JP2002266582A - Steel pipe subjected to pipe-expanding work - Google Patents

Steel pipe subjected to pipe-expanding work

Info

Publication number
JP2002266582A
JP2002266582A JP2001065418A JP2001065418A JP2002266582A JP 2002266582 A JP2002266582 A JP 2002266582A JP 2001065418 A JP2001065418 A JP 2001065418A JP 2001065418 A JP2001065418 A JP 2001065418A JP 2002266582 A JP2002266582 A JP 2002266582A
Authority
JP
Japan
Prior art keywords
pipe
steel pipe
resin
solid lubricant
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001065418A
Other languages
Japanese (ja)
Other versions
JP3788252B2 (en
Inventor
Yuji Arai
勇次 荒井
Kunio Kondo
邦夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001065418A priority Critical patent/JP3788252B2/en
Publication of JP2002266582A publication Critical patent/JP2002266582A/en
Application granted granted Critical
Publication of JP3788252B2 publication Critical patent/JP3788252B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Earth Drilling (AREA)
  • Lubricants (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel pipe which is subjected to pipe-expanding work while being inserted into an oil well or a gas well, and is for use in the inserted state. SOLUTION: The steel pipe has a lubricating film arranged on an internal surface substantially over the entire length thereof. The lubricating film is formed of a resin film containing a solid lubricant. It is preferable that the mass ratio (mass of the solid lubricant/resin mass) between a resin in the resin film and the solid lubricant is set to a range from 0.01 to 0.50, and the coefficient of kinetic friction of the lubricating film is set within a range from 0.1 to 0.4 inclusive.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、油井戸またはガス
井戸に挿入された状態で拡管加工を行われ、このままで
使用される鋼管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel pipe which is expanded in a state where it is inserted into an oil well or a gas well and is used as it is.

【0002】[0002]

【従来の技術】図1は、油井戸またはガス井戸(以下、
単に井戸という)の従来の施工を模式的に示す垂直断面
図である。同図に示すように、従来は、まず第1の管1
を井戸の土中に埋設し、その内側に第2の管2を埋設
し、以下順次、第3の管3および第4の管を埋設し、最
後に、油井またはガス井に到達する第5の管5を埋設す
ることによって、井戸10を施工していた。その為、よ
り深い井戸を構築するためには、その深さに応じて使用
する鋼管の量が増えると共に堀削面積も拡大するため、
相当な施工コストを要していた。
2. Description of the Related Art FIG. 1 shows an oil well or a gas well (hereinafter referred to as an oil well).
FIG. 4 is a vertical sectional view schematically showing a conventional construction of a well. As shown in FIG.
Is buried in the soil of the well, the second pipe 2 is buried inside the well, the third pipe 3 and the fourth pipe are buried sequentially, and finally, the fifth pipe reaching the oil or gas well. The well 10 has been constructed by burying the pipe 5 of FIG. Therefore, in order to construct a deeper well, the amount of steel pipe to be used increases according to the depth and the excavation area also increases,
Significant construction costs were required.

【0003】これまで、井戸に使用される鋼管について
は、材料自体の高強度化により薄肉化を図り、材料使用
量の低減により施工コストの削減が図られてきたもの
の、材料使用量の低減による施工コストの削減は限界に
達した感があった。そこで、より一層、施工コストを削
減するために、既に埋設された鋼管の内部に他の鋼管を
挿入し、この鋼管に拡管加工を行うことによって、鋼管
使用量を削減するという新しい施工方法が開発され、実
用化に向けて検討されている。
Heretofore, steel pipes used for wells have been made thinner by increasing the strength of the material itself, and the construction cost has been reduced by reducing the amount of material used. There was a feeling that the reduction in construction costs had reached its limit. Therefore, in order to further reduce the construction cost, a new construction method has been developed that inserts another steel pipe into the already buried steel pipe and expands this steel pipe to reduce the amount of steel pipe used. It is being studied for practical use.

【0004】図2は、この新しい施工方法による井戸1
0の施工要領を模式的に示す説明図である。同図に示す
ように、この施工方法は、先に土中に埋設された管7の
外径よりも小さな外径の管8を井戸内に挿入し、この管
にマンドレル9などの拡管加工用工具を用いて拡管加工
を施し、これにより、管8を管7に勘合させた状態で使
用し、以下井戸の深さに応じて係る作業を適当な回数繰
り返していくものである。この施工方法によれば、同一
外径の管を使用する深さを、従来よりも大幅に増加する
ことが可能となる。
FIG. 2 shows a well 1 according to this new construction method.
It is explanatory drawing which shows the construction point of 0 typically. As shown in the figure, this construction method inserts a pipe 8 having an outer diameter smaller than the outer diameter of a pipe 7 previously buried in the soil into a well, and expands this pipe with a mandrel 9 or the like. The pipe expansion process is performed using a tool, whereby the pipe 8 is used in a state of being fitted to the pipe 7, and the operation is repeated an appropriate number of times according to the depth of the well. According to this construction method, it is possible to greatly increase the depth at which pipes having the same outer diameter are used, as compared with the related art.

【0005】図3は、この施工方法により施工された井
戸10の一例を示す説明図である。同図に示すように、
この新しい施工方法によれば、従来の施工方法に比較し
て、最も外側の管11の径を小さくすることができ、井
戸当たりの管11〜14の総使用量と掘削面積を減らす
ことができる。
FIG. 3 is an explanatory view showing an example of a well 10 constructed by this construction method. As shown in the figure,
According to this new construction method, the diameter of the outermost pipe 11 can be reduced as compared with the conventional construction method, and the total usage and excavation area of the pipes 11 to 14 per well can be reduced. .

【0006】[0006]

【発明が解決しようとする課題】ところで、地中に埋設
された鋼管は、地中の圧力を受けるため、耐コラプス
性、すなわち耐圧潰性が要求される。一般的に、拡管加
工を施された鋼管は、耐コラプス性が低下することが知
られている。この新しい施工方法に供される鋼管を対象
としたものでないが、耐コラプス性を高める技術とし
て、例えば、特開平9−316539号公報には、焼き
入れ焼き戻しを行った鋼管を温間矯正し、このとき鋼管
内面に生じた周方向圧縮残留応力を、次工程の水冷によ
り鋼管内面に発生する周方向引張残留応力で相殺して、
製品の周方向残留応力を低減し、耐コラプス性を高める
技術が開示されている。
However, steel pipes buried underground are required to have collapse resistance, that is, crush resistance, because they are subjected to underground pressure. In general, it is known that collapse-resistant steel pipes that have undergone pipe expansion have a reduced resistance. Although it is not intended for steel pipes to be used in this new construction method, as a technique for improving the collapse resistance, for example, Japanese Patent Application Laid-Open No. 9-31639 discloses a technique for warm straightening a quenched and tempered steel pipe. At this time, the circumferential compressive residual stress generated on the inner surface of the steel pipe is offset by the circumferential tensile residual stress generated on the inner surface of the steel pipe by water cooling in the next step,
There is disclosed a technique for reducing circumferential residual stress of a product and improving collapse resistance.

【0007】新しい施工方法に供される鋼管は、井戸内
で拡管加工してそのままの状態で使用されるため、拡管
加工後に熱処理を行うことができず、拡管加工後の品質
も殆ど確認できない。拡管加工後、品質を確認すること
ができたとしても、既に拡管加工された鋼管を地中から
引き上げることは現実には不可能である。このため、こ
の新しい施工方法に供される鋼管には、拡管加工に伴う
耐コラプス性の低下の小さい鋼管が要求される。
[0007] Since the steel pipe used for the new construction method is used as it is after being expanded in the well, heat treatment cannot be performed after the expansion, and the quality after the expansion can hardly be confirmed. Even if the quality can be confirmed after the pipe expansion, it is actually impossible to pull up the already expanded steel pipe from underground. For this reason, the steel pipe used for this new construction method is required to have a small reduction in collapse resistance due to the pipe expansion process.

【0008】本発明は、井戸内に挿入された状態で拡管
加工を行われて使用される鋼管であって、拡管加工によ
る耐コラプス性の低下の小さい鋼管を提供することにあ
る。
It is an object of the present invention to provide a steel pipe which is used after being expanded in a state where it is inserted into a well, wherein the collapse resistance due to the expansion is small.

【0009】[0009]

【課題を解決するための手段】本発明者らは、耐コラプ
ス性の低下の小さい鋼管について鋭意検討を重ね、以下
a〜eの知見を得た。以下、鋼管を単に管ともいう。
Means for Solving the Problems The present inventors have conducted intensive studies on a steel pipe with a small decrease in collapse resistance and obtained the following findings a to e. Hereinafter, a steel pipe is also simply called a pipe.

【0010】a.拡管加工により、管肉厚が減少して耐
コラプス性が低下する。管肉厚の減少量は、拡管加工用
工具と管内面との間の摩擦力が大きいほど顕著になる。
従って、拡管加工用工具と管内面との間の摩擦係数を小
さくすることにより、管肉厚の減少が抑制される。
A. The pipe expansion reduces the wall thickness of the pipe and reduces the collapse resistance. The decrease in the pipe wall thickness becomes more remarkable as the frictional force between the pipe expanding tool and the inner surface of the pipe increases.
Therefore, a decrease in the wall thickness of the pipe is suppressed by reducing the coefficient of friction between the pipe expanding tool and the pipe inner surface.

【0011】b.拡管加工により、管内面の周方向に引
張残留応力または圧縮残留応力が発生する。拡管加工用
工具と管内面との間の摩擦力が小さいと、引張残留応力
が発生し、摩擦力が大きいと、圧縮残留応力が発生す
る。特に、圧縮残留応力が発生すると、耐コラプス性は
著しく低下する。
B. By the pipe expansion, a tensile residual stress or a compressive residual stress is generated in the circumferential direction of the inner surface of the pipe. When the frictional force between the pipe expanding tool and the inner surface of the pipe is small, tensile residual stress is generated, and when the frictional force is large, compressive residual stress is generated. In particular, when compressive residual stress occurs, the collapse resistance is significantly reduced.

【0012】c.拡管加工用鋼管として、予め内面に潤
滑被膜を形成した鋼管を用いることにより、管肉厚の減
少が抑制され、かつ、残留応力が適正化され、耐コラプ
ス性の低下が抑制される。
C. By using a steel pipe having a lubricating film formed on the inner surface in advance as a steel pipe for pipe expansion, a decrease in pipe wall thickness is suppressed, a residual stress is optimized, and a reduction in collapse resistance is suppressed.

【0013】d.潤滑被膜として、例えば、黒鉛や二硫
化モリブデンなどの固体潤滑剤を樹脂に分散した樹脂被
膜などを用いることができる。樹脂被膜中の樹脂と固体
潤滑剤との質量比(固体潤滑剤の質量/樹脂質量)は
0.01〜0.50とするのがよい。
D. As the lubricating film, for example, a resin film in which a solid lubricant such as graphite or molybdenum disulfide is dispersed in a resin can be used. The mass ratio of the resin in the resin film to the solid lubricant (the mass of the solid lubricant / the mass of the resin) is preferably 0.01 to 0.50.

【0014】e.潤滑被膜の動摩擦係数が0.4を超え
ると、圧縮残留応力が発生し、耐コラプス性が著しく低
下することがある。また、動摩擦係数が0.1未満で
は、引張残留応力が大きくなり、耐コラプス性の低下が
大きくなることがある。
E. When the dynamic friction coefficient of the lubricating coating exceeds 0.4, compressive residual stress is generated, and the collapse resistance may be significantly reduced. On the other hand, when the dynamic friction coefficient is less than 0.1, the tensile residual stress becomes large, and the collapse resistance may be greatly reduced.

【0015】f.潤滑被膜の動摩擦係数が0.4を超え
ると、管肉厚の減少が大きくなり、耐コラプス性が著し
く低下することがある。 g.従って、潤滑被膜の動摩擦係数は0.1以上、0.
4以下とするのがよい。
F. If the coefficient of kinetic friction of the lubricating coating exceeds 0.4, the reduction in the wall thickness of the tube becomes large, and the collapse resistance may be significantly reduced. g. Therefore, the coefficient of kinetic friction of the lubricating coating is 0.1 or more and 0.1 or more.
It is better to be 4 or less.

【0016】なお、潤滑被膜の動摩擦係数は、以下に示
すバウデン試験にて測定されたものとして規定される。
図4は、バウデン型試験装置で潤滑被膜の動摩擦係数を
測定する方法を模式的に示す概要図である。同図で、符
号21は試験片、22は半球状押圧子、23はばねを示
す。図4に示すように、バウデン型試験装置は、半球状
押圧子22とばね23とを備え、表面に潤滑被膜が形成
され図面の左右方向(矢印方向)に摺動する試験片21
に、半球状押圧子22を所定の押圧加重Pで押圧し、そ
の際のばね23の変位を測定し、このばねの変位とばね
剛性とから試験片と半球状押圧子との摩擦力Fを求める
ことにより、潤滑被膜の動摩擦係数μが、μ=F/Pで
演算される。ただし、試験片と半球状押圧子との相対速
度:40mm/秒、押圧加重:30MPa、試験温度:
常温、半球状押圧子は材質が高炭素軸受け鋼(SUJ
2)で、ロックウェル硬さ63以上、半球状押圧子の表
面粗さはRmaxで0.1μm以下である。
The kinetic friction coefficient of the lubricating film is defined as a value measured by a Bowden test shown below.
FIG. 4 is a schematic diagram schematically showing a method for measuring the dynamic friction coefficient of a lubricating film using a Bowden-type test apparatus. In the figure, reference numeral 21 denotes a test piece, 22 denotes a hemispherical presser, and 23 denotes a spring. As shown in FIG. 4, the Bowden-type test apparatus includes a hemispherical pressing element 22 and a spring 23, and has a lubricating film formed on the surface thereof and slides in the left-right direction (the direction of the arrow) in the drawing.
Then, the hemispherical pressing element 22 is pressed with a predetermined pressing load P, the displacement of the spring 23 at that time is measured, and the frictional force F between the test piece and the hemispherical pressing element is determined from the displacement of the spring and the spring rigidity. As a result, the dynamic friction coefficient μ of the lubricating film is calculated by μ = F / P. However, the relative speed between the test piece and the hemispherical pressing element: 40 mm / sec, pressing load: 30 MPa, test temperature:
Room temperature, hemispherical presser is made of high carbon bearing steel (SUJ
In 2), the Rockwell hardness is 63 or more, and the surface roughness of the hemispherical presser is 0.1 μm or less in Rmax.

【0017】本発明は、上記知見に基づいて完成された
もので、その要旨は、以下の通りである。 (1)油井戸またはガス井戸内に挿入された状態で拡管
加工を行われて使用される鋼管であって、該鋼管の実質
的に内面の全長に亘り潤滑被膜を備えることを特徴とす
る拡管加工用鋼管。
The present invention has been completed based on the above findings, and the gist thereof is as follows. (1) A steel pipe which is used by being expanded while being inserted into an oil well or a gas well, and which is provided with a lubricating coating over substantially the entire length of the inner surface of the steel pipe. Steel pipe for processing.

【0018】(2)上記潤滑被膜が固体潤滑剤を含有す
る樹脂被膜であることを特徴とする上記(1)項に記載
の拡管加工用鋼管。 (3)樹脂被膜中の樹脂と固体潤滑剤との質量比(固体
潤滑剤の質量/樹脂質量)が0.01〜0.50である
ことを特徴とする上記(2)項に記載の拡管加工用鋼
管。
(2) The steel pipe for expanding work according to the above (1), wherein the lubricating film is a resin film containing a solid lubricant. (3) The pipe expansion according to the above (2), wherein the mass ratio of the resin in the resin film to the solid lubricant (mass of the solid lubricant / mass of the resin) is 0.01 to 0.50. Steel pipe for processing.

【0019】(4)潤滑被膜の動摩擦係数が0.1以
上、0.4以下であることを特徴とする上記(1)〜
(3)項のいずれかに記載の拡管加工用鋼管。
(4) The lubricating film has a coefficient of kinetic friction of 0.1 or more and 0.4 or less.
(3) The steel pipe for pipe expansion processing according to any of (3).

【0020】[0020]

【発明の実施の形態】以下、本発明の鋼管の実施の形態
について、その特徴毎に詳細に説明する。 (1)潤滑被膜:潤滑被膜を形成された鋼管は拡管加工
が実施される井戸まで搬送されるので、搬送中も脱落し
ない高い密着性と、高い潤滑性の確保が要求される。こ
のような潤滑被膜としては、例えば、固体潤滑剤を樹脂
に分散させた樹脂被膜やコンパウンドグリスなどの半固
体状潤滑被膜などが挙げられる。また、潤滑被膜とし
て、二硫化モリブデンや二硫化タングステンなどをイオ
ンプレーティングで積層した固体被膜を用いてもよい。
特に、樹脂被膜は、高い密着性と、高い潤滑性を備えて
おり、また被膜の形成が容易であり実用性が高い。した
がって、潤滑被膜としては、樹脂被膜が望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of a steel pipe according to the present invention will be described in detail for each feature. (1) Lubricating coating: Since the steel pipe on which the lubricating coating is formed is transported to the well where the pipe expansion process is performed, it is required to ensure high adhesion that does not fall off during transport and high lubricity. Examples of such a lubricating film include a resin film in which a solid lubricant is dispersed in a resin, and a semi-solid lubricating film such as compound grease. Further, as the lubricating film, a solid film in which molybdenum disulfide, tungsten disulfide, or the like is laminated by ion plating may be used.
In particular, the resin film has high adhesion and high lubricity, and is easy to form and has high practicality. Therefore, a resin film is desirable as the lubricating film.

【0021】固体潤滑剤としては、黒鉛、二硫化モリブ
デンあるいは二硫化タングステンを単体で、またはこれ
らの2種以上を混合して用いることが望ましい。なお、
固体潤滑剤として、金属石鹸、例えば、リン酸エステル
系、硫酸エステル系、あるいは脂肪酸エステル系のCa
塩やZn塩などを用いてもよい。
As the solid lubricant, it is desirable to use graphite, molybdenum disulfide or tungsten disulfide alone or as a mixture of two or more thereof. In addition,
As solid lubricants, metal soaps such as phosphate ester-based, sulfate ester-based, or fatty acid ester-based Ca
A salt or a Zn salt may be used.

【0022】樹脂としては、固体潤滑剤のバインダとし
ての機能と適度な硬さを有する材料を用いる。このよう
な材料にはエポキシ系樹脂、ポリアミドイミド系樹脂、
ポリイミド系樹脂などを挙げることができる。
As the resin, a material having a function as a binder of a solid lubricant and an appropriate hardness is used. Such materials include epoxy resins, polyamide-imide resins,
Examples thereof include a polyimide resin.

【0023】潤滑被膜の厚さが過小では潤滑性の向上効
果が小さく、厚さが過大では剥離しやすい。したがっ
て、潤滑被膜の厚さは1μm以上、50μm以下とする
のが望ましい。潤滑被膜の厚さの下限値は10μmとす
るのがより望ましい。
If the thickness of the lubricating film is too small, the effect of improving the lubricity is small, and if the thickness is too large, it is easy to peel off. Therefore, it is desirable that the thickness of the lubricating coating be 1 μm or more and 50 μm or less. More preferably, the lower limit of the thickness of the lubricating coating is 10 μm.

【0024】本実施の形態の鋼管は、このような潤滑被
膜を実質的に内面の全長に亘り備える。実質的に内面の
全長に亘り備えるとは、少なくとも拡管加工が施される
内面全長に潤滑被膜が形成されていることを意味する。
The steel pipe of the present embodiment is provided with such a lubricating coating over substantially the entire length of the inner surface. Provision substantially over the entire length of the inner surface means that a lubricating coating is formed at least on the entire length of the inner surface on which the pipe expanding process is performed.

【0025】(2)樹脂被膜中の樹脂と固体潤滑剤との
質量比:固体潤滑剤は、樹脂被膜の潤滑性を高める作用
をなす。しかしながら、樹脂被膜中の固体潤滑剤の割合
が高くなると、樹脂被膜の密着性が低下する。樹脂被膜
中の固体潤滑剤の割合が低くなると、樹脂被膜の潤滑性
が低下する。したがって、樹脂被膜中の樹脂と固体潤滑
剤との質量比(固体潤滑剤の質量/樹脂の質量)は、
0.01以上、0.50以下とするのが望ましい。更に
好ましくは、0.01以上、0.15以下である。
(2) Mass ratio of resin to solid lubricant in the resin film: The solid lubricant has the effect of improving the lubricity of the resin film. However, when the proportion of the solid lubricant in the resin film increases, the adhesiveness of the resin film decreases. When the proportion of the solid lubricant in the resin film decreases, the lubricity of the resin film decreases. Therefore, the mass ratio of the resin in the resin film to the solid lubricant (mass of solid lubricant / mass of resin) is:
It is desirable to be 0.01 or more and 0.50 or less. More preferably, it is 0.01 or more and 0.15 or less.

【0026】(3)潤滑被膜の動摩擦係数:管内面と潤
滑被膜との間の動摩擦係数が大きくなると、拡管加工の
際の管軸方向の引張力が増大し、耐コラプス性の低下の
原因となる管肉厚の減少量が増加する。また、動摩擦係
数が過大となると、残留応力が圧縮となり、耐コラプス
性が著しく低下することがある。一方、管内面と潤滑被
膜との間の動摩擦係数が過小となると、引張残留応力が
大きくなり、耐コラプス性の低下が大きくなることがあ
る。したがって、潤滑被膜の動摩擦係数は、前述したバ
ウデン試験で規定される値で、0.1以上、0.4以下
とするのが望ましい。更に望ましくは、0.1以上、
0.3以下であり、なお、更に望ましくは、0.2以
上、0.3以下である。
(3) Coefficient of kinetic friction of the lubricating coating: When the kinetic friction coefficient between the inner surface of the pipe and the lubricating coating is increased, the tensile force in the pipe axis direction at the time of expanding the pipe is increased, which causes a reduction in collapse resistance. The decrease in pipe wall thickness increases. If the coefficient of kinetic friction is excessive, the residual stress is compressed, and the collapse resistance may be significantly reduced. On the other hand, when the coefficient of kinetic friction between the inner surface of the pipe and the lubricating coating is too small, the tensile residual stress increases, and the degradation of the collapse resistance may increase. Therefore, the coefficient of kinetic friction of the lubricating coating is preferably 0.1 or more and 0.4 or less as specified in the Bowden test described above. More preferably, 0.1 or more,
0.3 or less, more preferably 0.2 or more and 0.3 or less.

【0027】次に、本発明に係る潤滑被膜の形成方法を
樹脂被膜を例に説明する。例えば圧延により製造された
鋼管の内面をデスケーリング処理した後、前述した固体
潤滑剤と樹脂とにトルエンやイソプロピルアルコールな
どの分散剤を加えて混合した液中にデスケーリング処理
した鋼管を浸漬し、その後、100〜200℃で加熱処
理することにより鋼管内面に樹脂被膜を形成することが
できる。
Next, a method of forming a lubricating film according to the present invention will be described by taking a resin film as an example. For example, after descaling the inner surface of a steel pipe manufactured by rolling, immersing the descaled steel pipe in a liquid obtained by adding a dispersant such as toluene or isopropyl alcohol to the solid lubricant and the resin described above, Then, a resin coating can be formed on the inner surface of the steel pipe by performing a heat treatment at 100 to 200 ° C.

【0028】Cr含有量が10質量%を超える成分を有
する高Cr鋼管では、被膜の付着性を向上させるため
に、デスケーリング後、管内面に窒化処理や鉄合金めっ
きなどの下地処理を行い、その上に樹脂被膜を形成する
のがよい。
In the case of a high Cr steel tube having a Cr content exceeding 10% by mass, in order to improve the adhesion of the coating, after descaling, the inner surface of the tube is subjected to a base treatment such as nitriding treatment or iron alloy plating. It is preferable to form a resin film thereon.

【0029】コンパウンドグリスなどの半固体状潤滑被
膜を形成する場合は、デスケーリング処理した鋼管内面
にグリスを直接塗布することにより形成することができ
る。この本実施の形態の鋼管は、前述したように、井戸
内に挿入された状態で拡管加工を行われて使用されるた
め、素材鋼管自体の製法は特に限定されるものでなな
い。例えば、鋼板の突き合わせ部分を溶接した溶接鋼管
や鋼片から継ぎ目無く製造された継目無鋼管などを適用
することができる。
When a semi-solid lubricating film such as compound grease is formed, the lubricating film can be formed by directly applying grease to the inner surface of the descaled steel pipe. As described above, since the steel pipe of the present embodiment is used after being expanded while being inserted into the well, the method of manufacturing the raw steel pipe itself is not particularly limited. For example, a welded steel pipe in which butted portions of steel plates are welded, a seamless steel pipe manufactured seamlessly from a billet, or the like can be applied.

【0030】また、同様に、鋼管の材質も特に限定され
るものではない。例えば、炭素鋼、低合金鋼、高合金鋼
などを適用することができる。但し、高Cr鋼管に樹脂
被膜を形成する場合には、内面に下地処理を施した鋼管
を用いるのが望ましい。
Similarly, the material of the steel pipe is not particularly limited. For example, carbon steel, low alloy steel, high alloy steel, or the like can be used. However, when a resin film is formed on a high Cr steel pipe, it is desirable to use a steel pipe whose inner surface is subjected to a base treatment.

【0031】この本実施の形態の鋼管は、前述したよう
に、井戸内に挿入された状態で拡管加工を行われて使用
されるものであり、拡管加工方法自体については特に限
定されるものではない。例えば、拡管加工方法として
は、管内部に挿入したテーパ付きマンドレルを液圧で引
き上げる方法や、テーパ付きマンドレルに芯金を装着
し、この心金を機械的に引き抜く方法などが挙げられ
る。テーパ付きマンドレルのテーパ角が小さすぎるとマ
ンドレルと鋼管内面との摩擦力が増加し、管の変形状態
が不安定になり易いという問題があり、また、テーパ角
が大きすぎるとマンドレルと鋼管との接触部の面圧が著
しく大きくなり、焼き付き等の問題を引き起こしやす
い。従って、テーパ角は、5〜45度が望ましい。より
好ましくは10〜30度である。
As described above, the steel pipe of the present embodiment is used after being expanded in a state where it is inserted into a well, and the method of expanding the pipe itself is not particularly limited. Absent. For example, examples of the pipe expanding method include a method of pulling up a tapered mandrel inserted into the inside of the pipe by hydraulic pressure, a method of attaching a cored bar to the tapered mandrel, and mechanically pulling out the mandrel. If the taper angle of the tapered mandrel is too small, the frictional force between the mandrel and the inner surface of the steel pipe increases, and there is a problem that the deformed state of the pipe tends to be unstable. The surface pressure at the contact portion becomes extremely large, and problems such as image sticking are likely to occur. Therefore, the taper angle is desirably 5 to 45 degrees. More preferably, it is 10 to 30 degrees.

【0032】[0032]

【実施例】マンネスマン−マンドレル製管法にて熱間圧
延後、オーステナイト域に再加熱し均熱した後、水焼き
入れ、焼き戻し処理を施し、外径139.7mm、肉厚
10.5mmの低合金製(C:0.24質量%、Mn:
1.3質量%、Cr:0.2質量%、V:0.01質量
%)の継目無鋼管を製造した。この管の強度グレード
は、API−L80グレード相当品(引張強度:570
MPa)とした。
EXAMPLE After hot rolling by the Mannesmann-Mandrel pipe manufacturing method, reheating to the austenite region and soaking, water quenching and tempering treatment were performed to obtain an outer diameter of 139.7 mm and a wall thickness of 10.5 mm. Made of low alloy (C: 0.24 mass%, Mn:
1.3 mass%, Cr: 0.2 mass%, V: 0.01 mass%). The strength grade of this tube is API-L80 grade equivalent (tensile strength: 570
MPa).

【0033】上記管の内面をショットで脱スケール処理
した後、二硫化モリブデンと黒鉛との混合粉末とエポキ
シ系樹脂とに分散媒としてトルエンとイソプロピルアル
コールとの混合液を加えて混合した液中に浸漬し、その
後、150℃の加熱処理を施して、内面の全長に亘り樹
脂被膜を形成する方法で、固体潤滑剤である混合粉末と
樹脂との質量比が異なる潤滑被膜を有する6種類の管
(P1〜P6)を製作した。なお、上記液中、質量%
で、混合粉末とエポキシ系樹脂との合計を35%、分散
媒の混合液を65%とした。
After descaling the inner surface of the tube with a shot, a mixed solution of toluene and isopropyl alcohol was added as a dispersion medium to a mixed powder of molybdenum disulfide and graphite and an epoxy resin, and mixed. A method of forming a resin film over the entire length of the inner surface by immersing and then performing a heat treatment at 150 ° C., whereby six types of pipes having lubricating films having different mass ratios of the mixed powder as a solid lubricant and the resin. (P1 to P6) were manufactured. In the above liquid, the mass%
Thus, the total of the mixed powder and the epoxy resin was 35%, and the mixed liquid of the dispersion medium was 65%.

【0034】潤滑被膜を施した管からサンプルを切り出
し、このサンプルを用いて、潤滑被膜の動摩擦係数を測
定した。動摩擦係数の測定は、図4に示すバウデン型試
験装置を用い、前述した試験方法、試験条件で行った。
なお、脱スケールしたままの状態の管(P7)からサン
プルを切り出し、この管の動摩擦係数も調査した。表1
に固体潤滑剤と樹脂との質量比と動摩擦係数の測定結果
を示す。
A sample was cut out from the tube provided with the lubricating film, and the dynamic friction coefficient of the lubricating film was measured using the sample. The measurement of the dynamic friction coefficient was performed using the Bowden-type test apparatus shown in FIG. 4 under the test methods and test conditions described above.
In addition, a sample was cut out from the tube (P7) in a state where it was descaled, and the dynamic friction coefficient of this tube was also investigated. Table 1
Fig. 2 shows the measurement results of the mass ratio of the solid lubricant to the resin and the dynamic friction coefficient.

【0035】[0035]

【表1】 [Table 1]

【0036】表1に示すように、質量比の増加と共に動
摩擦係数は小さくなり、質量比が0.01(1%)以上
で、動摩擦係数が0.3以下となった。次に、内面に潤
滑被膜を形成した管と脱スケール処理したままの状態の
管とを対象に、拡管加工試験を実施した。
As shown in Table 1, the kinetic friction coefficient decreased as the mass ratio increased, and the kinetic friction coefficient became 0.3 or less when the mass ratio was 0.01 (1%) or more. Next, a pipe expansion test was performed on the pipe having the lubricating film formed on the inner surface and the pipe in a state where the scale was descaled.

【0037】図5は、拡管加工試験の要領を示す概要図
である。同図で、符号25は管、26は拡管加工用工具
であるプラグを示す。図5に示すように、管25の一端
を固定し、管25の内部に挿入したテーパ角αが10度
または20度のプラグ26を引き抜く方法にて、管内径
の拡大率(管内径の拡大量(d1−d0)/管内径d0
×100%)が20%または30%の拡管加工を行い、
仕上管を得た。ここでd1は仕上管(拡管加工後の管)
内径、d0は拡管加工前の管内径である。
FIG. 5 is a schematic diagram showing the procedure of a pipe expansion test. In the figure, reference numeral 25 indicates a pipe, and reference numeral 26 indicates a plug which is a pipe expanding tool. As shown in FIG. 5, one end of the pipe 25 is fixed, and the plug 26 having a taper angle α of 10 degrees or 20 degrees inserted into the pipe 25 is pulled out. Amount (d1-d0) / tube inner diameter d0
× 100%) performs 20% or 30% pipe expansion,
A finished tube was obtained. Here, d1 is a finished pipe (tube after expanded processing).
The inside diameter, d0, is the inside diameter of the pipe before the pipe expanding process.

【0038】拡管加工で得られた仕上管の肉厚を測定
し、肉厚の減少率(肉厚減少量/素管肉厚×100%)
を算出するとともに、仕上管の内面の残留応力と、圧潰
圧力(コラプス強度)を測定した。なお、肉厚の減少率
を減肉率ともいう。
The thickness of the finished pipe obtained by the expanding process is measured, and the reduction rate of the wall thickness (amount of reduction in wall thickness / wall thickness of base tube × 100%)
Was calculated, and the residual stress on the inner surface of the finished tube and the crushing pressure (collapse strength) were measured. Note that the rate of decrease in wall thickness is also referred to as the rate of decrease in wall thickness.

【0039】管内面の残留応力は、歪ゲージ法により測
定した。すなわち、拡管加工後の管の内面周方向に歪み
ゲージを貼付した後、管を小片に切断し、その際、小片
に発生する歪みを測定し、この歪みから残留応力を求め
た。
The residual stress on the inner surface of the tube was measured by a strain gauge method. That is, after a strain gauge was attached in the circumferential direction of the inner surface of the pipe after the pipe expansion process, the pipe was cut into small pieces. At this time, the strain generated in the small pieces was measured, and the residual stress was determined from this strain.

【0040】図6は、圧潰圧力の測定方法を示す模式図
である。同図で、符号31は容器、32は管、33は水
を示す。図6に示すように、容器31内に管32を設置
し、管の外側から静水圧(図中矢印で示す)を負荷し、
管が潰れ始めたときの静水圧を測定し、圧潰圧力とし
た。
FIG. 6 is a schematic diagram showing a method for measuring the crushing pressure. In the figure, reference numeral 31 denotes a container, 32 denotes a pipe, and 33 denotes water. As shown in FIG. 6, a pipe 32 is installed in a container 31, and a hydrostatic pressure (indicated by an arrow in the drawing) is applied from outside the pipe,
The hydrostatic pressure when the tube began to collapse was measured and was taken as the collapse pressure.

【0041】表2に、試験条件A(テーパ角α:10
度、拡大率:20%)、試験条件B(テーパ角α:20
度、拡大率:20%)および試験条件C(テーパ角α:
20度、拡大率:30%)での減肉率、残留応力および
圧潰圧力の比(拡管後管の圧潰圧力/拡管前管の圧潰圧
力)を示す。
Table 2 shows the test conditions A (taper angle α: 10
Degree, magnification: 20%), test condition B (taper angle α: 20)
Degree, magnification: 20%) and test condition C (taper angle α:
The ratio of the wall thinning rate, the residual stress, and the crushing pressure (20 °, expansion ratio: 30%) (crushing pressure of the pipe after expansion / crushing pressure of the pipe before expansion) is shown.

【0042】[0042]

【表2】 [Table 2]

【0043】図7は、本例における動摩擦係数と減肉率
との関係を示すグラフである。図8は、本例における動
摩擦係数と残留応力との関係を示すグラフである。図9
は、本例における動摩擦係数と圧潰圧力の比との関係を
示すグラフである。
FIG. 7 is a graph showing the relationship between the dynamic friction coefficient and the wall thinning rate in this example. FIG. 8 is a graph showing the relationship between the dynamic friction coefficient and the residual stress in this example. FIG.
Is a graph showing the relationship between the coefficient of dynamic friction and the ratio of the crushing pressure in this example.

【0044】表2および図7に示すように、動摩擦係数
が0.3以下の潤滑被膜を形成した管を用いると、潤滑
被膜を形成しない管に比べ、減肉率が大幅に抑制され
た。また、表2および図8に示すように、動摩擦係数が
0.3以下での潤滑被膜を形成した管を用いると、管内
面の周方向残留応力は引張応力となることが判った。
As shown in Table 2 and FIG. 7, when a tube having a lubricating film having a dynamic friction coefficient of 0.3 or less was used, the wall thinning rate was significantly suppressed as compared with a tube having no lubricating film. Further, as shown in Table 2 and FIG. 8, it was found that when a tube having a lubricating coating having a dynamic friction coefficient of 0.3 or less was used, the circumferential residual stress on the inner surface of the tube was a tensile stress.

【0045】表2および図9に示すように、動摩擦係数
が0.3以下の潤滑被膜を形成した管は、潤滑被膜を形
成しない管に比べ、圧潰圧力の低下が著しく抑制され
た。特に、動摩擦係数が0.2〜0.3の潤滑被膜を形
成した管が良好であった。
As shown in Table 2 and FIG. 9, in the pipe having the lubricating coating having a dynamic friction coefficient of 0.3 or less, the reduction in the crush pressure was significantly suppressed as compared with the pipe having no lubricating coating. In particular, a tube having a lubricating film having a dynamic friction coefficient of 0.2 to 0.3 was good.

【0046】[0046]

【発明の効果】本発明により、拡管加工による耐コラプ
ス性の低下の小さい管を提供すること、より具体的に
は、井戸に挿入された状態で拡管加工を行われ、このま
まで使用される管を提供することができる。したがっ
て、本発明により、井戸当たりの鋼管の総使用量と掘削
面積を減らすことができる。
According to the present invention, it is possible to provide a pipe having a small decrease in collapse resistance due to pipe expansion, and more specifically, a pipe which is subjected to pipe expansion while inserted into a well and used as it is. Can be provided. Therefore, according to the present invention, the total amount of steel pipe used per well and the excavated area can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】井戸の従来の施工を模式的に示す垂直断面図で
ある。
FIG. 1 is a vertical sectional view schematically showing conventional construction of a well.

【図2】新しい施工方法による井戸の施工要領を模式的
に示す説明図である。
FIG. 2 is an explanatory view schematically showing a construction procedure of a well by a new construction method.

【図3】新しい施工方法により施工された井戸の一例を
示す説明図である。
FIG. 3 is an explanatory view showing an example of a well constructed by a new construction method.

【図4】バウデン型試験装置で潤滑被膜の動摩擦係数を
測定する方法を模式的に示す概要図である。
FIG. 4 is a schematic diagram schematically showing a method for measuring a dynamic friction coefficient of a lubricating coating using a Bowden-type test apparatus.

【図5】拡管加工試験の要領を示す概要図である。FIG. 5 is a schematic diagram showing a procedure of a pipe expansion test.

【図6】圧潰圧力の測定方法を示す模式図である。FIG. 6 is a schematic view showing a method of measuring a crush pressure.

【図7】本例における動摩擦係数と肉厚減少率との関係
を示すグラフである。
FIG. 7 is a graph showing a relationship between a dynamic friction coefficient and a wall thickness reduction rate in the present example.

【図8】本例における動摩擦係数と残留応力との関係を
示すグラフである。
FIG. 8 is a graph showing a relationship between a coefficient of dynamic friction and a residual stress in this example.

【図9】本例における動摩擦係数と圧潰応力の比との関
係を示すグラフである。
FIG. 9 is a graph showing the relationship between the coefficient of dynamic friction and the ratio of crushing stress in this example.

【符号の説明】[Explanation of symbols]

1〜5、7、8、11〜14、25、32:管、10:
井戸、9:マンドレル、21:試験片、22:半球状押
圧子、23:ばね、26:プラグ、31:容器、33:
水。
1 to 5, 7, 8, 11 to 14, 25, 32: tube, 10:
Well, 9: mandrel, 21: test piece, 22: hemispherical presser, 23: spring, 26: plug, 31: container, 33:
water.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C10M 105/74 C10M 105/74 145/20 145/20 149/18 149/18 169/04 169/04 // C10N 10:04 C10N 10:04 10:12 10:12 40:00 40:00 Z 50:02 50:02 50:08 50:08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C10M 105/74 C10M 105/74 145/20 145/20 149/18 149/18 169/04 169/04 / / C10N 10:04 C10N 10:04 10:12 10:12 40:00 40:00 Z 50:02 50:02 50:08 50:08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 油井戸またはガス井戸内に挿入された状
態で拡管加工を行われて使用される鋼管であって、該鋼
管の実質的に内面の全長に亘り潤滑被膜を備えることを
特徴とする拡管加工用鋼管。
1. A steel pipe which is used by being expanded in an oil well or a gas well and is provided with a lubricating coating over substantially the entire length of an inner surface of the steel pipe. Steel pipe for pipe expansion.
【請求項2】 上記潤滑被膜が固体潤滑剤を含有する樹
脂被膜であることを特徴とする請求項1に記載の拡管加
工用鋼管。
2. The steel pipe for expanding work according to claim 1, wherein the lubricating coating is a resin coating containing a solid lubricant.
【請求項3】 樹脂被膜中の樹脂と固体潤滑剤との質量
比(固体潤滑剤の質量/樹脂質量)が0.01〜0.5
0であることを特徴とする請求項2に記載の拡管加工用
鋼管。
3. The mass ratio of the resin in the resin film to the solid lubricant (mass of solid lubricant / mass of resin) is 0.01 to 0.5.
The steel pipe for pipe expansion according to claim 2, wherein the value is 0.
【請求項4】 潤滑被膜の動摩擦係数が0.1以上、
0.4以下であることを特徴とする請求項1〜3のいず
れかに記載の拡管加工用鋼管。
4. The dynamic friction coefficient of the lubricating coating is 0.1 or more,
The steel pipe for pipe expansion according to any one of claims 1 to 3, wherein the diameter is 0.4 or less.
JP2001065418A 2001-03-08 2001-03-08 Steel pipe for pipe expansion processing Expired - Lifetime JP3788252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001065418A JP3788252B2 (en) 2001-03-08 2001-03-08 Steel pipe for pipe expansion processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001065418A JP3788252B2 (en) 2001-03-08 2001-03-08 Steel pipe for pipe expansion processing

Publications (2)

Publication Number Publication Date
JP2002266582A true JP2002266582A (en) 2002-09-18
JP3788252B2 JP3788252B2 (en) 2006-06-21

Family

ID=18924077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001065418A Expired - Lifetime JP3788252B2 (en) 2001-03-08 2001-03-08 Steel pipe for pipe expansion processing

Country Status (1)

Country Link
JP (1) JP3788252B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132851A1 (en) * 2006-05-15 2007-11-22 Sumitomo Metal Industries, Ltd. Lubricant for steel pipe cold working and relevant method of cold working

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132851A1 (en) * 2006-05-15 2007-11-22 Sumitomo Metal Industries, Ltd. Lubricant for steel pipe cold working and relevant method of cold working
JPWO2007132851A1 (en) * 2006-05-15 2009-09-24 住友金属工業株式会社 Lubricant for cold working of steel pipe and cold working method

Also Published As

Publication number Publication date
JP3788252B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
JP4438960B2 (en) Seamless pipe manufacturing method
Kuhn et al. A fracture criterion for cold forming
RU2552805C2 (en) Austenite alloy pipe and method of its manufacturing
US20070205001A1 (en) Expandable Tubular
JP2021181120A (en) High pressure pipe production method
JP2004314083A (en) High dimensional precision pipe and its manufacturing method
JP3788252B2 (en) Steel pipe for pipe expansion processing
US20090071221A1 (en) Mandrel Bar for High-Alloy Rolling, Method for Surface Treating a Mandrel Bar, Method for Producing Mandrel Bar, and Method for Operating Seamless Pipe Mill
CA2782192C (en) Blank tube for cold drawing and method for producing the same, and method for producing cold drawn tube
JP2000246312A (en) Mandrel bar and mandrel mill rolling method
JP6603665B2 (en) Rolling rod as internal tool in the manufacture of seamless metal hollow bodies and a method of manufacturing metal hollow bodies
JP2007000907A (en) High dimensional precision pipe manufacturing method with high efficiency and stability
Skripalenko et al. Comparative analysis of damage criteria for screw rolling using computer simulation
Halaczek Analysis of manufacturing bimetallic tubes by the cold drawing process
JP4428225B2 (en) Plug and cold drawing method
JP3136460B2 (en) Linear orbital shaft excellent in fatigue strength and surface properties and method for producing the same
Saiki et al. Characterization of adhesive strength of phosphate coatings in cold metal forming
JPH11342419A (en) Clad steel pipe manufacture by press roll piercing machine
Bhaduri et al. Drawing: Flat Strip, Round Bar and Tube
JP3553273B2 (en) Manufacturing method of hot extruded alloy tube
JP4333257B2 (en) Stable manufacturing method of high dimensional accuracy pipe
JP2880385B2 (en) Seamless steel tube rolling method
JP2006175485A (en) Method for highly efficiently manufacturing pipe having high dimensional accuracy
Sansome The Drawing of Metals
JP2001353516A (en) Drawing working method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350