JP2002270874A - Method for manufacturing transparent conductive film having irregular shape - Google Patents

Method for manufacturing transparent conductive film having irregular shape

Info

Publication number
JP2002270874A
JP2002270874A JP2001070104A JP2001070104A JP2002270874A JP 2002270874 A JP2002270874 A JP 2002270874A JP 2001070104 A JP2001070104 A JP 2001070104A JP 2001070104 A JP2001070104 A JP 2001070104A JP 2002270874 A JP2002270874 A JP 2002270874A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
film
ultraviolet
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001070104A
Other languages
Japanese (ja)
Other versions
JP4183394B2 (en
Inventor
Manabu Sasaki
学 佐々木
Shigero Yada
茂郎 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001070104A priority Critical patent/JP4183394B2/en
Publication of JP2002270874A publication Critical patent/JP2002270874A/en
Application granted granted Critical
Publication of JP4183394B2 publication Critical patent/JP4183394B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a method for easily manufacturing a transparent conductive film in an irregular shape having light-scattering effect. SOLUTION: After a thin-film semiconductor layer 3 is formed, a flat transparent conductive film 4a is formed on the thin-film semiconductor film 3 by the sputtering method, the surface of the formed rear surface transparent conductive film is dipped into a dilute hydrochloric acid or a dilute acetic acid, and at the same time ultraviolet rays are selectively applied to the surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、光散乱効果のあ
る凹凸形状を有する透明導電膜に関し、特に、光起電力
装置の裏面金属膜と半導体層との間に設けられる透明導
電膜に用いて好適な凹凸形状を有する透明導電膜の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive film having an uneven shape having a light scattering effect, and more particularly to a transparent conductive film provided between a back metal film and a semiconductor layer of a photovoltaic device. The present invention relates to a method for manufacturing a transparent conductive film having a suitable uneven shape.

【0002】[0002]

【従来の技術】従来、原料ガスのグロー放電分解等によ
り形成される非晶質シリコン(以下、a−Siとい
う。)を主材料にした光起電力装置は、薄膜、大面積化
が容易という特長を持ち、低コスト光起電力装置として
期待されている。
2. Description of the Related Art Conventionally, a photovoltaic device using amorphous silicon (hereinafter referred to as a-Si) as a main material formed by glow discharge decomposition of a source gas or the like is easy to make a thin film and a large area. It has features and is expected as a low-cost photovoltaic device.

【0003】この種の光起電力装置としては、pin接
合を有するpin型a−Si光起電力が知られている。
図11はこのような光起電力装置の構造を示し、ガラス
基板1上に、酸化錫(SnO2)などの透明電極2、内
部にpin接合を有する光活性層となる薄膜半導体層
3、透明導電膜4、裏面金属電極5を順次積層すること
により作成される。前記薄膜半導体層3は、p型a−S
iC層31、i型a−Si層32、n型微結晶シリコン
(以下、μc−Siという。)層33を順次積層して構
成されている。この光起電力装置は、ガラス基板1を通
して入射する光により、光起電力が発生する。
As this type of photovoltaic device, a pin type a-Si photovoltaic device having a pin junction is known.
FIG. 11 shows the structure of such a photovoltaic device. A transparent electrode 2 such as tin oxide (SnO 2 ) is formed on a glass substrate 1, a thin film semiconductor layer 3 serving as a photoactive layer having a pin junction inside, and a transparent substrate. It is formed by sequentially laminating the conductive film 4 and the back metal electrode 5. The thin film semiconductor layer 3 is made of p-type a-S
An iC layer 31, an i-type a-Si layer 32, and an n-type microcrystalline silicon (hereinafter referred to as μc-Si) layer 33 are sequentially laminated. This photovoltaic device generates photovoltaic power by light incident through the glass substrate 1.

【0004】上記した半導体層3と裏面金属電極5との
間に設けられる透明導電膜4は、半導体層3と裏面金属
電極4との合金化等防ぐとともに、発電層であるi型a
−Si層32で吸収されなかった光を裏面金属電極5で
反射させて、再びi型a−Si層32に入射させる際に
光を散乱させるものである。
The transparent conductive film 4 provided between the semiconductor layer 3 and the back metal electrode 5 prevents the semiconductor layer 3 and the back metal electrode 4 from being alloyed or the like, and also forms an i-type a
Light that is not absorbed by the -Si layer 32 is reflected by the back metal electrode 5 and scatters light when the light is again incident on the i-type a-Si layer 32.

【0005】上記した透明導電膜(TCO)の形成方法
としては、第1にITO、ZnOなどの透明導電膜をス
パッタで下地の凹凸形状に合わせてほぼフラットに形成
する方法がある。
As a method for forming the above-mentioned transparent conductive film (TCO), first, there is a method in which a transparent conductive film such as ITO or ZnO is formed almost flat by sputtering so as to conform to the irregularities of the base.

【0006】また、第2の方法として、透明導電膜とし
てZnOを用いる場合には、ZnO膜を形成した後、希
塩酸エッチングを行うことで、5000Å前後の表面凹
凸形状を形成することができる。
As a second method, when ZnO is used as the transparent conductive film, a surface unevenness of about 5000 ° can be formed by dilute hydrochloric acid etching after forming the ZnO film.

【0007】一方、高温形成(1000℃以上)で形成
されたガラス基板上に500℃程度の熱CVDプロセス
でSnO2膜を形成する。この時、条件によっては50
00〜8000Å程度の凹凸直径と深さを有する凹凸形
状を表面に形成することができる。
On the other hand, a SnO 2 film is formed on a glass substrate formed at a high temperature (1000 ° C. or higher) by a thermal CVD process at about 500 ° C. At this time, 50
An uneven shape having an uneven diameter and a depth of about 00 to 8000 ° can be formed on the surface.

【0008】[0008]

【発明が解決しようとする課題】上記した第1の方法で
は、下地の凹凸形状通りの形状になり、光散乱効果に適
した所望の凹凸の形成が行えないという難点がある。
The first method described above has a drawback in that the shape of the underlayer becomes the same as that of the unevenness, and the desired unevenness suitable for the light scattering effect cannot be formed.

【0009】また、第2の方法では、光起電力装置の電
極として適した高い結晶性を有するZnOでは、凹凸幅
(直径)の制御はエッチング時間によって可能である
が、凹凸深さは制御不可能である。特に、裏面電極側に
用いる透明導電膜は、その膜厚が500〜1000Å程
度と薄く形成される。このため、高い結晶性を有するZ
nO膜をエッチングにより凹凸化できてもエッチング前
の透明導電膜の膜厚が厚い場合は光の吸収ロスが大きく
なり電流は増加しない。また、エッチング前の透明導電
膜が薄い(約1000Å程度)と透明導電膜が部分的に
エッチングされすぎて高抵抗になるという問題がある。
In the second method, in the case of ZnO having high crystallinity suitable as an electrode of a photovoltaic device, the width (diameter) of the unevenness can be controlled by the etching time, but the depth of the unevenness cannot be controlled. It is possible. In particular, the transparent conductive film used on the back electrode side is formed as thin as about 500 to 1000 °. Therefore, Z having high crystallinity
Even if the nO film can be made uneven by etching, if the thickness of the transparent conductive film before etching is large, light absorption loss increases and the current does not increase. Further, when the transparent conductive film before etching is thin (about 1000 °), there is a problem that the transparent conductive film is partially etched excessively and becomes high in resistance.

【0010】さらに、裏面電極側において、500℃程
度の熱CVDプロセスを用いてSnO2膜の凹凸化をす
る場合は、下地の半導体形成温度より高温になるため太
陽電池の特性は熱ダメージにより大きく低下する。しか
も、下地がSiO2(ガラス材料)と異なるため、ガラ
ス基板上のような良好な凹凸形成が形成できないという
問題がある。
Further, when the SnO 2 film is made uneven on the back electrode side using a thermal CVD process at about 500 ° C., the temperature of the SnO 2 film becomes higher than the temperature at which the underlying semiconductor is formed. descend. In addition, since the underlayer is different from SiO 2 (glass material), there is a problem that good unevenness cannot be formed as on a glass substrate.

【0011】この発明は、上記した従来の問題点を解決
するためになされたものにして、光散乱効果のある凹凸
形状を有する透明導電膜を容易に製造することができる
方法を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned conventional problems, and provides a method for easily manufacturing a transparent conductive film having a concavo-convex shape having a light scattering effect. Aim.

【0012】[0012]

【課題を解決するための手段】この発明は、透明導電膜
表面に選択的に紫外線を照射することにより、透明導電
膜と接触する酸性溶液における透明導電膜のエッチング
レートを紫外線の照射強度によって選択的に制御し、透
明導電膜表面に凹凸を形成することを特徴とする。
SUMMARY OF THE INVENTION The present invention selectively irradiates the surface of a transparent conductive film with ultraviolet light, thereby selecting an etching rate of the transparent conductive film in an acidic solution in contact with the transparent conductive film according to the irradiation intensity of the ultraviolet light. Characterized by forming irregularities on the surface of the transparent conductive film.

【0013】前記選択的に紫外線を照射する手段とし
て、回折格子に紫外線レーザを照射して光干渉させれば
よい。
As means for selectively irradiating ultraviolet rays, an ultraviolet laser may be applied to the diffraction grating to cause light interference.

【0014】この発明は、薄膜半導体層形成後その上に
フラットな透明導電膜(ITO、SnO2、ZnO等)
をスパッタ法(200〜350℃程度)で形成し、形成
した裏面透明導電膜表面を希塩酸または希酢酸に浸すと
ともに、その表面に紫外線を選択的に照射する。この
時、回折格子に紫外線レーザを照射して光干渉させる
と、幅500〜800Å内で(1)紫外線受光されず希
塩酸(希酢酸)と接触する透明導電膜部のエッチング速
度と、(2)紫外線受光と希塩酸(希酢酸)接触が同時
におこる透明導電膜部のエッチング速度が少なくとも1
0倍以上変化させることができる。エッチング速度が最
も遅い部分から最も速い部分にかけて紫外線の照射強度
とエッチング速度を連続的に増加変化させる。
According to the present invention, after a thin film semiconductor layer is formed, a flat transparent conductive film (ITO, SnO 2 , ZnO, etc.) is formed thereon.
Is formed by a sputtering method (about 200 to 350 ° C.), the surface of the formed rear transparent conductive film is immersed in dilute hydrochloric acid or dilute acetic acid, and the surface is selectively irradiated with ultraviolet rays. At this time, when the diffraction grating is irradiated with an ultraviolet laser to cause light interference, within the width of 500 to 800 °, (1) the etching rate of the transparent conductive film portion which is not received with ultraviolet light and comes into contact with dilute hydrochloric acid (dilute acetic acid); The etching rate of the transparent conductive film portion where ultraviolet light reception and dilute hydrochloric acid (dilute acetic acid) contact occur simultaneously is at least 1
It can be changed by 0 times or more. The irradiation intensity of ultraviolet rays and the etching rate are continuously increased and changed from the portion having the slowest etching speed to the portion having the fastest etching speed.

【0015】上記のように、紫外線レーザ光線の干渉を
利用し、位相の異なる2つのレーザ光線を重ねることで
紫外線の強度分布をつくる。紫外線の強度が高い部分が
凹部になり、強度の低い(ほとんど当たらない部分)が
凸部になる。
As described above, the intensity distribution of ultraviolet rays is created by superposing two laser beams having different phases on the basis of the interference of ultraviolet laser beams. The portion where the intensity of the ultraviolet light is high becomes the concave portion, and the portion where the intensity is low (the portion which hardly hits) becomes the convex portion.

【0016】幅、深さともに500〜800Å程度の凹
凸形状を形成でき、光閉じ込め効果の高い凹凸形状を裏
面電極に形成でき、太陽電池のIsc効率が上昇させる
ことができる。
[0016] An uneven shape having a width and depth of about 500 to 800 ° can be formed, an uneven shape having a high light confinement effect can be formed on the back electrode, and the Isc efficiency of the solar cell can be increased.

【0017】前記透明導電膜として酸化亜鉛を用い、エ
ッチング溶液として、濃度が0.02%以下の塩酸を用
いると、エッチング速度が少なくとも10倍以上変化さ
せることができる。
When zinc oxide is used as the transparent conductive film and hydrochloric acid having a concentration of 0.02% or less is used as an etching solution, the etching rate can be changed at least ten times or more.

【0018】前記透明導電膜として酸化亜鉛を用い、エ
ッチング溶液として、濃度が0.1%以下の酢酸を用い
ると、エッチング速度が少なくとも10倍以上変化させ
ることができる。
If zinc oxide is used as the transparent conductive film and acetic acid having a concentration of 0.1% or less is used as the etching solution, the etching rate can be changed at least ten times or more.

【0019】[0019]

【発明の実施の形態】以下、この発明の実施形態につき
図面を参照して説明する。この発明の各実施形態は、上
記した従来の光起電力装置の半導体層3と裏面金属膜4
との間に設けられる裏面側の透明導電膜4に適用される
ものである。この実施形態を図1に示す。なお、図11
と同一構成の部分には同一符号を付す。
Embodiments of the present invention will be described below with reference to the drawings. Each embodiment of the present invention relates to the semiconductor layer 3 and the back metal film 4 of the above-described conventional photovoltaic device.
This is applied to the transparent conductive film 4 on the back surface provided between them. This embodiment is shown in FIG. Note that FIG.
The same reference numerals are given to parts having the same configuration as that of FIG.

【0020】(実施形態1)この実施形態1は、図1に
示す光起電力装置の裏面側透明導電膜4として、酸化亜
鉛(ZnO)を用いたものである。また、表面側のガラ
ス基板1上に設けられる透明導電膜2もZnO膜を用い
た。
Embodiment 1 In Embodiment 1, zinc oxide (ZnO) is used as the transparent conductive film 4 on the back surface of the photovoltaic device shown in FIG. The transparent conductive film 2 provided on the glass substrate 1 on the front side also used a ZnO film.

【0021】この実施形態におけるガラス基板1のサイ
ズは10cm×10cm、厚み5mmで、透明導電膜2
としては厚さ3000〜12000ÅのZnO膜を用い
た。このZnO膜は公知のDCマグネトロンスパッタ法
により、基板温度:100〜300℃。Ar:400s
ccmとO2:10sccmを混合した1Pa雰囲気下
で、大きさ300cm2の3%Al23ドープZnOタ
ーゲットに0.1kWの電力を印加して形成した。Zn
O膜の表面は、希塩酸エッチングを施すことにより、凹
凸形状が形成されている。
The size of the glass substrate 1 in this embodiment is 10 cm × 10 cm, the thickness is 5 mm, and the transparent conductive film 2
Was used as a ZnO film having a thickness of 3000 to 12000 °. The substrate temperature of this ZnO film is 100 to 300 ° C. by a known DC magnetron sputtering method. Ar: 400s
It was formed by applying a power of 0.1 kW to a 3% Al 2 O 3 -doped ZnO target having a size of 300 cm 2 under a 1 Pa atmosphere in which ccm and O 2 were mixed at 10 sccm. Zn
The surface of the O film is formed with an uneven shape by dilute hydrochloric acid etching.

【0022】これらの透明導電膜2を設けたガラス基板
1上に第1表に示す条件により、公知の平行平板のプラ
ズマCVD装置を用いて、p層31、i層32、n層3
3からなる薄膜半導体層3の形成を行った。ここで、放
電電極面積は1500cm2、電極間隔は40mmであ
る。
Under the conditions shown in Table 1, a p-layer 31, an i-layer 32, and an n-layer 3 were formed on a glass substrate 1 provided with the transparent conductive film 2 under the conditions shown in Table 1 using a known parallel-plate plasma CVD apparatus.
3 was formed. Here, the discharge electrode area is 1500 cm 2 , and the electrode interval is 40 mm.

【0023】[0023]

【表1】 [Table 1]

【0024】さらに、上記非晶質半導体層3に裏面側透
明電極として厚み6000ÅのZnO膜を基板温度20
0℃のDCマグネトロンスパッタ法により、Ar:40
0sccmの1Pa雰囲気下で、大きさ300cm2
ZnOターゲットに0.1kWの電力を印加して作製し
た。
Further, a 6000.degree.-thick ZnO film is formed on the amorphous semiconductor layer 3 as a back surface side transparent electrode at a substrate temperature of 20.degree.
Ar: 40 by DC magnetron sputtering at 0 ° C.
It was fabricated by applying a power of 0.1 kW to a ZnO target having a size of 300 cm 2 under a 1 Pa atmosphere of 0 sccm.

【0025】この発明の特徴とするところは、上記のよ
うに形成した裏面側透明電極膜の表面をエッチングして
表面に光散乱効果を有する凹凸形状を形成すると共に、
その膜厚も薄くするものである。このため、形成した裏
面側の透明電極膜表面を希塩酸などの酸性溶液に浸すと
ともに、その表面に紫外線を選択的に照射する。このと
き、微細な幅でエッチング速度を変化させるために紫外
線レーザ光線の干渉を利用し、位相の異なる2つのレー
ザ光線を重ねることで紫外線の強度分布をつくる。これ
は、紫外線の強度が高い部分は、エッチング速度が速
く、紫外線の強度が低い(ほとんど当たらない部分)は
エッチング速度が極めて遅くなることを利用したもので
ある。
The present invention is characterized in that the surface of the transparent electrode film formed on the back side formed as described above is etched to form an uneven shape having a light scattering effect on the surface.
Its thickness is also reduced. Therefore, the surface of the formed transparent electrode film on the back side is immersed in an acidic solution such as dilute hydrochloric acid, and the surface is selectively irradiated with ultraviolet rays. At this time, in order to change the etching rate in a minute width, the interference of the ultraviolet laser beam is used, and the intensity distribution of the ultraviolet ray is created by superimposing two laser beams having different phases. This is based on the fact that the etching rate is high in a portion where the intensity of the ultraviolet light is high, and extremely low when the intensity of the ultraviolet light is low (a portion where the ultraviolet light is hardly applied).

【0026】即ち、(1)紫外線受光されず希塩酸(ま
たは希酢酸)と接触する透明導電膜部のエッチング速度
と、(2)紫外線受光と希塩酸(希または酢酸)接触が
同時におこる透明導電膜部のエッチング速度が、エッチ
ング液の濃度を選択することで、少なくとも10倍以上
変化させることができる。
That is, (1) the etching rate of the transparent conductive film portion which does not receive ultraviolet light and comes into contact with dilute hydrochloric acid (or dilute acetic acid); and (2) the transparent conductive film portion where ultraviolet light reception and dilute hydrochloric acid (dilute or acetic acid) occur simultaneously. Can be changed at least ten times or more by selecting the concentration of the etching solution.

【0027】紫外線を照射された部分と照射されていな
い部分とのエッチング速度の比を調べた結果を表2及び
表3に示す。表2は、塩酸の場合、表3は酢酸の場合を
示す。
Tables 2 and 3 show the results of examining the ratio of the etching rate between the part irradiated with ultraviolet rays and the part not irradiated with ultraviolet rays. Table 2 shows the case of hydrochloric acid, and Table 3 shows the case of acetic acid.

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】表2より、塩酸の場合には、濃度が0.0
2%以下になるとエッチング速度の比が10倍以上とな
り、表3より、酢酸の場合には、濃度が0.1%以下に
なるとエッチング速度の比が10倍以上となる。
According to Table 2, in the case of hydrochloric acid, the concentration was 0.0
When it is 2% or less, the etching rate ratio becomes 10 times or more. From Table 3, in the case of acetic acid, when the concentration becomes 0.1% or less, the etching rate ratio becomes 10 times or more.

【0031】このように、紫外線レーザ光線の干渉を利
用し、位相の異なる2つのレーザ光線を重ねることで紫
外線の強度分布をつくる。紫外線の強度が高い部分が凹
部になり、強度の低い(ほとんど当たらない部分)が凸
部にすることができる。
As described above, by utilizing the interference of the ultraviolet laser beam, the intensity distribution of the ultraviolet ray is created by superimposing two laser beams having different phases. A portion where the intensity of the ultraviolet light is high can be a concave portion, and a portion where the intensity is low (a portion hardly hit) can be a convex portion.

【0032】この実施形態においては、エッチング条件
として、エッチング液は濃度0.01%の塩酸溶液を使
用した。紫外線は透明導電膜表面の照射箇所で最大20
mW/cm2とした。紫外線レーザとして、波長193
nmのエキシマレーザを用いた。
In this embodiment, as an etching condition, a hydrochloric acid solution having a concentration of 0.01% was used as an etching solution. UV rays are maximum 20 at the irradiation spot on the surface of the transparent conductive film.
mW / cm 2 . As an ultraviolet laser, a wavelength of 193 is used.
nm excimer laser was used.

【0033】紫外線の干渉パターンは2光路分離された
レーザ光の干渉を利用して光の強弱をつけ透明導電膜表
面に照射する。この干渉パターンを設ける方法につき説
明する。
The ultraviolet interference pattern irradiates the surface of the transparent conductive film with the intensity of the light by utilizing the interference of the laser light separated by two optical paths. A method for providing this interference pattern will be described.

【0034】図2に示すように、回折格子20を介して
透明導電膜10上に紫外線レーザを照射すると、紫外線
が干渉する。ここで、紫外線の波長をλ(cm)、回折
格子と照射する透明導電膜との距離をL(cm)、格子
の間隔をd(cm)、回折格子による明線の間隔をΔX
(cm)とすると、それぞれの関係は次のようになる。
As shown in FIG. 2, when the transparent conductive film 10 is irradiated with an ultraviolet laser through the diffraction grating 20, the ultraviolet light interferes. Here, the wavelength of the ultraviolet light is λ (cm), the distance between the diffraction grating and the transparent conductive film to be irradiated is L (cm), the interval between the gratings is d (cm), and the interval between the bright lines by the diffraction grating is ΔX.
(Cm), the respective relationships are as follows.

【0035】ΔX=L・λ/dΔX = L · λ / d

【0036】この実施形態では、紫外線レーザとして、
波長λ:193nmのエキシマレーザを用い、距離Lを
1cm、格子の間隔dを3.86cmとした。その結
果、ΔXは50nm(500Å)となる。
In this embodiment, as the ultraviolet laser,
Using an excimer laser having a wavelength λ of 193 nm, the distance L was set to 1 cm, and the interval d between the gratings was set to 3.86 cm. As a result, ΔX becomes 50 nm (500 °).

【0037】上記した回折格子20を用いることによ
り、紫外線レーザ光が干渉して光の強弱がつく理由をさ
らに、図3及び図4を参照して説明する。
With reference to FIGS. 3 and 4, the reason why the use of the diffraction grating 20 causes the ultraviolet laser light to interfere with each other to increase or decrease the intensity of the light will be described.

【0038】図3は同位相の紫外線の強度分布を示す説
明図であり、回折格子を経て、同位相のレーザ光が同図
(a)に示すように、透明導電膜上に照射される。透明
導電膜上では同図(b)に示すように、2つのレーザ光
が重畳され、同図(c)に示すように、強度の強いレー
ザ光として、透明導電膜上に照射される。
FIG. 3 is an explanatory diagram showing the intensity distribution of ultraviolet light having the same phase, and the laser light having the same phase is irradiated on the transparent conductive film through the diffraction grating as shown in FIG. On the transparent conductive film, two laser beams are superimposed as shown in FIG. 4B, and as shown in FIG. 4C, the laser beam is irradiated on the transparent conductive film as a laser beam having high intensity.

【0039】図4は反転位相の紫外線の強度分布を示す
説明図であり、回折格子を経て、同位相のレーザ光が同
図(a)に示すように、透明導電膜上に照射される。透
明導電膜上では同図(b)に示すように、2つのレーザ
光が重畳され、同図(c)に示すように、2つのレーザ
光はうち消し合い、透明導電膜上には、レーザ光は照射
されなくなる。
FIG. 4 is an explanatory view showing the intensity distribution of the ultraviolet light having the inverted phase. The laser light having the same phase is irradiated on the transparent conductive film through the diffraction grating as shown in FIG. On the transparent conductive film, two laser beams are superimposed as shown in FIG. 3B, and as shown in FIG. No light is emitted.

【0040】図5は紫外線の干渉縞の概略図であり、上
から見た状態を示している。図5(a)に示すように、
回折格子により、レーザ光に干渉縞が形成され、図3及
び図4に示すように、同位相の紫外線が明線となり、反
転位相の紫外線は透明電導膜上に光は照射されない。そ
の結果、図5(b)に示すように、ΔXのスパンで、明
線が現れ、その部分に紫外線が照射されることになる。
FIG. 5 is a schematic view of the interference fringes of the ultraviolet rays, which is viewed from above. As shown in FIG.
Interference fringes are formed in the laser beam by the diffraction grating, and as shown in FIGS. 3 and 4, ultraviolet rays having the same phase become bright lines, and ultraviolet rays having the inverted phase do not irradiate the transparent conductive film with light. As a result, as shown in FIG. 5B, a bright line appears in a span of ΔX, and the portion is irradiated with ultraviolet rays.

【0041】このように、上記の回折格子20を用いて
紫外線レーザ光を照射すると、図6に示すように、50
0Åの間隔で、エッチング速度の速い箇所が形成される
ことになる。
As described above, when the ultraviolet laser beam is irradiated using the diffraction grating 20, as shown in FIG.
At an interval of 0 °, a portion having a high etching rate is formed.

【0042】この状態で、上記したエッチングの速度比
が10倍以上になる濃度の酸性溶液中に透明導電膜4を
形成した基板を浸し、エッチングを施すと、図7に示す
ように、光散乱効果に優れた凹凸を形成することができ
る。このように形成された透明導電膜4aは、その膜厚
も薄くできる。
In this state, when the substrate on which the transparent conductive film 4 is formed is immersed in an acidic solution having a concentration at which the above-mentioned etching rate ratio becomes 10 times or more, and the substrate is etched, light scattering occurs as shown in FIG. Irregularities excellent in effect can be formed. The thickness of the transparent conductive film 4a thus formed can be reduced.

【0043】次に、透明導電膜4の全面に凹凸を形成す
る方法につき図8ないし図10に従い説明する。
Next, a method for forming irregularities on the entire surface of the transparent conductive film 4 will be described with reference to FIGS.

【0044】図8(a)に示すように、3.86cmの
間隔で回折格子を設け、この回折格子は開閉式に構成し
ている。そして、図8(b)に示すように、回折格子を
数字の順番に従って開口させる。また、回折格子を開閉
式にする代わりに、図9に示すように、透明導電膜を設
けた基板10の前方をマスク21で覆い所定の回折格子
からのレーザ光が照射されるように構成してもよい。
As shown in FIG. 8A, diffraction gratings are provided at an interval of 3.86 cm, and the diffraction grating is configured to be openable and closable. Then, as shown in FIG. 8B, the diffraction grating is opened according to the numerical order. Further, instead of making the diffraction grating openable, as shown in FIG. 9, the front of the substrate 10 provided with the transparent conductive film is covered with a mask 21 so that laser light from a predetermined diffraction grating is irradiated. You may.

【0045】このように、順次回折格子から照射される
領域を変化させることで、図10に示すように、透明導
電膜を形成した基板10の全面に選択的に紫外線が照射
されることになる。この実施形態では、500Åの間隔
でレーザ強度の照射が高い領域が形成されることにな
る。このように、紫外線レーザを選択的に照射して、酸
性溶液中にしたしエッチングすることで、透明導電膜4
aの表面には所望の凹凸が形成される。
As described above, by sequentially changing the area irradiated from the diffraction grating, as shown in FIG. 10, the entire surface of the substrate 10 on which the transparent conductive film is formed is selectively irradiated with ultraviolet rays. . In this embodiment, regions with high laser intensity irradiation are formed at intervals of 500 °. In this manner, the transparent conductive film 4 is selectively irradiated with an ultraviolet laser, soaked in an acidic solution and etched.
Desired irregularities are formed on the surface of a.

【0046】その後、図1に示すように、スパッタ法に
よりAgからなる裏面金属5を透明導電膜4a上に形成
する。この実施形態では、厚み2000ÅのAgを基板
温度200℃のDCマグネトロンスパッタ法により、A
r:400sccmの1Pa雰囲気下で、大きさ300
cm2のAgターゲットに0.1kWの電力を印加して
作製した。
Thereafter, as shown in FIG. 1, a back metal 5 made of Ag is formed on the transparent conductive film 4a by a sputtering method. In this embodiment, Ag having a thickness of 2000 mm is deposited on the substrate by DC magnetron sputtering at a substrate temperature of 200 ° C.
r: 300 sccm under a 1 Pa atmosphere and a size of 300
It was fabricated by applying a power of 0.1 kW to an Ag target of cm 2 .

【0047】上記のようにして形成された透明導電膜4
aを用いると、光散乱効果に優れ、太陽電池の電流及び
変換効率が向上する。参考までに、図12に、上記した
従来の第1の方法で作成した透明導電膜を用いた光起電
力装置の断面図を、図13に、従来の第2の方法で作成
した透明導電膜を用いた光起電力装置の断面図を示す。
図12に示す構造では、透明導電膜4bはほぼフラット
に形成され、光の散乱効果が得られない、また、図13
に示す構造では、透明導電膜4cの膜厚が厚くなり、光
の吸収ロスが多くなる。
The transparent conductive film 4 formed as described above
When a is used, the light scattering effect is excellent, and the current and conversion efficiency of the solar cell are improved. For reference, FIG. 12 is a cross-sectional view of a photovoltaic device using the transparent conductive film formed by the above-described first conventional method, and FIG. 13 is a transparent conductive film formed by the second conventional method. 1 shows a cross-sectional view of a photovoltaic device using the same.
In the structure shown in FIG. 12, the transparent conductive film 4b is formed almost flat, and no light scattering effect can be obtained.
In the structure shown in (1), the thickness of the transparent conductive film 4c is increased, and the light absorption loss is increased.

【0048】これに対して、図1に示すこの発明の透明
導電膜4aを用いたものでは、膜厚も必要以上厚するこ
となく、光散乱効果に適した凹凸が得られる。
On the other hand, in the case of using the transparent conductive film 4a of the present invention shown in FIG. 1, unevenness suitable for the light scattering effect can be obtained without increasing the film thickness more than necessary.

【0049】(実施形態2:ITO)次に、この発明の
実施形態2につき説明する。この実施形態2は、透明導
電膜4aとして、ITO膜を半導体層3上に形成し、実
施形態1と同様に、回折格子を用いてレーザを照射し、
エッチングした。エッチング液は濃度0.05%の酢酸
溶液を使用した。その他は上記した実施形態1と同じ方
法で形成した。
(Embodiment 2: ITO) Next, Embodiment 2 of the present invention will be described. In the second embodiment, an ITO film is formed on the semiconductor layer 3 as the transparent conductive film 4a, and laser irradiation is performed using a diffraction grating as in the first embodiment.
Etched. As an etching solution, an acetic acid solution having a concentration of 0.05% was used. Others were formed by the same method as the first embodiment.

【0050】(実施形態3:SnO2)次に、この発明
の実施形態3につき説明する。この実施形態3は、透明
導電膜4aとして、SnO2膜を半導体層3上に形成
し、実施形態1と同様に、回折格子を用いてレーザを照
射し、エッチングした。エッチング液は濃度0.05%
の塩酸溶液に亜鉛粉末を溶解したもので、塩酸と亜鉛の
モル比は1:1のものを使用した。その他は上記した実
施形態1と同じ方法で形成した。
(Embodiment 3: SnO 2 ) Next, Embodiment 3 of the present invention will be described. In the third embodiment, a SnO 2 film was formed on the semiconductor layer 3 as the transparent conductive film 4a, and laser irradiation and etching were performed using a diffraction grating as in the first embodiment. Etching solution concentration 0.05%
A solution prepared by dissolving zinc powder in a hydrochloric acid solution having a molar ratio of hydrochloric acid to zinc of 1: 1 was used. Others were formed by the same method as the first embodiment.

【0051】次に、上記した実施形態1ないし3に基づ
いて、形成した光起電力装置の特性を測定した結果を表
4に示す。透明導電膜の出発膜厚は、SnO2:100
0Å、ITO:1000Å、ZnO:800Åとした、
各特性は、エッチングを施していないそれぞれの光起電
力装置で規格化した。
Next, Table 4 shows the results obtained by measuring the characteristics of the photovoltaic device formed based on Embodiments 1 to 3 described above. The starting film thickness of the transparent conductive film is SnO 2 : 100
0 °, ITO: 1000 °, ZnO: 800 °,
Each characteristic was standardized for each photovoltaic device that was not subjected to etching.

【0052】[0052]

【表4】 [Table 4]

【0053】表4から、この発明による透明導電膜を用
いることで、裏面電極での反射率が増加して、太陽電池
の電流、変換効率が上昇することが分かる。
From Table 4, it can be seen that the use of the transparent conductive film according to the present invention increases the reflectance at the back electrode, and increases the current and conversion efficiency of the solar cell.

【0054】[0054]

【発明の効果】以上説明したように、この発明によれ
ば、光散乱効果に優れた凹凸を有する透明導電膜を形成
することができる。従って、この透明導電膜を用いるこ
とで、裏面電極での反射率が増加して、太陽電池の電
流、変換効率が上昇させることができる。
As described above, according to the present invention, it is possible to form a transparent conductive film having unevenness excellent in light scattering effect. Therefore, by using this transparent conductive film, the reflectance at the back electrode is increased, and the current and conversion efficiency of the solar cell can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の透明導電膜を用いたpin型a−S
i光起電力装置の構造を示す断面図である。
FIG. 1 shows a pin type aS using a transparent conductive film of the present invention.
It is sectional drawing which shows the structure of i photovoltaic device.

【図2】回折格子を介して紫外線レーザを照射する状態
を示す模式図である。
FIG. 2 is a schematic diagram showing a state in which an ultraviolet laser is irradiated through a diffraction grating.

【図3】同位相の紫外線の強度分布を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing the intensity distribution of ultraviolet light having the same phase.

【図4】同位相の紫外線の強度分布を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing the intensity distribution of ultraviolet light having the same phase.

【図5】(a)は、紫外線の干渉縞の概略図、(b)
は、干渉による明線の状態を示す概略図である。
5A is a schematic diagram of interference fringes of ultraviolet rays, and FIG.
FIG. 3 is a schematic diagram showing a state of a bright line due to interference.

【図6】紫外線照射された領域とエッチングの速さの関
係を示す説明図である。
FIG. 6 is an explanatory diagram showing a relationship between a region irradiated with ultraviolet rays and an etching speed.

【図7】この発明の透明導電膜のエッチングにより形成
される凹凸の関係を示す断面図である。
FIG. 7 is a cross-sectional view showing a relationship between irregularities formed by etching the transparent conductive film of the present invention.

【図8】透明導電膜の全面に紫外線を選択的に照射させ
る一例を示す図である。
FIG. 8 is a diagram showing an example of selectively irradiating the entire surface of a transparent conductive film with ultraviolet rays.

【図9】透明導電膜の全面に紫外線を選択的に照射させ
る一例を示す図である。
FIG. 9 is a diagram showing an example of selectively irradiating the entire surface of a transparent conductive film with ultraviolet rays.

【図10】透明導電膜の全面に紫外線を選択的に照射さ
せる状態の説明図である。
FIG. 10 is an explanatory diagram of a state in which ultraviolet light is selectively irradiated on the entire surface of a transparent conductive film.

【図11】pin接合を有するpin型a−Si光起電
力装置の構造を示す断面図である。
FIG. 11 is a sectional view showing a structure of a pin type a-Si photovoltaic device having a pin junction.

【図12】従来の第1の方法で作成した透明導電膜を用
いた光起電力装置の断面図である。
FIG. 12 is a cross-sectional view of a photovoltaic device using a transparent conductive film formed by a conventional first method.

【図13】従来の第2の方法で作成した透明導電膜を用
いた光起電力装置の断面図である。
FIG. 13 is a sectional view of a photovoltaic device using a transparent conductive film formed by a second conventional method.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 透明電極 3 薄膜半導体層 4、4a 透明導電膜 5 裏面金属電極 DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Transparent electrode 3 Thin film semiconductor layer 4, 4a Transparent conductive film 5 Backside metal electrode

フロントページの続き Fターム(参考) 5F051 AA05 CB15 CB21 CB27 CB30 FA02 FA03 FA04 FA06 FA15 FA18 FA19 5G323 BA02 BB05 HA03 Continued on the front page F term (reference) 5F051 AA05 CB15 CB21 CB27 CB30 FA02 FA03 FA04 FA06 FA15 FA18 FA19 5G323 BA02 BB05 HA03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 透明導電膜表面に選択的に紫外線を照射
することにより、透明導電膜と接触する酸性溶液におけ
る透明導電膜のエッチングレートを紫外線の照射強度に
よって選択的に制御し、透明導電膜表面に凹凸を形成す
ることを特徴とする凹凸形状を有する透明導電膜の製造
方法。
1. A method for selectively irradiating a surface of a transparent conductive film with ultraviolet light, whereby an etching rate of the transparent conductive film in an acidic solution in contact with the transparent conductive film is selectively controlled by an irradiation intensity of the ultraviolet light. A method for manufacturing a transparent conductive film having an uneven shape, characterized by forming unevenness on a surface.
【請求項2】 前記選択的に紫外線を照射する手段は、
回折格子に紫外線レーザを照射して光干渉させることに
より行うものであることを特徴とする請求項1に記載の
凹凸形状を有する透明導電膜の製造方法。
2. The means for selectively irradiating ultraviolet rays,
The method for producing a transparent conductive film having an uneven shape according to claim 1, wherein the method is performed by irradiating the diffraction grating with an ultraviolet laser to cause light interference.
【請求項3】 前記透明導電膜として酸化亜鉛を用い、
エッチング溶液として、濃度が0.02%以下の塩酸を
用いることを特徴とする請求項1または2に記載の凹凸
形状を有する透明導電膜の製造方法。
3. A method using zinc oxide as the transparent conductive film,
3. The method according to claim 1, wherein hydrochloric acid having a concentration of 0.02% or less is used as the etching solution.
【請求項4】 前記透明導電膜として酸化亜鉛を用い、
エッチング溶液として、濃度が0.1%以下の酢酸を用
いることを特徴とする請求項1または2に記載の凹凸形
状を有する透明導電膜の製造方法。
4. A method using zinc oxide as the transparent conductive film,
3. The method according to claim 1, wherein acetic acid having a concentration of 0.1% or less is used as the etching solution.
JP2001070104A 2001-03-13 2001-03-13 Photovoltaic device manufacturing method Expired - Lifetime JP4183394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001070104A JP4183394B2 (en) 2001-03-13 2001-03-13 Photovoltaic device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001070104A JP4183394B2 (en) 2001-03-13 2001-03-13 Photovoltaic device manufacturing method

Publications (2)

Publication Number Publication Date
JP2002270874A true JP2002270874A (en) 2002-09-20
JP4183394B2 JP4183394B2 (en) 2008-11-19

Family

ID=18928030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001070104A Expired - Lifetime JP4183394B2 (en) 2001-03-13 2001-03-13 Photovoltaic device manufacturing method

Country Status (1)

Country Link
JP (1) JP4183394B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251704A (en) * 2009-04-17 2010-11-04 Lg Display Co Ltd Method of manufacturing solar cell
KR20110064282A (en) * 2009-12-07 2011-06-15 엘지디스플레이 주식회사 Thin film solar cell and method for fabricaitng the same
JP2015222815A (en) * 2009-05-14 2015-12-10 ユニヴェルシテ ドゥ テクノロジー ドゥ トロワイUniversite De Technologie De Troyes Method of making film or wafer composed of material of metal oxide type or semiconductor type to have nanostructure
JP2019009402A (en) * 2017-06-28 2019-01-17 国立研究開発法人物質・材料研究機構 Solar cell and manufacturing method of the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251704A (en) * 2009-04-17 2010-11-04 Lg Display Co Ltd Method of manufacturing solar cell
JP2015222815A (en) * 2009-05-14 2015-12-10 ユニヴェルシテ ドゥ テクノロジー ドゥ トロワイUniversite De Technologie De Troyes Method of making film or wafer composed of material of metal oxide type or semiconductor type to have nanostructure
KR20110064282A (en) * 2009-12-07 2011-06-15 엘지디스플레이 주식회사 Thin film solar cell and method for fabricaitng the same
KR101640815B1 (en) * 2009-12-07 2016-07-19 엘지디스플레이 주식회사 Thin film solar cell and method for fabricaitng the same
JP2019009402A (en) * 2017-06-28 2019-01-17 国立研究開発法人物質・材料研究機構 Solar cell and manufacturing method of the same

Also Published As

Publication number Publication date
JP4183394B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
KR100237661B1 (en) Back reflector layer, method for forming it, and photovoltaic element using it and manufacturing method thereof
EP0827212B1 (en) Method of fabricating integrated thin film solar cells
JP2908067B2 (en) Substrate for solar cell and solar cell
JP3017422B2 (en) Photovoltaic element array and manufacturing method thereof
US8349637B2 (en) Method for the manufacture of a solar cell and the resulting solar cell
JP3029178B2 (en) Method of manufacturing thin film semiconductor solar cell
JP2002057359A (en) Laminated solar battery
JP2004014958A (en) Thin film polycrystalline solar cell and manufacturing method therefor
WO2024055475A1 (en) Joint passivation back-contact battery and manufacturing method therefor
CN102239571B (en) Method for manufacturing thin-film photoelectric conversion device
JP3655025B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
JP2962897B2 (en) Photovoltaic element
JP4756820B2 (en) Solar cell
JP2002270874A (en) Method for manufacturing transparent conductive film having irregular shape
AU2010348488B2 (en) Substrate for photoelectric conversion device, photoelectric conversion device using the substrate, and method for producing the substrate and device
JP3162261B2 (en) Solar cell manufacturing method and manufacturing apparatus
JP2011096730A (en) Thin-film solar cell and method of manufacturing the same
JP2846508B2 (en) Photovoltaic element
JP2003110125A (en) Solar battery cell and its manufacturing method
JP2010034231A (en) Thin-film solar cell and surface electrode for thin-film solar cell
JP2002222969A (en) Laminated solar battery
JP3172365B2 (en) Photovoltaic device and manufacturing method thereof
JP2001352081A (en) Method for manufacturing photoelectromotive device
JP2009044014A (en) Manufacturing method of photoelectric conversion device
JP2001223379A (en) Manufacturing method for photovoltaic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4183394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term