合と同様に、
母材表面及び応力腐食割れの部分を通して、耐食性に有
効な成分(Al、Cr、Si等)が母材に内部まで深く
拡散することになり、かつ、応力腐食割れの先端部で
は、母材にくさび状に処理層を施すことができる。
In the present embodiment, the case where intergranular corrosion is caused in austenitic stainless steel has been described. Instead of intergranular corrosion, stress corrosion cracking may be caused in austenitic stainless steel. Stress corrosion cracking occurs when the three factors of the environment, material, and stress are simultaneously involved in an appropriate degree. In austenitic stainless steel, stress corrosion cracking is likely to occur in an environment containing chloride and the like under tensile stress. To cause stress corrosion cracking in austenitic stainless steel, chloride aqueous solution, seawater, high-temperature water, caustic aqueous solution, polythionic acid aqueous solution, H 2 SO 4 + NaC
1, HCl, H 2 SO 4 + CuSO 4 , H 2 S aqueous solution or the like. For example, stress corrosion cracking can be caused by putting austenitic stainless steel in a boiling 42% MgCl 2 solution (143 ° C.). By performing diffusion coating etc. on the austenitic stainless steel that caused stress corrosion cracking, similar to the case of intergranular corrosion,
Components (Al, Cr, Si, etc.) effective for corrosion resistance diffuse deeply into the base material through the base material surface and the portion of the stress corrosion crack, and at the tip of the stress corrosion crack, The treatment layer can be applied in a wedge shape.

【0015】[0015]

【実施例】実施例1 オーステナイト系ステンレス鋼を650℃に加熱し24
時間保持して鋭敏化熱処理を行った後、粒界腐食処理
(上述した沸騰硫酸−硫酸銅腐食試験(24時間))を
行った。粒界腐食層を形成させた状態を模式的に示す
と、前述の図2のようになる。次に、アルミニウムによ
る拡散被覆処理は、アルミニウム粉、アルミナ粉、少量
(1〜5wt%)の塩化アンモニウム等からなる拡散剤の
粉末中に試料を埋没させて、1050℃で約12時間行
った。その結果、アルミニウムが、鋼表面及び粒界腐食
部を通して、母材内部に拡散侵入し、拡散被覆層が深
く、かつ、くさび状に施された。なお、粒界は拡散する
アルミニウムで充填され、粒界腐食部は消失し、前述の
図1に示すような本発明のコーティング材が得られた。
このAl拡散処理品の断面組織の電子顕微鏡(SEM)
写真を図3に示す。また、Al拡散処理品の断面におけ
るX線マイクロアナライザー(EPMA)によるAlの
面分析結果を図4に示す。
EXAMPLE 1 Austenitic stainless steel was heated to 650 ° C.
After performing the sensitization heat treatment while holding the temperature, the grain boundary corrosion treatment (the above-described boiling sulfuric acid-copper sulfate corrosion test (24 hours)) was performed. The state in which the intergranular corrosion layer is formed is schematically shown in FIG. 2 described above. Next, the diffusion coating treatment with aluminum was performed at 1050 ° C. for about 12 hours by immersing the sample in a powder of a diffusing agent composed of aluminum powder, alumina powder, a small amount (1 to 5 wt%) of ammonium chloride, and the like. As a result, aluminum diffused and penetrated into the base metal through the steel surface and the intergranular corrosion portion, and the diffusion coating layer was applied deeply and in a wedge shape. The grain boundaries were filled with diffusing aluminum, and the intergranular corrosion portions disappeared, and the coating material of the present invention as shown in FIG. 1 described above was obtained.
Electron microscope (SEM) of the cross-sectional structure of this Al-diffused product
The photograph is shown in FIG. FIG. 4 shows the result of Al surface analysis by a X-ray microanalyzer (EPMA) on the cross section of the Al diffusion-treated product.

【0016】表1に、実施例1に示す本発明の方法で作
製したAl拡散処理品と、Al拡散被覆処理のみを行っ
た従来法によるAl拡散処理品との比較を示す。表1の
結果から、本発明のAl拡散処理品は、従来法によるA
l拡散処理品に比べて、拡散被覆層が母材内部まで深く
侵入しており、かつ、拡散被覆層が母材との境界でくさ
び状に入り込んでいることが明らかであり、処理結果が
著しく改善されることがわかった。また、上記のよう
に、Al拡散被覆処理温度は1050℃であり、オース
テナイト系ステンレス鋼の固溶化(溶体化)熱処理温度
に相当するために、被覆処理と同時に母材が再固溶化さ
れ、鋭敏化組織は消失し、母材の強度、耐食性等の特性
は回復する。
Table 1 shows a comparison between the Al-diffusion-treated product prepared by the method of the present invention shown in Example 1 and the Al-diffusion-treated product according to the conventional method, which has been subjected to only the Al diffusion coating treatment. From the results in Table 1, it can be seen that the Al-diffused product of the present invention was
1. Compared with the diffusion-treated product, it is clear that the diffusion coating layer has penetrated deeper into the base material and that the diffusion coating layer has penetrated into the wedge shape at the boundary with the base material. It was found to be improved. As described above, the temperature of the Al diffusion coating treatment is 1050 ° C., which corresponds to the solution heat treatment temperature of the austenitic stainless steel. The degraded structure disappears, and the properties of the base material such as strength and corrosion resistance are restored.

【0017】[0017]

【表1】 [Table 1]

【0018】実施例2 実施例1の場合と同様の方法で、オーステナイト系ステ
ンレス鋼に粒界腐食処理を行った後、クロムによる拡散
被覆処理(1050℃×4時間)行った。その結果、ク
ロムが、鋼表面及び粒界腐食部を通して、母材内部に拡
散侵入し、拡散被覆層が深く、かつ、くさび状に施され
た。得られたCr拡散処理品の断面組織の電子顕微鏡
(SEM)写真を図5に示す。また、Cr拡散処理品の
断面におけるX線マイクロアナライザー(EPMA)に
よるCrの面分析結果を図6に示す。粒界は拡散するク
ロムで充填され、粒界腐食部はほぼ完全に消失している
ことがわかる。
Example 2 In the same manner as in Example 1, after austenite stainless steel was subjected to intergranular corrosion treatment, diffusion coating treatment with chromium (1050 ° C. × 4 hours) was performed. As a result, chromium diffused and penetrated into the inside of the base metal through the steel surface and the intergranular corrosion portion, and the diffusion coating layer was applied deeply and in a wedge shape. FIG. 5 shows an electron microscope (SEM) photograph of the cross-sectional structure of the obtained Cr-diffused product. FIG. 6 shows the result of Cr surface analysis by a X-ray microanalyzer (EPMA) on the cross section of the Cr diffusion-treated product. It can be seen that the grain boundaries are filled with diffusing chromium, and the grain boundary corroded portions have almost completely disappeared.

【0019】実施例3 実施例1、2の粒界腐食処理の代わりに、母材であるオ
ーステナイト系ステンレス鋼に応力腐食割れの処理を行
った。沸騰硫酸−硫酸銅水溶液中に、0.2%耐力まで
引張応力の負荷を加えたサンプル(母材)を約1時間浸
漬し、粒界型応力腐食割れ層を形成させた。その後、実
施例1、2の場合と同様の方法で、それぞれ、アルミニ
ウム、クロムによる拡散被覆処理を行った。粒界型応力
腐食割れ層を形成させたオーステナイト系ステンレス鋼
に拡散被覆を行うことにより、粒界腐食の場合と同様
に、母材表面及び応力腐食割れの部分を通して、耐食性
に有効な成分(Al、Cr)が母材に内部まで深く拡散
し、かつ、応力腐食割れの先端部では、母材にくさび状
に処理層を施すことができた。
Example 3 Instead of the intergranular corrosion treatment of Examples 1 and 2, austenitic stainless steel as a base metal was subjected to stress corrosion cracking treatment. A sample (base material) subjected to a tensile stress load up to 0.2% proof stress was immersed in a boiling sulfuric acid-copper sulfate aqueous solution for about 1 hour to form a grain boundary type stress corrosion cracking layer. Thereafter, diffusion coating with aluminum and chromium was performed in the same manner as in Examples 1 and 2. By performing diffusion coating on the austenitic stainless steel on which the intergranular stress corrosion cracking layer is formed, a component effective for corrosion resistance (Al , Cr) diffused deeply into the base material, and at the tip of the stress corrosion cracking, the base material could be treated in a wedge-like manner.

【0020】[0020]

【発明の効果】本発明は上記のように構成されているの
で、つぎのような効果を奏する。 (1) 粒界腐食又は応力腐食割れを予め母材表面に形
成させ、拡散被覆処理等を行うことにより、粒界腐食又
は応力腐食割れを生じさせた部分を通して被覆材が母材
に拡散するために、通常よりも厚く、かつ、くさび状に
処理層を施すことができる。 (2) 膜厚が厚く、かつ、処理層の先端部(母材との
境界)がくさび状になるために、耐食寿命が長く、か
つ、密着性に優れるコーティング及び被覆層を形成させ
ることができる。 (3) 拡散処理をするため、母材が再固溶化され、母
材の強度、耐食性に優れている。 (4) 母材に粒界腐食層を形成させた後、一定の引張
応力の負荷を加えて、粒界の間隙を拡げることにより、
その後の処理で耐食拡散被覆層を深く形成させる(深く
拡散させる)ことができる。
As described above, the present invention has the following effects. (1) Since intergranular corrosion or stress corrosion cracking is formed on the surface of the base material in advance and diffusion coating is performed, the coating material diffuses into the base material through the portion where intergranular corrosion or stress corrosion cracking occurs. The treatment layer can be thicker than usual and in a wedge shape. (2) Since the film thickness is large and the front end portion (boundary with the base material) of the treatment layer has a wedge shape, it is possible to form a coating and a coating layer having a long corrosion resistance life and excellent adhesion. it can. (3) Due to the diffusion treatment, the base material is re-solidified, and the base material is excellent in strength and corrosion resistance. (4) After forming the intergranular corrosion layer on the base material, by applying a constant tensile stress load to expand the intergranular space,
The corrosion-resistant diffusion coating layer can be formed deeply (deeply diffused) in the subsequent treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1形態による耐食コーティン
グ材の一例を示す概略断面構成図である。
FIG. 1 is a schematic sectional configuration diagram showing an example of a corrosion-resistant coating material according to a first embodiment of the present invention.

【図2】本発明の実施の第1形態における粒界腐食層を
形成させた状態を示す概略断面構成図である。
FIG. 2 is a schematic cross-sectional configuration diagram showing a state where a grain boundary corrosion layer is formed according to the first embodiment of the present invention.

【図3】本発明の実施例1におけるAl拡散処理品の断
面組織を示す電子顕微鏡写真である(倍率500倍)。
FIG. 3 is an electron micrograph (500 × magnification) showing a cross-sectional structure of an Al-diffused product in Example 1 of the present invention.

【図4】本発明の実施例1におけるAl拡散処理品の断
面組織のEPMAによるAlの面分析結果を示す写真で
ある(倍率500倍)。
FIG. 4 is a photograph showing a result of Al surface analysis by EPMA of a cross-sectional structure of an Al-diffused product in Example 1 of the present invention (magnification: 500).

【図5】本発明の実施例2におけるCr拡散処理品の断
面組織を示す電子顕微鏡写真である(倍率500倍)。
FIG. 5 is an electron micrograph (magnification: 500 times) showing a cross-sectional structure of a Cr-diffused product in Example 2 of the present invention.

【図6】本発明の実施例2におけるCr拡散処理品の断
面組織のEPMAによるCrの面分析結果を示す写真で
ある(倍率500倍)。
FIG. 6 is a photograph showing a result of Cr surface analysis by EPMA of a cross-sectional structure of a Cr-diffused product in Example 2 of the present invention (magnification: 500).

【図7】従来の耐食コーティング材の一例を示す概略断
面構成図である。
FIG. 7 is a schematic sectional view showing an example of a conventional corrosion-resistant coating material.

【符号の説明】[Explanation of symbols]

10 母材 12 被覆層 14 コーティング層(被覆層) 16、24 粒界腐食部 18 コーティング層(被覆層)の先端部 20 母材の表面 22 コーティング層(被覆層)の表面 Reference Signs List 10 base material 12 coating layer 14 coating layer (coating layer) 16, 24 intergranular corrosion part 18 tip of coating layer (coating layer) 20 surface of base material 22 surface of coating layer (coating layer)

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 粒界腐食層を形成させた母材表面に、拡
散被覆処理を施して耐食拡散被覆層を形成させてなるこ
とを特徴とする耐食コーティング材。
1. A corrosion-resistant coating material, wherein a corrosion-resistant diffusion coating layer is formed by performing a diffusion coating treatment on a surface of a base material on which a grain boundary corrosion layer is formed.
【請求項2】 粒界腐食層を形成させた母材表面に、溶
射による被覆層を加熱処理により拡散させた耐食拡散被
覆層を形成させてなることを特徴とする耐食コーティン
グ材。
2. A corrosion-resistant coating material comprising a coating layer formed by thermal spraying and having a corrosion-resistant diffusion coating layer formed on a surface of a base material having a grain boundary corrosion layer formed thereon by heat treatment.
【請求項3】 粒界腐食層を形成させた母材表面に、メ
ッキによる被覆層を加熱処理により拡散させた耐食拡散
被覆層を形成させてなることを特徴とする耐食コーティ
ング材。
3. A corrosion-resistant coating material characterized by forming a corrosion-resistant diffusion coating layer in which a coating layer formed by plating is diffused by heat treatment on the surface of a base material on which a grain boundary corrosion layer is formed.
【請求項4】 応力腐食割れを生じさせた母材表面に、
拡散被覆処理を施して耐食拡散被覆層を形成させてなる
ことを特徴とする耐食コーティング材。
4. The method according to claim 1, wherein the surface of the base material having the stress corrosion cracking is
A corrosion-resistant coating material comprising a diffusion coating treatment to form a corrosion-resistant diffusion coating layer.
【請求項5】 応力腐食割れを生じさせた母材表面に、
溶射による被覆層を加熱処理により拡散させた耐食拡散
被覆層を形成させてなることを特徴とする耐食コーティ
ング材。
5. The method according to claim 5, wherein the surface of the base material having caused the stress corrosion cracking is
A corrosion-resistant coating material comprising a coating layer formed by thermal spraying and a corrosion-resistant diffusion coating layer formed by heat treatment.
【請求項6】 応力腐食割れを生じさせた母材表面に、
メッキによる被覆層を加熱処理により拡散させた耐食拡
散被覆層を形成させてなることを特徴とする耐食コーテ
ィング材。
6. The method according to claim 6, wherein the surface of the base material having caused the stress corrosion cracking is
A corrosion-resistant coating material characterized by forming a corrosion-resistant diffusion coating layer in which a coating layer formed by plating is diffused by heat treatment.
【請求項7】 母材がオーステナイト系ステンレス鋼で
ある請求項1〜6のいずれかに記載の耐食コーティング
材。
7. The corrosion-resistant coating material according to claim 1, wherein the base material is austenitic stainless steel.
【請求項8】 母材に粒界腐食処理を施して表面に粒界
腐食層を形成させ、その表面に拡散被覆処理により耐食
拡散被覆層を形成させることを特徴とする耐食コーティ
ング材の製造方法。
8. A method for producing a corrosion-resistant coating material, comprising: performing a grain boundary corrosion treatment on a base material to form a grain boundary corrosion layer on the surface; and forming a corrosion-resistant diffusion coating layer on the surface by diffusion coating treatment. .
【請求項9】 母材に粒界腐食処理を施して表面に粒界
腐食層を形成させ、その表面を溶射により被覆した後、
加熱処理して拡散させることにより耐食拡散被覆層を形
成させることを特徴とする耐食コーティング材の製造方
法。
9. After subjecting a base material to intergranular corrosion treatment to form an intergranular corrosion layer on the surface and coating the surface by thermal spraying,
A method for producing a corrosion-resistant coating material, comprising forming a corrosion-resistant diffusion coating layer by heat treatment and diffusion.
【請求項10】 母材に粒界腐食処理を施して表面に粒
界腐食層を形成させ、その表面をメッキにより被覆した
後、加熱処理して拡散させることにより耐食拡散被覆層
を形成させることを特徴とする耐食コーティング材の製
造方法。
10. A grain boundary corrosion layer is formed on a surface of a base material by subjecting it to a grain boundary corrosion treatment, and the surface is coated by plating, and then heat-treated and diffused to form a corrosion resistant diffusion coating layer. A method for producing a corrosion-resistant coating material, characterized in that:
【請求項11】 母材に粒界腐食処理を施して表面に粒
界腐食層を形成させた後、引張応力を付加し、粒界の間
隙を拡げることにより、その後の処理で耐食拡散被覆層
を深く形成させる請求項8、9又は10記載の耐食コー
ティング材の製造方法。
11. A grain boundary corrosion treatment is applied to a base material to form a grain boundary corrosion layer on the surface, and then a tensile stress is applied to widen the gap between the grain boundaries, so that the corrosion resistant diffusion coating layer is formed in the subsequent treatment. The method for producing a corrosion-resistant coating material according to claim 8, 9 or 10, wherein:
【請求項12】 粒界腐食層を母材の結晶粒径より深く
形成させる請求項8〜11のいずれかに記載の耐食コー
ティング材の製造方法。
12. The method for producing a corrosion-resistant coating material according to claim 8, wherein the intergranular corrosion layer is formed deeper than the crystal grain size of the base material.
【請求項13】 母材に応力腐食割れを起こさせて、そ
の表面に拡散被覆処理により耐食拡散被覆層を形成させ
ることを特徴とする耐食コーティング材の製造方法。
13. A method for producing a corrosion-resistant coating material, wherein stress corrosion cracking is caused in a base material, and a corrosion-resistant diffusion coating layer is formed on the surface of the base material by diffusion coating treatment.
【請求項14】 母材に応力腐食割れを起こさせて、そ
の表面を溶射により被覆した後、加熱処理して拡散させ
ることにより耐食拡散被覆層を形成させることを特徴と
する耐食コーティング材の製造方法。
14. A method of producing a corrosion-resistant coating material, wherein stress corrosion cracking is caused in a base material, the surface thereof is coated by thermal spraying, and then heat-treated and diffused to form a corrosion-resistant diffusion coating layer. Method.
【請求項15】 母材に応力腐食割れを起こさせて、そ
の表面をメッキにより被覆した後、加熱処理して拡散さ
せることにより耐食拡散被覆層を形成させることを特徴
とする耐食コーティング材の製造方法。
15. A method for producing a corrosion-resistant coating material, wherein stress corrosion cracking is caused in a base material, the surface of which is coated by plating, and then heat-treated and diffused to form a corrosion-resistant diffusion coating layer. Method.
【請求項16】 応力腐食割れを母材の結晶粒径より深
く発生させる請求項13、14又は15記載の耐食コー
ティング材の製造方法。
16. The method according to claim 13, wherein the stress corrosion cracking is generated deeper than the crystal grain size of the base material.
JP2001077674A 2001-03-19 2001-03-19 Corrosion resistant coating material and method for producing the same Expired - Fee Related JP3497483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001077674A JP3497483B2 (en) 2001-03-19 2001-03-19 Corrosion resistant coating material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001077674A JP3497483B2 (en) 2001-03-19 2001-03-19 Corrosion resistant coating material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002275617A true JP2002275617A (en) 2002-09-25
JP3497483B2 JP3497483B2 (en) 2004-02-16

Family

ID=18934395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001077674A Expired - Fee Related JP3497483B2 (en) 2001-03-19 2001-03-19 Corrosion resistant coating material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3497483B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012521526A (en) * 2009-03-24 2012-09-13 アルストム テクノロジー リミテッド Metal tube coating with fatigue corrosion cracking
JP2017040463A (en) * 2015-08-21 2017-02-23 イーグル工業株式会社 Cooler for mechanical seal
CN107245703A (en) * 2017-05-31 2017-10-13 江苏金基特钢有限公司 It is a kind of to reduce the method for making Nano of Intergranular Corrosion of Austenitic Stainless Steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012521526A (en) * 2009-03-24 2012-09-13 アルストム テクノロジー リミテッド Metal tube coating with fatigue corrosion cracking
KR101421532B1 (en) * 2009-03-24 2014-07-22 알스톰 테크놀러지 리미티드 Coating of fatigue corrosion cracked metallic tubes
JP2017040463A (en) * 2015-08-21 2017-02-23 イーグル工業株式会社 Cooler for mechanical seal
CN107245703A (en) * 2017-05-31 2017-10-13 江苏金基特钢有限公司 It is a kind of to reduce the method for making Nano of Intergranular Corrosion of Austenitic Stainless Steel

Also Published As

Publication number Publication date
JP3497483B2 (en) 2004-02-16

Similar Documents

Publication Publication Date Title
KR101429456B1 (en) Low Temperature Salt Bath Partial Heat-Treatment Method
Jeong et al. Effects of TiN and WC coating on the fatigue characteristics of dental implant
KR20100039648A (en) Heat treatment method for salt bath carburization of stainless steel having high corrosion resistance
JP3497483B2 (en) Corrosion resistant coating material and method for producing the same
EP3061835A1 (en) Partial heat treatment method using dual metal layers
SU1716974A3 (en) Pipe with oxidized inner surface and method of its production
Aoki et al. Surface hardening for austenitic stainless steels based on carbon solid solution
CN108411239B (en) Method for hot dipping co-infiltration of aluminum-copper alloy
JP2006292021A (en) Spacer expander and manufacturing method thereof
JPH10226873A (en) Ferrum-chromium-nickel diffusing treated steel excellent in weather resistance and its production
JP5001672B2 (en) Fastener and manufacturing method thereof
Zhang et al. Stress corrosion behavior of low-temperature liquid-nitrided 316 austenitic stainless steel in a sour environment
JP2008190600A (en) Fastener, its manufacturing method, and assembly method of vacuum device
JP4216497B2 (en) Titanium alloy screw part manufacturing method and titanium alloy screw part using the same
JP3317461B2 (en) Oil well fittings and their surface treatment methods
CN109321902B (en) Method for electroplating chromium on powder metallurgy high-temperature alloy
JP2001170780A (en) Manufacturing method for titanium plate or titanium- cladded plate
JP2006152385A (en) Composite layer coating member having excellent environmental corrosion resistance and excellent wear resistance and production method thereof
JP4189413B2 (en) Titanium alloy screw parts using the method of manufacturing titanium alloy screw parts
RU2519694C1 (en) Application of antirust coatings on substrate from high-hardness alloys
JPS6274063A (en) Surface treatment of steel
JP3099119B2 (en) Stainless steel bolts and nuts
JP5370984B2 (en) Aluminum alloy material for vacuum equipment and manufacturing method thereof
JP5561638B2 (en) Metal curing method
Lo et al. The study of interdiffusion phenomena of Ni-P/steel interface

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees