JP4216497B2 - Titanium alloy screw part manufacturing method and titanium alloy screw part using the same - Google Patents
Titanium alloy screw part manufacturing method and titanium alloy screw part using the same Download PDFInfo
- Publication number
- JP4216497B2 JP4216497B2 JP2001356737A JP2001356737A JP4216497B2 JP 4216497 B2 JP4216497 B2 JP 4216497B2 JP 2001356737 A JP2001356737 A JP 2001356737A JP 2001356737 A JP2001356737 A JP 2001356737A JP 4216497 B2 JP4216497 B2 JP 4216497B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium alloy
- treatment
- gas
- carburizing
- screw part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、プラズマ浸炭処理を施したチタン合金ねじ部品の疲労特性を改善する製造方法とそれを用いたチタン合金ねじ部品に関する。
【0002】
【従来の技術】
チタン合金は、比強度、破壊靱性、耐熱性及び耐食性などに優れた特性を有しているため、航空機材料として重要な位置を占めており、その使用量も増加しつつあり、航空機の高速化や大型化などに伴い、外板、フレーム、結合金具類やファスナー類などの一次構造部材に使用されるようになり、純チタンよりも強度の高いチタン合金が主として使用されている。また、チタン合金は、その良好な耐食性と比強度のバランスを活かして、海洋分野、発電分野や自動車分野などにおいても実用例が見られる。
【0003】
例えば、ボルト、ナットなどのファスナー類では、熱応力を含めて繰返し応力を受ける苛酷な条件で使用される場合や、また、炭素繊維強化プラスチックの炭素繊維との接触電位差が小さく、腐食を引き起しにくい利点を有することなどから、航空機の尾翼などに採用される前記炭素繊維強化プラスチック積層材の締結にも使用される場合などがある。
【0004】
前記ファスナー類では、いずれも、ねじ部品としての所要の耐摩耗性及び設計上必要な締め付け力を確保するための良好な摺動性などの特性が要求される。しかし、チタン合金は、無潤滑の状態では摩擦係数が大きいため、焼付きの問題が生じる。一般に、潤滑油、黒鉛、二硫化モリブデンなどの潤滑剤を使用することにより、摩擦係数を下げることができるが、長時間の使用に耐えることができない。また、フェノール樹脂などにアルミ粉などの金属粉を混ぜた樹脂コーティングを用いると、耐久性は改善されるが、導電性がないために、万一、飛行中に落雷があると、前記ねじ部品にごく短時間、高電圧がかかり、前記プラスチック積層材とねじ部品との空気間隙が膨らんで、小爆発を起こし、被締結材が破損して墜落する危険性がある。この対策として、前記ねじ部品を金属箔で覆ったり、アース取りをするなどにより導電性をもたせる方法がとられているが、これには多大の費用を要している。
【0005】
そこで、耐久性のある焼付き防止のため、そして、万一の落雷時にも、安全性を確保するためには、チタン合金の表面に耐摩耗性および摺動性を向上させ、かつ導電性のある表面硬化処理をすることが必要である。
【0006】
前記の表面硬化処理として、プラズマ浸炭処理を行う方法が知られている。このプラズマ浸炭処理は、真空雰囲気中で、例えば、処理室内の上部断熱材が直流電源の陽極に接続され、被処理物の載置台が前記直流電源の陰極に接続され、両極間に直流電圧を加えてグロー放電を生じさせ、処理室の要所に設けたマニホールドから、まず、水素ガスとアルゴンまたは窒素などの不活性ガスとの混合ガスを導入し、イオン化した水素やアルゴンまたは窒素を金属被処理物の表面に衝突させて、酸化被膜などの付着物除去してクリーニングを行う。次いで、メタンやプロパンなどの炭化水素系の浸炭用ガスと希釈ガスとの混合ガスを導入し、前記グロー放電により活性炭素イオンを発生させ、この活性炭素イオンがチタン金属などの金属被処理物の表面に衝突して付着し内部に拡散する、または加速された活性炭素イオンが金属処理物の表面に衝突した際に、直接、内部に打ち込まれるなどして、Tiなどの金属原子と結合して、表面部にTiCなどの金属炭化物の硬化層を形成する処理である。
【0007】
【発明が解決しようとする課題】
しかし、前記プラズマ浸炭処理工程においては、浸炭処理時に加速された活性炭素イオンがチタン合金の表面に衝突し、また、前処理のクリーニング処理において、イオン化した窒素や水素が酸化被膜などの付着物を撥ね飛ばす際に表面に衝突するなどのために、チタン合金の表面粗さは、プラズマ浸炭処理の前に比べて大きくなり、肌荒れを生じる。このような肌荒れ、即ち表面の凹凸は結晶粒のずれをもたらし、その部分が応力の集中源となるために、亀裂が発生しやすくなり、とくに、亀裂などの切欠き効果に敏感なチタン合金の疲労強度を低下させる原因となる。
【0008】
また、浸炭用ガスの組成である水素もイオン化して、雰囲気内に存在するため、前記浸炭処理を施さない場合に比べて、水素が被処理物内の、とくに表層部に侵入しやすくなる。そのため、前記浸炭処理物は、靱性の低下や引張り強度よりも低い荷重で疲労破壊するなど、所謂水素脆性を引起しやすくなる。
【0009】
これらのことは、前述のように苛酷な使用条件においても安全性が要求される航空機部品は勿論、海洋分野や発電分野など他の産業分野において用いられるチタン合金部品にとって致命的な欠点となる。
【0010】
そこで、この発明の課題は、プラズマ浸炭処理を施したチタン合金ねじ部品の肌荒れや水素の侵入などによる疲労強度の低下を改善する製造方法およびこの方法により製造されたチタン合金ねじ部品を提供することである。
【0011】
【課題を解決するための手段】
前記の課題を解決するために、この発明では、チタン合金ねじ部品の製造にあたり、チタン合金素材を溶体化処理および時効処理した後にプラズマ浸炭処理を施し、その後にねじ転造加工をするようにしたのである。
【0012】
このように、プラズマ浸炭処理後に、ねじ転造加工を行うことにより、転造ダイス面に設けたねじ山が、チタン合金素材に食い込んで谷を形成し、押しのけられた材料が流動して前記ダイス面のねじ山間に充満してねじ山が成形され、ねじ面に沿って材料のマクロ組織が連続して流れる。また、表面層、とくに、疲労破壊が発生しやすいねじ谷底部が加工硬化し、圧縮応力が残留し、さらに、このような塑性変形によってプラズマ浸炭処理によって生じた肌荒れが平滑化される、などの転造効果が得られる。このねじ転造加工が仕上げ加工となるために、前記転造効果がねじ部品に残存する。
【0013】
前記のねじ面に沿ったマクロ組織の連続した流れ、および表層部の加工硬化は強度の上昇をもたらす。そして、前記圧縮残留応力は、負荷時の表層部の引張り応力成分を小さくし、または打ち消し、また、チタン合金表面の平滑化により応力集中が緩和されることと相まって、表面の凹凸および表層部のα相とβ相の界面に析出した水素化物を起点とする亀裂発生までの潜伏期間が長くなり、亀裂の発生が遅延する。これらによって、前記の肌荒れおよび水素脆性による疲労強度の低下が改善される。
【0014】
前記プラズマ浸炭処理の雰囲気ガスの温度が350℃から700℃の範囲にあり、その圧力が10〜2000Paの範囲にあることが望ましい。
【0015】
プラズマ浸炭処理の浸炭用ガスを含有する雰囲気ガス温度が700℃を越える高温域では、前記時効処理により生成した析出物が凝集、粗大化してチタン合金部品の強度が低下するなどの材質劣化のおそれがある。また、前記雰囲気ガス温度が、350℃よりも低い低温域では、被処理物のチタン合金部品の表面に衝突した前記活性炭素イオンの部品内部への拡散が困難になり、前記部品の表面に煤が生成して、表層部に所望の浸炭層、即ちTiCの硬化層を形成することが困難になる。
【0016】
雰囲気ガスの圧力が2000Paを越える高圧では、雰囲気ガス中の活性炭素イオン濃度が高くなって、チタン合金部品の表層部の侵入炭素量が飽和状態となって、これ以上に前記製品表面に活性炭素イオンが衝突しても、内部へ拡散せず、部品表面に煤が生成するようになる。
【0017】
また、雰囲気ガスの圧力が、10Pa未満の低圧では、雰囲気ガス中の活性炭素イオン量の濃度が低くなって、チタン合金部品の表層部の侵入炭素量が少なくなり過ぎ、所望のTiCの硬化層が形成できず、前記の耐摩耗性および摺動性を充分改善できなくなる。
【0018】
このような低温域でのプラズマ浸炭処理では、浸炭速度が比較的遅いため、浸炭層、即ちTiCの硬化層を、摺動特性の改善に必要な程度に、比較的薄く形成しやすいので、プラズマ浸炭処理後でも、支障なく、ねじ転造加工を行うことができる。とくに、加工性の良好なβ型合金などでは、冷間でもクラックなどの表面欠陥を発生せずに、ねじ転造加工を行うことができる。
【0019】
前記転造加工を150℃〜350℃の温度域で行うことができる。
【0020】
このように、プラズマ浸炭処理後に、温間域で、即ち変形抵抗を下げた状態でチタン合金のねじ転造加工を行えば、変形応力が小さくなって実質的に加工性が向上するため、とくに、加工性があまり良好でない、Ti−6Al−4Vなどのα+β型合金に対して有効である。また、転造圧力も低減して、転造ダイス寿命の点でも好ましい。
【0021】
ここで、ねじ転造加工温度が150℃以下であると、変形抵抗の低下が不十分となり、また、350℃を超える温度域でのねじ転造加工では、ねじ谷底などの加工硬化層が軟化し、圧縮残留応力が緩和され、いずれの場合も、上記の効果が得られない。
【0022】
【発明の実施の形態】
以下に、この発明の実施形態のチタン合金ねじ部品の製造方法を添付の図1および図2を参照して説明する。
【0023】
例えば、強度と靱性のバランスに優れ、熱処理性及び成形性に優れた代表的なα+β型チタン合金であるTi−6Al−4Vについて記せば、まず、所要の長さに切断された前記チタン合金の丸棒が、前記溶体化処理と同程度の900℃から980℃の温度域に加熱され、周知のプレスにより、ボルト頭と所要の軸形状を有するボルト素材が成形される。このボルト素材を、900℃から970℃の温度範囲に20分から70分程度加熱保持した後、水冷することにより、溶体化処理が行われ、次いで480℃から690℃の温度範囲に2〜8時間保持することにより、時効処理が行われる。
【0024】
前記プラズマ浸炭処理に用いる装置(日本電子工業社製)は、加熱炉の炉殻の内周面に取り付けられた断熱材等によって囲まれて処理室が形成され、この処理室がその内部に設けたグラファイトロッドからなる発熱体により加熱される。処理室内の上部断熱材が直流電源の陽極に接続され、被処理物の載置台が前記直流電源の陰極に接続され、両極間に直流電圧を加えてグロー放電を生じさせ、処理室の要所に設けたマニホールドから導入した炭化水素系の浸炭用ガスをイオン化して活性炭素イオンを発生させ、この活性炭素イオンを被処理物の表面に衝突させて浸炭処理を行うにようになっている。また、処理室には、その内部を真空状態にするために、真空ポンプが接続されている。
【0025】
被処理物の時効処理を終えた前記ボルト素材は、まず、有機溶剤または超音波を用いた洗浄処理がなされる。そして、前記処理室の載置台上に置かれたチタン合金素材を、前記発熱体により浸炭処理温度と同等の350℃以上700℃未満の温度域の所定の温度に加熱し、処理室内に導入し、前記グロー放電によりプラズマ化した水素ガスを混合した不活性ガスからなるクリーニング用ガスで、前記素材表面の酸化皮膜を跳ね飛ばすクリーニング処理を行う。
【0026】
なお、前記洗浄処理を溶体化処理の水冷後に行い、時効処理直後に、時効処理時の顕熱を有するボルト素材を、前記処理室に装入するようにすることもできる。また、前記クリーニング処理法として、前述の温度域で、フッ化窒素(NF3)ガスを含む窒素ガスを処理室内に導入し、前記酸化被膜をフッ化膜に置換する方法もある。
【0027】
次いで、前記処理室内に浸炭用ガスとしてのプロパンガスと希釈ガスとしてのクリーニング作用を有する水素ガスとの混合ガスが、処理室内の圧力が10Pa〜2000Paの範囲内の所定の圧力の真空雰囲気になるようにそれぞれ流量調節されて導入され、チタン合金素材が浸炭処理温度を維持できるように、前記発熱体により、この混合ガス、即ち雰囲気ガスが350℃〜700℃の温度範囲の所定の温度に保持される。そして、前記グロー放電によりプロパンガス中の炭素がイオン化されて、活性炭素イオンが発生し、この活性炭素イオンがチタン合金素材の表面に衝突し、拡散してTiと結合し、その表層部に浸炭層、即ちTiCの硬化層が形成される。
【0028】
前記浸炭処理温度が350℃から700℃の低温域にあるために、前記時効処理の温度域と同様の温度レベルにあり、浸炭処理過程で、時効処理により生成した析出物が凝集、粗大化し、引張り強度、剪断強度および疲労強度の低下をもたらすなどの材質劣化をのおそれがなくなる。また、TiCの硬化層の厚みを、摺動特性の改善に必要な程度に、例えば10μm程度と比較的に薄くコントロールしやすくなる。
【0029】
前記プラズマ浸炭処理の終了後、処理室内の浸炭性ガスが排気され、窒素ガスが処理室内に導入されて、チタン合金素材が常温まで冷却され、処理室から取り出される。そして、前記プラズマ浸炭処理装置に隣接して設置した加熱装置で、アルゴンなどの不活性ガスの雰囲気下で前記ボルト素材を150℃〜350℃の温度域に再加熱した後、迅速に、平ダイスまたは丸ダイス転造盤などの周知のねじ転造装置に供給され、前記150℃〜350℃の温度域で、所要のねじ転造加工が行われる。そして冷却過程での割れを防止するため、その後速やかに、不活性ガスを充満させた円筒型容器に投入して緩速冷却を行う。
【0030】
このように、プラズマ浸炭処理後に、ねじ転造加工を行うことにより、ねじ面に沿って材料のマクロ組織が連続して流れ、ねじ面、とくにねじ谷底部が加工硬化し、圧縮応力が残留し、さらに、このような塑性変形によってプラズマ浸炭処理によって生じた肌荒れが平滑化されるなどの転造効果が得られる。
【0031】
プラズマ浸炭処理後にねじ転造加工を行うため、前記のねじ面、とくにねじ谷底部に生じた加工硬化層が軟化せず、また、圧縮応力が緩和されずに残留する。前記加工硬化層は強度の上昇をもたす。そして、前記圧縮残留応力は、負荷時の表層部の引張り応力成分を小さくし、または打ち消し、また、ねじ成形されたチタン合金ねじ部品表面の平滑化により応力集中が緩和されることと相まって、表面の凹凸および表層部のα相とβ相の界面に析出した水素化物を起点とする亀裂が発生するまでの潜伏期間が長くなり、その発生が遅延する。これらによって、前記の肌荒れおよび水素脆性による疲労強度の低下を改善でき、所要の疲労強度を有するチタン合金ねじ部品を実現することができる。
【0032】
そして、チタン合金ねじ部品の表層部のTiCの硬化層による耐摩耗性および摺動性の向上により、圧力が作用した状態で繰り返し応力を受ける場合の疲労特性、即ちフレッティング疲労特性の向上も期待される。
【0033】
【実施例】
所要の長さに切断した直径約8mmのチタン合金Ti−6Al−4Vの丸棒を、950℃に加熱し、周知のプレスを用いて、所定の軸形状とボルト頭とを有するボルト素材を成形した後、STA処理、即ち同じ950℃に1時間保持後、水冷して溶体化処理を行ない、次いで、540℃に8時間保持して時効処理を行った。このボルト素材の軸部を、研削により所要の寸法に仕上げた後、アセトン中で超音波洗浄した後、前記プラズマ浸炭装置の処理室内で浸炭処理温度と同等の630℃にまで加熱し、水素ガスを混合した窒素ガスを用いて、前述のクリーニング処理を行った。
【0034】
そして、浸炭用ガスとしてのプロパンガス(流量0.02L/min)と希釈ガスとしての水素ガス(流量0.1L/min)の混合ガスからなる雰囲気ガスを前記処理室に導入し、この雰囲気ガス温度、即ち浸炭処理温度が約630℃、同ガス圧力が約30Pa、処理時間が約40分の条件で、プラズマ浸炭処理を行った。浸炭処理終了後、迅速に雰囲気ガスを排気し、処理室に窒素ガスを導入してボルト素材を常温まで強制冷却した。その後、前記ボルト素材を300℃に再加熱し、迅速に、周知の平ダイス転造装置に供給し、ねじ転造加工を行い、5/16インチのボルトを作製した。
【0035】
このような処理を実施した前記ボルトを供試材として引張り疲労試験を実施した。この疲労試験には、デジタル油圧サーボ式疲労試験機(島津製作所製)を用い、実部品に要求される疲労強度に基づいて応力条件を設定し、最大応力530MPa、最小応力53MPa、応力比0.1、応力振幅約240MPa、繰返し速度10Hzで実施した。
【0036】
一方、比較のため、前記ボルト素材をSTA処理した後、ねじ転造加工を行い、その後、上記と同じ処理条件でプラズマ浸炭処理を行ったボルト素材についても、上記と同じ試験条件で引張り疲労試験を実施した。
【0037】
これらの各ボルト素材について、破断に至るまでの繰返し数を表1に、破断面のSEM写真を図1(a)(工程A:STA処理+プラズマ浸炭処理+ねじ転造加工)、および(b)(工程B:STA処理+ねじ転造加工+プラズマ浸炭処理)に示す。
【0038】
【表1】
【0039】
表1に示したように、工程Bの「STA処理+ねじ転造加工+プラズマ浸炭処理」の場合には、繰返し数が約7.1×103で破断したが、実施形態の工程Aの「STA処理+プラズマ浸炭処理+ねじ転造加工」の場合には、破断に至るまでの繰返し数は2.1×105にまで増加した。
【0040】
図1(a)および(b)に示したように、工程A、工程Bのいずれの場合も、破断は、切欠き効果の大きいねじの導入部、即ち不完全ねじ部で生じている。
【0041】
工程Bでは、ねじ転造加工の後にプラズマ浸炭処理を行うため、前述のようにボルト表面が肌荒れして、亀裂の起点となる結晶粒のずれをもたらし、また、プラズマ浸炭処理時の加熱により、ねじ転造加工により生じたボルト表面の加工硬化層が軟化し、圧縮残留応力が緩和されるため、前記不完全ねじ部の表面から内部へ向かって小さな亀裂を生じ、この亀裂が疲労破壊の起点となって早期に破断したと考えられる。
【0042】
一方、実施形態の工程Aでは、工程Bの場合に発生した不完全ねじ部表面の明瞭な亀裂は認められない。これは、プラズマ浸炭処理後にねじ転造加工を行うことにより、前述のように、ボルト表面に加工硬化層および圧縮残留応力が存在し、しかも転造圧力による塑性変形により、肌荒れが平滑化されるため、疲労破壊の起点発生が抑制された結果、表1に示したように、破断に至るまでの繰返し数が増加し、疲労強度が改善されたものと考えられる。
【0043】
なお、前述のプラズマ浸炭処理を施した後にねじ転造加工を行うねじ部品の製造方法は、前記のTi−6Al−4Vに代表されるα+β型チタン合金のほかに、Ti−15V−3Cr−3Al−3Snなどのβ型チタン合金、Ti−4.5Al−3V−2Mo−2Feなどの準α+β型チタン合金のいずれにも適用することができる。
【0044】
また、前記チタン合金ねじ部品は、航空機用のみならず、コンロッドなどの自動車のエンジン周りの部品の締結など、前述のチタン合金の特徴を活かした各種の使用形態をとることができる。
【0045】
【発明の効果】
以上のように、この発明によれば、溶体化処理および時効処理後のチタン合金にプラズマ浸炭処理を施し、このプラズマ浸炭処理後に、ねじ転造加工を行うようにしたので、ねじ面、とくに疲労破壊が発生しやすいねじ谷底部の加工硬化層が軟化せず、また、圧縮応力が緩和されずに残留するなど、転造効果が維持される。さらに、転造圧力による塑性変形により、プラズマ浸炭処理による肌荒れが平滑化される。これらにより、プラズマ浸炭処理による肌荒れや侵入した水素に起因する亀裂の発生を遅延させることができ、疲労強度が改善される。それにより、チタン合金ねじ部品の表層部に形成されたTiCの硬化層の本来の特性が発揮でき、前述の耐摩耗性及び摺動性が向上し、航空機等に適用される部品としての要求特性を満足することができる。
【図面の簡単な説明】
【図1】(a)実施形態の製造方法を用いたチタン合金ボルトの疲労試験後の破断面を示す写真
(b)同上の一部拡大写真
【図2】(a)比較材のチタン合金ボルトの疲労試験後の破断面を示す写真
(b)同上の一部拡大写真[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing method for improving fatigue characteristics of a titanium alloy screw part subjected to plasma carburizing treatment and a titanium alloy screw part using the same.
[0002]
[Prior art]
Titanium alloys have important properties as aircraft materials due to their excellent specific strength, fracture toughness, heat resistance and corrosion resistance, etc. With increasing size and the like, it has come to be used for primary structural members such as outer plates, frames, coupling metal fittings and fasteners, and titanium alloys having higher strength than pure titanium are mainly used. In addition, titanium alloys can be used practically in the marine field, the power generation field, the automobile field, etc., taking advantage of the balance between the good corrosion resistance and the specific strength.
[0003]
For example, fasteners such as bolts and nuts are used under severe conditions that are subject to repeated stress including thermal stress, and the difference in contact potential with carbon fiber of carbon fiber reinforced plastic is small, causing corrosion. For example, it may be used for fastening the carbon fiber reinforced plastic laminated material used for an aircraft tail and the like.
[0004]
Each of the fasteners is required to have characteristics such as required wear resistance as a threaded part and good slidability for ensuring a tightening force necessary for design. However, a titanium alloy has a problem of seizure because it has a large friction coefficient in a non-lubricated state. Generally, by using a lubricant such as lubricating oil, graphite, molybdenum disulfide, etc., the friction coefficient can be lowered, but it cannot withstand long-term use. In addition, if a resin coating in which metal powder such as aluminum powder is mixed with phenol resin is used, the durability is improved. However, since there is no electrical conductivity, if there is a lightning strike during flight, the screw parts There is a risk that a high voltage is applied for a very short time, the air gap between the plastic laminate and the screw part swells, causes a small explosion, and the material to be fastened is damaged and falls. As a countermeasure, a method of providing conductivity by covering the screw part with a metal foil or grounding is taken, but this requires a great deal of cost.
[0005]
Therefore, in order to ensure durable seizure prevention and to ensure safety even in the event of a lightning strike, the surface of the titanium alloy is improved in wear resistance and slidability, and conductive It is necessary to perform some surface hardening treatment.
[0006]
As the surface hardening treatment, a method of performing plasma carburization treatment is known. In this plasma carburizing process, in a vacuum atmosphere, for example, the upper heat insulating material in the processing chamber is connected to the anode of the DC power source, the mounting table for the object to be processed is connected to the cathode of the DC power source, and a DC voltage is applied between both electrodes. In addition, glow discharge is generated, and a mixed gas of hydrogen gas and an inert gas such as argon or nitrogen is first introduced from a manifold provided at a key point of the processing chamber, and ionized hydrogen, argon or nitrogen is coated with metal. The surface is made to collide with the surface of the object to be processed and removed by removing deposits such as oxide film. Next, a mixed gas of a hydrocarbon-based carburizing gas such as methane or propane and a dilution gas is introduced, and activated carbon ions are generated by the glow discharge, and the activated carbon ions are used for a metal workpiece such as titanium metal. When it collides with the surface and adheres and diffuses inside, or when accelerated activated carbon ions collide with the surface of the metal treatment object, it is directly injected into the inside and bonded to a metal atom such as Ti. In this process, a hardened layer of a metal carbide such as TiC is formed on the surface portion.
[0007]
[Problems to be solved by the invention]
However, in the plasma carburizing process, activated carbon ions accelerated during the carburizing process collide with the surface of the titanium alloy, and in the pretreatment cleaning process, the ionized nitrogen and hydrogen deposit deposits such as oxide films. The surface roughness of the titanium alloy becomes larger than that before the plasma carburizing treatment due to collision with the surface when splashing and the like, resulting in rough skin. Such rough surface, that is, unevenness on the surface, causes a shift of crystal grains, and this portion becomes a source of stress concentration, so that cracks are likely to occur, and in particular, titanium alloys sensitive to notch effects such as cracks. It causes a decrease in fatigue strength.
[0008]
In addition, since hydrogen, which is a composition of the carburizing gas, is also ionized and exists in the atmosphere, hydrogen is likely to enter the workpiece, particularly the surface layer portion, compared to the case where the carburizing treatment is not performed. For this reason, the carburized product tends to cause so-called hydrogen embrittlement such as a decrease in toughness and fatigue failure with a load lower than the tensile strength.
[0009]
These are fatal drawbacks for titanium alloy parts used in other industrial fields such as the marine field and power generation field as well as aircraft parts that require safety even under severe use conditions as described above.
[0010]
Accordingly, an object of the present invention is to provide a manufacturing method for improving a decrease in fatigue strength due to rough skin of a titanium alloy screw component subjected to plasma carburizing treatment or hydrogen penetration, and a titanium alloy screw component manufactured by this method. It is.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention, in manufacturing titanium alloy screw parts, the titanium alloy material is subjected to plasma carburizing treatment after solution treatment and aging treatment, and then screw rolling processing is performed. It is.
[0012]
Thus, by performing the thread rolling process after the plasma carburizing process, the thread provided on the rolling die surface bites into the titanium alloy material to form a valley, and the displaced material flows and the die The surface threads are filled to form threads, and the macrostructure of the material flows continuously along the thread surface. In addition, the surface layer, especially the thread valley bottom where fatigue failure is likely to occur, is work hardened, compressive stress remains, and the rough surface caused by the plasma carburizing process is smoothed by such plastic deformation, etc. A rolling effect is obtained. Since the thread rolling process is a finishing process, the rolling effect remains in the threaded part.
[0013]
The continuous flow of the macrostructure along the threaded surface and the work hardening of the surface layer result in an increase in strength. The compressive residual stress reduces or cancels the tensile stress component of the surface layer portion during loading, and is coupled with the fact that the stress concentration is relaxed by the smoothing of the titanium alloy surface. The incubation period until crack initiation starting from the hydride deposited at the interface between the α phase and β phase becomes longer, and the crack initiation is delayed. These improve the reduction in fatigue strength due to the rough skin and hydrogen embrittlement.
[0014]
It is desirable that the temperature of the atmospheric gas for the plasma carburizing process is in the range of 350 ° C. to 700 ° C. and the pressure is in the range of 10 to 2000 Pa.
[0015]
In a high temperature range where the ambient gas temperature containing the carburizing gas for plasma carburizing treatment exceeds 700 ° C, the precipitates produced by the aging treatment may aggregate and coarsen, which may cause deterioration of the material, such as the strength of titanium alloy parts being reduced. There is. In addition, in the low temperature range where the ambient gas temperature is lower than 350 ° C., it becomes difficult for the activated carbon ions that collide with the surface of the titanium alloy part to be processed to diffuse into the part, and the surface of the part is Thus, it becomes difficult to form a desired carburized layer, that is, a hardened layer of TiC, on the surface layer portion.
[0016]
When the pressure of the atmospheric gas exceeds 2000 Pa, the concentration of activated carbon ions in the atmospheric gas becomes high, the amount of invading carbon in the surface layer portion of the titanium alloy part becomes saturated, and activated carbon on the surface of the product is further exceeded. Even if ions collide, they do not diffuse inside, and soot is generated on the surface of the part.
[0017]
In addition, when the pressure of the atmospheric gas is less than 10 Pa, the concentration of the activated carbon ions in the atmospheric gas is low, the amount of invading carbon in the surface layer portion of the titanium alloy part is too small, and the desired hardened TiC layer Cannot be formed, and the wear resistance and slidability cannot be sufficiently improved.
[0018]
In the plasma carburizing process in such a low temperature range, since the carburizing rate is relatively slow, the carburized layer, that is, the hardened layer of TiC, can be formed relatively thin to the extent necessary for improving the sliding characteristics. Even after carburizing treatment, thread rolling can be performed without any problem. In particular, a β-type alloy having good workability can be thread-rolled without causing surface defects such as cracks even when cold.
[0019]
The rolling process can be performed in a temperature range of 150 ° C to 350 ° C.
[0020]
Thus, after the plasma carburizing process, if the thread rolling process of the titanium alloy is performed in the warm region, that is, in a state where the deformation resistance is lowered, the deformation stress is reduced and the workability is substantially improved. It is effective for an α + β type alloy such as Ti-6Al-4V, which is not very good in workability. Further, the rolling pressure is also reduced, which is preferable in terms of the rolling die life.
[0021]
Here, when the thread rolling processing temperature is 150 ° C. or lower, the deformation resistance is not sufficiently lowered, and in the thread rolling processing in the temperature range exceeding 350 ° C., the work hardening layer such as the thread valley bottom is softened. However, the compressive residual stress is relieved, and in any case, the above effect cannot be obtained.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Below, the manufacturing method of the titanium alloy screw component of embodiment of this invention is demonstrated with reference to attached FIG. 1 and FIG.
[0023]
For example, to describe Ti-6Al-4V, which is a typical α + β type titanium alloy having an excellent balance between strength and toughness and excellent in heat treatment and formability, first, the titanium alloy cut to a required length is described. A round bar is heated to a temperature range of 900 ° C. to 980 ° C., which is the same as that in the solution treatment, and a bolt material having a bolt head and a required shaft shape is formed by a known press. The bolt material is heated and held in a temperature range of 900 ° C. to 970 ° C. for about 20 minutes to 70 minutes, and then cooled with water to perform solution treatment, and then in a temperature range of 480 ° C. to 690 ° C. for 2 to 8 hours. An aging process is performed by holding.
[0024]
An apparatus (manufactured by JEOL Ltd.) used for the plasma carburizing process is surrounded by a heat insulating material attached to the inner peripheral surface of the furnace shell of the heating furnace, and a processing chamber is formed therein. Heated by a heating element made of graphite rod. The upper heat insulating material in the processing chamber is connected to the anode of the DC power source, the stage for placing the object to be processed is connected to the cathode of the DC power source, and a direct current voltage is applied between the two electrodes to cause glow discharge. An activated carbon ion is generated by ionizing a hydrocarbon-based carburizing gas introduced from a manifold provided in the cylinder, and the activated carbon ion is collided with the surface of an object to be processed to perform a carburizing process. In addition, a vacuum pump is connected to the processing chamber in order to make the inside of the processing chamber into a vacuum state.
[0025]
The bolt material that has been subjected to the aging treatment of the workpiece is first subjected to a cleaning treatment using an organic solvent or ultrasonic waves. Then, the titanium alloy material placed on the mounting table in the processing chamber is heated to a predetermined temperature in a temperature range of 350 ° C. or higher and lower than 700 ° C. equivalent to the carburizing temperature by the heating element, and is introduced into the processing chamber. Then, a cleaning process is performed in which the oxide film on the surface of the material is splashed off with a cleaning gas composed of an inert gas mixed with hydrogen gas that has been plasmatized by the glow discharge.
[0026]
In addition, the said washing | cleaning process can be performed after the water cooling of a solution treatment, and the bolt raw material which has the sensible heat at the time of an aging treatment can be inserted into the said process chamber immediately after an aging treatment. Further, as the cleaning treatment method, there is a method in which nitrogen gas containing nitrogen fluoride (NF 3 ) gas is introduced into a treatment chamber in the above temperature range, and the oxide film is replaced with a fluoride film.
[0027]
Next, a mixed gas of propane gas as a carburizing gas and hydrogen gas having a cleaning action as a dilution gas in the processing chamber becomes a vacuum atmosphere at a predetermined pressure within a range of 10 Pa to 2000 Pa in the processing chamber. In order to maintain the carburizing temperature of the titanium alloy material, the mixed gas, that is, the atmospheric gas is maintained at a predetermined temperature in the temperature range of 350 ° C. to 700 ° C. so that the titanium alloy material can maintain the carburizing temperature. Is done. Then, carbon in the propane gas is ionized by the glow discharge, and activated carbon ions are generated. The activated carbon ions collide with the surface of the titanium alloy material, diffuse and bond with Ti, and carburize the surface layer portion. A layer, ie a hardened layer of TiC, is formed.
[0028]
Since the carburizing temperature is in the low temperature range of 350 ° C. to 700 ° C., the temperature level is the same as the temperature range of the aging treatment, and in the carburizing treatment process, precipitates generated by the aging treatment are aggregated and coarsened. There is no risk of material deterioration such as lowering of tensile strength, shear strength and fatigue strength. Further, the thickness of the TiC hardened layer can be controlled to be relatively thin, for example, about 10 μm, as much as necessary for improving the sliding characteristics.
[0029]
After completion of the plasma carburizing process, the carburizing gas in the processing chamber is exhausted, nitrogen gas is introduced into the processing chamber, and the titanium alloy material is cooled to room temperature and taken out from the processing chamber. Then, in the heating device installed adjacent to the plasma carburizing apparatus, the bolt material is reheated to a temperature range of 150 ° C. to 350 ° C. in an inert gas atmosphere such as argon, Or it supplies to well-known screw rolling apparatuses, such as a round die rolling machine, and a required screw rolling process is performed in the said 150 to 350 degreeC temperature range. And in order to prevent the crack in a cooling process, it puts into the cylindrical container filled with the inert gas immediately after that, and performs slow cooling.
[0030]
Thus, by performing thread rolling after the plasma carburizing treatment, the macro structure of the material flows continuously along the thread surface, and the thread surface, particularly the bottom of the thread valley, is work hardened and compressive stress remains. Furthermore, a rolling effect such as smoothing of the rough skin caused by the plasma carburizing process by such plastic deformation can be obtained.
[0031]
Since the thread rolling process is performed after the plasma carburizing process, the work hardened layer generated on the thread surface, particularly the bottom of the thread valley, is not softened, and the compressive stress remains without being relaxed. The work hardened layer has an increase in strength. And, the compressive residual stress is combined with the fact that the tensile stress component of the surface layer portion under load is reduced or canceled, and the stress concentration is relaxed by smoothing the surface of the threaded titanium alloy screw component, The latent period until a crack starting from a hydride deposited at the interface between the [alpha] phase and the [beta] phase in the surface layer portion becomes longer, and the generation thereof is delayed. By these, the fall of the fatigue strength by the said rough skin and hydrogen embrittlement can be improved, and the titanium alloy screw component which has required fatigue strength can be implement | achieved.
[0032]
And, by improving wear resistance and slidability due to the TiC hardened layer on the surface layer of titanium alloy screw parts, it is also expected to improve fatigue characteristics when subjected to repeated stress under pressure, that is, fretting fatigue characteristics Is done.
[0033]
【Example】
A round rod of titanium alloy Ti-6Al-4V with a diameter of about 8 mm cut to the required length is heated to 950 ° C., and a bolt material having a predetermined shaft shape and bolt head is formed using a known press. Then, after STA treatment, that is, holding at the same 950 ° C. for 1 hour, the solution was cooled with water to perform solution treatment, and then kept at 540 ° C. for 8 hours for aging treatment. The shaft portion of this bolt material is finished to the required dimensions by grinding, then ultrasonically cleaned in acetone, and then heated to 630 ° C., which is equivalent to the carburizing temperature in the processing chamber of the plasma carburizing device, The above-described cleaning process was performed using a nitrogen gas mixed with.
[0034]
Then, an atmospheric gas composed of a mixed gas of propane gas (flow rate 0.02 L / min) as a carburizing gas and hydrogen gas (flow rate 0.1 L / min) as a dilution gas is introduced into the processing chamber, and this atmospheric gas Plasma carburizing treatment was performed under the conditions of the temperature, that is, the carburizing treatment temperature of about 630 ° C., the same gas pressure of about 30 Pa, and the treatment time of about 40 minutes. After completion of the carburizing process, the atmosphere gas was quickly exhausted, nitrogen gas was introduced into the processing chamber, and the bolt material was forcibly cooled to room temperature. Thereafter, the bolt material was reheated to 300 ° C., and promptly supplied to a well-known flat die rolling device to perform thread rolling to produce a 5/16 inch bolt.
[0035]
A tensile fatigue test was carried out using the bolt subjected to such treatment as a test material. In this fatigue test, a digital hydraulic servo fatigue tester (manufactured by Shimadzu Corporation) is used, stress conditions are set based on the fatigue strength required for the actual part, and the maximum stress is 530 MPa, the minimum stress is 53 MPa, the stress ratio is 0. 1. Conducted at a stress amplitude of about 240 MPa and a repetition rate of 10 Hz.
[0036]
On the other hand, for comparison, the bolt material is subjected to the STA treatment, and then the thread rolling process is performed, and then the bolt material subjected to the plasma carburizing treatment under the same processing conditions as described above is also subjected to the tensile fatigue test under the same test conditions as described above. Carried out.
[0037]
For each of these bolt materials, the number of repetitions until breakage is shown in Table 1, and an SEM photograph of the fracture surface is shown in FIG. 1A (step A: STA treatment + plasma carburizing treatment + screw rolling), and (b ) (Process B: STA treatment + screw rolling process + plasma carburization treatment).
[0038]
[Table 1]
[0039]
As shown in Table 1, in the case of “STA treatment + screw rolling process + plasma carburization treatment” in the process B, the fracture occurred at a repetition number of about 7.1 × 10 3 . In the case of “STA treatment + plasma carburization treatment + screw rolling process”, the number of repetitions up to fracture increased to 2.1 × 10 5 .
[0040]
As shown in FIGS. 1 (a) and 1 (b), in both the process A and the process B, the breakage occurs at a screw introduction portion having a large notch effect, that is, an incomplete screw portion.
[0041]
In the process B, since the plasma carburizing process is performed after the thread rolling process, the bolt surface is rough as described above, causing a shift of crystal grains as a starting point of the crack, and by heating during the plasma carburizing process, The work hardening layer on the bolt surface generated by the thread rolling process is softened and the compressive residual stress is relieved, resulting in a small crack from the surface of the incomplete thread part to the inside, and this crack is the starting point of fatigue failure. It is thought that it broke early.
[0042]
On the other hand, in the process A of the embodiment, a clear crack on the surface of the incomplete thread portion generated in the process B is not recognized. This is because, by performing thread rolling after the plasma carburizing treatment, as described above, there is a work hardened layer and a compressive residual stress on the bolt surface, and the rough surface is smoothed by plastic deformation due to the rolling pressure. Therefore, as a result of suppressing the occurrence of the starting point of fatigue fracture, as shown in Table 1, it is considered that the number of repetitions until the fracture is increased and the fatigue strength is improved.
[0043]
In addition, in addition to the α + β type titanium alloy represented by Ti-6Al-4V, Ti-15V-3Cr-3Al is manufactured as a screw part manufacturing method in which the thread rolling process is performed after the plasma carburizing process is performed. It can be applied to both β-type titanium alloys such as −3Sn and quasi-α + β-type titanium alloys such as Ti-4.5Al-3V-2Mo-2Fe.
[0044]
The titanium alloy threaded parts can be used not only for aircraft but also in various usage forms that take advantage of the characteristics of the titanium alloy, such as fastening parts around automobile engines such as connecting rods.
[0045]
【The invention's effect】
As described above, according to the present invention, the plasma carburizing treatment is performed on the titanium alloy after the solution treatment and the aging treatment, and the thread rolling process is performed after the plasma carburizing treatment. The work-hardening layer at the bottom of the thread valley where breakage is likely to occur is not softened, and the rolling effect is maintained such that the compressive stress remains without relaxation. Furthermore, the rough surface caused by the plasma carburizing process is smoothed by plastic deformation caused by the rolling pressure. As a result, it is possible to delay the occurrence of cracks due to rough skin and invaded hydrogen due to the plasma carburizing treatment, and the fatigue strength is improved. As a result, the original characteristics of the hardened layer of TiC formed on the surface layer portion of the titanium alloy screw part can be exhibited, the above-mentioned wear resistance and slidability are improved, and the required characteristics as a part applied to an aircraft etc. Can be satisfied.
[Brief description of the drawings]
1A is a photograph showing a fracture surface after a fatigue test of a titanium alloy bolt using the manufacturing method of the embodiment. FIG. 1B is a partially enlarged photograph of the same. FIG. 2A is a comparative titanium alloy bolt. (B) Partial enlarged photo of the above showing the fracture surface after fatigue testing
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001356737A JP4216497B2 (en) | 2001-10-17 | 2001-10-17 | Titanium alloy screw part manufacturing method and titanium alloy screw part using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001356737A JP4216497B2 (en) | 2001-10-17 | 2001-10-17 | Titanium alloy screw part manufacturing method and titanium alloy screw part using the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006175320A Division JP4189413B2 (en) | 2006-06-26 | 2006-06-26 | Titanium alloy screw parts using the method of manufacturing titanium alloy screw parts |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003129215A JP2003129215A (en) | 2003-05-08 |
JP4216497B2 true JP4216497B2 (en) | 2009-01-28 |
Family
ID=19168204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001356737A Expired - Lifetime JP4216497B2 (en) | 2001-10-17 | 2001-10-17 | Titanium alloy screw part manufacturing method and titanium alloy screw part using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4216497B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060124203A1 (en) * | 2003-07-04 | 2006-06-15 | Nachi-Fujikoshi Corp | Method of continuous vacuum carburization of metal wire, metal band or metal pipe and apparatus therefor |
EP1642995A4 (en) * | 2003-07-04 | 2008-12-24 | Nachi Fujikoshi Corp | Method of continuous vacuum carburization of metal wire, metal band or metal pipe and apparatus therefor |
JP5073488B2 (en) * | 2005-03-31 | 2012-11-14 | Thk株式会社 | Motion guide device using austenitic metal and method for manufacturing the same |
DE102005052918A1 (en) * | 2005-11-03 | 2007-05-16 | Hempel Robert P | Cold-formable Ti alloy |
JP5657940B2 (en) * | 2010-07-29 | 2015-01-21 | 株式会社田中 | Titanium metal wear-resistant parts |
CN114507833B (en) * | 2022-03-10 | 2022-09-27 | 贵州大学 | TB8 titanium alloy bar with gradient layer alpha-phase structure and preparation method thereof |
CN116219339A (en) * | 2022-12-21 | 2023-06-06 | 陕西铁路物流集团有限公司 | Method for forming low-temperature shear deformation layer on surface of TC4 titanium alloy workpiece |
-
2001
- 2001-10-17 JP JP2001356737A patent/JP4216497B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003129215A (en) | 2003-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Oskouei et al. | The effect of a heat treatment on improving the fatigue properties of aluminium alloy 7075-T6 coated with TiN by PVD | |
JP4216497B2 (en) | Titanium alloy screw part manufacturing method and titanium alloy screw part using the same | |
US8297094B2 (en) | Article for improved adhesion of fatigue-prone components | |
JP4189413B2 (en) | Titanium alloy screw parts using the method of manufacturing titanium alloy screw parts | |
JP5657940B2 (en) | Titanium metal wear-resistant parts | |
Zammit et al. | Investigations on the adhesion and fatigue characteristics of hybrid surface-treated titanium alloy | |
JP2022023231A (en) | High corrosion resistance plating method | |
JP4603198B2 (en) | Method for improving fatigue characteristics of titanium alloy parts and titanium alloy parts using the same | |
Jiang et al. | Microstructure and mechanical properties of multilayered Cu/Ti composites fabricated by accumulative roll bonding | |
JP4970971B2 (en) | Fastener manufacturing method | |
JP5664950B2 (en) | Rolled titanium alloy screw | |
EP0801142A2 (en) | Treatment method of a metallic substrate, metallic substrate thereby obtained and his applications | |
JP5001672B2 (en) | Fastener and manufacturing method thereof | |
Yanfeng et al. | Effect of substrate pre-carburizing on properties of TiN (Ti) hard coatings deposited on Ti-6Al-4V alloy | |
Gao et al. | Overview of Surface Modification Techniques for Titanium Alloys in Modern Material Science: A Comprehensive Analysis. Coatings 2024, 14, 148 | |
Kumar et al. | Overview of hydrogen embrittlement in fasteners | |
JP4441128B2 (en) | Baking process for titanium alloy | |
JP2003041359A (en) | Method for improving fatigue property of titanium alloy component, and titanium alloy component using the same | |
CN109396777A (en) | A method of for preventing pressure vessels for the chemical industry nozzle erosion from cracking | |
Huang et al. | On the role of thermal exposure on the stress controlled fatigue behaviour of an intermediate strength γ-TiAl based alloy | |
JP2975599B1 (en) | Heat-resistant steel screw parts for aircraft | |
JP4663154B2 (en) | Pure titanium baking process | |
JP2022137697A (en) | High-strength bolt | |
JP2002275617A (en) | Corrosion resistant coating material and method for manufacturing the same | |
Panagopoulos et al. | Bending behavior of nickel-coated aluminum alloy 6156-T61 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040701 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050701 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060117 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060320 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060425 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060626 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060718 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20060811 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080819 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081106 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4216497 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111114 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111114 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121114 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131114 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |