JP2002265259A - Ceramic plate and manufacturing method therefor - Google Patents
Ceramic plate and manufacturing method thereforInfo
- Publication number
- JP2002265259A JP2002265259A JP2001061593A JP2001061593A JP2002265259A JP 2002265259 A JP2002265259 A JP 2002265259A JP 2001061593 A JP2001061593 A JP 2001061593A JP 2001061593 A JP2001061593 A JP 2001061593A JP 2002265259 A JP2002265259 A JP 2002265259A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- ceramic plate
- ceramic
- weight
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、亀裂が少なく、耐
熱衝撃性が高い低熱膨張性セラミックス板及びその製造
方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low thermal expansion ceramic plate having less cracks and high thermal shock resistance, and a method for producing the same.
【0002】[0002]
【従来の技術】液晶ディスプレイやプラズマディスプレ
イ等の平面ディスプレイは、テレビ受像機やパソコンの
ディスプレイ等として多く用いられており、該平面ディ
スプレイは基板上に必要な回路を作り込むことにより作
製されている。平面ディスプレイの作製工程中には、基
板を加熱炉内等で急熱、急冷等の熱処理をする工程があ
り、この際、基板は耐熱性の高い棚板、すなわちセッタ
ーの上に載置された状態で加熱炉等に装入される。この
ため、セッターには耐熱性及び急熱急冷に耐えうるよう
に耐熱衝撃性に優れることが必要とされる。さらに、基
板、ひいては平面ディスプレイの歪み等を防止するため
には、熱に対して寸法変化の少ないこと、すなわち低熱
膨張性に優れることも必要とされる。このようなセッタ
ーとしては、耐熱性及び低熱膨張性に優れることから、
セラミックス板を用いたセラミックスセッターが広く用
いられている。2. Description of the Related Art A flat display such as a liquid crystal display or a plasma display is widely used as a display of a television receiver or a personal computer, and the flat display is manufactured by forming necessary circuits on a substrate. . During the manufacturing process of the flat panel display, there is a step of performing a heat treatment such as rapid heating and quenching of the substrate in a heating furnace or the like. At this time, the substrate is placed on a high heat-resistant shelf board, that is, on a setter. It is charged into a heating furnace or the like in a state. For this reason, it is necessary for the setter to have excellent heat resistance and thermal shock resistance so as to withstand rapid heat quenching. Furthermore, in order to prevent distortion of the substrate, and eventually the flat display, etc., it is necessary that the dimensional change with respect to heat is small, that is, the thermal expansion property is excellent. Because such a setter is excellent in heat resistance and low thermal expansion,
Ceramic setters using ceramic plates are widely used.
【0003】また、半導体のウェハーの検査装置は高温
条件下や急熱急冷条件下でウェハーの寸法変化等を測定
するものであるが、ウェハーを検査装置内にセットする
際にも棚板が用いられている。この棚板としては従来は
樹脂板が用いられていたが、近年、ウェハーの大型化や
急熱急冷条件等の過酷化に伴い、耐熱性や熱変形等の観
点からセラミックス板を用いる要望が高まっている。さ
らに、高電圧、高電流用電力モジュール、サイリスタの
基板等としても、耐熱性や熱変形等の観点からセラミッ
クス板を用いる要望がある。A semiconductor wafer inspection apparatus measures a dimensional change of a wafer under a high temperature condition or a rapid thermal quenching condition. A shelf plate is also used when the wafer is set in the inspection apparatus. Have been. Conventionally, a resin plate has been used as the shelf plate. However, in recent years, with the enlargement of wafers and severer conditions such as rapid heating and quenching, there has been an increasing demand for the use of ceramic plates from the viewpoint of heat resistance and thermal deformation. ing. Further, there is a demand for using a ceramic plate as a substrate for a high-voltage / high-current power module, a thyristor, or the like from the viewpoint of heat resistance and thermal deformation.
【0004】セラミックスセッター等に用いられるセラ
ミックス板は、上記のように表面の平坦性が高いことが
望まれるため、一般的に製造の際には通常のセラミック
ス板の製造方法にさらに表面の研磨工程が付加される。
すなわち、通常のセラミックス板であれば、ペタライト
や木節粘土等からなるセラミックスの原料組成物を混練
し、得られた混練物を押し出して例えば真空土練機によ
り円筒状にした後にこの円筒状物を切り開く等すること
で板状体とし、この板状体を圧延して圧延板とし、これ
を焼成することにより製造されるが、セラミックスセッ
ター等に用いられるセラミックス板では、一般的に焼成
後、表面の凹凸の差が1mm以下の範囲内に収まるように
するためさらに研磨工程に付される。[0004] Since a ceramic plate used for a ceramic setter or the like is desired to have a high surface flatness as described above, in general, a general polishing method for the surface of the ceramic plate is required in addition to a normal ceramic plate manufacturing method. Is added.
That is, in the case of a normal ceramic plate, a ceramic raw material composition such as petalite or Kibushi clay is kneaded, and the obtained kneaded material is extruded into a cylindrical shape by, for example, a vacuum kneader, and then the cylindrical material is formed. Into a plate-like body by cutting open, etc., this plate-like body is rolled into a rolled plate, which is manufactured by firing.In a ceramic plate used for a ceramic setter or the like, generally, after firing, The surface is further subjected to a polishing step so that the difference in surface irregularities falls within a range of 1 mm or less.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、平坦化
のために焼成板を研磨すると、かえってセッター表面の
平坦性が損なわれる場合がある。すなわち、セラミック
ス板の製造においては、平板状の混練物がローラー等で
圧延されて圧延板にされるが、圧延の際に圧延板に圧延
ローラーと平行な方向に例えば長さ5〜90mm、幅0.
1〜1mm程度の亀裂が発生するため、この亀裂が焼成時
の焼結作用でマトリックスが収縮することによりさらに
拡大して大きな亀裂となり易い。なお、焼成体の最表面
は焼成の際に一部溶融して流動性が高まったり、膨張し
たりするため、表面近傍に亀裂が生成していても焼結体
の最表面層で塞がれて目立たない状態になっているが、
平坦化のために研磨すると最表面層が除去されるため深
さ1mm程度の亀裂が露出し、かえって表面の平坦性が損
なわれることが多い。そして、このように亀裂が露出す
ると耐熱衝撃性も低下し易いため、この点でも問題とな
る。However, if the baked plate is polished for flattening, the flatness of the setter surface may be impaired. That is, in the production of a ceramic plate, a plate-shaped kneaded material is rolled by a roller or the like to be a rolled plate. 0.
Since a crack of about 1 to 1 mm is generated, the crack is liable to be further expanded by a contraction of the matrix due to a sintering action at the time of sintering, to become a large crack. In addition, since the outermost surface of the fired body partially melts during firing to increase fluidity or expand, even if cracks are generated near the surface, it is closed by the outermost surface layer of the sintered body. Is inconspicuous,
Polishing for flattening removes the outermost surface layer, thereby exposing cracks with a depth of about 1 mm, which often impairs the flatness of the surface. When the cracks are exposed as described above, the thermal shock resistance is apt to be reduced, and this also poses a problem.
【0006】特に、近年では、例えば700mm×120
0mmといった大面積でしかも厚さの薄い平面ディスプレ
イが製造されるようになっているため、圧延時の亀裂が
ますます発生し易い状況にある。すなわち、大型のセラ
ミックス板を得るには平板状物を薄くするために圧延工
程を十分に行う必要があることから、亀裂が圧延板に非
常に入り易い。さらに、近年、セラミックス板の製造の
コストダウンや時間短縮のために、焼成等の際に急熱急
冷の条件で製造されることが多く、スポーリングによる
亀裂が発生し易い状況にある。なお、表面に亀裂が生成
した場合でも焼成物の表面の研磨を過剰に行えば亀裂を
除去できるが、過剰な研磨は研磨工程にコストがかか
り、さらに原料やエネルギーの有効利用の点でも好まし
くない。このように従来の製造方法や組成で作製したセ
ラミックス板では、圧延の際に発生した亀裂がセラミッ
クス板の表面に残存し易く、平坦性や耐熱衝撃性が十分
でないという問題があった。Particularly, in recent years, for example, 700 mm × 120
Since flat displays having a large area of 0 mm and a small thickness are manufactured, cracks are more likely to occur during rolling. That is, in order to obtain a large-sized ceramic plate, it is necessary to sufficiently perform a rolling step in order to reduce the thickness of the flat plate, so that cracks are very likely to enter the rolled plate. Furthermore, in recent years, in order to reduce the cost and time of manufacturing a ceramic plate, it is often manufactured under conditions of rapid heat and rapid cooling during firing or the like, and cracks due to spalling are likely to occur. In addition, even if a crack is generated on the surface, the crack can be removed by excessively polishing the surface of the fired material, but excessive polishing requires a cost for the polishing process and is not preferable in terms of effective use of raw materials and energy. . As described above, the ceramic plate manufactured by the conventional manufacturing method and composition has a problem that cracks generated during rolling are likely to remain on the surface of the ceramic plate, and the flatness and thermal shock resistance are not sufficient.
【0007】なお、耐熱衝撃性については、従来より、
セラミックス板の組織が緻密になり、セラミックス板の
弾性係数が高くなると熱衝撃に弱くなることが知られて
いる。このため、例えば、先に本願出願人が特願平11
−17427号で提案したように、セラミックスセッタ
ー中に繊維の焼失痕である空洞を形成すれば、該焼失痕
の存在によりセラミックス板の組織が適度に疎になるた
め耐熱衝撃性は向上する。さらに、該発明は焼失痕を生
じさせる原料として繊維を用いるため、混練物としたと
きに繊維が補強材となり圧延しても圧延板に亀裂が入り
難くなる。[0007] Regarding thermal shock resistance, conventionally,
It is known that the structure of a ceramic plate becomes denser and the elastic coefficient of the ceramic plate becomes higher, and the ceramic plate becomes weaker against thermal shock. For this reason, for example, the applicant of the present application has previously disclosed
As proposed in US Pat. No. 17,427, if a cavity is formed as a burnout mark of a fiber in a ceramic setter, the structure of the ceramic plate becomes moderately sparse due to the presence of the burnout mark, so that the thermal shock resistance is improved. Further, in the present invention, since fibers are used as a raw material that causes burnout scars, the fibers become a reinforcing material when kneaded, so that the rolled plate is less likely to crack even when rolled.
【0008】しかし、上記発明に係るセラミックスセッ
ターでは、焼成で焼失痕を得るためにその原料としてポ
リプロピレン繊維や炭素繊維等の疎水性繊維を用いてい
ることから、セラミックスマトリックスの原料であるペ
タライトや粘土等のようにSiO2 やAl2 O3 等を含
む親水性材料との親和力(アフィニティ)に欠ける。こ
のため、混練物を圧延すると、親和力不足のために疎水
性繊維がペタライト等と乖離してしまい、製造条件によ
っては圧延板、ひいてはセラミックス板に亀裂が生じる
ことがあった。すなわち、混練等の製造条件によって亀
裂の発生の有無にばらつきがあり、常に亀裂の発生の防
止能力や耐熱衝撃性が十分であるとはいい難かった。However, in the ceramic setter according to the present invention, since hydrophobic fibers such as polypropylene fiber and carbon fiber are used as raw materials to obtain burnout scars by firing, petalite and clay which are raw materials of the ceramic matrix are used. And the like, lacks affinity with a hydrophilic material containing SiO 2 or Al 2 O 3 . For this reason, when the kneaded material is rolled, the hydrophobic fibers are separated from petalite or the like due to insufficient affinity, and depending on the production conditions, cracks may be generated in the rolled plate, and eventually the ceramic plate. In other words, the presence or absence of cracks varies depending on manufacturing conditions such as kneading, and it is difficult to say that the ability to prevent cracks and the thermal shock resistance are always sufficient.
【0009】従って、本発明の目的は、製造の際に圧延
工程を経ても圧延板に亀裂が実質的に発生しないために
焼成後のセラミックス板においても亀裂が実質的に存在
せず、さらに内部に空洞を含むため、耐熱衝撃性に優れ
るセラミックス板及びその製造方法を提供することにあ
る。Accordingly, an object of the present invention is to substantially eliminate cracks in a fired ceramic plate since cracks are not substantially generated in a rolled plate even after a rolling step during manufacturing. Another object of the present invention is to provide a ceramic plate having excellent thermal shock resistance and a method for manufacturing the same, since the ceramic plate contains a cavity.
【0010】[0010]
【課題を解決するための手段】かかる実情において、本
発明者らは鋭意検討を行った結果、β−スポジューメン
質セラミックス又はβ−ユークリプタイト質セラミック
スの原料、例えば、ペタライト、ジルコン及び粘土から
なる混合物に、さらに特定の直径及び長さを有するガラ
ス繊維を特定量配合した混練物を材料とすれば、ガラス
繊維とペタライト等の混合物とがよくなじむため圧延工
程において圧延板に亀裂が実質上発生せず、また焼成の
際に溶融したガラス分がセラミックスマトリクスの流動
性を高めて亀裂の発生を抑制し、さらに得られるセラミ
ックス板は内壁がガラスで被覆された空洞を有して低熱
膨張性及び耐熱衝撃性に優れることを見出し、本発明を
完成するに至った。Under these circumstances, the present inventors have conducted intensive studies and as a result, have found that raw materials for β-spodumene ceramics or β-eucryptite ceramics, such as petalite, zircon, and clay, are used. If the mixture is further mixed with a specific amount of glass fiber having a specific diameter and length, a specific amount of glass fiber is blended, so that the mixture of glass fiber and petalite etc. is well blended, so that a crack is substantially generated in the rolled plate in the rolling process. In addition, the glass component melted during firing increases the fluidity of the ceramic matrix and suppresses the occurrence of cracks, and the resulting ceramic plate has a cavity whose inner wall is covered with glass and has low thermal expansion and They have found that they have excellent thermal shock resistance, and have completed the present invention.
【0011】すなわち、本発明は、β−スポジューメン
質セラミックス又はβ−ユークリプタイト質セラミック
スからなり、内壁面がガラスで被覆された直径5〜15
μm、長さ150〜3000μm のガラス被覆空洞を
0.5〜3容量%含むことを特徴とするセラミックス板
を提供するものである。That is, the present invention provides a β-spodumene-based ceramic or β-eucryptite-based ceramic having an inner wall surface covered with glass and having a diameter of 5 to 15 mm.
Another object of the present invention is to provide a ceramic plate comprising 0.5 to 3% by volume of a glass-coated cavity having a length of 150 to 3000 µm.
【0012】また、本発明は、ペタライト20〜60重
量%、ジルコン10〜30重量%及び粘土30〜50重
量%からなる混合物100重量部と、直径5〜15μm
、長さ150〜3000μm のガラス繊維0.5〜3
重量部とを含む混練物を、圧延し、得られた圧延板を前
記ガラス繊維の溶融温度以上に焼成することを特徴とす
るセラミックス板の製造方法を提供するものである。Further, the present invention relates to 100 parts by weight of a mixture comprising 20 to 60% by weight of petalite, 10 to 30% by weight of zircon and 30 to 50% by weight of clay, and 5 to 15 μm in diameter.
Glass fiber with a length of 150 to 3000 μm 0.5 to 3
The present invention also provides a method for producing a ceramic plate, comprising: rolling a kneaded material containing at least one part by weight; and baking the rolled plate at a temperature equal to or higher than the melting temperature of the glass fiber.
【0013】[0013]
【発明の実施の形態】本発明に係るセラミックス板は、
β−スポジューメン質セラミックス又はβ−ユークリプ
タイト質セラミックスからなり、内壁面がガラスで被覆
された直径5〜15μm 、長さ150〜3000μm の
ガラス被覆空洞を0.5〜3容量%含むものである。DESCRIPTION OF THE PREFERRED EMBODIMENTS A ceramic plate according to the present invention
It is composed of β-spodumene ceramics or β-eucryptite ceramics, and contains 0.5 to 3% by volume of a glass-coated cavity having a diameter of 5 to 15 μm and a length of 150 to 3000 μm whose inner wall surface is coated with glass.
【0014】ここでβ−スポジューメン質セラミックス
とはβ−スポジューメン(Li2O-Al2O3-4SiO2)を主とし
て含むセラミックス、またβ−ユークリプタイト質セラ
ミックスとはβ−ユークリプタイト(Li2O-Al2O3-2Si
O2)を主として含むセラミックスを意味する。また、主
として含むとは、β−スポジューメン又はβ−ユークリ
プタイトを、通常70重量%以上、好ましくは80重量
%以上含む意味であり、本発明に係るセラミックス板
は、β−スポジューメン及びβ−ユークリプタイト以外
の成分として、例えば、ジルコンやガラス等を含んでい
てもよい。Here, the β-spodumene ceramic is a ceramic mainly containing β-spodumene (Li 2 O—Al 2 O 3 -4SiO 2 ), and the β-eucryptite ceramic is β-eucryptite (Li). 2 O-Al 2 O 3 -2Si
It means ceramics mainly containing O 2 ). The term “mainly containing” means that β-spodumene or β-eucryptite is usually contained in an amount of 70% by weight or more, preferably 80% by weight or more, and the ceramic plate according to the present invention includes β-spodumene and β-eucryptite. For example, zircon, glass, or the like may be included as a component other than krypite.
【0015】本発明において又はとは、又はで結ばれる
いずれか一方又はこれら両方を指す意味で用いる。従っ
て、β−スポジューメン質セラミックス又はβ−ユーク
リプタイト質セラミックスとは、β−スポジューメン質
セラミックスのみ、β−ユークリプタイト質セラミック
スのみ、及びβ−スポジューメン質セラミックスとβ−
ユークリプタイト質セラミックスとの両方との3通りを
含む意味で用いる。In the present invention, or is used to mean either one or both connected with or. Therefore, β-spodumene ceramics or β-eucryptite ceramics are β-spodumene ceramics only, β-eucryptite ceramics only, and β-spodumene ceramics and β-eucryptite ceramics.
It is used in a meaning including three types of both with eucryptite ceramics.
【0016】本発明に係るセラミックス板は、内壁面が
ガラスで被覆されたガラス被覆空洞を含む。ここで、ガ
ラス被覆空洞とは、空洞の内壁面が実質的にガラスで被
覆された空洞を意味し、内壁面の一部が完全に被覆され
ていなくても全体が略被覆されていればよい。内壁面を
被覆するガラスとしては、例えば、Eガラス、Cガラ
ス、Tガラス、ARガラス等が挙げられる。The ceramic plate according to the present invention includes a glass-coated cavity whose inner wall surface is coated with glass. Here, the glass-coated cavity means a cavity in which the inner wall surface of the cavity is substantially covered with glass, and it is sufficient that the entire inner wall surface is substantially covered even if a part of the inner wall surface is not completely covered. . Examples of the glass that covers the inner wall surface include E glass, C glass, T glass, and AR glass.
【0017】本発明においてガラス被覆空洞の内壁面を
被覆するガラス被覆層は、ガラス被覆空洞の回りに存在
するβ−スポジューメン質セラミックス又はβ−スポジ
ューメン質セラミックスのマトリックスと明確に分離し
た層として形成される必要はない。例えば、空洞の内壁
面がガラス100%であり、これからマトリックスにか
けて漸次ガラス成分が減少すると共にマトリックス成分
が増大するようであってもよい。このように、内壁面の
組成が漸次移行するようであると、ガラス被覆空洞の内
壁面がマトリクスと剥離し易いため好ましい。In the present invention, the glass coating layer covering the inner wall surface of the glass-coated cavity is formed as a layer which is clearly separated from the β-spodumeneous ceramic or the matrix of β-spodumeneous ceramic existing around the glass-coated cavities. Need not be. For example, the inner wall surface of the cavity may be 100% glass, from which the glass component gradually decreases and the matrix component increases. As described above, it is preferable that the composition of the inner wall surface gradually transitions because the inner wall surface of the glass-coated cavity is easily separated from the matrix.
【0018】ガラス被覆空洞は、例えば、ガラス繊維を
溶融した後の溶融痕として得られるものであり、通常は
繊維形状を有する。該ガラス被覆空洞は直径が、通常5
〜15μm 、好ましくは7〜13μm であり、また、ガ
ラス被覆空洞は長さが、通常150〜3000μm 、好
ましくは1000〜2000μm である。また、本発明
に係るセラミックス板は、ガラス被覆空洞を、通常0.
5〜3容量%、好ましくは1〜2容量%含む。ガラス被
覆空洞の直径、長さ、含有量が該範囲内であると、得ら
れるセラミックス板の弾性係数が低く、耐熱衝撃性及び
断熱性が高くなるため好ましい。なお、本発明に係るセ
ラミックス板は、ガラス被覆空洞以外にも、ガラスで被
覆されていない空洞を例えば5〜20容量%含んでいて
もよい。The glass-coated cavity is obtained, for example, as a mark after melting glass fiber, and usually has a fiber shape. The glass-coated cavities usually have a diameter of 5
-15 μm, preferably 7-13 μm, and the length of the glass-coated cavity is usually 150-3000 μm, preferably 1000-2000 μm. In the ceramic plate according to the present invention, the glass-coated cavities usually have a diameter of 0.1 mm.
It contains 5 to 3% by volume, preferably 1 to 2% by volume. When the diameter, length, and content of the glass-coated cavity are within the above ranges, the obtained ceramic plate has a low elastic modulus, and has a high thermal shock resistance and a high heat insulating property. The ceramic plate according to the present invention may contain, for example, 5 to 20% by volume of a cavity not coated with glass, in addition to the glass-coated cavity.
【0019】上記本発明に係るセラミックス板を、図1
を参照してさらに具体的に説明する。図1は、本発明に
係るセラミックス板の断面の倍率100倍のSEM写真
(電子顕微鏡写真)である。図1中、1は本発明に係る
セラミックス板のマトリックスであるβ−ユークリプタ
イト質セラミックス、2はガラス被覆空洞である。図1
において、ガラス被覆空洞2は、直径が10〜15μm
程度、長さが少なくとも50μm として観察される。ま
た、ガラス被覆空洞2はマトリックス1との境界部分が
白くガラス質になっており、内壁面がガラス質で形成さ
れていることが分かる。さらに、ガラス被覆空洞2の一
部には、内部において空洞の径方向を接着する節状部が
空洞の長さ方向に断続的に形成されており、ガラス被覆
空洞2が原料として配合されたガラス繊維の溶融痕であ
ることを示している。また、ガラス被覆空洞2は図1の
断面に沿った方向のみならず断面を横断する方向にも形
成されており、ガラス被覆空洞2がセラミックス板内に
おいてランダムな方向に形成されていることが観察され
る。The ceramic plate according to the present invention is shown in FIG.
This will be described more specifically with reference to FIG. FIG. 1 is a SEM photograph (electron micrograph) of the cross section of the ceramic plate according to the present invention at a magnification of 100 times. In FIG. 1, 1 is a β-eucryptite ceramic which is a matrix of a ceramic plate according to the present invention, and 2 is a glass-coated cavity. Figure 1
, The glass-coated cavity 2 has a diameter of 10 to 15 μm.
The extent is observed to be at least 50 μm in length. Also, it can be seen that the glass-coated cavity 2 is white and vitreous at the boundary with the matrix 1 and the inner wall surface is formed of vitreous. Further, in a part of the glass-coated cavity 2, a knot-like portion for bonding the cavity in the radial direction is formed intermittently in the length direction of the cavity, and the glass coated cavity 2 is blended as a raw material. This indicates that the fiber is a melting mark of the fiber. Further, the glass-coated cavities 2 are formed not only in the direction along the cross section of FIG. 1 but also in the direction crossing the cross-section, and it is observed that the glass-coated cavities 2 are formed in random directions in the ceramic plate. Is done.
【0020】上記本発明に係るセラミックス板は、例え
ば本発明に係る製造方法等により得られる。以下、本発
明に係るセラミックス板の製造方法について説明する。The ceramic plate according to the present invention is obtained, for example, by the manufacturing method according to the present invention. Hereinafter, a method for manufacturing a ceramic plate according to the present invention will be described.
【0021】本発明に係るセラミックス板の製造方法で
は、原料として、ペタライト、ジルコン、粘土及びガラ
ス繊維を用いる。本発明で用いられるペタライトは、Li
2O-Al2O3-8SiO2で表されるテクト珪酸塩である。また、
本発明においてペタライトは、粒子性状が粒径の大きい
ものと小さいものとを併用したものであると好ましい。
例えば、ペタライトとして、平均粒径が通常30〜10
0μm 、好ましくは10〜50μm の粒状物と、平均粒
径が通常1.5〜5.0μm 、好ましくは2.0〜3.
5μm の微粉状物とを併用すると、粒状物が骨材として
セラミックス板に強度を付与すると共に混練物の圧延時
のしわや乾燥時の亀裂の発生を抑制し、一方微粉物がセ
ラミックス板の緻密度を高くして強度を高めるため好ま
しい。ペタライトの粒状物としては、例えば、平均粒径
32μm のペタライト#200や平均粒径70μm のペ
タライト#52等が挙げられる。また、ペタライトの微
粉状物としては、例えば、ペタライト粒状物をボールミ
ル等で粉砕したものが挙げられる。In the method for manufacturing a ceramic plate according to the present invention, petalite, zircon, clay and glass fiber are used as raw materials. The petalite used in the present invention is Li
Tectosilicate represented by 2 O-Al 2 O 3 -8SiO 2 . Also,
In the present invention, it is preferable that petalite is a combination of particles having large and small particle properties.
For example, as petalite, the average particle size is usually 30 to 10
0 μm, preferably 10 to 50 μm, and the average particle size is usually 1.5 to 5.0 μm, preferably 2.0 to 3.0 μm.
When used in combination with a 5 μm fine powder, the granular material gives strength to the ceramic plate as an aggregate and suppresses wrinkles during rolling of the kneaded material and cracks during drying, while the fine powder reduces the density of the ceramic plate. It is preferable to increase the strength to increase the strength. Examples of the petalite particles include Petalite # 200 having an average particle diameter of 32 μm and Petalite # 52 having an average particle diameter of 70 μm. Examples of the fine powder of petalite include, for example, petalite granules crushed by a ball mill or the like.
【0022】ペタライトが粒状物と微粉状物を併用した
ものである場合、微粉状物の平均粒径が1.5μm 未満
であると混練物の乾燥の際に乾燥収縮による亀裂が生じ
易いため好ましくない。また、粒状物の平均粒径が10
0μm を越えるとセラミックス板の表面の平坦性が悪く
なるため好ましくない。ペタライトが粒状物と微粉状物
を併用したものである場合、粒状物と微粉状物との配合
比率は、粒状物と微粉状物との重量比率が通常30〜7
0:70〜30、好ましくは40〜60:60〜40で
ある。配合比率が該範囲内にあると、しわや亀裂の抑制
とセラミックス板の緻密化とのバランスがよいため好ま
しい。When the petalite is a mixture of a granular substance and a fine powder, if the average particle diameter of the fine powder is less than 1.5 μm, cracks due to drying shrinkage are liable to occur during drying of the kneaded material, which is preferable. Absent. The average particle size of the granular material is 10
If the thickness exceeds 0 μm, the flatness of the surface of the ceramic plate is deteriorated, which is not preferable. When the petalite is a mixture of a granular material and a fine powder, the mixing ratio of the granular material and the fine powder is such that the weight ratio of the granular material to the fine powder is usually 30 to 7%.
0: 70 to 30, preferably 40 to 60: 60 to 40. When the compounding ratio is within the above range, it is preferable because the balance between suppression of wrinkles and cracks and densification of the ceramic plate is good.
【0023】本発明で用いられるジルコンは、平均粒径
が通常1.5〜5.0μm 、好ましくは2.0〜3.5
μm である。ジルコンの平均粒径が該範囲内にあると、
セラミックス板の緻密度を高めるため好ましい。本発明
で用いられる粘土としては、例えば、木節粘土、蛙目粘
土等が挙げられる。The zircon used in the present invention has an average particle size of usually 1.5 to 5.0 μm, preferably 2.0 to 3.5.
μm. When the average particle size of zircon is within the range,
It is preferable to increase the density of the ceramic plate. Examples of the clay used in the present invention include Kibushi clay and Frogme clay.
【0024】本発明で用いられるガラス繊維としては、
後述の焼成で溶融するガラスによる繊維が用いられ、粘
度が107.5 ポアズとなる点を軟化点として、該軟化点
が通常700℃以上、好ましくは750℃以上のものが
挙げられる。このようなガラスしては、Eガラス、Cガ
ラス、Tガラス、ARガラス等が挙げられる。また、本
発明で用いられるガラス繊維の平均繊維径は、通常8〜
15μm 、好ましくは10〜13μm である。ガラス繊
維の平均繊維径が8μm 未満であると混練物の乾燥時の
亀裂の発生を抑制できないため、また15μm を越える
と混練物の生地の表面が荒れるため好ましくない。ま
た、本発明で用いられるガラス繊維の平均繊維長は、通
常0.15〜3.0mm、好ましくは1.0〜2.0mmで
ある。ガラス繊維の平均繊維長が0.15mm未満である
と混練物の乾燥時の亀裂の発生を抑制できないため、ま
た3.0mmを越えると混練時に繊維が絡まってファイバ
ーボールになり易いため好ましくない。The glass fibers used in the present invention include:
Fibers made of glass that is melted by baking described later are used, and the softening point is usually 700 ° C. or higher, preferably 750 ° C. or higher, where the point at which the viscosity becomes 10 7.5 poise is taken as the softening point. Examples of such a glass include E glass, C glass, T glass, AR glass and the like. The average fiber diameter of the glass fiber used in the present invention is usually 8 to
It is 15 μm, preferably 10 to 13 μm. If the average fiber diameter of the glass fibers is less than 8 μm, the formation of cracks during drying of the kneaded material cannot be suppressed, and if it exceeds 15 μm, the surface of the dough of the kneaded material is unfavorably roughened. The average fiber length of the glass fibers used in the present invention is usually 0.15 to 3.0 mm, preferably 1.0 to 2.0 mm. If the average fiber length of the glass fibers is less than 0.15 mm, the occurrence of cracks during drying of the kneaded material cannot be suppressed, and if it exceeds 3.0 mm, the fibers tend to be entangled during kneading, which is not preferable.
【0025】本発明に係るセラミックス板の製造方法
は、まず、上記ペタライト、ジルコン及び粘土からなる
混合物を調製する。混合物の調製方法としては特に限定
されず、例えば、ヘンシェルミキサー、ミックスマーラ
ー等を用いて混合すればよい。また、混合物を調製する
際には、ペタライト、ジルコン及び粘土の混合する順序
は特に限定されない。In the method for producing a ceramic plate according to the present invention, first, a mixture comprising the above petalite, zircon and clay is prepared. The method for preparing the mixture is not particularly limited. For example, the mixture may be mixed using a Henschel mixer, a mix muller or the like. In preparing the mixture, the order of mixing petalite, zircon and clay is not particularly limited.
【0026】ペタライトは、混合物中に通常20〜60
重量%、好ましくは30〜50重量%含まれる。ペタラ
イトの配合量が20重量%未満であると熱膨張率が大き
くなるため好ましくなく、60重量%を越えると可塑性
が低下するため好ましくない。また、ペタライトが粒状
物と微粉状物とを併用したものである場合、ペタライト
の粒状物は、通常10〜30重量%、好ましくは15〜
25重量%含まれ、ペタライトの微粉状物は、通常10
〜30重量%、好ましくは15〜25重量%含まれる。
ペタライトの粒状物及び微粉状物の配合比率が該範囲内
にあると、粒状物が骨材としてセラミックス板に強度を
付与すると共に混練物の圧延時のしわや乾燥時の亀裂の
発生を抑制し、一方微粉物がセラミックス板の緻密度を
高くして強度を高めることがバランスよく行われるため
好ましい。Petalite is usually present in the mixture in an amount of from 20 to 60%.
%, Preferably 30 to 50% by weight. If the blending amount of petalite is less than 20% by weight, the coefficient of thermal expansion increases, which is not preferable. If it exceeds 60% by weight, the plasticity decreases, which is not preferable. When the petalite is a mixture of a granular substance and a fine powder, the granular substance of the petalite is usually 10 to 30% by weight, preferably 15 to 30% by weight.
25% by weight, and the fine powder of petalite is usually 10%.
-30% by weight, preferably 15-25% by weight.
When the compounding ratio of the petalite granules and the fine powder is within the above range, the granules impart strength to the ceramic plate as an aggregate and suppress the generation of wrinkles during rolling of the kneaded material and cracks during drying. On the other hand, it is preferable for the fine powder to increase the denseness of the ceramic plate to increase the strength in a well-balanced manner.
【0027】ジルコンは、混合物中に通常10〜30重
量%、好ましくは15〜20重量%含まれる。ジルコン
の配合量が10重量%未満であるとセラミックス板の緻
密度が低くなりセラミックス板の平坦性が低下するため
好ましくなく、30重量%を越えると熱膨張率が大きく
なるため好ましくない。Zircon is usually contained in the mixture in an amount of 10 to 30% by weight, preferably 15 to 20% by weight. If the amount of zircon is less than 10% by weight, the compactness of the ceramics plate is lowered, and the flatness of the ceramics plate is lowered. Thus, if it exceeds 30% by weight, the coefficient of thermal expansion is undesirably increased.
【0028】粘土は、混合物中に通常30〜50重量、
好ましくは35〜40重量%含まれる。粘土の配合量が
30重量%未満であると混練物の可塑性が低下してセラ
ミックス板の成形が困難になるため好ましくなく、50
重量%を越えると熱膨張係数が大きくなるため好ましく
ない。Clay is usually 30 to 50% by weight in the mixture,
Preferably, the content is 35 to 40% by weight. If the compounding amount of the clay is less than 30% by weight, the plasticity of the kneaded material is reduced, and it becomes difficult to form a ceramic plate.
Exceeding the weight percentage is not preferred because the coefficient of thermal expansion increases.
【0029】次に、上記混合物とガラス繊維とを含む混
練物を調製する。混練物は混合物、ガラス繊維及び水、
さらに必要により粘結剤を配合して調製する。必要によ
り配合される粘結剤しては、例えば、グリセリン、ポリ
ビニルアルコール、カルボキシメチルセルロース等が挙
げられる。混練物は上記混合物に水を加えて混練した時
点でもある程度の可塑性を有するが、必要により粘結剤
を配合すると混練物に可塑性がより付与されて混練の際
にガラス繊維が破損し難くなるため、所望の直径、長さ
のガラス被覆空洞が得られ易く好ましい。Next, a kneaded material containing the above mixture and glass fibers is prepared. The kneaded material is a mixture, glass fiber and water,
Further, a binder is blended if necessary. Examples of the binder to be added as required include glycerin, polyvinyl alcohol, carboxymethyl cellulose and the like. The kneaded material has a certain degree of plasticity even at the time of kneading by adding water to the above mixture, but if necessary, plasticity is imparted to the kneaded material when a binder is added, so that the glass fiber is less likely to be damaged during kneading. It is preferable because a glass-coated cavity having a desired diameter and length can be easily obtained.
【0030】混練物の調製方法としては特に限定され
ず、例えば、ニーダー、フレットミル等を用いて、混合
物、ガラス繊維及び水、さらに必要により粘結剤を混合
すればよい。なお、ガラス繊維の添加は水を添加した後
でも、水の添加と同時でも、水を添加する前でもよい
が、特に水を添加した後とすると、混練の際にガラス繊
維が破損し難いため好ましい。The method for preparing the kneaded material is not particularly limited. For example, the mixture, glass fibers and water, and if necessary, a binder may be mixed using a kneader, a fret mill or the like. The addition of the glass fiber may be after the addition of water, at the same time as the addition of the water, or before the addition of water, but especially after the addition of water, because the glass fiber is not easily damaged during kneading. preferable.
【0031】混練物中、ガラス繊維は、混合物100重
量部に対し、通常0.5〜3重量部、好ましくは1〜2
重量部含まれる。ガラス繊維の配合比率が上記よりも少
ないとガラス繊維の添加効果が小さく、圧延の際に圧延
板に亀裂やしわが形成され易く、さらにガラス被覆空洞
が少なくなるため好ましくない。また、ガラス繊維の配
合比率が上記よりも多いと、焼成時にガラス繊維の溶融
量が多いためにペタライト、ジルコニウム及び粘土から
なる素地の流動性が大きくなってセラミックス板が変形
し易く、熱膨張率が大きくなって耐スポーリング性が低
下し、さらにガラス被覆空洞が多すぎて曲げ強度等が低
下するため好ましくない。In the kneaded material, the glass fiber is used in an amount of usually 0.5 to 3 parts by weight, preferably 1 to 2 parts by weight, based on 100 parts by weight of the mixture.
Parts by weight are included. If the blending ratio of the glass fiber is less than the above, the effect of adding the glass fiber is small, cracks and wrinkles are easily formed in the rolled plate during rolling, and the number of cavities coated with glass is undesirably reduced. Further, when the mixing ratio of the glass fiber is larger than the above, the fluidity of the base material made of petalite, zirconium and clay becomes large due to the large amount of melting of the glass fiber during firing, so that the ceramic plate is easily deformed, and the coefficient of thermal expansion is increased. And the spalling resistance is reduced, and the glass-coated cavities are too large, and the bending strength and the like are lowered, which is not preferable.
【0032】また、必要により配合される粘結剤は、混
練物中、混合物100重量部に対し、通常0.5〜3重
量部、好ましくは1〜2重量部含まれる。粘結剤の配合
量が該範囲内にあると、混練物に適度な可塑性が付与さ
れ、混練の際にガラス繊維等が破砕され難くなると共に
圧延後に得られる圧延板に亀裂やしわが生じ難くなるた
め好ましい。The binder, if necessary, is usually contained in the kneaded material in an amount of 0.5 to 3 parts by weight, preferably 1 to 2 parts by weight, based on 100 parts by weight of the mixture. When the compounding amount of the binder is within the above range, appropriate plasticity is imparted to the kneaded material, and glass fibers and the like are hardly crushed during kneading and cracks and wrinkles are hardly generated on a rolled plate obtained after rolling. Is preferred.
【0033】混練物中、水は、混合物100重量部に対
し、通常14〜23重量部、好ましくは19〜23重量
部含まれる。水の配合比率が上記よりも少ないと混練し
難いため好ましくなく、上記よりも多いと混練物の押出
成形等がし難く、且つ、乾燥し難くなるため好ましくな
い。In the kneaded material, water is usually contained in an amount of 14 to 23 parts by weight, preferably 19 to 23 parts by weight, based on 100 parts by weight of the mixture. If the mixing ratio of water is lower than the above, it is not preferable because it is difficult to knead, and if it is higher than the above, it is difficult to extrude the kneaded product and it is not preferable because it becomes difficult to dry.
【0034】次に、得られた混練物を圧延し圧延板を得
る。混練物はそのまま圧延して圧延板としてもよいが、
圧延する前に混練物を予め所定形状の板状体としてお
き、該板状体を圧延するようにすると所定形状の圧延板
を得易いため好ましい。混練物を所定形状の板状体とす
るには、例えば、真空土練押出機を用いて円筒状等の円
曲線を有する形状に抜き出し、次にこれに切り込みを入
れて展開し板状体に成形する方法が挙げられる。この
際、得られた板状体の厚さが、通常30〜50mm、好ま
しくは35〜45mmとなるようにすることが好ましい。Next, the obtained kneaded material is rolled to obtain a rolled plate. The kneaded material may be rolled as it is to form a rolled plate,
It is preferable that the kneaded material is formed into a plate having a predetermined shape before rolling, and the plate is rolled because a rolled plate having a predetermined shape can be easily obtained. In order to make the kneaded material into a plate-like body of a predetermined shape, for example, using a vacuum kneading extruder, a kneaded material is extracted into a shape having a circular curve such as a cylinder, and then a cut is made and developed to form a plate-like body. A molding method may be used. At this time, it is preferable that the thickness of the obtained plate is usually 30 to 50 mm, preferably 35 to 45 mm.
【0035】板状体の圧延方法としては、例えば、3〜
7本のローラを有する圧延装置を用いて、板状体の厚さ
よりも間隔の小さいローラ間に板状体を通過させる方法
が挙げられる。この際、得られた圧延板の厚さが5〜1
0mm程度となるようにすることが好ましい。また、圧延
工程では圧延後の板状体(圧延板)の厚さが圧延前の板
状体の1/3〜1/5となる程度の比率で圧延される
と、内部歪みが発生しないため好ましい。As a rolling method of the plate-like body, for example,
There is a method in which a plate is passed between rollers having a smaller interval than the thickness of the plate using a rolling machine having seven rollers. At this time, the thickness of the obtained rolled plate is 5 to 1
It is preferable that the distance be about 0 mm. Further, in the rolling step, if the thickness of the plate (rolled plate) after rolling is rolled at a ratio of about 1/3 to 1/5 of the thickness of the plate before rolling, no internal distortion occurs. preferable.
【0036】なお、上記の混合物の調製から圧延板の成
形までの工程は、全て常温下で行う。このため、圧延板
中に含まれるガラス繊維は、加熱等で変質することがな
く、補強繊維及び親水性フィラーとして機能する。すな
わち、ガラス繊維は補強繊維であるため、その物理的形
状によりペタライト、粘土及びジルコン等を含む混練物
を相互のつなぎとなるため、混練物を板状体に成形する
際、及び混練物や板状体を圧延して圧延板を成形する際
においても、板状体や圧延板に亀裂やしわが発生し難
い。しかも、ガラス繊維は、親水性フィラーとしても機
能し、その化学的特性により従来から用いられているポ
リプロビレン繊維や炭素繊維に比較してペタライト、粘
土及びジルコン等に対する親和力(アフィニティ)に格
段に優れるため、上記補強繊維としての機能がより発揮
されて板状体や圧延板に亀裂やしわが発生し難くなって
いる。The steps from the preparation of the mixture to the formation of the rolled plate are all carried out at normal temperature. For this reason, the glass fiber contained in the rolled sheet does not deteriorate by heating or the like, and functions as a reinforcing fiber and a hydrophilic filler. That is, since glass fiber is a reinforcing fiber, the kneaded material containing petalite, clay, zircon, and the like is connected to each other depending on its physical shape. Even when the plate is rolled to form a rolled plate, cracks and wrinkles hardly occur in the plate and the rolled plate. Moreover, glass fiber also functions as a hydrophilic filler, and its chemical properties make it far superior in affinity to petalite, clay, zircon, etc. compared to conventionally used polypropylene fiber and carbon fiber. Further, the function as the reinforcing fiber is more exhibited, and cracks and wrinkles are less likely to occur in the plate-like body and the rolled plate.
【0037】次に、圧延板を前記ガラス繊維の溶融温度
以上に焼成する。なお、圧延板は、そのまま焼成しても
よいが、適宜、乾燥させた後に焼成することが好まし
い。このような乾燥工程を設けることにより、水分を含
んだ圧延板の急熱によってセラミックス板に亀裂やしわ
が発生することを抑制できる。乾燥条件としては、温度
が通常100〜300℃、時間が通常1〜4時間であ
る。また、圧延板中の水分を徐々に除去するという点か
ら、上記時間をかけて常温から上記乾燥温度までゆっく
りと昇温させることが好ましい。乾燥終了後は、自然放
冷してもよいが、この温度を維持したまま続けて焼成を
行ってもよい。このように、乾燥後の温度を維持したま
ま焼成を行うと、被加熱物が冷却されないから焼成効率
が高いため好ましい。乾燥装置としては、例えば、ガス
炉や電気炉が挙げられるが、これらの炉がさらに遠赤外
線加熱や電磁波加熱を併用できるような装置であると乾
燥効率が向上するため好ましい。Next, the rolled plate is fired at a temperature higher than the melting temperature of the glass fiber. Although the rolled plate may be fired as it is, it is preferable to fire after appropriately drying. By providing such a drying step, generation of cracks and wrinkles in the ceramics plate due to rapid heating of the rolled plate containing water can be suppressed. As drying conditions, the temperature is usually 100 to 300 ° C., and the time is usually 1 to 4 hours. Further, it is preferable to gradually increase the temperature from the room temperature to the drying temperature over the above-mentioned time from the viewpoint of gradually removing the moisture in the rolled sheet. After completion of the drying, the mixture may be left to cool naturally, or may be continuously baked while maintaining this temperature. It is preferable to perform baking while maintaining the temperature after drying as described above, since the object to be heated is not cooled, and the baking efficiency is high. Examples of the drying apparatus include a gas furnace and an electric furnace, and it is preferable that these furnaces be apparatuses that can further use far-infrared heating or electromagnetic wave heating because drying efficiency is improved.
【0038】焼成温度は、ガラス繊維が適度に溶融する
温度とし、通常800〜1300℃、好ましくは950
〜1200℃である。また、焼成時間は、通常4〜8時
間である。具体的な焼成条件としては、例えば、4時間
かけて室温から1200℃まで昇温させ、その状態を3
0分間維持し、さらに2時間かけて400℃まで降温さ
せた後、自然冷却する方法が挙げられる。焼成装置とし
ては、上記乾燥装置で用いられるものと同様のものが挙
げられる。なお、焼成装置は乾燥装置と同一のものを用
いてもよいし、乾燥装置に連設されて乾燥工程が終了す
ると共に焼成工程を行えるような構造の装置であっても
よい。後者の具体的な装置としては、例えば、乾燥エリ
ア、焼成エリア、昇温エリア等に分割された空間を有す
る装置であって、これらのエリア内を被加熱物が漸次移
動しながら必要な加熱や冷却を受けることにより、流れ
作業で乾燥処理、焼成処理等が行われるものが挙げられ
る。このような装置を用いると、作業効率が向上する
他、被加熱物が冷却されないようにできるから熱効率が
向上するため好ましい。The firing temperature is a temperature at which the glass fibers are appropriately melted, and is usually 800 to 1300 ° C., preferably 950 ° C.
~ 1200 ° C. The firing time is usually 4 to 8 hours. As specific firing conditions, for example, the temperature is raised from room temperature to 1200 ° C. over 4 hours, and
A method of maintaining the temperature for 0 minute, lowering the temperature to 400 ° C. over 2 hours, and then naturally cooling. Examples of the firing device include those similar to those used in the drying device. The baking apparatus may be the same as the baking apparatus, or may be a device that is connected to the baking apparatus so that the baking step can be performed while the drying step is completed. As a specific device of the latter, for example, a device having a space divided into a drying area, a baking area, a heating area, and the like. The cooling process includes a process in which a drying process, a firing process, and the like are performed in a flow operation. The use of such an apparatus is preferable because the work efficiency is improved and the heat efficiency is improved because the object to be heated can be prevented from being cooled.
【0039】上記焼成を行うと、β−スポジューメン質
セラミックス又はβ−ユークリプタイト質セラミックス
からなり、所定のガラス被覆空洞を所定量含むセラミッ
クス板が得られる。なお、該セラミックス板は、必要に
より適宜表面を研磨すると、表面がより平坦になるため
好ましい。本発明に係るセラミックス板は、溶融したガ
ラス成分がβ−スポジューメン質セラミックス又はβ−
ユークリプタイト質セラミックスの粒界等を埋めて緻密
な組織となっていると推測され、研磨しても表面が粒界
のもろさに起因して荒れてしまうことが少ない。研磨す
る場合は、セラミックス板の表面を、通常0.5mm以
上、好ましくは0.5〜2mm程度研磨すると表面を平坦
にするのに十分であるため好ましい。研磨方法として
は、例えば、砥石で検索した後に、バフ研磨やセラミッ
クス粉の吹きつけにより研磨する方法等が挙げられる。
研磨は、セラミックス板の表面の粗度が、RZ で1.0
〜5.0μm 程度となると好ましい。また、得られたセ
ラミックス板は適宜所定寸法に切断することができる。By performing the above-mentioned firing, a ceramic plate comprising β-spodumene ceramics or β-eucryptite ceramics and containing a predetermined amount of glass-coated cavities is obtained. The surface of the ceramic plate is preferably polished as necessary, so that the surface becomes flatter. In the ceramic plate according to the present invention, the molten glass component is β-spodumeneous ceramic or β-spodumeneous ceramic.
It is presumed that the grain boundaries and the like of the eucryptite ceramics are filled to form a dense structure, and the surface is less likely to be roughened due to the fragility of the grain boundaries even when polished. In the case of polishing, it is preferable to polish the surface of the ceramic plate usually at least 0.5 mm, preferably about 0.5 to 2 mm, because it is enough to flatten the surface. As the polishing method, for example, a method of performing buff polishing or polishing by spraying ceramic powder after searching with a grindstone, and the like can be given.
Polishing, the roughness of the surface of the ceramic plate, 1.0 in R Z
It is preferable that the thickness be about 5.0 μm. Further, the obtained ceramic plate can be appropriately cut into a predetermined size.
【0040】本発明に係るセラミックス板は、密度が通
常1.7〜2.4g/cm3 、好ましくは2.2〜2.3g/
cm3 である。本発明に係るセラミックス板は、切断、穴
開け、あいじゃくり等の機械加工により所定の形状に加
工されて、マッフル焼成炉の焼成セッター、焼成ジグ、
定盤、建築壁材等に使用される。The ceramic plate according to the present invention has a density of usually 1.7 to 2.4 g / cm 3 , preferably 2.2 to 2.3 g / cm 3 .
cm 3. The ceramic plate according to the present invention is processed into a predetermined shape by machining such as cutting, drilling, jagging, a firing setter of a muffle firing furnace, a firing jig,
Used for surface plates, building wall materials, etc.
【0041】[0041]
【実施例】以下に実施例を示すが、本発明は以下の実施
例に限定されて解釈されるものではない。EXAMPLES Examples are shown below, but the present invention is not construed as being limited to the following examples.
【0042】実施例1 表1に示す配合量のペタライト微粉状物、ペタライト粒
状物、ジルコン、木節粘土、グリセリン及びガラス繊維
と水20重量部とを常温で混合して混練物を得た。次
に、この混練物を真空押出機を用いて内径360mm、外
径440mm、高さ315mmの円筒形状に押し出し、得ら
れた円筒状物の曲面部を高さ方向に切り込んで展開して
1130mm×315mm×40mmの平板状物とし、さら
に、圧延ロール4本を用いて圧延して1130mm×18
00mm×7mmの板状体を得た。次に、乾燥エリア、昇温
エリア等に分割されると共に被加熱物が各エリア内を漸
次移動可能で乾燥から焼成まで連続して行える加熱装置
を用い、まず、乾燥工程として、得られた板状体を2.
5時間かけて室温20℃から300℃まで昇温して乾燥
した後、室温20℃まで自然冷却した。次に、焼成工程
として、4時間かけて室温20℃から1150℃まで昇
温した後この状態を40分間維持し、さらに2時間かけ
て400℃まで降温した後に自然冷却した。上記乾燥及
び焼成工程を経て得られた焼成物は、1670mm×10
50mm×6.5mmであり、これを切断して1500mm×
900mm×6.5mmとした後、表面及び裏面を回転砥石
研磨機を用いてそれぞれ1mmずつ研磨して1500mm×
900mm×4.5mmのセラミックス板を得た。また、研
磨面の粗度はRZ が2.5μm であった。得られたセラ
ミックス板について、組成、密度、ガラス被覆空洞の大
きさ及び含有量、表面亀裂の発生の有無、弾性係数及び
スポーリング試験を評価した。評価方法は、以下のとお
りである。なお、ガラス被覆空洞の長さは混練後且つ乾
燥前ガラス繊維の平均繊維長を測定してこの値とし、ガ
ラス被覆空洞の含有量は添加したガラス繊維の容積から
求めた。また、断面を走査型電子顕微鏡で観察したとこ
ろ、図1に示すような直径10μm 程度、長さ数百μm
程度のガラス被覆空洞が観察された。 ・表面亀裂の発生の有無:研磨面を目視観察し、単位面
積当たりの亀裂の存在数について、以下の基準で評価し
た。 ○:研磨面に亀裂なし △:研磨面10cm2 当たり1〜10個 ×:研磨面10cm2 当たり10個を越える ・弾性係数:JISR1601に準拠して求めた。すな
わち、まず、試料に3点荷重方式で荷重をゼロから試料
が折れるまで徐々に増加させた。この際、横軸に歪み変
位、縦軸に荷重値をとり右肩上がりの曲線を得た。次
に、該右肩上がりの曲線に含まれる直線部分、すなわ
ち、荷重の増加に対して歪み変位がリニアに変化してゆ
く領域の直線の傾きを求め、この値を弾性係数とした。 ・スポーリング試験:セラミックス板を120mm×40
mm×4.5mmに切り出して試験片とし、JISR160
1「3点曲げ試験」に準拠して曲げ強さS0 を求めた。
次に、同様に作製した試験片を用い、1000℃で1時
間加熱処理した直後に20℃の水中に浸漬する操作を1
サイクルとして、10サイクル繰り返し、10サイクル
後の試験片の曲げ強さS10をS0 と同様にして求めた。
求められたS0 とS10から、以下のようにして10サイ
クル後の曲げ強さの低下率を求めた。低下率(%)=
{(S0 −S10)/S0 }×100Example 1 A kneaded product was obtained by mixing petalite fine powder, petalite granules, zircon, Kibushi clay, glycerin and glass fiber having the compounding amounts shown in Table 1 with 20 parts by weight of water at room temperature. Next, this kneaded material was extruded into a cylindrical shape having an inner diameter of 360 mm, an outer diameter of 440 mm, and a height of 315 mm using a vacuum extruder, and a curved surface portion of the obtained cylindrical material was cut in the height direction and developed to be 1130 mm × It is made into a 315 mm × 40 mm flat plate, and further rolled using four rolling rolls to obtain a 1130 mm × 18 mm.
A plate having a size of 00 mm × 7 mm was obtained. Next, using a heating device that is divided into a drying area, a heating area, and the like, and that the object to be heated can be gradually moved in each area and can be continuously performed from drying to baking. The shape is 2.
After elevating the temperature from 20 ° C. to 300 ° C. over 5 hours and drying, the mixture was naturally cooled to 20 ° C. at room temperature. Next, as a firing step, the temperature was raised from room temperature 20 ° C. to 1150 ° C. over 4 hours, maintained in this state for 40 minutes, and further cooled down to 400 ° C. over 2 hours, followed by natural cooling. The fired product obtained through the above drying and firing steps is 1670 mm × 10
It is 50mm x 6.5mm and cut this to 1500mm x
After 900 mm x 6.5 mm, the front and back sides were polished 1 mm each using a rotary grindstone grinder to 1500 mm x
A 900 mm × 4.5 mm ceramic plate was obtained. Further, the roughness of the polishing surface R Z was 2.5 [mu] m. The resulting ceramic plate was evaluated for composition, density, size and content of glass-coated cavities, presence or absence of surface cracks, elastic modulus, and spalling test. The evaluation method is as follows. The length of the glass-coated cavity was determined by measuring the average fiber length of the glass fibers after kneading and before drying, and this value was used. The content of the glass-coated cavity was determined from the volume of the added glass fiber. Further, when the cross section was observed with a scanning electron microscope, the diameter was about 10 μm and the length was several hundred μm as shown in FIG.
Some glass-coated cavities were observed. - the front surface occurrence of cracks: the polished surface was observed visually for the presence number of cracks per unit area was evaluated according to the following criteria. ○: No cracks polishing surface △: polished surface 10 cm 2 per 1-10 ×: · elastic modulus exceeds the polishing surface 10 cm 10 per 2: JISR1601 was determined in accordance with. That is, first, the load was gradually increased from zero to the sample by a three-point load method until the sample was broken. At this time, the strain displacement was plotted on the horizontal axis and the load value was plotted on the vertical axis, and a curve rising to the right was obtained. Next, the slope of a straight line portion included in the upward-sloping curve, that is, a straight line in a region where the strain displacement changes linearly with an increase in load is determined, and this value is defined as an elastic coefficient.・ Spalling test: 120 mm × 40 ceramic plate
The test piece was cut out to a size of 4.5 mm x 4.5 mm,
1 The bending strength S 0 was determined based on the “three-point bending test”.
Next, an operation of immersing in a water of 20 ° C. immediately after heat-treating at 1000 ° C. for 1 hour using a test piece prepared similarly was performed.
As cycles, 10 cycles of the bending strength S 10 of the post 10 cycles specimen was determined in the same manner as S 0.
From the obtained S 0 and S 10 , the rate of decrease in bending strength after 10 cycles was determined as follows. Reduction rate (%) =
{(S 0 −S 10 ) / S 0 } × 100
【0043】[0043]
【表1】 *1 平均粒径2.5μm *2 平均粒径70μm *3 平均粒径2.0μm *4 繊維径10μm 、繊維長2mm[Table 1] * 1 Average particle size 2.5μm * 2 Average particle size 70μm * 3 Average particle size 2.0μm * 4 Fiber diameter 10μm, fiber length 2mm
【0044】[0044]
【表2】 *1 総合評価の評価基準:「表面亀裂」、「弾性係
数」及び「スポーリング試験での曲げ強度の低下率」の
3つについて総合評価を行い、良いものから順に◎、
○、×とした。なお、「表面亀裂」が×のものは「総合
評価」でも無条件に×とした。[Table 2] * 1 Evaluation criteria for comprehensive evaluation: Comprehensive evaluation was performed on three items: “surface crack”, “elastic coefficient”, and “rate of decrease in bending strength in spalling test”.
、, ×. In addition, the thing of "x" of "surface crack" was unconditionally set to x in "comprehensive evaluation".
【0045】比較例1及び2 原料の配合を表1のように変えた以外は、実施例1と同
様にして、表2に示すセラミックス板を得た。Comparative Examples 1 and 2 Ceramic plates shown in Table 2 were obtained in the same manner as in Example 1 except that the raw materials were changed as shown in Table 1.
【0046】表2の結果から、混練物に繊維を含めたも
のは、弾性係数が低下すると共にスポーリング試験でも
曲げ強度が低下し難いことが分かる。また、繊維のうち
でもガラス繊維を含めたものは亀裂が生じ難いことが分
かる。From the results shown in Table 2, it can be seen that the kneaded material containing fibers has a reduced elastic modulus and a reduced bending strength even in the spalling test. Further, it can be seen that among the fibers, those including glass fibers are less likely to crack.
【0047】[0047]
【発明の効果】本発明に係るセラミックス板はβ−スポ
ジューメン質セラミックス又はβ−ユークリプタイト質
セラミックスからなり、耐熱性、低熱膨張性に優れると
共に、亀裂が実質的に存在しないため耐熱衝撃性に優れ
る。また、本発明に係るセラミックス板はガラス被覆空
洞を所定量有するため、弾性係数が低く、耐熱衝撃性及
び断熱性が高い。The ceramic plate according to the present invention is made of β-spodumene ceramics or β-eucryptite ceramics, and has excellent heat resistance and low thermal expansion properties, and has good thermal shock resistance because of substantially no cracks. Excellent. In addition, since the ceramic plate according to the present invention has a predetermined amount of glass-coated cavities, the ceramic plate has a low elastic coefficient and a high thermal shock resistance and a high heat insulating property.
【0048】また、本発明に係るセラミックス板の製造
方法によれば、ペタライト等の他の原料への親和性に優
れるガラス繊維を配合することにより、混練物を圧延し
てもガラス繊維の繊維形状に基づく物理的な補強効果が
効果的に発揮されて混練物の亀裂を防止するため、混練
物及びこれを圧延して得られる圧延板に亀裂やしわが生
じ難い。このため、圧延を必要とするような大判のセラ
ミックス板でも容易に亀裂やしわがないものを製造でき
る。さらに、焼成の際にガラス繊維が溶融するため、該
ガラス分がβ−スポジューメン質セラミックス又はβ−
ユークリプタイト質セラミックスからなるマトリックス
の粒界に含浸して組織を緻密化するため得られるセラミ
ックス板は曲げ強度等の耐スポーリング性が高いと共
に、焼成の際に溶融したガラス分が材料の流動性を高め
るため得られるセラミックス板は表面が平坦になる。さ
らに焼成の際に溶融したガラス分はβ−スポジューメン
質セラミックス又はβ−ユークリプタイト質セラミック
スからなるマトリックスに含浸して内壁面がガラスで被
覆されたガラス被覆空洞を溶融痕として形成するため、
該ガラス被覆空洞により得られるセラミックス板の弾性
係数が低く、耐熱衝撃性及び断熱性が高くなる。Further, according to the method of manufacturing a ceramic plate according to the present invention, by mixing glass fibers having an excellent affinity for other raw materials such as petalite, the fiber shape of the glass fibers can be obtained even if the kneaded material is rolled. In order to prevent the cracks in the kneaded material by effectively exerting the physical reinforcing effect based on the above, cracks and wrinkles are hardly generated in the kneaded material and a rolled plate obtained by rolling the kneaded material. For this reason, even a large-sized ceramic plate that requires rolling can be easily manufactured without cracks or wrinkles. Furthermore, since the glass fibers are melted during firing, the glass content is β-spodumeneous ceramic or β-spodumene ceramic.
The ceramic plate obtained by impregnating the grain boundaries of the matrix composed of eucryptite ceramics and densifying the structure has high spalling resistance such as bending strength, and the glass component melted during firing flows the material. The surface of the obtained ceramic plate becomes flat in order to enhance the property. Furthermore, the glass component melted during firing is impregnated with a matrix composed of β-spodumeneous ceramic or β-eucryptite ceramics to form a glass-coated cavity whose inner wall surface is coated with glass as a melting mark,
The ceramic plate obtained by the glass-coated cavity has a low elastic modulus, and has a high thermal shock resistance and a high heat insulating property.
【図1】本発明に係るセラミックス板の断面における倍
率100倍のSEM写真(走査型電子顕微鏡写真)であ
る。FIG. 1 is an SEM photograph (scanning electron microscope photograph) at a magnification of 100 times in a cross section of a ceramic plate according to the present invention.
1 β−スポジュメン質 2 ガラス被覆空洞 1 β-spodumene 2 Glass-coated cavity
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小高 康二郎 静岡県浜松市新都田1−8−1 ニチアス 株式会社浜松研究所内 (72)発明者 吉本 俊裕 静岡県浜松市新都田1−8−1 ニチアス 株式会社浜松研究所内 (72)発明者 小野寺 正剛 静岡県浜松市新都田1−8−1 ニチアス 株式会社浜松研究所内 Fターム(参考) 4G019 GA01 4G030 AA66 BA01 BA20 BA23 BA24 CA07 CA09 GA19 HA05 HA07 HA17 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kojiro Odaka 1-8-1 Shintoda, Hamamatsu-shi, Shizuoka Nichias Inside Hamamatsu Laboratory Co., Ltd. (72) Inventor Toshihiro Yoshimoto 1-8-1, Shintoda, Hamamatsu-shi, Shizuoka Nichias Inside the Hamamatsu Laboratory Co., Ltd. (72) Inventor Masago Onodera 1-8-1 Shintoda, Hamamatsu-shi, Shizuoka Nichias F-term in the Hamamatsu Research Laboratories Co., Ltd.
Claims (3)
β−ユークリプタイト質セラミックスからなり、内壁面
がガラスで被覆された直径5〜15μm 、長さ150〜
3000μm のガラス被覆空洞を0.5〜3容量%含む
ことを特徴とするセラミックス板。An inner wall surface of a β-spodumene ceramic or a β-eucryptite ceramic having a diameter of 5 to 15 μm and a length of 150 to 150 μm.
A ceramic plate containing 0.5 to 3% by volume of a 3000 μm glass-coated cavity.
10〜30重量%及び粘土30〜50重量%からなる混
合物100重量部と、直径5〜15μm 、長さ150〜
3000μm のガラス繊維0.5〜3重量部とを含む混
練物を、前記ガラス繊維の溶融温度以上に焼成したもの
であることを特徴とする請求項1記載のセラミックス
板。2. 100 parts by weight of a mixture consisting of 20 to 60% by weight of petalite, 10 to 30% by weight of zircon and 30 to 50% by weight of clay, 5 to 15 μm in diameter and 150 to 50% in length.
2. A ceramic plate according to claim 1, wherein a kneaded product containing 0.5 to 3 parts by weight of glass fiber of 3000 [mu] m is fired at a temperature not lower than the melting temperature of said glass fiber.
10〜30重量%及び粘土30〜50重量%からなる混
合物100重量部と、直径5〜15μm 、長さ150〜
3000μm のガラス繊維0.5〜3重量部とを含む混
練物を、圧延し、得られた圧延板を前記ガラス繊維の溶
融温度以上に焼成することを特徴とするセラミックス板
の製造方法。3. 100 parts by weight of a mixture consisting of 20 to 60% by weight of petalite, 10 to 30% by weight of zircon and 30 to 50% by weight of clay, 5 to 15 μm in diameter and 150 to 50% in length.
A method for producing a ceramic plate, comprising rolling a kneaded product containing 0.5 to 3 parts by weight of glass fiber of 3000 μm, and firing the obtained rolled plate at a melting temperature of the glass fiber or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001061593A JP4318403B2 (en) | 2001-03-06 | 2001-03-06 | Manufacturing method of ceramic plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001061593A JP4318403B2 (en) | 2001-03-06 | 2001-03-06 | Manufacturing method of ceramic plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002265259A true JP2002265259A (en) | 2002-09-18 |
JP4318403B2 JP4318403B2 (en) | 2009-08-26 |
Family
ID=18920862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001061593A Expired - Fee Related JP4318403B2 (en) | 2001-03-06 | 2001-03-06 | Manufacturing method of ceramic plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4318403B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006265063A (en) * | 2005-03-25 | 2006-10-05 | Nichiha Corp | Lightweight inorganic board and method for producing the same |
JP2008169112A (en) * | 2008-01-28 | 2008-07-24 | Inax Corp | Shelf board for manufacturing flat panel display substrate |
JP2008255004A (en) * | 2007-03-30 | 2008-10-23 | Samsung Electro Mech Co Ltd | Eucryptite ceramic filler and insulating composite material |
-
2001
- 2001-03-06 JP JP2001061593A patent/JP4318403B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006265063A (en) * | 2005-03-25 | 2006-10-05 | Nichiha Corp | Lightweight inorganic board and method for producing the same |
JP2008255004A (en) * | 2007-03-30 | 2008-10-23 | Samsung Electro Mech Co Ltd | Eucryptite ceramic filler and insulating composite material |
JP2008169112A (en) * | 2008-01-28 | 2008-07-24 | Inax Corp | Shelf board for manufacturing flat panel display substrate |
Also Published As
Publication number | Publication date |
---|---|
JP4318403B2 (en) | 2009-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112142450B (en) | Zirconia composite alumina ceramic sintered body and preparation method and application thereof | |
KR102135638B1 (en) | Molten glass conveying equipment element, method for manufacturing molten glass conveying equipment element, glass manufacturing apparatus comprising molten glass conveying equipment element and method for manufacturing glass product | |
US10407349B2 (en) | Bonded zirconia refractories and methods for making the same | |
JP4704111B2 (en) | Oxide bonded silicon carbide material | |
EP1288177B1 (en) | Porous high alumina cast refractory and method for its production | |
JP2008208021A (en) | METHOD FOR SINTERING FUSED SILICA TO PRODUCE SHAPED BODY COMPRISING CRYSTALLINE SiO2 | |
EP3708556A1 (en) | Alumina-zirconia-silica fused cast refractory and glass melting furnace | |
JP2014511328A (en) | Sintered materials based on doped chromium oxide | |
JP2006327845A (en) | Press frit | |
KR101287815B1 (en) | Tin oxide-based electrode composition | |
JP2011088759A (en) | Alumina refractory and method of producing the same | |
JP2002265259A (en) | Ceramic plate and manufacturing method therefor | |
JP5036110B2 (en) | Lightweight ceramic sintered body | |
JPH10265259A (en) | Fused silica-based refractory and its production | |
EP2620418B1 (en) | Glass-ceramic composite material | |
JP2001220259A (en) | Alumina-mullite porous refractory sheet and method for producing the same | |
JP2015038365A (en) | Heat insulation material and manufacturing method thereof | |
KR102211643B1 (en) | Foamed glass having high strength and method of manufacturing the same | |
CN107555803A (en) | A kind of glass powder, its preparation method and application | |
KR20190023485A (en) | Aluminum nitride sintered body and method for manufacturing the same | |
JP2002137962A (en) | Component for heat treatment consisting of mullite-based sintered compact | |
JPH07237958A (en) | High-strength porcelain and production thereof | |
JP3368960B2 (en) | SiC refractory | |
JP2511061B2 (en) | Alumina refractory manufacturing method | |
JP2001220260A (en) | Alumina-based porous refractory sheet and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051014 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081029 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090521 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090526 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120605 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120605 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120605 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |