JP2002270071A - Vacuum circuit breaker, and vacuum valve and electric contact used for the vacuum circuit breaker - Google Patents

Vacuum circuit breaker, and vacuum valve and electric contact used for the vacuum circuit breaker

Info

Publication number
JP2002270071A
JP2002270071A JP2002066286A JP2002066286A JP2002270071A JP 2002270071 A JP2002270071 A JP 2002270071A JP 2002066286 A JP2002066286 A JP 2002066286A JP 2002066286 A JP2002066286 A JP 2002066286A JP 2002270071 A JP2002270071 A JP 2002270071A
Authority
JP
Japan
Prior art keywords
electrode
arc
highly conductive
conductive metal
side electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002066286A
Other languages
Japanese (ja)
Other versions
JP3627712B2 (en
Inventor
Katsuhiro Komuro
勝博 小室
Yoshiyuki Kojima
慶享 児島
Yukio Kurosawa
幸夫 黒沢
Yoshio Koguchi
義雄 湖口
Toru Tanimizu
徹 谷水
Yoshimi Hakamata
好美 袴田
Shunkichi Endo
俊吉 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002066286A priority Critical patent/JP3627712B2/en
Publication of JP2002270071A publication Critical patent/JP2002270071A/en
Application granted granted Critical
Publication of JP3627712B2 publication Critical patent/JP3627712B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/664Contacts; Arc-extinguishing means, e.g. arcing rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/664Contacts; Arc-extinguishing means, e.g. arcing rings
    • H01H33/6643Contacts; Arc-extinguishing means, e.g. arcing rings having disc-shaped contacts subdivided in petal-like segments, e.g. by helical grooves

Landscapes

  • Manufacture Of Switches (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode with a high strength, a small secular change, and a high reliability, a method of manufacturing the electrode, a vacuum valve using the electrode, and a vacuum circuit breaker using the vacuum valve. SOLUTION: This vacuum circuit breaker comprises a fixed side electrode having an arc electrode, an arc electrode support member supporting the arc electrode, and a coil electrode arranged continuously with the support member and a movable side electrode. The arc electrode, arc electrode support part, and coil electrode are formed of non-connection parts and formed integrally with each other by welding. In particular, the arc electrode support part and coiled electrode are formed with a Cu alloy containing at least one of Cr, Ag, W, V and Zr of 0.05 to 2.5 w.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規な真空遮断器
とそれに用いる真空バルブ、更にそれに用いられる電気
接点及びその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel vacuum circuit breaker, a vacuum valve used for the same, an electric contact used for the same, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】真空遮断器内の電極構造は、一対の固定
電極及び可動電極から成っている。上記固定及び可動電
極の構造は、アーク電極と該アーク電極を支持するアー
ク支持部材と、該アーク支持部材に連らなるコイル電極
材とコイル電極端部には電極棒の4部品から構成されて
いる。
2. Description of the Related Art An electrode structure in a vacuum circuit breaker includes a pair of fixed electrodes and a movable electrode. The structure of the fixed and movable electrodes includes an arc electrode, an arc supporting member supporting the arc electrode, a coil electrode material connected to the arc supporting member, and an electrode rod at an end of the coil electrode. I have.

【0003】上述したアーク電極材は、高電圧,大電流
を開閉遮断するために直接アークにさらされる、アーク
電極に要求される満足すべき特性は、遮断容量が大きい
こと、耐電圧値が高いこと、接触抵抗値が小さいこと
(電気伝導に優れていること)、耐溶着性に優れているこ
と、接点消耗量が少ないこと及び裁断電流値が小さいこ
と、等基本的な要件が挙げられる。しかし、これらの特
性を全て満足させることは困難であって一般には用途に
応じて特に重要な特性を重視し、他の特性はある程度犠
牲にした材料が使用されている。大電流,高電圧遮断用
アーク電極材料としては、特開昭63−96204 号公報には
Cr又はCr−CuスケルトンにCuを溶浸させる方法
が開示されている。また、同様の製法は特公昭50−2167
0 号公報にも開示されている。
[0003] The above-mentioned arc electrode material is directly exposed to an arc to open and close a high voltage and a large current. Satisfactory characteristics required of the arc electrode are a large breaking capacity and a high withstand voltage value. That the contact resistance value is small
(Excellent electrical conduction), excellent welding resistance, low contact wear, and small cutting current value. However, it is difficult to satisfy all of these characteristics, and in general, a material that emphasizes particularly important characteristics according to the application and sacrifices other characteristics to some extent is used. As a material for an arc electrode for interrupting a large current and a high voltage, Japanese Patent Application Laid-Open No. 63-96204 discloses a method of infiltrating Cu into a Cr or Cr-Cu skeleton. A similar manufacturing method is disclosed in Japanese Patent Publication No. 50-2167.
It is also disclosed in Japanese Patent Publication No. 0.

【0004】一方、アーク電極支持部材は、アーク電極
の補強部材の役目とともに支持部材の形状を工夫するこ
とで縦磁界を発生させる効果も持っている。そして使用
される材料は導伝性の良好な純Cuが使用されている。
On the other hand, the arc electrode supporting member has a function of generating a vertical magnetic field by devising the shape of the supporting member together with the role of a reinforcing member of the arc electrode. The material used is pure Cu having good conductivity.

【0005】更に、コイル電極材は、特公平3−17335号
公報にも開示されているようにアーク電極及び支持部材
の補強部材の役目もあるが主な役目としてはコイル電極
形状を種々に工夫することでアーク電極に縦磁界を発生
させ、縦磁界によりアーク電極に発生するアークをアー
ク電極全体に拡散させるとともに強制遮断する部材であ
る。使用される材料はアーク支持部材と同様に純Cuで
ある。
[0005] Further, as disclosed in Japanese Patent Publication No. 3-17335, the coil electrode material also has a role of an arc electrode and a reinforcing member of a support member. By doing so, a vertical magnetic field is generated in the arc electrode, and the arc generated in the arc electrode due to the vertical magnetic field is diffused throughout the arc electrode, and is forcibly interrupted. The material used is pure Cu as well as the arc support member.

【0006】一方、これらアーク電極,アーク電極支持
部,コイル電極及び電極棒で構成される電極の製造工程
は、アーク電極材の製造と機械加工,アーク電極支持部
材,コイル電極材及び電極棒のそれぞれの機械加工と各
部品の組立とろう付作業の工程を経て電極が完了する。
On the other hand, the manufacturing process of the electrode composed of the arc electrode, the arc electrode supporting portion, the coil electrode and the electrode rod includes the manufacturing and machining of the arc electrode material, the arc electrode supporting member, the coil electrode material and the electrode rod. The electrodes are completed through the steps of machining, assembling each part, and brazing.

【0007】前述のアーク電極の製造方法は、Cr粉
末,Cu粉末,W粉,Co粉,Mo粉,W粉,V粉末,
Nb粉あるいはこれらの合金粉を所定の組成,形状,空
孔量に成形,焼結後、焼結体のスケルトンにCuあるい
は合金溶湯をしみ込ませるいわゆる溶浸法が、あるいは
溶浸前の焼結工程で密度を100%にするいわゆる粉末
冶金法により製造されたアーク電極材を、更に機械加工
して所定形状とする。
[0007] The above-described method for manufacturing an arc electrode includes a Cr powder, a Cu powder, a W powder, a Co powder, a Mo powder, a W powder, a V powder,
The so-called infiltration method, in which Nb powder or an alloy powder thereof is formed into a predetermined composition, shape and porosity and then sintered, and then the molten skeleton of the sintered body is impregnated with Cu or alloy melt, or sintering before infiltration. The arc electrode material manufactured by the so-called powder metallurgy method in which the density is set to 100% in the process is further machined into a predetermined shape.

【0008】アーク電極支持部,コイル電極及び電極棒
は、純Cu素材から縦磁界の発生し易いように工夫され
た所定形状にそれぞれ切り出し加工される。
The arc electrode support, the coil electrode, and the electrode rod are each cut out of a pure Cu material into a predetermined shape designed to easily generate a vertical magnetic field.

【0009】[0009]

【発明が解決しようとする課題】このようにして溶浸後
機械加工された各部品を、組立後、ろう付して一連の電
極構造となる。しかし、ろう付方法は、アーク電極,ア
ーク電極支持部,コイル電極及び電極棒のそれぞれの間
に接合材とぬれ性の良好なろう材を入れ、真空中あるい
は還元性雰囲気中で昇温しろう付接合されるが、ろう付
接合を用いて構成される電極は、各部材の機械加工工程
とろう付するための部品組立時の各部品の芯合わせ等に
非常な手数と時間がかかり、合わせて、ろう付不良によ
る電極材の破壊や脱落の事故原因となる。このように従
来方法で製造された電極構造は、電極材特性の均一性,
信頼性及び安全性が劣っている。
The parts machined after infiltration are assembled and brazed to form a series of electrode structures. However, in the brazing method, a brazing material having good wettability is put between the arc electrode, the arc electrode support, the coil electrode and the electrode rod, and the temperature is raised in a vacuum or in a reducing atmosphere. Electrodes constructed using brazing are extremely time-consuming and time consuming to machine the components and to align the parts during the assembly of parts for brazing. As a result, electrode materials may be broken or fall off due to poor brazing. As described above, the electrode structure manufactured by the conventional method has uniform electrode material characteristics,
Poor reliability and safety.

【0010】また、最近では材料開発とともに真空遮断
器の設計仕様上から大電流,高電圧を開閉遮断しようと
する試みがなされている。一例として、開閉遮断速度を
速くすることで遮断性能向上がなされている。しかし、
これら遮断速度を速くすることでアーク電極間の接触力
増大と電極開閉時には電極全体に衝撃的な応力がかか
り、経時的には電極材は変形する。一般に、アーク電極
材には遮断特性あるいは溶着特性に優れた高強度のアー
ク電極材が使用されているが、アーク支持部材,コイル
電極材及び電極棒には純Cuを使用されている。純Cu
材は耐力が非常に小さいことと、さらには上述したよう
に縦磁界の発生を目的に横断面への溝切が設けられ、特
に衝撃的な応力に耐えきれず経時的には変形することに
なる。そして、電極部材の変形は、電極開閉動作の不都
合やアーク電極の溶着障害やアーク電極の破壊,脱落を
まねき、緊急時の開閉動作に支障をきたすことにもな
る。
Recently, along with the development of materials, attempts have been made to open and close large currents and high voltages in terms of design specifications of vacuum circuit breakers. As an example, the breaking performance is improved by increasing the opening / closing breaking speed. But,
By increasing the breaking speed, an impact force is applied to the entire electrode when the contact force between the arc electrodes is increased and the electrode is opened and closed, and the electrode material is deformed over time. Generally, a high-strength arc electrode material having excellent breaking characteristics or welding characteristics is used for the arc electrode material, but pure Cu is used for the arc support member, the coil electrode material, and the electrode rod. Pure Cu
The material has a very small proof stress, and furthermore, as described above, a groove is formed in the cross section for the purpose of generating a vertical magnetic field, and especially it can not withstand shocking stress and deforms over time. Become. Deformation of the electrode member causes inconvenience of the electrode opening / closing operation, welding failure of the arc electrode, destruction and dropping of the arc electrode, and hinders opening / closing operation in an emergency.

【0011】本発明の目的は、経時的な変形が少なく信
頼性の高い電極を備えた真空遮断器とそれに用いる真空
バルブ及びそれに用いる電気接点とその製造法を提供す
るにある。
An object of the present invention is to provide a vacuum circuit breaker provided with a highly reliable electrode which is less likely to deform with time, a vacuum valve used therefor, an electric contact used therefor, and a method of manufacturing the same.

【0012】[0012]

【課題を解決するための手段】本発明は、絶縁容器内に
固定側電極と可動側電極とを備えた真空バルブと、該真
空バルブ内の前記固定側電極と可動側電極との各々に前
記真空バルブ外に接続された導体端子と、前記可動側電
極に接続された絶縁ロッドを介して前記可動側電極を駆
動する開閉手段とを備えた真空遮断器において、前記固
定側電極及び可動側電極は耐火性金属と高導電性金属と
の合金からなるアーク電極と、該アーク電極を支持する
高導電性金属からなる電極支持部と、該支持部に前記導
体端子に電気的に接続され前記高導電性金属からなる電
極棒と、該電極支持部に連らなる縦磁界発生コイルとを
有し、前記アーク電極と電極支持部と電極棒又は磁界発
生コイルとは前記高導電性金属の溶融によって一体に形
成されていることを特徴とする真空遮断器にある。
According to the present invention, there is provided a vacuum valve provided with a fixed electrode and a movable electrode in an insulating container, and each of the fixed electrode and the movable electrode in the vacuum valve has the above-mentioned structure. In a vacuum circuit breaker provided with a conductor terminal connected outside the vacuum valve and an opening / closing means for driving the movable-side electrode via an insulating rod connected to the movable-side electrode, the fixed-side electrode and the movable-side electrode Is an arc electrode made of an alloy of a refractory metal and a highly conductive metal, an electrode support portion made of a highly conductive metal for supporting the arc electrode, and the support portion electrically connected to the conductor terminal and the high electrode. It has an electrode rod made of a conductive metal and a vertical magnetic field generating coil connected to the electrode support, and the arc electrode, the electrode support and the electrode rod or the magnetic field generating coil are formed by melting the highly conductive metal. Being integrally formed In a vacuum circuit breaker according to claim.

【0013】前記アーク電極はCr,W,Mo及びTa
の1種又は2種以上の混合物と、Cu,Ag又はAuか
らなる高導電性金属又はこれらを主にした高導電性合金
との合金からなり、前記電極支持部は前記高導電性金属
又は合金からなるのが好ましい。
The arc electrode is made of Cr, W, Mo and Ta.
And an alloy of a highly conductive metal of Cu, Ag or Au or a highly conductive alloy mainly composed of these, and the electrode supporting portion is formed of the highly conductive metal or alloy. It preferably comprises

【0014】更に、前記アーク電極はCr,W,Mo及
びTaの1種又は2種以上の合計量50〜80重量%と
Cu,Ag又はAu20〜50重量%とを含む合金から
なり、前記電極支持部はCr,Ag,W,V,Nb,M
o,Ta,Zr,Si,Be,Ti,Co,Feの1種
又は2種以上の合計量が2.5重量%以下とCu,Ag又
はAuとの合金からなるものが好ましい。
Further, the arc electrode is made of an alloy containing one or more of Cr, W, Mo and Ta in a total amount of 50 to 80% by weight and Cu, Ag or Au in a content of 20 to 50% by weight. The support is Cr, Ag, W, V, Nb, M
It is preferable that one or more of o, Ta, Zr, Si, Be, Ti, Co, and Fe be composed of an alloy of Cu, Ag, or Au with a total amount of 2.5% by weight or less.

【0015】本発明におけるアーク電極は多孔質耐火金
属中に含浸した高導電性金属との複合合金よりなり、前
記アーク電極と電極支持部とは前記高導電金属の溶融に
よって一体に形成されているのが好ましい。
The arc electrode according to the present invention is made of a composite alloy of a highly conductive metal impregnated in a porous refractory metal, and the arc electrode and the electrode support are integrally formed by melting the highly conductive metal. Is preferred.

【0016】本発明における電極支持部と電極棒又は磁
界発生コイルとは0.2% 耐力が10kg/mm2以上で、
比抵抗が2.8μΩcm 以下のものとする。
In the present invention, the electrode supporting portion and the electrode rod or the magnetic field generating coil have a 0.2% proof stress of 10 kg / mm 2 or more,
The specific resistance shall be 2.8 μΩcm or less.

【0017】本発明は、前記固定側電極と可動側電極の
少なくとも一方は前記電極支持部に高導電性金属からな
る電極棒又は縦磁界発生コイルが設けられているもので
ある。
In the present invention, at least one of the fixed side electrode and the movable side electrode is provided with an electrode rod or a vertical magnetic field generating coil made of a highly conductive metal on the electrode support.

【0018】前記縦磁界発生コイルは前記電極支持部に
ろう付又は前記高導電性金属の溶融凝固によって一体に
形成することができる。
The vertical magnetic field generating coil can be integrally formed by brazing to the electrode support or by melting and solidifying the highly conductive metal.

【0019】前記縦磁界発生コイルは円筒状でその円周
面にスリット溝が設けられた形状又その横断面が略卍状
である形状がある。
The vertical magnetic field generating coil has a shape in which a slit groove is provided in the circumferential surface of the cylindrical shape and a shape in which the cross section is substantially swastika.

【0020】前記真空バルブは三相に対しては3組あ
り、該3組の真空バルブを横に並べて樹脂の絶縁筒によ
って一体に組込んだものが好ましい。
There are three sets of the vacuum valves for three phases, and it is preferable that the three sets of vacuum valves are arranged side by side and integrated integrally by a resin insulating cylinder.

【0021】また、本発明は、高真空に保たれた絶縁容
器内に固定側電極と可動側電極とを備えた真空バルブに
おいて、前記両電極は耐火性金属と高導電性金属との複
合部材よりなるアーク電極と、該アーク電極を支持する
高導電性金属からなる電極支持部と、該支持部に連らな
り前記高導電性金属からなる電極棒と、該電極支持部に
連らなる縦磁界発生コイルとを有し、前記アーク電極と
電極支持部とは前記高導電性金属の溶融によって一体に
形成されていることを特徴とする真空バルブにある。
According to the present invention, there is further provided a vacuum valve having a fixed side electrode and a movable side electrode in an insulating container maintained in a high vacuum, wherein the two electrodes are a composite member of a refractory metal and a highly conductive metal. An arc electrode made of a highly conductive metal supporting the arc electrode, an electrode rod connected to the support and made of the highly conductive metal, and a vertical connected to the electrode support. A vacuum valve having a magnetic field generating coil, wherein the arc electrode and the electrode support are integrally formed by melting the highly conductive metal.

【0022】本発明における真空バルブの電極,磁界発
生コイルの構成は前述と同様である。
The configuration of the electrodes of the vacuum valve and the magnetic field generating coil according to the present invention is the same as described above.

【0023】本発明は、耐火性金属と高導電性金属との
合金からなるアーク電極と、該アーク電極を支持する高
導電性金属からなる電極支持部と、該支持部に連らなり
前記高導電性金属からなる電極棒と、該電極支持部に連
らなる縦磁界発生コイルとが前記高導電性金属の溶融に
よって一体に形成されていることを特徴とする電極接点
にある。
According to the present invention, there is provided an arc electrode made of an alloy of a refractory metal and a highly conductive metal, an electrode support portion made of a highly conductive metal for supporting the arc electrode, and the electrode portion connected to the support portion. An electrode contact is characterized in that an electrode rod made of a conductive metal and a vertical magnetic field generating coil connected to the electrode support are integrally formed by melting the highly conductive metal.

【0024】本発明における電気接点のアーク電極の構
成は前述と同様である。
The configuration of the arc electrode of the electric contact in the present invention is the same as described above.

【0025】本発明は、耐火性金属と高導電性金属との
合金からなるアーク電極と、該アーク電極を支持する高
導電性金属からなる電極支持部と、該支持部に連らなり
前記高導電性金属からなる電極棒と、該電極支持部に連
らなる縦磁界発生コイルとを有する電気接点の製造法に
おいて、前記アーク電極は耐火性金属を有する多孔質焼
結体上に前記高導電性金属を載置し、該高導電性金属を
溶融して前記多孔質体中に溶浸させることにより形成
し、前記電極支持部と電極棒又は磁界発生コイルとは前
記溶浸後に残留する前記高導電性金属の厚さを前記電極
支持部として必要な厚さに設定することによって形成す
ることを特徴とする電気接点の製造法にある。
According to the present invention, there is provided an arc electrode made of an alloy of a refractory metal and a highly conductive metal, an electrode support portion made of a highly conductive metal for supporting the arc electrode, and the electrode portion connected to the support portion. In a method of manufacturing an electrical contact having an electrode rod made of a conductive metal and a vertical magnetic field generating coil connected to the electrode support, the arc electrode is provided on a porous sintered body having a refractory metal with the high conductivity. A conductive metal is placed, and the highly conductive metal is formed by melting and infiltrating the porous body, and the electrode support and the electrode rod or the magnetic field generating coil remain after the infiltration. A method of manufacturing an electrical contact, characterized in that the electrode is formed by setting the thickness of a highly conductive metal to a thickness required for the electrode support.

【0026】また、本発明は、前記アーク電極及び電極
支持部を前記高導電性金属に溶浸させて凝固させて形成
後、所望の温度に保持させて前記高導電性金属中に過飽
和に固溶した金属又は金属間化合物を析出させる熱処理
工程を有するものである。
Further, according to the present invention, the arc electrode and the electrode supporting portion are formed by infiltrating and solidifying the high-conductive metal and then maintaining the desired temperature to obtain a supersaturated solid in the high-conductive metal. It has a heat treatment step of precipitating the dissolved metal or intermetallic compound.

【0027】前記電気接点は真空バルブの固定側電極又
は可動側電極に用いることができる。
The electric contact can be used as a fixed electrode or a movable electrode of a vacuum valve.

【0028】本発明は、前記電極支持部に高導電性金属
からなる縦磁界発生コイルを有し、前記高導電性金属の
前記多孔質体への溶浸後に残留する厚さと形状を前記電
極支持部及び電極棒又は縦磁界発生コイルの形状に合わ
せて溶融凝固によって形成することができる。
According to the present invention, the electrode supporting portion has a vertical magnetic field generating coil made of a highly conductive metal, and the thickness and shape of the highly conductive metal remaining after infiltration into the porous body are determined by the electrode supporting portion. It can be formed by melting and solidifying according to the shape of the part and the electrode rod or the vertical magnetic field generating coil.

【0029】真空遮断器の電極構造は、アーク電極,ア
ーク電極支持部材及び電極棒からなり、必要に応じてコ
イル電極から構成される。アーク電極は耐火金属と導電
性金属との複合合金からなり、前者にはCr,W,M
o,Ta等の約1800℃以上の高融点の金属が用いら
れ、高導電性金属としてのCu,Ag,Auに対して固
溶量として3%以下の小さいものが好ましい。アーク電
極支持部材,コイル電極材及び電極棒には特に純Cuが
好ましいが、強度が小さいことからこれら各部材の変形
防止対策として鉄系材料の純Fe,ステンレス鋼で補強
し電極の変形防止につとめている。
The electrode structure of the vacuum circuit breaker comprises an arc electrode, an arc electrode support member and an electrode rod, and if necessary, a coil electrode. The arc electrode is made of a composite alloy of a refractory metal and a conductive metal, and the former includes Cr, W, M
A metal having a high melting point of about 1800 ° C. or higher such as o, Ta or the like is used, and a metal having a small solid solution amount of 3% or less with respect to Cu, Ag, and Au as highly conductive metals is preferable. Pure Cu is particularly preferable for the arc electrode supporting member, the coil electrode material and the electrode rod. However, since the strength is low, as a measure for preventing the deformation of these members, it is reinforced with pure iron or stainless steel of an iron-based material to prevent the electrode from being deformed. I'm working.

【0030】耐火金属は50〜80重量%、特に55〜
65重量%とCu,Ag又はAu20〜50重量%を含
む合金で、特に前者の多孔質焼結体又は若干の10重量
%以下の高導電金属を含む多孔質焼結体中に高導電性金
属を溶融含浸させた複合材とするのが好ましい。
The refractory metal is 50 to 80% by weight, especially 55 to 80% by weight.
An alloy containing 65% by weight and 20 to 50% by weight of Cu, Ag or Au, and particularly the former porous sintered body or a porous sintered body containing a small amount of 10% by weight or less of a highly conductive metal. Is preferably used as a composite material impregnated with a polymer.

【0031】また、アーク電極と電極支持部の2層構造
とし、電極支持部はアーク電極を補強支持するもので、
その半分以上の厚さとするのが好ましく、特にそれと同
等以上の厚さとすることが好ましい。多孔質焼結体は空
隙率を50〜70%とすることが好ましい。耐火金属と
しては特に、耐電圧特性を高めるためにCrに対して1
〜10重量%のNb,V,Fe,Ti,Zrの1種又は
2種以上を含むことができる。
The arc electrode and the electrode support have a two-layer structure, and the electrode support reinforces and supports the arc electrode.
The thickness is preferably at least half that thickness, and particularly preferably at least the same thickness. The porous sintered body preferably has a porosity of 50 to 70%. As a refractory metal, in particular, it is preferable to use 1
It may contain one or more of Nb, V, Fe, Ti and Zr in an amount of up to 10% by weight.

【0032】コイル電極には高導電性金属をろう付又は
電極支持部とともに多孔質耐火金属中への溶浸の際に同
時に鋳造技術と同様の方法で製造することができ、アー
ク電極材,アーク電極支持部材、及びコイル電極材とは
金相学的に連続した一体構造で構成できる。この結果、
各部材の機械加工工程,ろう付時の各部材組立工程の低
減、また、非接合であることから従来のろう付部の極部
発熱,ろう付不良によるアーク電極材の破壊,脱落等の
問題がなくなる。コイル電極をろう付にて形成する場合
にはセラミックス粒子を分散した複合材を用いることが
できる。
The coil electrode can be manufactured by the same method as the casting technique at the same time as brazing or infiltrating the porous refractory metal together with the electrode support portion with the highly conductive metal. The electrode support member and the coil electrode material can be configured as a monolithically continuous structure. As a result,
Reduction of machining process of each member and assembly process of each member at the time of brazing. Also, non-joining causes problems such as the extreme heat generation of the conventional brazing part, breakage and falling off of the arc electrode material due to poor brazing. Disappears. When the coil electrode is formed by brazing, a composite material in which ceramic particles are dispersed can be used.

【0033】また、本発明によれば、電極を構成するア
ーク電極材,アーク電極支持部材及びコイル電極材は、
金相学的に連続した一体構造で構成されると同時に一体
構造の電極製造と同一工程内でアーク電極支持部材及び
コイル電極材が得られ、0.01〜2.5 重量%のCr,A
g,W,V,Zr,Si,Mo,Ta,Be,Nb,T
iの1種又は2種以上をAu,Ag,Cu中に含有せし
めたものを用いることができる。したがって、アーク電
極支持部材及びコイル電極材の電気導伝性をあまり低下
させずに機械的強度、特に耐力を大幅に高めることがで
きる。その結果、電極間の接触圧力の増大,電極開閉時
の衝撃力にも充分対応でき、経時的な変形も解決でき
る。
Further, according to the present invention, the arc electrode material, the arc electrode support member and the coil electrode material constituting the electrode are:
An arc electrode supporting member and a coil electrode material can be obtained in the same process as in the manufacture of an electrode having a monolithic structure, and at the same time, a Cr-A content of 0.01 to 2.5% by weight can be obtained.
g, W, V, Zr, Si, Mo, Ta, Be, Nb, T
Au, Ag, and Cu containing one or more of i can be used. Therefore, the mechanical strength, particularly the proof stress, can be greatly increased without significantly lowering the electric conductivity of the arc electrode support member and the coil electrode material. As a result, it is possible to sufficiently cope with an increase in the contact pressure between the electrodes and the impact force at the time of opening and closing the electrodes, and it is possible to solve temporal deformation.

【0034】このように、アーク電極材,アーク電極支
持部材及びコイル電極材とは非接合であるとともに金相
学的に連続した一体化構造にしたことと、上記該部材の
高強度化の組み合わせにより従来の電極構造に比べて悪
影響を除去したより信頼性及び安全性の高い真空遮断器
を提供できる。
As described above, the arc electrode material, the arc electrode supporting member, and the coil electrode material are not joined to each other, and have a metallographically continuous integrated structure. And a highly reliable and safe vacuum circuit breaker in which the adverse effects are eliminated as compared with the above electrode structure.

【0035】本発明によれば、Cr,W,Mo,Ta粉
末又はこれにCu,Ag,Au粉末あるいは他の任意の
金属粒子を所定組成に混合し、その混合粉を所定の空隙
含有率になるように成形後、焼結し多孔質焼結体を形成
する。その後、純Cu,Ag,Au又はこれらの合金か
らなるブロックを前記焼結体上に載置し、溶融させて多
孔質焼結体の空隙に純Cu又はCu合金等の金属を溶浸
させる。その時、溶融溶浸材中への焼結体組成元素の液
相拡散を積極的に利用し、溶融溶浸材を前述の含有量と
なるように合金化する。溶浸完了後の鋳塊を所定形状の
電極に加工する。
According to the present invention, Cr, W, Mo, Ta powder or Cu, Ag, Au powder or any other metal particles are mixed into a predetermined composition, and the mixed powder is adjusted to a predetermined void content. Then, after being molded, it is sintered to form a porous sintered body. Thereafter, a block made of pure Cu, Ag, Au, or an alloy thereof is placed on the sintered body and melted to infiltrate the voids of the porous sintered body with a metal such as pure Cu or a Cu alloy. At this time, the molten infiltrant is alloyed to have the above-mentioned content by positively utilizing the liquid phase diffusion of the constituent elements of the sintered body into the molten infiltrant. The ingot after completion of infiltration is processed into an electrode having a predetermined shape.

【0036】高導電性金属の溶浸に際しては溶浸の温度
と保持時間によって高導電性金属への多孔質体金属の溶
解量をコントロールでき、特に電極支持部,コイル電極
に対する比抵抗と強度とを考慮して温度及び時間が設定
される。勿論高導電性金属に対して予め合金元素を加え
た合金を用いることもできるので、両者を考慮して決定
される。その結果、前述の強度が高く、比抵抗の低いも
のが得られることから高い性能のものが得られる。
In the infiltration of a highly conductive metal, the amount of the porous metal dissolved in the highly conductive metal can be controlled by the infiltration temperature and the holding time. Is set in consideration of the temperature. Of course, an alloy in which an alloy element is added to a highly conductive metal in advance can also be used. As a result, a material having high strength and a low specific resistance can be obtained, so that a material having high performance can be obtained.

【0037】本発明における電極は前述の如く所望の形
状で溶浸と鋳造技術との組合わせによって求めるものを
作ることができるが、前述した最終形状として切削加工
によって得られる。
As described above, the electrode in the present invention can be formed in a desired shape by a combination of infiltration and casting techniques, but can be obtained by cutting as the final shape described above.

【0038】真空遮断器は、断路器,接地開閉器,避雷
器,変流器とともに用いられ、高層ビル,ホテル,イン
テリジェントビル,地下街,石油コンビナート,各種工
場,駅,病院,会館,地下鉄,上下水道等の公共設備な
どの電源として欠かせない高圧受変電設備として用いら
れる。
Vacuum circuit breakers are used together with disconnectors, grounding switches, lightning arresters, and current transformers, and are used for high-rise buildings, hotels, intelligent buildings, underground shopping centers, petroleum complexes, various factories, stations, hospitals, halls, subways, and water and sewage systems. It is used as a high-voltage receiving and transforming equipment that is indispensable as a power source for public facilities and the like.

【0039】[0039]

【発明の実施の形態】実施例1 図1(a)は、本発明の方法で試作した一体構造電極の
鋳塊断面を示すものである。図中、1がアーク電極材、
2がアーク電極支持部材、3が溶浸用Cuの供給材と押
湯の部材である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 (a) shows a cross section of an ingot of an electrode having a monolithic structure which is experimentally produced by the method of the present invention. In the figure, 1 is an arc electrode material,
Reference numeral 2 denotes an arc electrode support member, and reference numeral 3 denotes a member for supplying Cu for infiltration and a feeder.

【0040】5重量%のCu粉末と95重量%のCr粉
末をV型ミキサーにより混合後、直径80mmの金型を用
いて、成形圧力1.5ton/cm2 で直径80mm,厚さ9mm
の成形体を作製した。その成型体を水素雰囲気中、焼結
温度1200℃×30分で焼結体とした。この時の焼結
体空隙率は65%である。次に図1(b)は電極の製造
法を示す図で、図に示すように、100メッシュ〜32
5メッシュのアルミナ粉4(Al23)を10mm程度に
敷いた内径90mm×外径100mm×高さ100mmの黒鉛
容器5の底面中央に上記焼結体6を置き、純Cuからな
る直径80mm,厚さ15mmのアーク電極支持部及びコイ
ル電極部となる溶浸材7を前記焼結体6と同一円心上に
載置した。次に直径28mm,長さ25mmの溶浸材及び押
湯部を形成するCuからなる押湯8を溶浸材7と同一円
心上に設置する。黒鉛容器5内には純Cuからなる溶浸
材7及び押湯8とアルミナ粉9を充填する。
After mixing 5% by weight of Cu powder and 95% by weight of Cr powder with a V-type mixer, using a mold having a diameter of 80 mm, a molding pressure of 1.5 ton / cm 2 , a diameter of 80 mm and a thickness of 9 mm.
Was formed. The molded body was sintered in a hydrogen atmosphere at a sintering temperature of 1200 ° C. for 30 minutes. The porosity of the sintered body at this time is 65%. Next, FIG. 1B is a diagram showing a method of manufacturing an electrode, and as shown in FIG.
The sintered body 6 is placed at the center of the bottom surface of a graphite container 5 having an inner diameter of 90 mm, an outer diameter of 100 mm and a height of 100 mm on which a 5-mesh alumina powder 4 (Al 2 O 3 ) is spread to about 10 mm, and has a diameter of 80 mm made of pure Cu. An infiltration material 7 serving as an arc electrode supporting portion and a coil electrode portion having a thickness of 15 mm was placed on the same center as the sintered body 6. Next, an infiltrant having a diameter of 28 mm and a length of 25 mm and a feeder 8 made of Cu forming a feeder portion are placed on the same center as the infiltrant 7. The graphite container 5 is filled with an infiltrant 7 made of pure Cu, a feeder 8 and alumina powder 9.

【0041】溶浸条件は、1×10-5トル以下の真空中
で1,200 ℃×90分間保持し、アーク電極支持部及
びコイル電極部材となる溶浸7と溶浸用Cu供給及び押
湯8が溶融するとともに溶浸材が焼結体6のスケルトン
中に均一にしみこませた後、真空雰囲気中で放冷凝固さ
せる。図1(a)は、凝固後に黒鉛容器から取り出した
鋳塊の断面外観である。また図1(c)には切削加工後
のアーク電極1とアーク電極支持部2とを示し、両者の
界面部を顕微鏡組織写真により観察した結果、Cr焼結
体の空孔にCuが溶浸していることが明らかとなった。
The infiltration conditions are as follows: the vacuum is maintained at 1,200 ° C. for 90 minutes in a vacuum of 1 × 10 −5 Torr or less. After the hot water 8 is melted and the infiltration material is uniformly soaked into the skeleton of the sintered body 6, it is allowed to cool and solidify in a vacuum atmosphere. FIG. 1A is a cross-sectional appearance of an ingot taken out of a graphite container after solidification. Further, FIG. 1 (c) shows the arc electrode 1 and the arc electrode support 2 after cutting, and as a result of observing the interface between the two with a microstructure photograph, Cu was infiltrated into the pores of the Cr sintered body. It became clear that.

【0042】このように本発明方法によれば図1(a)
及び図1(c)からもわかるようにアーク電極,アーク
電極支持部及び電極棒又はコイル電極部とが一体構造で
構成される電極が十分作製可能であることがわかる。ア
ーク電極と電極支持部とは同等の厚さである。また、ア
ーク電極材とアーク電極支持部材の界面は金相学的に完
全に連続一体化がなされており、ろう付等による接合が
不必要であることがわかる。
As described above, according to the method of the present invention, FIG.
Also, as can be seen from FIG. 1 (c), it can be seen that an electrode having an integral structure of the arc electrode, the arc electrode support, the electrode rod or the coil electrode can be sufficiently manufactured. The arc electrode and the electrode support have the same thickness. Further, the interface between the arc electrode material and the arc electrode supporting member is completely integrated in a metallographic manner, and it can be seen that joining by brazing or the like is unnecessary.

【0043】図2は図1(b)の鋳型を3段にしたもの
で、一度に3個のものを製造することができる。同様の
手法は実施例2に対しても実施することができる。3個
に限らず、所望の個数を一度に製造することができる。
FIG. 2 shows three molds of the mold of FIG. 1B, and three molds can be manufactured at a time. A similar technique can be implemented for the second embodiment. Not only three but also a desired number can be manufactured at a time.

【0044】実施例2 図3は、溶浸状態とその鋳塊を用いて製作した電極形状
を示したものである。溶浸条件は実施例1とほぼ同様で
ある。
Example 2 FIG. 3 shows an infiltrated state and an electrode shape manufactured using the ingot. The infiltration conditions are almost the same as in Example 1.

【0045】No.2 は、実施例1に対し黒鉛容器5の
長さを150mmにし、アーク電極支持部材及びコイル電
極部材11の長さを45mmとした。また溶浸保持時間は
120分とし、その他は実施例1と同様である。このよう
にして得た鋳塊から(a)及び(b)型の電極を作製し
た。つまり(a)型は、アーク電極12,アーク電極支
持部13及びコイル電極材14を一体構造とし、電極棒
15をろう付により接合16したものである。また、
(b)型は、(a)型に対し中心に純Feからなる補強
部材17を設けたものである。補強部材17は電極支持
部13と電極棒15に各々ろう付される。
In No. 2, the length of the graphite container 5 was set to 150 mm and the length of the arc electrode support member and the coil electrode member 11 was set to 45 mm in comparison with the first embodiment. The infiltration hold time is
The time was set to 120 minutes, and the other conditions were the same as in Example 1. (A) and (b) type electrodes were produced from the ingot thus obtained. That is, the type (a) has the arc electrode 12, the arc electrode support portion 13, and the coil electrode material 14 integrally formed, and the electrode rod 15 is joined 16 by brazing. Also,
The type (b) has a reinforcing member 17 made of pure Fe at the center of the type (a). The reinforcing member 17 is brazed to the electrode support 13 and the electrode rod 15, respectively.

【0046】No.3 はNo.2 に対しアーク電極支持
部材及びコイル電極部材19の形状を凹形にするととも
に、溶浸用Cu供給及び押湯部材18を排除した状態で
溶浸した。No.3 の鋳塊からは(a)型の電極形状を
製作した。
No. 3 was infiltrated with respect to No. 2 with the shape of the arc electrode supporting member and the coil electrode member 19 being concave, and excluding the infiltration Cu supply and the feeder member 18. From the ingot of No. 3, an electrode shape of (a) type was manufactured.

【0047】No.4 はNo.2 に対し溶浸用Cu供給
及び押湯部材20の長さを100mmとし、黒鉛容器5の
長さを200mmとした。No.4 の鋳塊からは(c)型
の電極を作製した。(c)型の電極はろう付接合を使用
せずとも電極棒22を含めた一体構造の電極構成が可能
である。No.3 の鋳塊からは(c)型以外にも(a)型
及び(b)型の電極構造を切削加工によって作製でき
る。
For No. 4, the length of the infiltration Cu supply and feeder member 20 was set to 100 mm and the length of the graphite container 5 was set to 200 mm with respect to No. 2. An electrode of type (c) was produced from the ingot of No. 4. The electrode of the (c) type can have an integral electrode structure including the electrode rod 22 without using brazing. From the ingot of No. 3, in addition to the (c) type, the (a) and (b) type electrode structures can be produced by cutting.

【0048】No.5 はNo.4 に対しアーク電極支持
部材及びコイル電極部材23及び溶浸用Cu供給及び押
湯部材24の中心に焼結体26に向ってラッパ型の鉄芯
を入れたものである。この鉄芯に関してはCuの融点よ
り高いものであり、形状にはこだわらない。No.5 の
鋳塊からは(d)型と(e)型の電極を作製した。
In No. 5, a trumpet-shaped iron core was inserted toward the sintered body 26 at the center of the arc electrode support member and the coil electrode member 23 and the supply and feeding member 24 of Cu for infiltration with respect to No. 4. Things. This iron core is higher than the melting point of Cu, and does not care about the shape. From the ingot of No. 5, (d) type and (e) type electrodes were produced.

【0049】(d)型電極は(c)型電極の中心に補強
部材27を鋳ぐるんだ形状である。
The (d) type electrode has a shape in which a reinforcing member 27 is cast in the center of the (c) type electrode.

【0050】(e)型電極は(b)型電極の補強部材1
7の替りに鉄芯を鋳ぐるんだ形状の電極である。
The (e) type electrode is a reinforcing member 1 of the (b) type electrode.
It is an electrode in which an iron core is cast in place of 7.

【0051】以上の結果において、それぞれの鋳塊寸法
と溶浸前の状態の寸法変化を測定した結果、アーク電極
支持部材及びコイル電極部材の寸法は溶浸前の状態と溶
浸後の鋳塊寸法の差異はほとんどなかった。一方、押湯
部材の寸法測定結果、溶浸前の状態で25mmに対し、溶
浸後の鋳塊寸法は10mmに減少した。このように本発明
を達成させる第1条件として、アーク電極支持部材及び
コイル電極部材と溶浸用Cu又はCu合金供給及び押湯
部材とを2重構造にすることである。
From the above results, the dimensions of the ingot and the dimensions before the infiltration were measured. As a result, the dimensions of the arc electrode supporting member and the coil electrode member were changed between the state before the infiltration and the ingot after the infiltration. There were few dimensional differences. On the other hand, as a result of measuring the dimensions of the feeder member, the ingot size after infiltration was reduced to 10 mm compared to 25 mm before infiltration. As described above, the first condition for achieving the present invention is that the arc electrode supporting member and the coil electrode member and the Cu or Cu alloy supply and feeder member for infiltration have a double structure.

【0052】また健全かつ、目的の鋳塊寸法を得るため
には、鋳塊の冷却速度のコントロールが重要である。鋳
塊側面からの冷却速度より鋳塊上部の冷却速度を大きく
する必要がある。本発明を達成する第2条件として、鋳
塊上部の冷却速度を大きくする保温剤としてアルミナ
(Al23)等の比熱が大きく、Cu溶湯と反応しない
セラミックス粒子が適当である。この時のセラミックス
粒径が大き過ぎたり、小さ過ぎたりすると溶湯はセラミ
ックス粒子間を通して流れ出てしまい鋳型の役目をなさ
ない。最適粒径は20メッシュから325メッシュであ
る。また、保温のためのセラミックス粒子の必要量は、
目的の鋳塊直径寸法の2/3以上の厚さが必要である。
In order to obtain a sound and desired ingot size, it is important to control the cooling rate of the ingot. It is necessary to make the cooling rate at the upper part of the ingot higher than that at the side of the ingot. As a second condition for achieving the present invention, ceramic particles which have a large specific heat, such as alumina (Al 2 O 3 ), and do not react with the molten Cu are suitable as a heat retaining agent for increasing the cooling rate of the upper part of the ingot. If the ceramic particle size at this time is too large or too small, the molten metal flows through between the ceramic particles and does not serve as a mold. The optimal particle size is between 20 mesh and 325 mesh. Also, the required amount of ceramic particles to keep warm is
The thickness is required to be 2/3 or more of the diameter size of the target ingot.

【0053】実施例3 表1は、実施例2のNo.2 の溶浸したままのものにお
いて溶浸温度を種々に変えた場合の鋳塊中のCr量を分
析した結果と、焼結体6及びアーク電極支持部材及びコ
イル電極部材11のそれぞれの組成を変化させた場合の
鋳塊中のそれぞれの組成元素を分析した結果を示したも
のである。なお、溶湯用Cu供給及び押湯8は同じ組成
である。
Example 3 Table 1 shows the results of analyzing the amount of Cr in the ingot when the infiltration temperature was variously changed in the infiltrated No. 2 of Example 2 and the sintered body. 6 shows the results of analyzing the respective composition elements in the ingot when the respective compositions of the arc electrode support member 6 and the coil electrode member 11 were changed. The Cu supply for the molten metal and the feeder 8 have the same composition.

【0054】No.6〜No.8は、焼結体6の組成Cr
−5Cu材に純Cuを溶浸する時の溶浸温度を変え、1
20分保持した場合の鋳塊中のCr量である。溶浸温度
1250℃の場合の鋳塊組成は1.65% Crを含有するC
u合金になることがわかる。No.9,10,14,1
5,16,18 は、焼結体6の組成をCr−5Cu一
定とし、溶浸材の組成をそれぞれCu−Ag,Cu−Z
r,Cu−Si,Cu−Be合金を用いた場合の鋳塊中
の元素分析結果である。各鋳塊ともCrを約0.6% 程
度を含む3元Cu合金になることがわかる。
No. 6 to No. 8 indicate the composition Cr of the sintered body 6
-5 Change the infiltration temperature when pure copper is infiltrated into Cu material.
This is the amount of Cr in the ingot when held for 20 minutes. Infiltration temperature
The ingot composition at 1250 ° C is C containing 1.65% Cr.
It turns out that it becomes a u alloy. No. 9, 10, 14, 1
5, 16 and 18, the compositions of the sintered body 6 are fixed at Cr-5Cu, and the compositions of the infiltrant are Cu-Ag and Cu-Z, respectively.
It is an elemental analysis result in an ingot when r, Cu-Si, Cu-Be alloy is used. It can be seen that each ingot becomes a ternary Cu alloy containing about 0.6% Cr.

【0055】No.11,12,13,17は、溶浸材
7,押湯8の組成を純Cu一定とし焼結体6の組成をそ
れぞれCr−5CuにV,Nb,V,Nb,Wを添加し
た場合の鋳塊中の元素分析結果である。各鋳塊ともV,
Nb,Wの含有量は0.02%以下であり、鋳塊組成は
1.0% 程度のCrを含むCu合金であることがわか
る。
In Nos. 11, 12, 13, and 17, the compositions of the infiltration material 7 and the feeder 8 were made pure Cu, and the composition of the sintered body 6 was V, Nb, V, Nb, W in Cr-5Cu. 5 shows the results of elemental analysis in an ingot when adding iron. V,
It can be seen that the contents of Nb and W are 0.02% or less, and the ingot composition is a Cu alloy containing about 1.0% Cr.

【0056】[0056]

【表1】 [Table 1]

【0057】表2は、アーク電極(組成:59重量%C
r−41重量%Cu)と純Cu材を従来方法であるろう
付接合(条件:温度800℃,真空中、Ni系ろう材)
した場合(厚さ約3μm)の接合部の電気抵抗及び強度
の測定結果(比較例1)、及び800℃で焼鈍した純銅
の電気抵抗値(比較例2)とNo.6〜18 で得た鋳塊
の電気抵抗及び強度測定結果を示したものである。電気
抵抗測定は4点式抵抗測定法で、強度測定はアームスラ
引張試験機を用いて実施した。
Table 2 shows that the arc electrode (composition: 59% by weight C)
r-41 wt% Cu) and a pure Cu material are brazed by a conventional method (condition: 800 ° C., vacuum, Ni-based brazing material).
In this case, the electrical resistance and strength of the joined portion were measured (Comparative Example 1), the electrical resistance value of pure copper annealed at 800 ° C. (Comparative Example 2), and Nos. 6 to 18 were obtained. It shows the electrical resistance and strength measurement results of the ingot. The electric resistance was measured by a four-point resistance measuring method, and the strength was measured by using an arm slash tensile tester.

【0058】従来方法でろう付接合した(比較例1)界
面の強度は22〜12kg/mm2 とばらつきが大きく、強
度12kg/mm2 の試験片にはろう付不良部が確認され
た。また、界面部を含む電気抵抗値は4.82μΩ・cm
と純銅材(比較例2)に比べ約3〜4倍の高い抵抗値で
ある。それに対しNo.6の界面強度は24〜25kg/m
m2 と安定した強度を示し、試験片の欠陥は観察されな
かった。また、本発明の実施例では界面を含む電気抵抗
値は測定できないものである。比較例1のアーク電極の
相手材が純Cuに対し、No.6 の相手材にはCrが約
0.62% 含むCu合金であるにもかかわらず、界面が
ないので、比抵抗は1.95μΩcm と比較例1より低い
値である。これは従来技術のろう付接合部界面の抵抗値
が非常に大きいことがわかる。
[0058] Conventional bonded brazing in a manner (Comparative Example 1) strength of the interface is 22~12kg / mm 2 and the variation is large, the test piece strength 12 kg / mm 2 failure portion braze was observed. The electric resistance including the interface is 4.82 μΩ · cm.
And about 3 to 4 times higher resistance than pure copper material (Comparative Example 2). On the other hand, the interface strength of No. 6 is 24 to 25 kg / m
The test piece showed a stable strength of m 2, and no defect was observed on the test piece. Further, in the embodiment of the present invention, the electric resistance including the interface cannot be measured. Although the mating material of the arc electrode of Comparative Example 1 was pure Cu and the mating material of No. 6 was a Cu alloy containing about 0.62% of Cr, there was no interface, so the specific resistance was 1. 95 μΩcm, which is lower than Comparative Example 1. This indicates that the resistance value at the interface of the brazed joint in the prior art is very large.

【0059】一方、比較例2の純Cuの強度は最大値2
2〜23kg/mm2 に対し0.2% 耐力は4〜5kg/mm2
と非常に軟弱であり、アーク電極支持部材あるいはコイ
ル電極材に使用した場合には衝撃的な荷重に耐えきれず
経時的に変形してしまうことがわかる。これに対し、C
rあるいはAg,V,Nb,Zr,Si,W,Beをそ
れぞれ含有したCu合金であるNo.7〜18 の電気抵
抗値は、焼鈍純Cuに比較すれば約1.5〜2.0倍の抵
抗値を示したが、従来技術のろう付接合界面抵抗値と比
較すると約半分以下であり充分に実機真空遮断器用電極
材に使用可能である。またNo.7〜18 の強度は、い
ずれも最大強度22〜25kg/mm2 と純Cuとあまり変
っていないが0.2% 耐力値において10〜14kg/mm
2 と2倍に強度向上がはかられている。
On the other hand, the strength of pure Cu of Comparative Example 2 was the maximum value of 2
0.2% proof stress to 2~23kg / mm 2 is 4~5kg / mm 2
It can be seen that, when used as an arc electrode support member or a coil electrode material, it cannot withstand an impact load and is deformed with time. In contrast, C
r or the Cu alloys containing Ag, V, Nb, Zr, Si, W, and Be, respectively, have electrical resistance values of about 1.5 to 2.0 times as compared to pure annealed Cu. However, when compared with the resistance value of the brazing joint interface of the prior art, it is about half or less, so that it can be sufficiently used as an electrode material for an actual vacuum circuit breaker. The strength of Nos. 7 to 18 was 22 to 25 kg / mm 2 at the maximum strength, which was not much different from that of pure Cu, but was 10 to 14 kg / mm at a 0.2% proof stress value.
The strength is improved twice and twice.

【0060】このように、本発明によるCrあるいはA
g,V,Nb,Zr,Si,W及び、Beをそれぞれ含
有するCu合金製アーク電極支持部材,コイル電極材及
び電極棒は、電極開閉時の衝撃的荷重の繰り返しによる
変形が生じないため変形にともなう溶着障害を防止して
信頼性及び安全性の向上が図られる。
As described above, Cr or A according to the present invention is used.
The arc electrode supporting member, coil electrode material and electrode rod made of Cu alloy containing g, V, Nb, Zr, Si, W and Be, respectively, are not deformed due to repetitive impact loads when the electrode is opened and closed. Thus, welding failure due to the above is prevented to improve reliability and safety.

【0061】[0061]

【表2】 [Table 2]

【0062】図4は溶浸温度と多孔質Cr焼結体からの
溶浸材中へのCrの固溶量との関係を示す線図である。
図に示すように溶浸温度を高めることによって溶浸材中
へのCr量を高めることができる。また、所望のCr量
を得るには溶浸温度によって定めることができる。
FIG. 4 is a graph showing the relationship between the infiltration temperature and the amount of Cr dissolved in the infiltration material from the porous Cr sintered body.
As shown in the figure, by increasing the infiltration temperature, the amount of Cr in the infiltration material can be increased. Further, a desired amount of Cr can be determined by the infiltration temperature.

【0063】図5はCu中への合金元素の含有量と0.
2% 耐力との関係を示す線図である。図に示すように
Crのみの含有とCrと他の元素とを含む合金のいずれ
も含有量の増大によって強化されることが明らかであ
る。また、Cr単独に対して、他の元素と一緒に含有し
た合金の方が同じ全含有量でも高強度を有する。各元素
の含有量としてAg0.1%,Zr0.1%,Si0.1
%,Be0.05%,Nb,V,Wは各々0.01% 以
上とすることにより10kg/mm2 以上の耐力が得られ
る。
FIG. 5 shows the relationship between the content of alloying elements in Cu and
It is a diagram which shows the relationship with 2% proof stress. As shown in the figure, it is clear that both the content of Cr alone and the alloy containing Cr and other elements are strengthened by increasing the content. Further, an alloy containing Cr together with another element has higher strength than Cr alone, even at the same total content. The content of each element is 0.1% Ag, 0.1% Zr, 0.1% Si.
%, Be 0.05%, Nb, V, and W are each 0.01% or more, whereby a yield strength of 10 kg / mm 2 or more can be obtained.

【0064】図6は0.2% 耐力と比抵抗との関係を示
す線図である。図4に示すようにCu中への全固溶量の
増大によって強度の向上とともに比抵抗も増すので、比
抵抗の増加を少なくして強度の向上を図るにはCr単独
よりも他の元素を加えることによって得られることが分
る。特に、Si以外は比抵抗が小さくて高強度が得られ
る。特に、0.2%耐力を10kg/mm2以上、比抵抗1.
9〜2.8μΩcmが好ましい。
FIG. 6 is a diagram showing the relationship between the 0.2% proof stress and the specific resistance. As shown in FIG. 4, since the specific resistance increases along with the strength by increasing the total solid solution amount in Cu, it is necessary to reduce the increase in the specific resistance and improve the strength by using other elements than Cr alone. It turns out that it can be obtained by adding. In particular, other than Si, the specific resistance is small and high strength can be obtained. In particular, a 0.2% proof stress of 10 kg / mm 2 or more and a specific resistance of 1.
It is preferably from 9 to 2.8 μΩcm.

【0065】図7はCr,Si,Be,Zr,Ag,N
b,V及びW量と比抵抗との関係を示す線図である。比
抵抗は合金元素を加えることによって増加するが、電極
支持部及びコイル電極の比抵抗は出来るだけ小さくする
ことによって通電中の電極温度を低く押えることができ
ること及び遮断時のアーク発生に伴うアーク熱を電極棒
を通して冷却する必要があり、その熱伝導を高くする必
要があることから熱伝導率を高く維持することができ
る。本実施例においては所望の比抵抗を図によっておお
よその値のものを求めることができる。Crをアーク電
極として用いる場合にはCrの溶浸量を考慮し、各元素
の含有量をSi0.5%,Be0.5%,Zr1.5%,A
g2.5% ,Nb,V,Wは各々0.1% を上限として
含有させることが好ましい。比抵抗として3.0μΩcm
以下とするのが好ましい。
FIG. 7 shows Cr, Si, Be, Zr, Ag, N
It is a diagram which shows the relationship between b, V, W amount, and specific resistance. The specific resistance increases with the addition of alloying elements, but the electrode resistance during energization can be kept low by reducing the specific resistance of the electrode support and coil electrode as much as possible. Needs to be cooled through the electrode rods, and the heat conductivity needs to be increased, so that the heat conductivity can be kept high. In the present embodiment, the desired specific resistance can be roughly determined from the figure. When Cr is used as the arc electrode, the content of each element is set to 0.5% for Si, 0.5% for Be, 1.5% for Zr,
g2.5%, Nb, V and W are each preferably contained in an upper limit of 0.1%. 3.0μΩcm as specific resistance
It is preferable to set the following.

【0066】実施例4 図8は本発明に係るアーク電極を用いた真空バルブの断
面図である。
Embodiment 4 FIG. 8 is a sectional view of a vacuum bulb using an arc electrode according to the present invention.

【0067】絶縁材で形成された絶縁筒体からなる真空
容器35の上・下開口部に上・下一体をなす端板38
a,38bを設けて真空室を形成する真空容器を構成
し、上記上端板38aの中程に固定電極30aの一部を
形成する固定側の電極棒34aを垂設し、この固定側の
電極棒34aに縦磁界発生コイル33a及びアーク電極
31aを設け、上記固定電極30aの直下に位置する上
記下端板38bの中程に可動電極30bの一部を形成す
る可動側の電極棒34bを昇降自在に設け、この可動側
の電極棒34bに上記縦磁界発生コイル33a及びアー
ク電極31bと同形等大の縦磁界発生コイル33b及び
アーク電極31bを付設し、上記固定電極30aのアー
ク電極31aに対して上記可動電極30bのアーク電極
31bを接離するようにし、上記可動側の電極棒34b
の周りに位置する上記下端板38bの内がわに金属製ベ
ローズ37を伸縮するようにして被冠して設け、さら
に、上記両アーク電極の周りに円筒状をなす金属板のシ
ールド部材36を絶縁筒体からなる真空容器35によっ
て設置し、このシールド部材36は上記絶縁筒体の絶縁
性を損なわないようにして構成したものである。
An upper and lower end plate 38 is integrally formed at upper and lower openings of a vacuum vessel 35 made of an insulating cylinder formed of an insulating material.
a and 38b are provided to form a vacuum chamber, and a fixed-side electrode rod 34a that forms a part of the fixed electrode 30a is provided vertically in the middle of the upper end plate 38a. A vertical magnetic field generating coil 33a and an arc electrode 31a are provided on a rod 34a, and a movable electrode rod 34b forming a part of the movable electrode 30b is formed in the middle of the lower end plate 38b located immediately below the fixed electrode 30a. The movable-side electrode rod 34b is provided with a vertical magnetic field generating coil 33b and an arc electrode 31b of the same size as the vertical magnetic field generating coil 33a and the arc electrode 31b, and is provided with respect to the arc electrode 31a of the fixed electrode 30a. The movable electrode 30b is brought into contact with and separated from the arc electrode 31b, and the movable electrode rod 34b is
A metal bellows 37 is provided so as to extend and contract inside the lower end plate 38b positioned around the lower end plate 38b, and a cylindrical metal plate shield member 36 is formed around the two arc electrodes. The shield member 36 is provided by a vacuum vessel 35 formed of an insulating cylinder, and is configured so as not to impair the insulation of the insulating cylinder.

【0068】さらに、上記アーク電極31a,31bは
前述の溶浸によって得られたアーク極支持部32a,3
2bに一体固着され、各縦磁界発生コイル33a,33
bに純鉄からなる補強部材39a,39bによって補強
されてろう付される。補強部材39a,39bとして他
にオーステナイト系ステンレス鋼が用いられる。絶縁筒
体からなる真空容器35にはガラス,セラミックス焼結
体が用いられる。絶縁筒体からなる真空容器35は金属
製端板38a,38bにコバール等のガラス,セラミッ
クスの熱膨脹係数に近い合金板を介してろう付され、1
-6mmHg以下の高真空に保たれる。
Further, the arc electrodes 31a, 31b are connected to the arc pole supporting portions 32a, 32 obtained by the above-described infiltration.
2b, and each of the longitudinal magnetic field generating coils 33a, 33
b is reinforced by brazing members 39a and 39b made of pure iron and brazed. Austenitic stainless steel is used as the reinforcing members 39a and 39b. Glass and ceramic sintered bodies are used for the vacuum container 35 formed of an insulating cylinder. The vacuum vessel 35 composed of an insulating cylinder is brazed to metal end plates 38a and 38b via an alloy plate having a thermal expansion coefficient close to that of glass such as Kovar or ceramics.
0 -6 mmHg is maintained below the high vacuum.

【0069】固定側の電極棒34aは端子に接続され、
電流の通路となる。排気管(図示なし)は上端板38a
に設けられ、排気のとき真空ポンプに接続される。ゲッ
タは真空容器内部に微量のガスが発生した場合に吸収し
て真空を保つ働きとして設けられる。シールド部材36
はアークによって発生した主電極表面の金属蒸気を付着
させ、冷却させる働きを有し、また付着した金属はゲッ
タ作用を有する真空度保持の働きを有する。
The fixed electrode rod 34a is connected to a terminal,
It becomes a current path. The exhaust pipe (not shown) is the upper end plate 38a.
And connected to a vacuum pump when exhausting. The getter is provided to absorb a small amount of gas generated inside the vacuum vessel and maintain the vacuum. Shield member 36
Has a function of adhering and cooling metal vapor on the main electrode surface generated by the arc, and has a function of maintaining a degree of vacuum having a getter function.

【0070】図9は電極の詳細を示す断面図である。固
定電極及び可動電極のいずれもほぼ同じ構造を有する。
アーク電極部31は実施例1に示すCuからなる電極支
持部をCuの溶浸によって一体化したものである。この
一体のものを図のように切削加工によって得た。電極支
持部32には更に非磁性のオーステナイト系ステンレス
鋼からなる補強の平板40をろう付するとともに、コイ
ル電極33にも同様の平板をろう付した。コイル電極3
3は純銅からなるもので、前述のろう材より低融点のろ
う材を用いて電極棒34及び電極に各々ろう付した。
FIG. 9 is a sectional view showing details of the electrodes. Both the fixed electrode and the movable electrode have substantially the same structure.
The arc electrode portion 31 is obtained by integrating the electrode support portion made of Cu shown in Example 1 by infiltration of Cu. This one was obtained by cutting as shown in the figure. A reinforcing flat plate 40 made of nonmagnetic austenitic stainless steel was further brazed to the electrode support portion 32, and a similar flat plate was brazed to the coil electrode 33. Coil electrode 3
Numeral 3 is made of pure copper, and was brazed to the electrode rod 34 and the electrode using a brazing material having a lower melting point than the above-mentioned brazing material.

【0071】本実施例における電極支持部32は純銅を
溶浸によって形成したもので、その支持部32へのCr
量は溶浸温度によって異なることは前述の通りであり、
要求される強度と電気抵抗とを考慮して決められる。
尚、電気抵抗は熱処理によって化合物を析出させること
によって強度を下げずに低めることができる。特に、本
実施例においては純銅を溶浸後、900℃まで放冷し、
その温度から700〜800℃付近までを3時間及びそ
の温度から更に600〜700℃付近までを2時間かけ
てゆっくり冷却することによってCrの析出物を形成さ
せた。
The electrode support 32 in this embodiment is made of pure copper by infiltration.
As described above, the amount varies depending on the infiltration temperature,
It is determined in consideration of required strength and electric resistance.
The electric resistance can be reduced without lowering the strength by precipitating the compound by heat treatment. In particular, in this example, after infiltrating pure copper, it was allowed to cool to 900 ° C.,
By gradually cooling from that temperature to around 700 to 800 ° C. for 3 hours and further from that temperature to around 600 to 700 ° C. for 2 hours, Cr precipitates were formed.

【0072】図10は本実施例における電極部とコイル
電極33との結合状態を示す斜視図である。可動側の電
極棒34bが軸方向に移動させると可動電極30bは固
定電極30aと電気的に接離すると同時に両電極間にア
ーク電流49が生じ、金属蒸気を発生する。
FIG. 10 is a perspective view showing the connection between the electrode section and the coil electrode 33 in this embodiment. When the movable-side electrode rod 34b moves in the axial direction, the movable electrode 30b electrically contacts and separates from the fixed electrode 30a, and at the same time, an arc current 49 is generated between the two electrodes to generate metal vapor.

【0073】金属蒸気は絶縁筒からなる真空容器35に
支持されている中間シールド部材36に附着すると共
に、円筒状コイル電極33の軸方向磁界により分散し
て、消弧する。円筒状コイル電極33は固定および可動
電極30a,30bに取付けられているが、少なくとも
一方側に設ければよい。
The metal vapor adheres to the intermediate shield member 36 supported by the vacuum vessel 35 composed of an insulating cylinder, and is dispersed by the axial magnetic field of the cylindrical coil electrode 33 to extinguish the arc. The cylindrical coil electrode 33 is attached to the fixed and movable electrodes 30a and 30b, but may be provided on at least one side.

【0074】主のアーク電極41の裏面に取付けられた
円筒状コイル電極33は、一端に開口を有する円筒部か
らなるコイル電極42から構成されている。円筒部から
なるコイル電極42は一端にアーク電極支持部13を他
端に開口を有している。補強部材39は、高抵抗部材た
とえばFe,ステンレス等から成り、底面43と主のア
ーク電極41との間に配置されている。主電極側の円筒
部の開口端面45は、2個の突出部46,47を形成
し、主のアーク電極41は突出部46,47に電気的に
接続している。突出部は主電極に形成してもよい。一方
の突出部46と他方の突出部47との間の半円弧状の円
筒部42は、円弧状スリット50,51を切込んで、2
本の円弧状電流通路52,53を形成している。電流通
路52,53の一方端たとえば入力端54は突出部4
6,47に、他方端たとえば出力端55は底面43を介
して電極棒34に接続している。入力端54と出力端5
5とがラップする円筒部の入力端54と出力端55との
間には、傾斜状のスリット溝56を形成している。傾斜
状スリット56の一端は、円弧状スリット片端50と連
通し、他端は円弧状スリット片端57と対応する開口端
面45との間に切込んで形成している。したがって、入
力端54と出力端55とは、傾斜状のスリット溝56に
より電気的に区分されている。出力端55は底面43の
ロッド附近まで延ばしたスリット58を形成して、軸方
向磁界Hによる渦電流を防止する。
The cylindrical coil electrode 33 attached to the back of the main arc electrode 41 is constituted by a coil electrode 42 having a cylindrical portion having an opening at one end. The coil electrode 42 formed of a cylindrical portion has the arc electrode support 13 at one end and an opening at the other end. The reinforcing member 39 is made of a high-resistance member, such as Fe or stainless steel, and is disposed between the bottom surface 43 and the main arc electrode 41. The opening end surface 45 of the cylindrical portion on the main electrode side forms two protrusions 46 and 47, and the main arc electrode 41 is electrically connected to the protrusions 46 and 47. The protrusion may be formed on the main electrode. The semicircular cylindrical portion 42 between the one protruding portion 46 and the other protruding portion 47 cuts the arcuate slits 50 and 51 to form
The arc-shaped current paths 52 and 53 are formed. One end of the current paths 52 and 53, for example, the input end 54 is
6, 47, the other end, for example, the output end 55, is connected to the electrode rod 34 via the bottom surface 43. Input end 54 and output end 5
A slanted slit groove 56 is formed between the input end 54 and the output end 55 of the cylindrical portion in which 5 overlaps. One end of the inclined slit 56 communicates with one end 50 of the arc-shaped slit, and the other end is cut between the one end 57 of the arc-shaped slit and the corresponding open end face 45. Therefore, the input end 54 and the output end 55 are electrically separated by the inclined slit groove 56. The output end 55 forms a slit 58 extending to the vicinity of the rod on the bottom surface 43 to prevent eddy current due to the axial magnetic field H.

【0075】次に、可動電極30bを固定電極30aか
ら引離してしゃ断すると、アーク電流49が両電極間に
点弧する。アーク電流49は、矢印方向で示す如く、突
出部46,47から入力端54および電流通路52,5
3を流れて、出力端55から底面43を通って電極棒3
4に流れる。
Next, when the movable electrode 30b is separated from the fixed electrode 30a and cut off, an arc current 49 is ignited between both electrodes. The arc current 49 flows from the protrusions 46 and 47 to the input end 54 and the current paths 52 and 5 as indicated by the arrows.
3 from the output end 55 to the electrode rod 3 through the bottom surface 43.
Flow to 4.

【0076】この電流経路で、電流通路52,53及び
ラップする入力端54と出力端55とに流れる電流は、
1ターンを形成したことになり、1ターンの電流により
発生した軸方向磁界Hは、主電極全面に渡って均一に印
加され、アーク電流49は主電極全面に均一に分散し、
しゃ断性能を向上させることができると共に、主電極全
面を有効に利用できるので、この分真空しゃ断器を小形
化できる。
In this current path, the current flowing through the current paths 52 and 53 and the overlapping input terminal 54 and output terminal 55 is
Since one turn is formed, the axial magnetic field H generated by the one-turn current is applied uniformly over the entire main electrode, and the arc current 49 is uniformly distributed over the entire main electrode.
The breaking performance can be improved and the entire surface of the main electrode can be used effectively, so that the vacuum circuit breaker can be downsized.

【0077】図11は真空バルブ59とその操作機とを
示す真空遮断器の構成図である。
FIG. 11 is a block diagram of a vacuum circuit breaker showing the vacuum valve 59 and its operating device.

【0078】操作機構部を前面配置とし、背面に真空バ
ルブを支持する三相一括型の3組の耐トラッキング性を
有するエポキシレジン筒60を配置した小形,軽量な構
造である。
This is a small and lightweight structure in which the operation mechanism section is disposed on the front side and three sets of three-phase batch-type epoxy resin cylinders 60 having a tracking resistance, which support a vacuum valve, are disposed on the rear side.

【0079】各相端はエポキシレジン筒,真空バルブ支
持板で水平に支持された水平引き出し形である。真空バ
ルブは、絶縁操作ロッド61を介して、操作機構によっ
て開閉される。
Each phase end is of a horizontal draw-out type supported horizontally by an epoxy resin cylinder and a vacuum valve support plate. The vacuum valve is opened and closed by an operating mechanism via an insulating operating rod 61.

【0080】操作機構部は、構造が簡単で、小型軽量な
電磁操作式の機械的引きはずし自由機構である。開閉ス
トロークが少なく、可動部の質量が小さいために衝撃は
僅少である。本体前面には、手動連結式の二次端子のほ
か、開閉表示器,動作回数計,手動引きはずしボタン,
手動投入装置,引出装置およびインターロックレバーな
どが配置されている。
The operating mechanism is a simple and compact electromagnetically operated mechanical tripping free mechanism. Shock is small because the opening and closing stroke is small and the mass of the movable part is small. On the front of the main unit, in addition to the manually connected secondary terminal, an open / close indicator, operation counter, manual trip button,
A manual insertion device, a drawing device, an interlock lever, and the like are arranged.

【0081】(a)閉路状態 遮断器の閉路状態を示し、電流は上部端子62,主電極
30,集電子63,下部端子64を流れる。主電極間の
接触力は、絶縁操作ロッド61に装着された接触バネ6
5によって保たれている。
(A) Closed state The closed state of the circuit breaker is shown, and current flows through the upper terminal 62, the main electrode 30, the current collector 63, and the lower terminal 64. The contact force between the main electrodes is determined by the contact spring 6 attached to the insulating operation rod 61.
5 is kept.

【0082】主電極の接触力,早切バネの力および短絡
電流による電磁力は、支えレバー66およびプロップ6
7で保持されている。投入コイルを励磁すると開路状態
からプランジャ68がノッキングロッド69を介してロ
ーラ70を押し上げ、主レバー71を回して接触子を閉
じたあと、支えレバー66で保持している。
The electromagnetic force due to the contact force of the main electrode, the force of the quick-release spring, and the short-circuit current is applied to the support lever 66 and the prop 6
7 is held. When the closing coil is excited, the plunger 68 pushes up the roller 70 via the knocking rod 69 from the open state, turns the main lever 71 to close the contact, and holds it with the support lever 66.

【0083】(b)引きはずし自由状態 開離動作により可動主電極が下方に動かされ、固定・可
動両主電極が開離した瞬間からアークが発生する。
(B) Free trip state The movable main electrode is moved downward by the separating operation, and an arc is generated from the moment the fixed and movable main electrodes are separated.

【0084】アークは、真空中の高い絶縁耐力と激しい
拡散作用によって短時間に消弧される。
The arc is extinguished in a short time due to the high dielectric strength in vacuum and the strong diffusion action.

【0085】引きはずしコイル72が励磁されると、引
きはずしレバー73がプロップ67の係合をはずし、主
レバー71は早切バネの力で回って主電極が開かれる。
この動作は、閉路動作の有無には全く関係なく行われる
機械的引きはずし自由方式である。
When the trip coil 72 is excited, the trip lever 73 disengages the prop 67 and the main lever 71 rotates by the force of the quick-release spring to open the main electrode.
This operation is a mechanical trip-free mode that is performed irrespective of the presence or absence of the closing operation.

【0086】(c)開路状態 主電極が開かれたあと、リセットバネ74によってリン
クが復帰し、同時にプロップ67が係合する。この状態
で投入コイル75を励磁すると(a)の閉路状態にな
る。76は排気筒である。
(C) Open circuit state After the main electrode is opened, the link is returned by the reset spring 74, and at the same time, the prop 67 is engaged. When the closing coil 75 is excited in this state, the closed state shown in FIG. 76 is an exhaust pipe.

【0087】真空遮断器は高真空中でアーク遮断し、真
空の持っている高い絶縁耐力と、アークの高速拡散作用
により優れた遮断性能を有しているが、反面無負荷のモ
ートル,変圧器を開閉する場合電流が零点に達する以前
に遮断してしまい、いわゆるさい断電流を生じ、この電
流とサージインピーダンスの積に比例する開閉サージ電
圧を発生する場合がある。このため3kV変圧器や3k
V,6kV回転機などを真空遮断器で直接開閉するとき
は、サージアブソーバを回路に接続してサージ電圧を抑
制し、機器を保護する必要がある。サージアブソーバと
しては、コンデンサを標準としますが、負荷の衝撃波耐
電圧値によって、ZnO非直線抵抗体を使用することも
できる。
The vacuum circuit breaker cuts off the arc in a high vacuum, and has excellent breaking performance due to the high dielectric strength of the vacuum and the high-speed diffusion of the arc, but has no load on the motor and transformer. When the switch is opened and closed, the current is cut off before reaching the zero point, so that a so-called cut-off current is generated, and a switching surge voltage proportional to the product of this current and the surge impedance may be generated. For this reason, 3kV transformers and 3k
When a V, 6 kV rotating machine or the like is directly opened and closed by a vacuum circuit breaker, it is necessary to connect a surge absorber to a circuit to suppress a surge voltage and protect the equipment. As the surge absorber, a capacitor is used as a standard, but a ZnO nonlinear resistor can be used depending on the withstand voltage of the shock wave of the load.

【0088】以上の本実施例により、圧力150kg,し
ゃ断速度0.93m/秒 で、7.2kV,31.5kAの
しゃ断が可能となる。
According to the present embodiment described above, a breaking of 7.2 kV and 31.5 kA is possible at a pressure of 150 kg and a breaking speed of 0.93 m / sec.

【0089】実施例5 図12は実施例4と同じ真空バルブを用いて直流回路を
遮断する主回路構成を示す図である。80は直流電源、
81は直流負荷、82は真空バルブ、83はショートリ
ング、84は電磁反発コイル、85は転流コンデンサ、
86は転流リアクトル、87はトリガギャップ、88は
静止型過電流引外し装置、89はZnO非直線抵抗体で
ある。
Fifth Embodiment FIG. 12 is a diagram showing a main circuit configuration for interrupting a DC circuit by using the same vacuum valve as the fourth embodiment. 80 is a DC power supply,
81 is a DC load, 82 is a vacuum valve, 83 is a short ring, 84 is an electromagnetic repulsion coil, 85 is a commutation capacitor,
86 is a commutation reactor, 87 is a trigger gap, 88 is a static overcurrent trip device, and 89 is a ZnO nonlinear resistor.

【0090】本実施例においては、次の特徴が得られ
る。
In the present embodiment, the following features are obtained.

【0091】(1)遮断時に気中アークを発生しないの
で、騒音を発生せず、防災効果が大きい。
(1) Since no air arc is generated at the time of interruption, no noise is generated and the disaster prevention effect is large.

【0092】(2)開極時間が短いため(約1ms)規格
値を上まわる突進率の事故電流の遮断が可能で、限流値
を小さく抑えることができる。
(2) Since the opening time is short (about 1 ms), it is possible to cut off the fault current having a rush rate exceeding the standard value, and it is possible to keep the current limiting value small.

【0093】(3)真空バルブの使用により高周波のコン
デンサ放電電流の遮断が可能で、アーク時間が極めて短
く(約0.5ms)接点消耗が少なくできる。
(3) The use of a vacuum valve makes it possible to cut off the high-frequency capacitor discharge current, make the arc time extremely short (about 0.5 ms), and reduce contact wear.

【0094】(4)静止形過電流引外し装置の採用により
電流目盛を精度良く設定でき、経年変化がない。
(4) The current scale can be set with high accuracy by adopting a static overcurrent trip device, and there is no aging.

【0095】(5)ラッチ式の電動ばね操作器の採用によ
り、操作電流が大幅に低減するとともに保持電流が不要
となる。
(5) The use of a latch-type electric spring actuator significantly reduces the operating current and eliminates the need for a holding current.

【0096】(6)占有面積が約1/4となり、変電所ス
ペースの縮小が可能となる。
(6) The occupied area is reduced to about 1/4, and the substation space can be reduced.

【0097】実施例6 図13は他の電極構造を示す断面図である。(a)は正
面図で、(b)は(a)のA−A部の正面図である。
Embodiment 6 FIG. 13 is a sectional view showing another electrode structure. (A) is a front view, (b) is a front view of AA part of (a).

【0098】本実施例では実施例1と同様に主電極92
をCu−Cu多孔質焼結体からなる表面のアーク電極に
純銅と溶浸して電極支持部を形成したものである。この
主電極92に対して縦磁界発生コイル電極91をろう付
したものであり、純鉄又はステンレス鋼から補強部材9
6のろう付によって補強される。90は導電棒である。
主電極92はコイル電極91の凸状部95でろう付され
る。
In this embodiment, as in the first embodiment, the main electrode 92
Is infiltrated with pure copper into an arc electrode on the surface made of a Cu—Cu porous sintered body to form an electrode support. A vertical magnetic field generating coil electrode 91 is brazed to the main electrode 92. The reinforcing member 9 is made of pure iron or stainless steel.
6. Reinforced by brazing. 90 is a conductive rod.
The main electrode 92 is brazed at the convex portion 95 of the coil electrode 91.

【0099】実施例7 図14は他の例の電極構造を示す図である。(a)は平
面図及び(b)は(a)のB−B断面図である。
Embodiment 7 FIG. 14 is a view showing an electrode structure of another example. (A) is a plan view and (b) is a BB sectional view of (a).

【0100】対向面から見て互いに重なり合うようにな
っており、各々右巻と左巻のスパイラル形電極である。
100は相互に接離可能な部材でアーク電極部の接触部
と呼ばれる。101はアークランナーである。スパイラ
ル溝102は接触部100に終端を有し、アークランナ
ー101をそれぞれ区分している。各アークランナーは
その先端部103にて電極外周部と接している。なお、
アークランナーの枚数は任意である。電極はたとえばC
u−Cr(銅−クロム)合金をアーク電極104と電極支
持部105を銅の溶浸によって形成した一体形に作られ
ている。溝102は機械加工によって形成することができ
る。
When viewed from the facing surface, the electrodes overlap each other, and are right-handed and left-handed spiral electrodes, respectively.
Numeral 100 is a member which can contact and separate from each other and is called a contact portion of the arc electrode portion. 101 is an arc runner. The spiral groove 102 has an end at the contact portion 100 and separates the arc runner 101 from each other. Each arc runner is in contact with the outer periphery of the electrode at its tip 103. In addition,
The number of arcrunners is arbitrary. The electrode is, for example, C
The arc electrode 104 and the electrode supporting portion 105 are made of a u-Cr (copper-chromium) alloy in an integrated form formed by infiltrating copper. The groove 102 can be formed by machining.

【0101】図示しないが、短絡電流12.5kA 以下
の真空遮断器の電極にはスパイラル溝102の無い単純
な、いわゆる平板形構造が用いられる。平板形構造にお
いて、接触部,アークランナーに相当するテーパー部、
および電極外周部を有し、これらは一体形に作られてい
る。
Although not shown, the electrodes of the vacuum circuit breaker having a short-circuit current of 12.5 kA or less have a simple, so-called flat plate structure without the spiral groove 102. In a flat plate structure, a contact portion, a tapered portion corresponding to an arc runner,
And an electrode periphery, which are made in one piece.

【0102】主電極はろう付された電極棒を通じて、真
空容器外部の電極端子に接続される。
The main electrode is connected to an electrode terminal outside the vacuum vessel through a brazed electrode rod.

【0103】図14のスパイラル形電極で交流回路の短
絡電流12.5〜50kA を遮断する場合の動作を説明
する。まず、一対の電極が開極を始めると、主電極の接
触部100から発弧する。この開極点からの経過時間と
共に電極間アークは接触部100からアークランナー1
01を経てアークランナー先端部103へと移動してい
く。この際、スパイラル形電極構造の特性から、電極空
間に半径方向の磁界が形成され、この磁界の向きはアー
クの向きと直角であるから、この磁界は横磁界と呼ばれ
る。横磁界による駆動効果によって電極上のアークの移
動が促進され、電極の不均一な消耗が防止される。
The operation when the short-circuit current of 12.5 to 50 kA of the AC circuit is cut off by the spiral electrode shown in FIG. 14 will be described. First, when the pair of electrodes starts opening, an arc is emitted from the contact portion 100 of the main electrode. With the lapse of time from the opening point, the arc between the electrodes is moved from the contact portion 100 to the arc runner 1.
After moving through 01, it moves to the arc runner tip 103. At this time, a radial magnetic field is formed in the electrode space due to the characteristics of the spiral electrode structure, and the direction of the magnetic field is perpendicular to the direction of the arc, so this magnetic field is called a transverse magnetic field. The movement of the arc on the electrode is promoted by the driving effect by the transverse magnetic field, and uneven consumption of the electrode is prevented.

【0104】[0104]

【発明の効果】本発明によれば、アーク電極と該アーク
電極を支持する支持部材と該支持部材に連らなるコイル
電極とを有する固定側電極及び可動側電極を備えた真空
遮断器において、前記アーク電極と上記アーク電極支持
部材、好ましくは、コイル電極材とは非接合からなる溶
融一体の構造を有し、前記支持部材及びコイル電極は
0.01〜2.5重量%のCr,Ag,V,Nb,Zr,
Si,W及びBe等を含有したCu合金から構成される
ので、ろう付接合にともなう各部材の機械加工工程及び
組立工程の低減とろう付接合不良による電極材の破壊や
脱落を防止するとともに、アーク電極支持部材及びコイ
ル電極材の強度向上により電極変形にともなう溶着障害
を防止できることからより信頼性及び安全性の高い真空
遮断器とそれに用いる真空バルブ及び電気接点を提供で
きる。
According to the present invention, there is provided a vacuum circuit breaker having a fixed-side electrode and a movable-side electrode having an arc electrode, a support member for supporting the arc electrode, and a coil electrode connected to the support member. The arc electrode and the arc electrode supporting member, preferably a coil electrode material, have a non-bonded and melt-integrated structure, and the supporting member and the coil electrode are 0.01 to 2.5% by weight of Cr and Ag. , V, Nb, Zr,
Since it is composed of a Cu alloy containing Si, W, Be, etc., it is possible to reduce the machining process and the assembling process of each member involved in the brazing and prevent the electrode material from being broken or dropped due to poor brazing. By improving the strength of the arc electrode supporting member and the coil electrode material, it is possible to prevent a welding failure due to electrode deformation, so that a highly reliable and safe vacuum circuit breaker, and a vacuum valve and an electric contact used therefor can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電気接点の製造法を示す工程図。FIG. 1 is a process chart showing a method for manufacturing an electric contact of the present invention.

【図2】3個の電気接点を一度に製造する場合の鋳型の
断面図。
FIG. 2 is a sectional view of a mold when three electrical contacts are manufactured at one time.

【図3】各種電極の形状とその製造鋳型の関係を示す断
面図。
FIG. 3 is a cross-sectional view showing the relationship between the shape of various electrodes and its production mold.

【図4】Crの固溶量と溶浸温度との関係を示す線図。FIG. 4 is a diagram showing the relationship between the amount of solid solution of Cr and the infiltration temperature.

【図5】0.2% 耐力と合金元素の固溶量との関係を示
す線図。
FIG. 5 is a diagram showing the relationship between 0.2% proof stress and the amount of solid solution of alloying elements.

【図6】0.2% 耐力と比抵抗との関係を示す線図。FIG. 6 is a diagram showing the relationship between 0.2% proof stress and specific resistance.

【図7】比抵抗と合金元素との関係を示す線図。FIG. 7 is a diagram showing a relationship between specific resistance and alloying elements.

【図8】真空バルブの断面図。FIG. 8 is a sectional view of a vacuum valve.

【図9】真空バルブ用電極の断面図。FIG. 9 is a sectional view of a vacuum valve electrode.

【図10】真空バルブ用電極の斜視図。FIG. 10 is a perspective view of a vacuum valve electrode.

【図11】真空遮断器の全体構成図。FIG. 11 is an overall configuration diagram of a vacuum circuit breaker.

【図12】直流真空遮断器を用いた回路図。FIG. 12 is a circuit diagram using a DC vacuum circuit breaker.

【図13】他の例の真空バルブ用電極の構造を示す断面
図と正面図。
FIG. 13 is a cross-sectional view and a front view showing the structure of another example of the electrode for a vacuum valve.

【図14】他の例の真空バルブ用電極の正面図と断面図
である。
FIG. 14 is a front view and a cross-sectional view of another example of an electrode for a vacuum valve.

【符号の説明】[Explanation of symbols]

1,12,31a,31b,41,92,104…アー
ク電極、2,13,32a,32b,48,94,10
5…アーク電極支持部、4,9…アルミナ粉、5…黒鉛
容器、6…多孔質焼結体、7…溶浸材、8…押湯、1
4,33a,33b,42,91…コイル電極、15,
22,34,34a,34b,90,106…電極棒、
17,27,44,96…補強部材、35…真空容器、
36…シールド部材、37…ベローズ、56…スリット
溝、60…エポキシレジン筒、61…絶縁操作ロッド、
62…上部端子、63…集電子、64…下部端子、65
…接触バネ、66…支えレバー、68…プランジャ、7
1…主レバー、72…引きはずしコイル、75…投入コ
イル、76…排気筒、80…直流電源、81…直流負
荷、82…真空バルブ、83…ショートリング、84…
電磁反発コイル、85…転流コンデンサ、86…転流リ
アクトル、87…トリガギャップ、88…静止型過電流
引外し装置、89…ZnO非直線抵抗体。
1, 12, 31a, 31b, 41, 92, 104 ... arc electrodes, 2, 13, 32a, 32b, 48, 94, 10
5: Arc electrode support, 4, 9: alumina powder, 5: graphite container, 6: porous sintered body, 7: infiltration material, 8: feeder, 1
4, 33a, 33b, 42, 91 ... coil electrode, 15,
22, 34, 34a, 34b, 90, 106 ... electrode rods,
17, 27, 44, 96 ... reinforcing member, 35 ... vacuum vessel,
36: shield member, 37: bellows, 56: slit groove, 60: epoxy resin cylinder, 61: insulating operation rod,
62: upper terminal, 63: current collector, 64: lower terminal, 65
... contact spring, 66 ... support lever, 68 ... plunger, 7
DESCRIPTION OF SYMBOLS 1 ... Main lever, 72 ... Release coil, 75 ... Making coil, 76 ... Exhaust cylinder, 80 ... DC power supply, 81 ... DC load, 82 ... Vacuum valve, 83 ... Short ring, 84 ...
Electromagnetic repulsion coil, 85: commutation capacitor, 86: commutation reactor, 87: trigger gap, 88: static overcurrent trip device, 89: ZnO nonlinear resistor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒沢 幸夫 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 湖口 義雄 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 (72)発明者 谷水 徹 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 (72)発明者 袴田 好美 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 (72)発明者 遠藤 俊吉 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 5G023 AA02 BA13 CA21 CA35 5G026 BA01 BA04 BB02 BB03 BB04 BB08 BB10 BB12 BB14 BB15 BB16 BB17 BB18 BC02 CA01 CB02 DA02 DB05 5G027 AA03 AA13 BA02 BB01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yukio Kurosawa 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Yoshio Koguchi 1-chome Kokubuncho, Hitachi City, Ibaraki Prefecture No. 1-1 Inside the Kokubu Plant, Hitachi, Ltd. (72) Inventor Toru Tanimizu 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture Inside the Kokubu Plant, Hitachi, Ltd. (72) Yoshimi Hakamada Kokubuncho, Hitachi City, Ibaraki Prefecture 1-1-1, Kokubu Plant, Hitachi, Ltd. (72) Inventor, Toshiyoshi Endo 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture F-term, Hitachi Research Laboratory, Hitachi, Ltd. F-term (reference) 5G023 AA02 BA13 CA21 CA35 5G026 BA01 BA04 BB02 BB03 BB04 BB08 BB10 BB12 BB14 BB15 BB16 BB17 BB18 BC02 CA01 CB02 DA02 DB05 5G027 AA03 AA13 BA02 BB01

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】絶縁容器内に固定側電極と可動側電極とを
備えた真空バルブと、該真空バルブ内の前記固定側電極
と可動側電極との各々に前記真空バルブ外に接続された
導体端子と、前記可動側電極に接続された絶縁ロッドを
介して前記可動側電極を駆動する開閉手段とを備えた真
空遮断器において、前記固定側電極及び可動側電極は耐
火性金属と高導電性金属との合金からなるアーク電極
と、該アーク電極を支持する高導電性金属からなる電極
支持部とを有し、前記アーク電極と電極支持部とは前記
高導電性金属の溶融によって一体に形成され前記固定側
電極と可動側電極の少なくとも一方は前記電極支持部に
高導電性金属からなる縦磁界発生コイルが設けられてい
ることを特徴とする真空遮断器。
1. A vacuum valve having a fixed side electrode and a movable side electrode in an insulating container, and a conductor connected to each of the fixed side electrode and the movable side electrode inside the vacuum valve outside the vacuum valve. In a vacuum circuit breaker comprising a terminal and opening / closing means for driving the movable-side electrode via an insulating rod connected to the movable-side electrode, the fixed-side electrode and the movable-side electrode are made of a refractory metal and a highly conductive metal. An arc electrode made of an alloy with a metal, and an electrode support portion made of a highly conductive metal that supports the arc electrode, wherein the arc electrode and the electrode support portion are integrally formed by melting the highly conductive metal. A vacuum circuit breaker characterized in that at least one of the fixed side electrode and the movable side electrode is provided with a vertical magnetic field generating coil made of a highly conductive metal on the electrode support portion.
【請求項2】前記アーク電極は多孔質耐火金属中に含浸
した高導電性金属との複合合金よりなり、前記アーク電
極と電極支持部と磁界発生コイルとは前記高導電金属の
溶融によって一体に形成されている請求項1に記載の真
空遮断器。
2. The arc electrode is made of a composite alloy of a highly conductive metal impregnated in a porous refractory metal. The vacuum circuit breaker according to claim 1, wherein the vacuum circuit breaker is formed.
【請求項3】前記縦磁界発生コイルは円筒状でその円周
面にスリット溝が設けられた形状又はその横断面が略卍
状である請求項1又は2に記載の真空遮断器。
3. The vacuum circuit breaker according to claim 1, wherein the vertical magnetic field generating coil has a cylindrical shape and a slit groove formed in a circumferential surface thereof, or a cross section thereof is substantially swastika.
【請求項4】絶縁容器内に固定側電極と可動側電極とを
備えた真空バルブと、該真空バルブ内の前記固定側電極
と可動側電極との各々に前記真空バルブ外に接続された
導体端子と、前記可動側電極に接続された絶縁ロッドを
介して前記可動側電極を駆動する開閉手段とを備えた真
空遮断器において、前記固定側電極及び可動側電極は耐
火性金属と高導電性金属との合金からなるアーク電極
と、該アーク電極を支持する高導電性金属からなる電極
支持部とを有し、前記アーク電極と電極支持部とは前記
高導電性金属によって一体に形成され、前記電極支持部
の0.2% 耐力が10kg/mm2以上で比抵抗が2.8μΩ
cm以下であり、前記固定側電極と可動側電極の少なくと
も一方の電極は前記電極支持部に高導電性金属からなる
縦磁界発生コイルが設けられていることを特徴とする真
空遮断器。
4. A vacuum valve having a fixed side electrode and a movable side electrode in an insulating container, and a conductor connected to each of the fixed side electrode and the movable side electrode inside the vacuum valve outside the vacuum valve. In a vacuum circuit breaker comprising a terminal and opening / closing means for driving the movable-side electrode via an insulating rod connected to the movable-side electrode, the fixed-side electrode and the movable-side electrode are made of a refractory metal and a highly conductive metal. An arc electrode made of an alloy with a metal, and an electrode support portion made of a highly conductive metal that supports the arc electrode, the arc electrode and the electrode support portion are integrally formed by the highly conductive metal, 0.2% proof stress of the electrode support part is 10 kg / mm 2 or more and specific resistance is 2.8 μΩ
cm or less, and at least one of the fixed side electrode and the movable side electrode is provided with a vertical magnetic field generating coil made of a highly conductive metal on the electrode support portion.
【請求項5】高真空に保たれた絶縁容器内に固定側電極
と可動側電極とを備えた真空バルブにおいて、前記両電
極は耐火性金属と高導電性金属との複合部材よりなるア
ーク電極と、該アーク電極を支持する高導電性金属から
なる電極支持部と、該電極支持部に連らなる縦磁界発生
コイルとを有し、前記アーク電極と電極支持部とは前記
高導電性金属の溶融によって一体に形成されていること
を特徴とする真空バルブ。
5. A vacuum valve having a fixed side electrode and a movable side electrode in an insulating container maintained in a high vacuum, wherein both electrodes are arc electrodes made of a composite member of a refractory metal and a highly conductive metal. And an electrode support portion made of a highly conductive metal that supports the arc electrode, and a vertical magnetic field generating coil connected to the electrode support portion, wherein the arc electrode and the electrode support portion are the highly conductive metal. A vacuum valve, wherein the vacuum valve is formed integrally by melting.
【請求項6】高真空に保たれた絶縁容器内に固定側電極
と可動側電極とを備えた真空バルブにおいて、前記両電
極は耐火性金属と高導電性金属との複合部材よりなるア
ーク電極と、該アーク電極を支持する高導電性金属から
なる電極支持部と、該電極支持部に連らなる縦磁界発生
コイルとを有し、前記アーク電極と電極支持部と磁界発
生コイルとは前記高導電性金属によって一体に形成さ
れ、前記電極支持部の0.2%耐力が10kg/mm2以上で
比抵抗が2.8μΩcm 以下であることを特徴とする真空
バルブ。
6. A vacuum valve having a fixed side electrode and a movable side electrode in an insulating container maintained in a high vacuum, wherein both electrodes are arc electrodes made of a composite member of a refractory metal and a highly conductive metal. And an electrode support made of a highly conductive metal supporting the arc electrode, and a vertical magnetic field generating coil connected to the electrode support, wherein the arc electrode, the electrode support and the magnetic field generating coil are A vacuum valve, which is integrally formed of a highly conductive metal, wherein the electrode support has a 0.2% proof stress of 10 kg / mm 2 or more and a specific resistance of 2.8 μΩcm or less.
【請求項7】耐火性金属と高導電性金属との合金からな
るアーク電極と、該アーク電極を支持する高導電性金属
からなる電極支持部と、該電極支持部に連らなる縦磁界
発生コイルとが前記高導電性金属の溶融によって一体に
形成されていることを特徴とする電気接点。
7. An arc electrode made of an alloy of a refractory metal and a highly conductive metal, an electrode support made of a highly conductive metal for supporting the arc electrode, and a longitudinal magnetic field connected to the electrode support. An electrical contact, wherein the coil and the coil are formed integrally by melting the highly conductive metal.
【請求項8】耐火性金属と高導電性金属との合金からな
るアーク電極と、該アーク電極を支持する高導電性金属
からなる電極支持部と、該電極支持部に連らなる縦磁界
発生コイルとが前記高導電性金属によって一体に形成さ
れ、前記電極支持部の0.2%耐力が10kg/mm2 以上
で比抵抗が2.8μΩcm 以下であることを特徴とする電
気接点。
8. An arc electrode made of an alloy of a refractory metal and a highly conductive metal, an electrode support made of a highly conductive metal for supporting the arc electrode, and a longitudinal magnetic field connected to the electrode support. An electrical contact, wherein a coil is integrally formed of the highly conductive metal, and the electrode support has a 0.2% proof stress of 10 kg / mm 2 or more and a specific resistance of 2.8 μΩcm or less.
【請求項9】耐火性金属と高導電性金属との合金からな
るアーク電極と、該アーク電極を支持する高導電性金属
からなる電極支持部と、該電極支持部に連らなる縦磁界
発生コイルとを有する電気接点の製造法において、前記
アーク電極は耐火性金属を有する多孔質焼結体上に前記
高導電性金属を載置し、該高導電性金属を溶融して前記
多孔質体中に溶浸させることにより形成し、前記電極支
持部及び磁界発生コイルは前記溶浸後に残留する前記高
導電性金属の厚さを前記電極支持部として必要な厚さに
設定することによって形成することを特徴とする電気接
点の製造法。
9. An arc electrode made of an alloy of a refractory metal and a highly conductive metal, an electrode support made of a highly conductive metal for supporting the arc electrode, and a longitudinal magnetic field connected to the electrode support. In the method of manufacturing an electrical contact having a coil, the arc electrode comprises placing the highly conductive metal on a porous sintered body having a refractory metal, melting the highly conductive metal, and melting the porous body. The electrode support and the magnetic field generating coil are formed by setting the thickness of the highly conductive metal remaining after the infiltration to a thickness required for the electrode support. A method for producing an electrical contact, comprising:
【請求項10】前記アーク電極,電極支持部及び磁界発
生コイルを前記高導電性金属に溶浸させて凝固させて形
成後、所望の温度に保持させて前記高導電性金属中に過
飽和に固溶した金属又は金属間化合物を析出させる熱処
理工程を有する請求項8に記載の電気接点の製造法。
10. The arc electrode, the electrode support, and the magnetic field generating coil are formed by infiltrating and solidifying the highly conductive metal, and then maintained at a desired temperature to be supersaturated in the highly conductive metal. The method for producing an electrical contact according to claim 8, further comprising a heat treatment step of precipitating a dissolved metal or an intermetallic compound.
【請求項11】前記高導電性金属の前記多孔質体への溶
浸後に残留する厚さと形状を前記電極支持部及び縦磁界
発生コイルの形状に合わせて溶融凝固によって形成する
請求項9又は10のいずれかに記載の電気接点の製造
法。
11. The method according to claim 9, wherein the thickness and shape of the highly conductive metal remaining after infiltration into the porous body are formed by melting and solidifying according to the shapes of the electrode support and the vertical magnetic field generating coil. The method for producing an electrical contact according to any one of the above.
JP2002066286A 2002-03-12 2002-03-12 Vacuum circuit breaker and vacuum valve and electrical contact used therefor Expired - Lifetime JP3627712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002066286A JP3627712B2 (en) 2002-03-12 2002-03-12 Vacuum circuit breaker and vacuum valve and electrical contact used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002066286A JP3627712B2 (en) 2002-03-12 2002-03-12 Vacuum circuit breaker and vacuum valve and electrical contact used therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP02567498A Division JP3381605B2 (en) 1998-02-06 1998-02-06 Vacuum circuit breaker and vacuum valve and electrical contacts used for it

Publications (2)

Publication Number Publication Date
JP2002270071A true JP2002270071A (en) 2002-09-20
JP3627712B2 JP3627712B2 (en) 2005-03-09

Family

ID=19193108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002066286A Expired - Lifetime JP3627712B2 (en) 2002-03-12 2002-03-12 Vacuum circuit breaker and vacuum valve and electrical contact used therefor

Country Status (1)

Country Link
JP (1) JP3627712B2 (en)

Also Published As

Publication number Publication date
JP3627712B2 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
JP2874522B2 (en) Vacuum circuit breaker, vacuum valve used therefor, electrode for vacuum valve, and method of manufacturing the same
US5852266A (en) Vacuum circuit breaker as well as vacuum valve and electric contact used in same
CN110036454B (en) Improved electrical contact alloy for vacuum contactor
US6248969B1 (en) Vacuum circuit breaker, and vacuum bulb and vacuum bulb electrode used therefor
KR100378383B1 (en) Vacuum valve and method for manufacturing the same, and vacuum circuit breaker having vacuum valve and method for manufacturing the same
US6437275B1 (en) Vacuum circuit-breaker, vacuum bulb for use therein, and electrodes thereof
JP3428416B2 (en) Vacuum circuit breaker, vacuum valve and electric contact used therefor, and manufacturing method
US5697150A (en) Method forming an electric contact in a vacuum circuit breaker
JP2001135206A (en) Electrode, vacuum valve electrode, vacuum valve and vacuum switch
JPH1012103A (en) Vacuum circuit-breaker, and vacuum valve and electric contact using the breaker
EP0118844A2 (en) Vacuum switch and method of manufacturing the same
JP2000235825A (en) Electrode member for vacuum circuit-breaker and manufacture thereof
JP2011108380A (en) Electric contact for vacuum valve, and vacuum interrupter using the same
JP3381605B2 (en) Vacuum circuit breaker and vacuum valve and electrical contacts used for it
JP3627712B2 (en) Vacuum circuit breaker and vacuum valve and electrical contact used therefor
JP2000188045A (en) Vacuum breaker, vacuum bulb used therefor and its electrode
JPH11167847A (en) Vacuum circuit breaker and vacuum bule for vacuum circuit breaker and electrode of vacuum bulb
JPH10340654A (en) Vacuum circuit breaker and vacuum valve used therefor and electric contract and manufacture
JPH09274835A (en) Vacuum circuit breaker, and vacuum valve and electric contact to be used for vacuum circuit breaker
JPH07335092A (en) Vacuum circuit breaker, and vacuum valve and electrical contact for vacuum circuit breaker, and manufacture thereof
EP0917171A2 (en) Vacuum circuit-breaker, vacuum bulb for use therein, and electrodes thereof
JP2000149732A (en) Vacuum breaker and vacuum bulb used in it and its electrode
JP3273018B2 (en) Method for manufacturing base material of vacuum valve
JPH11102629A (en) Vacuum circuit breaker and vacuum valve used therefor and electric contact
JP2000173415A (en) Electric contact and its manufacture

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

EXPY Cancellation because of completion of term