JP2002275577A - Steel tube having excellent workability and production method therefor - Google Patents

Steel tube having excellent workability and production method therefor

Info

Publication number
JP2002275577A
JP2002275577A JP2001073348A JP2001073348A JP2002275577A JP 2002275577 A JP2002275577 A JP 2002275577A JP 2001073348 A JP2001073348 A JP 2001073348A JP 2001073348 A JP2001073348 A JP 2001073348A JP 2002275577 A JP2002275577 A JP 2002275577A
Authority
JP
Japan
Prior art keywords
steel pipe
workability
steel tube
less
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001073348A
Other languages
Japanese (ja)
Inventor
Shinya Sakamoto
真也 坂本
Yoshio Terada
好男 寺田
Koji Sakuma
康治 佐久間
Kosaku Shioda
浩作 潮田
Naoki Yoshinaga
直樹 吉永
Nobuhiro Fujita
展弘 藤田
Atsushi Itami
淳 伊丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001073348A priority Critical patent/JP2002275577A/en
Publication of JP2002275577A publication Critical patent/JP2002275577A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a steel tube which has better formability since the request for a steel tube having high strength to hydroforming increases, and its workability is made into a more serious problem compared with the conventional case, and to provide a production method therefor without spending a high cost. SOLUTION: The steel tube having excellent workability has a composition containing, by mass, 0.08 to 0.25% C, 0.001 to 1.5% Si, 0.01 to 2.0% Mn, 0.001 to 0.06% P, 0.008 to 0.2% Al and 0.001 to 0.007% N, and in which the content of S is controlled to <=0.05%, and the rest iron and inevitable impurities. The steel tube has the average crystal grain size of >=5 μm, and has an r* value of >=1.2: r*=ln (C0 /C)÷ln (C×L/C0 ×L0 ); wherein, C0 and C are the other circumference (mm) of the steel tube before and after testing, and L0 and L are the distance (mm) between the gauges in the longitudinal direction at each circumferential position of the steel tube before and after testing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば自動車のパ
ネル類、足廻り、メンバ−などに用いられる鋼管および
その製造方法に関するものである。特にハイドロフォ−
ム加工(特開平10-175027 号公報参照)の用途に好適で
ある。本発明の鋼板は、表面処理をしないものと、防錆
のために溶融亜鉛めっき、電気めっきなどの表面処理を
施したものの両方を含む。亜鉛めっきとは、純亜鉛のほ
か、主成分が亜鉛である合金のめっきも含む。本発明に
よる鋼管は、特に軸押し力の働くハイドロフォ−ム加工
性に極めて優れており、ハイドロフォ−ム加工時の自動
車用部品の製造効率を向上させる事ができる。さらに、
本発明は高強度鋼管にも適用できるため部品の板厚を低
減させることが可能となり、地球環境保全に寄与できる
ものと考えられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel pipe used for, for example, automobile panels, suspensions, members, and the like, and a method of manufacturing the same. Especially hydropho
This method is suitable for use in the memory processing (see JP-A-10-175027). The steel sheet of the present invention includes both a steel sheet not subjected to a surface treatment and a steel sheet subjected to a surface treatment such as galvanizing and electroplating for rust prevention. Zinc plating includes plating of an alloy whose main component is zinc, in addition to pure zinc. INDUSTRIAL APPLICABILITY The steel pipe according to the present invention is particularly excellent in hydroformability in which an axial pressing force acts, and can improve the production efficiency of automotive parts during hydroform processing. further,
Since the present invention can be applied to high-strength steel pipes, the thickness of parts can be reduced, and it is considered that the present invention can contribute to global environmental protection.

【0002】[0002]

【従来の技術】自動車の軽量化ニ−ズに伴い、鋼板の高
強度化が望まれている。高強度化することで板厚減少に
よる軽量化や衝突時の安全性向上が可能となる。また、
最近では、複雑な形状の部位について、高強度鋼の鋼管
からハイドロフォ−ム法を用いて加工する試みが行われ
ている。これは、自動車の軽量化や低コスト化のニ−ズ
に伴い、部品数の減少や溶接フランジ箇所の削減などを
狙ったものである。このように、ハイドロフォ−ムなど
の新しい加工方法が実際に採用されれば、コストの削減
や設計の自由度が拡大されるなどの大きなメリットが期
待される。このようなハイドロフォ−ム加工のメリット
を充分に生かすためには、これらの新しい加工法に適し
た材料が必要となる。本発明者らは特願2000-52574号に
は集合組織を制御した加工性に優れた鋼管について出願
している。しかしながらこのような鋼管を高温加工によ
って仕上げた鋼管には固溶Cや固溶Nが多量に存在する
場合が多く、ハイドロフォ−ム加工時の割れの原因とな
ったり、ストレッチャ−ストレイン等の表面欠陥を誘発
する場合がある。さらに、鋼板を管状に巻いたのちに高
温で加工熱処理を加えることは生産性が悪く、地球環境
に負荷をかけたり、コストアップになるという問題点も
有する。
2. Description of the Related Art With the need for lighter automobiles, higher strength of steel sheets is desired. By increasing the strength, it is possible to reduce the weight by reducing the plate thickness and to improve the safety in the event of a collision. Also,
Recently, an attempt has been made to machine a part having a complicated shape from a high-strength steel pipe by using a hydroform method. This is intended to reduce the number of parts and the number of welding flanges in accordance with the need for weight reduction and cost reduction of automobiles. As described above, if a new processing method such as a hydroform is actually adopted, great merits such as reduction in cost and expansion of design freedom are expected. In order to make full use of the merits of such hydroforming, materials suitable for these new processing methods are required. The present inventors filed an application in Japanese Patent Application No. 2000-52574 for a steel pipe having a controlled texture and excellent workability. However, a steel pipe obtained by finishing such a steel pipe by high-temperature processing often contains a large amount of solid solution C and solid solution N, which may cause cracking during hydroform processing, and may cause surface damage such as stretcher strain. May induce defects. Further, applying a thermomechanical treatment at a high temperature after winding a steel sheet into a tube has a problem in that productivity is poor, which imposes a burden on the global environment and increases costs.

【0003】[0003]

【発明が解決しようとする課題】地球環境問題がますま
す深刻となる中、ハイドロフォ−ム加工に対してこれま
で以上に高強度の鋼管への要求が高まることは必至と考
えられるが、その際に加工性が従来以上に問題となって
くることは間違いない。本発明はより一層成形性の良好
な鋼管およびそれを高いコストをかけることなく製造す
る方法を提供するものである。
As the global environmental problem becomes more and more serious, it is considered inevitable that the demand for higher strength steel pipes for hydroforming is inevitable. There is no doubt that workability will be more problematic than before. The present invention provides a steel pipe having better formability and a method for manufacturing the same without increasing costs.

【0004】[0004]

【課題を解決するための手段】即ち、本発明の要旨とす
るところは以下のとおりである。 (1)質量%で、C:0.08〜0.25%、Si:0.
001〜1.5%、Mn:0.01〜2.0%、P:0.0
01〜0.06%、Al:0.008〜0.2%、N:0.
001〜0.007%を含有し、S:0.05%以下であ
り、残部が鉄および不可避不純物からなり、平均結晶粒
径が5μm以上を有し、次式に示すr*値が1.2以上で
あることを特徴とする加工性に優れた鋼管。 r*=ln(C0/C)÷ln(C×L/C0×L0) C0、C:試験前後の鋼管の外周(mm) L0、L:試験前後の鋼管の各円周位置の長手方向の評
点間距離(mm) (2)さらに質量%で、Cr:0.05〜10%、N
i:0.05〜20%、Cu:0.05〜20%、M
o:0.05〜1.0%、Co:0.05〜1.0%、W:
0.05〜1.0%、Sn:0.05〜1.0%、Zr:
0.0001〜0.5%、Mg:0.0001〜0.5%、
Ti:0.001〜0.2%、Nb:0.001〜0.2
%、V:0.001〜0.2%、B:0.0001〜0.0
1%、Ca:0.0001〜0.01%のうち一種または
二種以上含有することを特徴とする上記(1)に記載の
加工性に優れた鋼管。 (3)質量%で、C:0.08〜0.25%、Si:0.
001〜1.5%、Mn:0.01〜2.0%、P:0.0
01〜0.06%、Al:0.008〜0.2%、N:0.
001〜0.007%を含有し、S:0.05%以下であ
り、残部が鉄および不可避不純物からなる鋼を、(Ar3
変態点−50℃)以上で熱間圧延を完了し、700℃以
下の温度で巻き取り、圧下率25%以上70%未満の冷
間圧延を施し、平均加熱速度4〜200℃/時間で加熱
し、最高到達温度を600〜800℃とする焼鈍を行
い、5〜100℃/hrの速度で冷却したのち圧延方向
が管軸方向となるように造管することを特徴する加工性
に優れた鋼管の製造方法。 (4)さらに質量%で、Cr:0.05〜10%、N
i:0.05〜20%、Cu:0.05〜20%、M
o:0.05〜1.0%、Co:0.05〜1.0%、W:
0.05〜1.0%、Sn:0.05〜1.0%、Zr:
0.0001〜0.5%、Mg:0.0001〜0.5%、
Ti:0.001〜0.2%、Nb:0.001〜0.2
%、V:0.001〜0.2%、B:0.0001〜0.0
1%、Ca:0.0001〜0.01%のうち一種または
二種以上含有することを特徴とする上記(3)に記載の
加工性に優れた鋼管の製造方法。 (5)鋼管の表面に潤滑油塗布面が均一に乾燥してお
り、その表面の摩擦係数が潤滑油塗布直後の摩擦係数と
比較して70%以下となることを特徴とする上記(1)
又は(2)に記載の加工性に優れた鋼管。 (6)鋼管の表面に塗布した潤滑油を均一に乾燥させ、
その表面の摩擦係数が潤滑油塗布直後の摩擦係数と比較
して70%以下とすることを特徴とする上記(3)又は
(4)に記載の加工性に優れた鋼管の製造方法。
That is, the gist of the present invention is as follows. (1) In mass%, C: 0.08 to 0.25%, Si: 0.2%
001 to 1.5%, Mn: 0.01 to 2.0%, P: 0.0
01 to 0.06%, Al: 0.008 to 0.2%, N: 0.2.
001-0.007%, S: not more than 0.05%, the balance being iron and unavoidable impurities, having an average crystal grain size of not less than 5 μm, and having an r * value of 1. A steel pipe excellent in workability characterized by being 2 or more. r * = ln (C 0 / C) ÷ ln (C × L / C 0 × L 0 ) C 0 , C: outer circumference (mm) of the steel pipe before and after the test L 0 , L: each circumference of the steel pipe before and after the test Distance between the evaluation points in the longitudinal direction of the position (mm) (2) Further, in mass%, Cr: 0.05 to 10%, N
i: 0.05 to 20%, Cu: 0.05 to 20%, M
o: 0.05 to 1.0%, Co: 0.05 to 1.0%, W:
0.05 to 1.0%, Sn: 0.05 to 1.0%, Zr:
0.0001 to 0.5%, Mg: 0.0001 to 0.5%,
Ti: 0.001 to 0.2%, Nb: 0.001 to 0.2
%, V: 0.001 to 0.2%, B: 0.0001 to 0.0
The steel pipe having excellent workability according to the above (1), characterized in that it contains one or more of 1% and Ca: 0.0001 to 0.01%. (3) In mass%, C: 0.08 to 0.25%, Si: 0.2%
001 to 1.5%, Mn: 0.01 to 2.0%, P: 0.0
01 to 0.06%, Al: 0.008 to 0.2%, N: 0.2.
Containing from 001 to 0.007%, S: is 0.05% or less, the steel balance of iron and inevitable impurities, (A r3
Hot rolling is completed at a transformation point of -50 ° C or higher, winding is performed at a temperature of 700 ° C or lower, cold rolling is performed at a rolling reduction of 25% to less than 70%, and heating is performed at an average heating rate of 4 to 200 ° C / hour. Then, annealing is performed at a maximum temperature of 600 to 800 ° C., and after cooling at a rate of 5 to 100 ° C./hr, the pipe is formed so that the rolling direction is in the pipe axis direction. Manufacturing method of steel pipe. (4) Further, in mass%, Cr: 0.05 to 10%, N
i: 0.05 to 20%, Cu: 0.05 to 20%, M
o: 0.05 to 1.0%, Co: 0.05 to 1.0%, W:
0.05 to 1.0%, Sn: 0.05 to 1.0%, Zr:
0.0001 to 0.5%, Mg: 0.0001 to 0.5%,
Ti: 0.001 to 0.2%, Nb: 0.001 to 0.2
%, V: 0.001 to 0.2%, B: 0.0001 to 0.0
The method for producing a steel pipe having excellent workability according to the above (3), wherein one or more of Ca is contained in 1% and 0.0001 to 0.01% of Ca. (5) The lubricating oil applied surface is uniformly dried on the surface of the steel pipe, and the friction coefficient of the surface is 70% or less as compared with the friction coefficient immediately after applying the lubricating oil.
Or the steel pipe excellent in workability as described in (2). (6) Dry the lubricating oil applied to the surface of the steel pipe evenly,
The method for producing a steel pipe excellent in workability according to the above (3) or (4), wherein the friction coefficient of the surface is 70% or less as compared with the friction coefficient immediately after the application of the lubricating oil.

【0005】[0005]

【発明の実施の形態】以下に本発明の加工性に優れた鋼
管とその製造方法について詳細に説明する。はじめに化
学成分の限定理由について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The steel pipe excellent in workability of the present invention and a method for manufacturing the same will be described in detail below. First, the reasons for limiting the chemical components will be described.

【0006】C:高強度化に有効で、また、C量を低減
するためにはコストアップとなるので、0. 08%以上
の添加とする。一方、良好なr値を得るためには過度の
添加は好ましいものではなく上限を0.25%とする。
C量を0.08%未満とすればr値が向上することは言
うまでもないが、Cを低減することは本発明の目的では
ないのであえて除外した。0.10超〜0.18%が望ま
しい範囲である。
C: Addition of 0.08% or more is effective for increasing the strength and increasing the cost to reduce the amount of C. On the other hand, in order to obtain a good r value, excessive addition is not preferable, and the upper limit is set to 0.25%.
It goes without saying that if the C content is less than 0.08%, the r-value will be improved, but the reduction of C is not the object of the present invention and was therefore excluded. More than 0.10 to 0.18% is a desirable range.

【0007】Si:安価に機械的強度を高めることが可
能であり、要求される強度レベルに応じて添加すれば良
いが、過剰の添加はメッキのぬれ性や加工性の劣化を招
くばかりかr値が劣化するので上限を1.5%とした。
下限を0.001%としたのは、これ未満とするのが製
鋼技術上困難なためである。0.5%以下がより好まし
い上限である。
Si: It is possible to increase the mechanical strength at low cost, and it is sufficient to add Si according to the required strength level. However, excessive addition not only causes deterioration of the wettability and workability of the plating but also r. Since the value deteriorated, the upper limit was set to 1.5%.
The lower limit is set to 0.001% because it is difficult for steelmaking technology to make the lower limit less than 0.001%. 0.5% or less is a more preferable upper limit.

【0008】Mn:高強度化に有効であるので必要に応
じて添加すれば良いが、過度の添加はr値を劣化させる
ので、2.0%を上限とする。0.01%未満にするには
製鋼コストが上昇し、またSに起因する熱間圧延割れを
誘発するので、これを下限とする。0.04〜0.8%が
好ましい。また、よりr値を高めたい場合には、Mn量
は低い方が良いので0.04〜0.12%の範囲とするの
が好ましい。
Mn: Mn is effective for increasing the strength, and may be added as needed. However, excessive addition degrades the r value, so the upper limit is 2.0%. If the content is less than 0.01%, the steelmaking cost increases, and hot rolling cracks caused by S are induced. 0.04 to 0.8% is preferred. In order to further increase the r value, the lower the Mn content, the better. Therefore, the Mn content is preferably in the range of 0.04 to 0.12%.

【0009】P:高強度化に有効な元素であるので0.
001%以上添加する。0.06%超を添加すると溶接
性や溶接部の疲労強度、さらには耐2次加工脆性が劣化
するのでこれを上限とする。好ましくは0.04%未満
である。
P: 0.
001% or more is added. If more than 0.06% is added, the weldability, the fatigue strength of the welded portion, and the resistance to secondary working brittleness will be deteriorated. Preferably it is less than 0.04%.

【0010】S:不純物であり、低いほど好ましく、熱
間割れを防止するために0.05%以下とする。好まし
くは0.015%以下である。
[0010] S: impurities, the lower the more, the more preferable, in order to prevent hot cracking, the content is 0.05% or less. Preferably it is 0.015% or less.

【0011】Al:良好なr値を得るために必要である
ので0.008%以上添加する。ただし、過度に添加す
るとその効果はむしろ低減するだけでなく表面欠陥を誘
発するので上限を0.2%とする。好ましくは0.015
〜0.07%とする。
Al: 0.008% or more is added because it is necessary to obtain a good r value. However, excessive addition not only reduces the effect but also induces surface defects, so the upper limit is made 0.2%. Preferably 0.015
To 0.07%.

【0012】N:良好なr値を得るためには0.001
%以上の添加が必須である。多すぎると時効性を劣化さ
せたり、多量のAl添加が必要となるため上限を0.0
07%とする。0.002〜0.005%がより好ましい
範囲である。
N: 0.001 to obtain a good r value
% Or more is essential. If the amount is too large, the aging property is deteriorated, and a large amount of Al needs to be added.
07%. 0.002 to 0.005% is a more preferable range.

【0013】Cr:強化元素であり必要に応じて0.0
5%以上添加する。過剰の添加はコストアップや延性の
低下を招くことから上限を1.0%とする。 Ni:強化元素であり必要に応じて0.05%以上添加
する。過剰の添加はコストアップや延性の低下を招くこ
とから上限を2.0%とする。 Cu:強化元素であり必要に応じて0.05%以上添加
する。過剰の添加はコストアップや延性の低下を招くこ
とから上限を2.0%とする。 Mo:強化元素であり必要に応じて0.05%以上添加
する。過剰の添加はコストアップや延性の低下を招くこ
とから上限を1.0%とする。 Co:強化元素であり必要に応じて0.05%以上添加
する。過剰の添加はコストアップや延性の低下を招くこ
とから上限を1.0%とする。 W:強化元素であり必要に応じて0.05%以上添加す
る。過剰の添加はコストアップや延性の低下を招くこと
から上限を1.0%とする。 Sn:強化元素であり必要に応じて0.05%以上添加
する。過剰の添加はコストアップや延性の低下を招くこ
とから上限を1.0%とする。 Zr:脱酸元素として有効である。一方、過剰の添加は
酸化物、硫化物や窒化物の多量の晶出や析出を招き清浄
度が劣化して、延性を低下させてしまう上、メッキ性を
損なう。したがって、必要に応じて0.0001〜1.5
%とする。 Mg:脱酸元素として有効である。一方、過剰の添加は
酸化物、硫化物や窒化物の多量の晶出や析出を招き清浄
度が劣化して、延性を低下させてしまう上、メッキ性を
損なう。したがって、必要に応じて0.0001〜0.5
%とする。 Ti,Nb,V:これらは、炭化物、窒化物もしくは炭
窒化物を形成することによって鋼材を高強度化したり加
工性を向上することができる。一方、過剰の添加は母相
であるフェライト粒内もしくは粒界に多量の炭化物、窒
化物もしくは炭窒化物として析出して、延性を低下させ
ることから、それぞれ必要に応じて0.001〜0.2%
とする。 B:r値を向上させたり、耐2次加工性脆性の改善に有
効であるので必要に応じて添加する。0.0001質量
%未満ではその効果はわずかで、0.01%超添加して
も格段の効果は得られない。0.0002〜0.0030
%が好ましい範囲である。 Ca:介在物制御のほか脱酸に有効な元素で、適量の添
加は熱間加工性を向上させるが、過剰の添加は逆に熱間
脆化を助長させるため、必要に応じて0.0001〜0.
01%の範囲とする。
Cr: strengthening element, if necessary, 0.0
Add 5% or more. Excessive addition increases the cost and lowers the ductility, so the upper limit is made 1.0%. Ni: a strengthening element, and 0.05% or more is added as necessary. Excessive addition increases the cost and lowers the ductility, so the upper limit is made 2.0%. Cu: a strengthening element, and 0.05% or more is added as necessary. Excessive addition increases the cost and lowers the ductility, so the upper limit is made 2.0%. Mo: strengthening element, added at 0.05% or more as necessary. Excessive addition increases the cost and lowers the ductility, so the upper limit is made 1.0%. Co: a strengthening element, and 0.05% or more is added as necessary. Excessive addition increases the cost and lowers the ductility, so the upper limit is made 1.0%. W: strengthening element, if necessary added at 0.05% or more. Excessive addition increases the cost and lowers the ductility, so the upper limit is made 1.0%. Sn: a strengthening element, and 0.05% or more is added as necessary. Excessive addition increases the cost and lowers the ductility, so the upper limit is made 1.0%. Zr: Effective as a deoxidizing element. On the other hand, excessive addition causes a large amount of crystallization or precipitation of oxides, sulfides or nitrides, deteriorating cleanliness, lowering ductility, and impairing plating properties. Therefore, if necessary, 0.0001 to 1.5
%. Mg: Effective as a deoxidizing element. On the other hand, excessive addition causes a large amount of crystallization or precipitation of oxides, sulfides or nitrides, deteriorating cleanliness, lowering ductility, and impairing plating properties. Therefore, if necessary, 0.0001 to 0.5
%. Ti, Nb, V: These can form a carbide, a nitride, or a carbonitride to increase the strength of a steel material and improve workability. On the other hand, excessive addition causes precipitation as a large amount of carbides, nitrides or carbonitrides in ferrite grains or grain boundaries which are the parent phase, and lowers ductility. 2%
And B: Since it is effective for improving the r value and improving the brittleness resistance to secondary workability, it is added as necessary. If it is less than 0.0001% by mass, the effect is slight, and even if it exceeds 0.01%, no remarkable effect can be obtained. 0.0002 to 0.0030
% Is a preferable range. Ca: an element effective for deoxidation in addition to controlling inclusions. Addition of an appropriate amount improves hot workability, but excessive addition conversely promotes hot embrittlement. ~ 0.
01% range.

【0014】さらに製造にあたっては、高炉、転炉、電
炉等による溶製に続き各種の2次製錬を行いインゴット
鋳造や連続鋳造を行い、連続鋳造の場合には室温付近ま
で冷却することなく熱間圧延するCC−DRなどの製造
方法を組み合わせて製造してもかまわない。鋳造インゴ
ットや鋳造スラブを再加熱して熱間圧延を行っても良い
のは言うまでもない。熱間圧延の加熱温度は特に限定す
るものではないが、AlNを固溶状態とするために11
00℃以上とすることが好ましい。
Further, in the production, ingot casting or continuous casting is performed by performing various secondary smelting following smelting in a blast furnace, a converter, an electric furnace, or the like. In the case of continuous casting, heat is produced without cooling to near room temperature. It may be manufactured by combining manufacturing methods such as CC-DR for cold rolling. It goes without saying that hot rolling may be performed by reheating the cast ingot or cast slab. The heating temperature of the hot rolling is not particularly limited, but is set to 11 in order to bring AlN into a solid solution state.
The temperature is preferably set to 00 ° C. or higher.

【0015】熱延の仕上げ温度は(Ar3−50)℃以上で
行う。好ましくは(Ar3+30)℃以上、さらに好ましく
は(Ar3+70)℃以上である。本発明においては熱延板
の集合組織はできるだけランダムにし、かつ熱延板の結
晶粒径をできるだけ成長させておくことが最終製品のr
値向上に好ましいためである。
The hot rolling is performed at a finishing temperature of (A r3 -50) ° C. or higher. The temperature is preferably (A r3 +30) ° C or more, more preferably (A r3 +70) ° C. or more. In the present invention, the texture of the hot rolled sheet is made as random as possible, and the crystal grain size of the hot rolled sheet is made to grow as much as possible.
This is because it is preferable for improving the value.

【0016】熱延後の冷却速度は特に指定するものでは
ないが巻き取り温度までの平均冷却速度を30℃/s未満
とすることが好ましい。
The cooling rate after hot rolling is not particularly specified, but the average cooling rate up to the winding temperature is preferably less than 30 ° C./s.

【0017】巻き取り温度は700℃以下とする。Al
Nの粗大化を抑制することで良好なr値を確保するため
である。好ましくは620℃以下である。熱間圧延の1
パス以上について潤滑を施しても良い。また、粗圧延バ
ーを互いに接合し、連続的に仕上げ熱延を行っても良
い。粗圧延バ−は一度巻き取って再度巻き戻してから仕
上げ熱延に供してもかまわない。
The winding temperature is set to 700 ° C. or less. Al
This is because a good r value is ensured by suppressing the coarsening of N. Preferably it is 620 ° C or lower. Hot rolling 1
Lubrication may be applied to more than the pass. Further, the rough rolling bars may be joined to each other and the finish hot rolling may be continuously performed. The rough rolling bar may be wound once, rewound again, and then subjected to finish hot rolling.

【0018】巻取温度の下限は特に定めることなく本発
明の効果を得ることができるが、固溶Cを低減する観点
から350℃以上とすることが好ましい。熱間圧延後は
酸洗することが望ましい。
Although the lower limit of the winding temperature can be obtained without any particular effect, the temperature is preferably set to 350 ° C. or higher from the viewpoint of reducing solid solution C. After hot rolling, it is desirable to perform pickling.

【0019】熱延後の冷間圧延での圧下率は本発明にお
いて重要である。すなわち圧下率を25〜70%未満と
する。従来の技術では冷延圧下率を強圧下冷延によって
r値の向上を図るのが基本であるが、本発明の鋼板で
は、むしろ圧下率を低くすることが肝要であることを新
たに見出したものである。圧下率が25%未満又は70
%超であるとr値が低くなるので,25〜70%に限定
する。30〜55%がより好ましい範囲である。
The rolling reduction in cold rolling after hot rolling is important in the present invention. That is, the rolling reduction is set to 25 to less than 70%. In the prior art, it is fundamental to improve the r-value by cold rolling under high rolling reduction, but it has been newly found that it is more important to lower the rolling reduction in the steel sheet of the present invention. Things. Reduction rate less than 25% or 70
%, The r-value becomes low, so that it is limited to 25 to 70%. 30-55% is a more preferable range.

【0020】焼鈍は箱焼鈍が基本であるが、下記の要件
を満たせばこの限りではない。良好なr値を得るために
は、加熱速度を4〜200℃/hrとする必要がある。
さらには10〜40℃/hrが好ましい。最高到達温度
もr値確保の観点から600〜800℃とすることが望
ましい。600℃未満では再結晶が完了せず加工性が劣
化する。一方、800℃超ではα+γ域のγ分率の高い
側に入るため、加工性が劣化する場合がある。なお、最
高到達温度での保持時間は特に指定するものではない
が、(最高到達温度−20)℃以上での保持時間が2h
r以上であることがr値向上の観点から好ましい。冷却
速度は固溶Cを十分に低減する観点から決定される。す
なわち、5〜100℃/hrの範囲とする。焼鈍後のス
キンパスは形状強制や強度調整、さらには常温非時効性
を確保する観点から必要に応じて行う。0.5〜5.0%
が好ましい圧下率である。
The annealing is basically box annealing, but is not limited to the above if the following requirements are satisfied. In order to obtain a good r value, the heating rate needs to be 4 to 200 ° C./hr.
Furthermore, 10 to 40 ° C./hr is preferable. It is desirable that the highest temperature be 600 to 800 ° C. from the viewpoint of securing the r value. If the temperature is lower than 600 ° C., recrystallization is not completed and workability deteriorates. On the other hand, when the temperature exceeds 800 ° C., the workability is sometimes deteriorated because the γ fraction in the α + γ region is on the higher side. The holding time at the highest temperature is not particularly specified, but the holding time at (highest temperature -20) ° C. or more is 2 hours.
It is preferably at least r from the viewpoint of improving the r value. The cooling rate is determined from the viewpoint of sufficiently reducing solid solution C. That is, the range is 5 to 100 ° C./hr. The skin pass after the annealing is performed as necessary from the viewpoint of forcing the shape, adjusting the strength, and further ensuring the non-aging property at room temperature. 0.5-5.0%
Is a preferable rolling reduction.

【0021】このようにして製造された鋼板を用いて圧
延方向が管軸方向となるように造管し、溶接する。鋼管
の製造にあたっては、通常は電縫溶接を用いるが、TI
G、MIG、レ−ザ−溶接、UOや鍛接等の溶接・造管
手法等を用いることも出来る。これらの溶接鋼管製造に
於いて溶接熱影響部は必要とする特性に応じて局部的な
固溶化熱処理を単独あるいは複合して、場合によっては
複数回重ねて行っても良く、本発明の効果をさらに高め
る。この熱処理は溶接部と溶接熱影響部のみに付加する
ことが目的であって、製造時にオンラインであるいはオ
フラインで施行できる。なお、同様の熱処理を加工性を
向上させる目的で鋼管全体に対して施しても構わない。
Using the steel plate manufactured in this way, pipes are formed so that the rolling direction is in the tube axis direction, and welded. In the production of steel pipes, ERW is usually used, but TI
G, MIG, laser welding, welding and pipe forming techniques such as UO and forging can also be used. In the production of these welded steel pipes, the heat-affected zone of the weld may be subjected to local solution heat treatment alone or in combination depending on the required characteristics, and may be performed multiple times depending on the case. Further enhance. This heat treatment is intended to be applied only to the welded portion and the heat affected zone, and can be performed online or offline during manufacturing. The same heat treatment may be performed on the entire steel pipe for the purpose of improving workability.

【0022】本発明によって得られる鋼管のr*値は1.
2以上である。r*値の測定はJIS11号管状試験片
を用いた引張試験を行い、15%引張り後、次式に示す
r*値 r*=ln(C0/C)÷ln(C×L/C0×L0) C0、C:試験前後の鋼管の外周(mm) L0、L:試験前後の鋼管の各円周位置の長手方向の評
点間距離(mm) によりr*値を算出する。なお、均一伸びが15%に満
たない場合には10%で評価しても良い。
The r * value of the steel pipe obtained by the present invention is 1.
2 or more. For the measurement of the r * value, a tensile test was performed using a JIS No. 11 tubular test piece, and after 15% tension, the r * value represented by the following equation r * = ln (C 0 / C) ÷ ln (C × L / C 0 × L 0 ) C 0 , C: Outer circumference (mm) of the steel pipe before and after the test L 0 , L: Distance between the evaluation points (mm) in the longitudinal direction of each circumferential position of the steel pipe before and after the test, and the r * value is calculated. If the uniform elongation is less than 15%, it may be evaluated at 10%.

【0023】鋼管を構成する結晶粒の平均結晶粒径は5
μm以上である。これ以下の結晶粒径では良好なr値が
得られない。また、これが60μm以上となると成形時
に肌荒れ等の問題になる場合があるため、60μm未満
であることが望ましい。結晶粒径は板面と垂直で圧延方
向と平行な切断面(L断面)の板厚3/8〜5/8の範
囲内について点算法などによって測定すれば良い。な
お、測定誤差を低減するためには結晶粒が100個以上
存在する面積について測定しなくてはならない。エッチ
ングはナイタ−ルが好ましい。結晶粒とはフェライト粒
のことであり、平均結晶粒径とは上記のように測定した
結晶粒径の全デ−タの算術平均(単純平均)とする。
The average crystal grain size of the crystal grains constituting the steel pipe is 5
μm or more. If the crystal grain size is smaller than this, a good r value cannot be obtained. If the thickness is 60 μm or more, a problem such as rough skin may occur at the time of molding. Therefore, the thickness is desirably less than 60 μm. The crystal grain size may be measured by a point calculation method or the like in a range of a sheet thickness (3/8 to 5/8) of a cut surface (L cross section) perpendicular to the sheet surface and parallel to the rolling direction. In order to reduce the measurement error, it is necessary to measure the area where 100 or more crystal grains exist. Etching is preferably performed with nitral. The crystal grains are ferrite grains, and the average crystal grain size is an arithmetic average (simple average) of all data of the crystal grain sizes measured as described above.

【0024】鋼管の表面に塗布される潤滑油としては、
通常用いられる潤滑油、例えばマシン油、防錆油、さび
止め剤入り潤滑油などのあらゆる潤滑油を用いることが
できる。鋼管表面への塗布方法も、刷毛による塗布、浸
漬塗布、スプレ−塗布などのあらゆる方法を用いること
ができる。潤滑油を塗布した直後の鋼管の表面は、潤滑
油によって濡れた状態にある。
As the lubricating oil applied to the surface of the steel pipe,
Any lubricating oil that is commonly used, for example, a machine oil, a rust preventive oil, a lubricating oil containing a rust inhibitor, and the like can be used. As a method of applying to the surface of the steel pipe, any method such as application using a brush, dip coating, spray coating and the like can be used. The surface of the steel pipe immediately after the application of the lubricating oil is wet by the lubricating oil.

【0025】潤滑油塗布直後、あるいは鋼管を結束から
開梱した直後の表面が潤滑油で濡れた状態にある鋼管を
通常の大気中などにさらして乾燥させると、鋼管表面の
摩擦係数は乾燥の進行とともに低減する。潤滑油塗布直
後における表面の摩擦係数を100%とおくと、大気中
に1時間放置後において摩擦係数は60%、3時間経過
後には55%、8時間経過後には30%まで減少する。
そのため、本発明においては乾燥時間を1時間以上とす
ることが好ましい。乾燥時間は3時間以上であればより
好ましい。乾燥時間は8時間以上であればなお好まし
い。潤滑油を塗布した鋼管の表面が濡れた状態にあるか
それとも乾燥が進行した状態にあるかの判断は、触感で
も判断することは可能である。鋼管の表面を手で触れた
とき、潤滑油がべとつかない程度で、乾燥していると判
断する。さらに、定量的には、潤滑油を塗布した鋼管の
表面の摩擦係数を測定することによって乾燥状態である
ことを確認することができる。即ち、その表面の摩擦係
数が潤滑油塗布直後の摩擦係数と比較して70%以下、
好ましくは60%以下、より好ましくは40%以下とな
っていれば、本発明の乾燥した状態であることが確認で
きる。潤滑油を塗布した鋼管の表面の摩擦係数測定は以
下のように行う。試験装置はビ−ド引き抜き装置を用い
る。30×300(mm)の鋼板を切り出し、鋼板の表
面に潤滑油を塗布する。その後、鏡面仕上げした2つの
平面型の金型(SKD 11)の間に鋼板をはさみ込
み、鋼板を引き抜く。摩擦係数は金型の押し付け荷重と
鋼板の引き抜き荷重により求める。
When the steel pipe whose surface is wet with the lubricating oil immediately after application of the lubricating oil or immediately after unpacking the steel pipe from the binding is exposed to normal air or the like and dried, the coefficient of friction of the surface of the steel pipe becomes dry. Decrease with progress. Assuming that the friction coefficient of the surface immediately after the application of the lubricating oil is 100%, the friction coefficient decreases to 60% after 1 hour in the air, 55% after 3 hours, and 30% after 8 hours.
Therefore, in the present invention, the drying time is preferably set to 1 hour or more. The drying time is more preferably 3 hours or more. More preferably, the drying time is at least 8 hours. It is possible to determine whether the surface of the steel pipe to which the lubricating oil has been applied is in a wet state or in a state in which drying has progressed by touch. When the surface of the steel pipe is touched by hand, it is judged that the lubricating oil is dry to the extent that it does not stick. Further, quantitatively, it is possible to confirm that the steel pipe is dry by measuring the friction coefficient of the surface of the steel pipe to which the lubricating oil is applied. That is, the friction coefficient of the surface is 70% or less as compared with the friction coefficient immediately after the application of the lubricating oil,
If it is preferably 60% or less, more preferably 40% or less, it can be confirmed that the present invention is in a dry state. The measurement of the coefficient of friction of the surface of the steel pipe coated with the lubricating oil is performed as follows. The test apparatus uses a bead drawing apparatus. A 30 × 300 (mm) steel plate is cut out, and lubricating oil is applied to the surface of the steel plate. Thereafter, the steel plate is sandwiched between two mirror-finished flat molds (SKD 11), and the steel plate is pulled out. The friction coefficient is determined from the pressing load of the mold and the pulling load of the steel sheet.

【0026】[0026]

【実施例】表1に示す成分の各鋼を溶製して1230℃
に加熱後、表1に示す仕上げ温度で熱間圧延して巻き取
った。酸洗後、表2に示す圧下率で冷延されたのち加熱
速度20℃/hr、最高到達温度を690℃とする焼鈍
をおこない、12時間保持後、17℃/hrで冷却し
た。さらに1.5%のスキンパスを施した。これの板を
電縫溶接によって造管した。
EXAMPLE Each steel having the components shown in Table 1 was melted at 1230 ° C.
, And then hot-rolled at the finishing temperature shown in Table 1 and wound up. After pickling, the steel sheet was cold-rolled at the rolling reduction shown in Table 2, then annealed at a heating rate of 20 ° C./hr and a maximum temperature of 690 ° C., kept for 12 hours, and cooled at 17 ° C./hr. An additional 1.5% skin pass was applied. The plate was formed by electric resistance welding.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】得られた鋼管の特性評価は以下の方法で行
った。機械的性質の評価はJIS12号弧状試験片を用
いて行った。r*値はJIS11号管状試験片を用いた
引張試験を行い、15%引張り後、次式に示すr*値 r*=ln(C0/C)÷ln(C×L/C0×L0) C0、C:試験前後の鋼管の外周(mm) L0、L:試験前後の鋼管の各円周位置の長手方向の評
点間距離(mm)によりr*値を算出する。なお、均一
伸びが15%に満たない場合には10%で評価しても良
い。
The properties of the obtained steel pipe were evaluated by the following methods. Evaluation of the mechanical properties was performed using a JIS No. 12 arc-shaped test piece. The r * value was determined by performing a tensile test using a JIS No. 11 tubular test piece and, after 15% tension, the r * value given by the following equation: r * = ln (C 0 / C) ÷ ln (C × L / C 0 × L 0 ) C 0 , C: Outer circumference (mm) of the steel pipe before and after the test L 0 , L: The r * value is calculated from the distance (mm) between the longitudinal grades of each circumferential position of the steel pipe before and after the test. If the uniform elongation is less than 15%, it may be evaluated at 10%.

【0030】鋼管の摩擦係数は鋼管を展開し30×30
0(mm)の鋼板に切り出し後、試験装置はビ−ド引き
抜き装置を用いる。鏡面仕上げした2つの平面型の金型
(SKD 11)の間に鋼板をはさみ込み、鋼板を引き
抜く。摩擦係数は金型の押し付け荷重と鋼板の引き抜き
荷重により求める。
The coefficient of friction of a steel pipe is 30 × 30
After cutting into a 0 (mm) steel plate, the test apparatus uses a bead drawing apparatus. A steel plate is sandwiched between two mirror-finished flat molds (SKD 11), and the steel plate is pulled out. The friction coefficient is determined from the pressing load of the mold and the pulling load of the steel sheet.

【0031】表2より明らかなとおり、本発明例ではい
ずれも良好なr*値と表面潤滑性を有するのに対して、
本発明外の例ではこれらの特性が劣っていた。
As is clear from Table 2, all of the examples of the present invention have a good r * value and a good surface lubricity,
In the examples outside the present invention, these properties were inferior.

【0032】[0032]

【発明の効果】本発明は、加工性に優れた鋼管とその製
造方法を提供するものであり、ハイドロフォ−ム加工性
に好適であり、地球環境保全などに貢献するものであ
る。
Industrial Applicability The present invention provides a steel pipe excellent in workability and a method for producing the same, which is suitable for hydroform workability and contributes to global environmental protection and the like.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/06 C22C 38/06 38/60 38/60 (72)発明者 佐久間 康治 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 (72)発明者 潮田 浩作 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 (72)発明者 吉永 直樹 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 藤田 展弘 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 伊丹 淳 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 Fターム(参考) 4K037 EA01 EA02 EA05 EA06 EA09 EA10 EA11 EA12 EA13 EA14 EA15 EA17 EA18 EA19 EA20 EA21 EA23 EA25 EA27 EA28 EA31 EA32 EA33 EA35 EB06 EB07 EB08 EB09 FC03 FC04 FC05 FE01 FE02 FE03 FJ01 FJ04 FJ05 FK01 GA03 HA02──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/06 C22C 38/06 38/60 38/60 (72) Inventor Koji Sakuma 1st Kimitsu, Kimitsu-shi Nippon Steel Corporation Kimitsu Works (72) Inventor Hirosaku Shioda 1 Kimitsu, Kimitsu City Nippon Steel Corporation Kimitsu Works (72) Inventor Naoki Yoshinaga 20-1 Shintomi Futtsu City Nippon Steel Corporation (72) Nobuhiro Fujita, Inventor 20-1 Shintomi, Futtsu-shi Nippon Steel Corporation Technology Development Headquarters (72) Inventor Jun Itami 1 Kimitsu, Kimitsu-shi Nippon Steel Corporation F term in Tsu Works (reference) E02 FE03 FJ01 FJ04 FJ05 FK01 GA03 HA02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C:0.08〜0.25%、S
i:0.001〜1.5%、Mn:0.01〜2.0%、
P:0.001〜0.06%、Al:0.008〜0.2
%、N:0.001〜0.007%を含有し、S:0.0
5%以下であり、残部が鉄および不可避不純物からな
り、平均結晶粒径が5μm以上を有し、次式に示すr*
値が1.2以上であることを特徴とする加工性に優れた
鋼管。 r*=ln(C0/C)÷ln(C×L/C0×L0) C0、C:試験前後の鋼管の外周(mm) L0、L:試験前後の鋼管の各円周位置の長手方向の評
点間距離(mm)
1. A mass%, C: 0.08 to 0.25%, S
i: 0.001 to 1.5%, Mn: 0.01 to 2.0%,
P: 0.001 to 0.06%, Al: 0.008 to 0.2
%, N: 0.001 to 0.007%, S: 0.0
5% or less, the balance being iron and unavoidable impurities, having an average crystal grain size of 5 μm or more, and r *
A steel pipe excellent in workability, characterized in that the value is 1.2 or more. r * = ln (C 0 / C) ÷ ln (C × L / C 0 × L 0 ) C 0 , C: outer circumference (mm) of the steel pipe before and after the test L 0 , L: each circumference of the steel pipe before and after the test Distance between longitudinal scores of position (mm)
【請求項2】 さらに質量%で、Cr:0.05〜10
%、Ni:0.05〜20%、Cu:0.05〜20
%、Mo:0.05〜1.0%、Co:0.05〜1.0
%、W:0.05〜1.0%、Sn:0.05〜1.0%、
Zr:0.0001〜0.5%、Mg:0.0001〜0.
5%、Ti:0.001〜0.2%、Nb:0.001〜
0.2%、V:0.001〜0.2%、B:0.0001〜
0.01%、Ca:0.0001〜0.01%のうち一種
または二種以上含有することを特徴とする請求項1に記
載の加工性に優れた鋼管。
2. Cr: 0.05 to 10 in mass%.
%, Ni: 0.05-20%, Cu: 0.05-20
%, Mo: 0.05 to 1.0%, Co: 0.05 to 1.0%
%, W: 0.05 to 1.0%, Sn: 0.05 to 1.0%,
Zr: 0.0001-0.5%, Mg: 0.0001-0.00%
5%, Ti: 0.001 to 0.2%, Nb: 0.001 to
0.2%, V: 0.001 to 0.2%, B: 0.0001 to
The steel pipe excellent in workability according to claim 1, characterized in that the steel pipe contains one or more of 0.01% and Ca: 0.0001 to 0.01%.
【請求項3】 質量%で、C:0.08〜0.25%、S
i:0.001〜1.5%、Mn:0.01〜2.0%、
P:0.001〜0.06%、Al:0.008〜0.2
%、N:0.001〜0.007%を含有し、S:0.0
5%以下であり、残部が鉄および不可避不純物からなる
鋼を、(Ar3変態点−50℃)以上で熱間圧延を完了
し、700℃以下の温度で巻き取り、圧下率25%以上
70%未満の冷間圧延を施し、平均加熱速度4〜200
℃/時間で加熱し、最高到達温度を600〜800℃と
する焼鈍を行い、5〜100℃/hrの速度で冷却した
のち圧延方向が管軸方向となるように造管することを特
徴する加工性に優れた鋼管の製造方法。
3. In mass%, C: 0.08 to 0.25%, S
i: 0.001 to 1.5%, Mn: 0.01 to 2.0%,
P: 0.001 to 0.06%, Al: 0.008 to 0.2
%, N: 0.001 to 0.007%, S: 0.0
Hot rolling is completed at a temperature of not more than ( Ar3 transformation point −50 ° C.), and is rolled at a temperature of not more than 700 ° C., and a reduction rate of not less than 25% and not more than 5%. % Cold rolling at an average heating rate of 4 to 200%.
C./hour, annealing at a maximum temperature of 600 to 800.degree. C., cooling at a rate of 5 to 100.degree. C./hr, and pipe forming so that the rolling direction becomes the tube axis direction. Manufacturing method of steel pipe with excellent workability.
【請求項4】 さらに質量%で、Cr:0.05〜10
%、Ni:0.05〜20%、Cu:0.05〜20
%、Mo:0.05〜1.0%、Co:0.05〜1.0
%、W:0.05〜1.0%、Sn:0.05〜1.0%、
Zr:0.0001〜0.5%、Mg:0.0001〜0.
5%、Ti:0.001〜0.2%、Nb:0.001〜
0.2%、V:0.001〜0.2%、B:0.0001〜
0.01%、Ca:0.0001〜0.01%のうち一種
または二種以上含有することを特徴とする請求項3に記
載の加工性に優れた鋼管の製造方法。
4. Further, in mass%, Cr: 0.05 to 10
%, Ni: 0.05-20%, Cu: 0.05-20
%, Mo: 0.05 to 1.0%, Co: 0.05 to 1.0%
%, W: 0.05 to 1.0%, Sn: 0.05 to 1.0%,
Zr: 0.0001-0.5%, Mg: 0.0001-0.00%
5%, Ti: 0.001 to 0.2%, Nb: 0.001 to
0.2%, V: 0.001 to 0.2%, B: 0.0001 to
The method for producing a steel pipe having excellent workability according to claim 3, wherein one or more of 0.01% and Ca: 0.0001 to 0.01% are contained.
【請求項5】 鋼管の表面に潤滑油塗布面が均一に乾燥
しており、その表面の摩擦係数が潤滑油塗布直後の摩擦
係数と比較して70%以下となることを特徴とする請求
項1又は2に記載の加工性に優れた鋼管。
5. The lubricating oil applied surface is uniformly dried on the surface of the steel pipe, and the friction coefficient of the surface is 70% or less as compared with the friction coefficient immediately after applying the lubricating oil. 3. A steel pipe excellent in workability according to 1 or 2.
【請求項6】 鋼管の表面に塗布した潤滑油を均一に乾
燥させ、その表面の摩擦係数が潤滑油塗布直後の摩擦係
数と比較して70%以下とすることを特徴とする請求項
3又は4に記載の加工性に優れた鋼管の製造方法。
6. The method according to claim 3, wherein the lubricating oil applied to the surface of the steel pipe is uniformly dried, and the friction coefficient of the surface is made 70% or less as compared with the friction coefficient immediately after the application of the lubricating oil. 5. The method for producing a steel pipe having excellent workability according to 4.
JP2001073348A 2001-03-15 2001-03-15 Steel tube having excellent workability and production method therefor Withdrawn JP2002275577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001073348A JP2002275577A (en) 2001-03-15 2001-03-15 Steel tube having excellent workability and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001073348A JP2002275577A (en) 2001-03-15 2001-03-15 Steel tube having excellent workability and production method therefor

Publications (1)

Publication Number Publication Date
JP2002275577A true JP2002275577A (en) 2002-09-25

Family

ID=18930789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001073348A Withdrawn JP2002275577A (en) 2001-03-15 2001-03-15 Steel tube having excellent workability and production method therefor

Country Status (1)

Country Link
JP (1) JP2002275577A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270148A (en) * 2020-03-27 2020-06-12 朗瑞(泰州)金属工具有限公司 Steel pipe piercing plug and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270148A (en) * 2020-03-27 2020-06-12 朗瑞(泰州)金属工具有限公司 Steel pipe piercing plug and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2001094655A1 (en) Steel pipe having high formability and method for producing the same
JP3610883B2 (en) Method for producing high-tensile steel sheet with excellent bendability
JP2011508085A (en) High strength thin steel sheet with excellent weldability and method for producing the same
JP5846445B2 (en) Cold rolled steel sheet and method for producing the same
JP2003064444A (en) High strength steel sheet with excellent deep drawability, and manufacturing method therefor
JP4280078B2 (en) High-strength cold-rolled steel sheet and plated steel sheet excellent in deep drawability, steel pipes excellent in workability, and production methods thereof
JP3990553B2 (en) High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same
JP3812279B2 (en) High yield ratio type high-tensile hot dip galvanized steel sheet excellent in workability and strain age hardening characteristics and method for producing the same
JP5870861B2 (en) High-strength hot-dip galvanized steel sheet with excellent fatigue characteristics and ductility and small in-plane anisotropy of ductility and method for producing the same
JP2013181183A (en) High strength cold rolled steel sheet having low in-plane anisotropy of yield strength, and method of producing the same
JP5141235B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
JP4772431B2 (en) Manufacturing method of hot-dip galvanized high-strength steel sheet with excellent elongation and hole expansion
JP6518596B2 (en) High-strength hot-rolled steel strip or steel plate having excellent formability and fatigue performance, and method for producing the steel strip or steel plate
WO1999055927A1 (en) Cold rolled steel plate of excellent moldability, panel shape characteristics and denting resistance, molten zinc plated steel plate, and method of manufacturing these steel plates
JP2006274378A (en) High yield ratio high strength cold rolled steel sheet, high yield ratio high strength hot dip galvanized steel sheet, high yield ratio high strength alloyed hot dip galvanized steel sheet, and method for producing them
JP3549483B2 (en) Hydroform forming steel pipe excellent in processability and manufacturing method
JP4367205B2 (en) Strain aging treatment method for steel sheet and method for producing high-strength structural member
JP4102206B2 (en) High-strength steel pipe with excellent workability and its manufacturing method
JP4171296B2 (en) Steel sheet excellent in deep drawability, manufacturing method thereof and steel pipe manufacturing method excellent in workability
JP4428075B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability and method for producing the same
JP2003193186A (en) High strength steel sheet and high strength electroplated steel sheet having excellent ductility, stretch-flanging property and impact absorbing property and production method therefor
JP2002275577A (en) Steel tube having excellent workability and production method therefor
JP2001348643A (en) Steel tube excellent in formability and its production method
JP2002097549A (en) Steel tube superior in formability and manufacturing method therefor
JP2000119831A (en) High strength hot dip galvanized and hot rolled steel sheet excellent in formability and corrosion resistance

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603