JP2002264013A - Curved surface corrective polishing system, nc polishing device, nc program creating method for polishing optical component, nc program creating method for polishing, creating method for two-dimensional coordinate point group file for nc program, nc program creating method, automatic creating program for nc program, recording medium recorded with nc program for polishing, optical component or mold therefor - Google Patents

Curved surface corrective polishing system, nc polishing device, nc program creating method for polishing optical component, nc program creating method for polishing, creating method for two-dimensional coordinate point group file for nc program, nc program creating method, automatic creating program for nc program, recording medium recorded with nc program for polishing, optical component or mold therefor

Info

Publication number
JP2002264013A
JP2002264013A JP2001067440A JP2001067440A JP2002264013A JP 2002264013 A JP2002264013 A JP 2002264013A JP 2001067440 A JP2001067440 A JP 2001067440A JP 2001067440 A JP2001067440 A JP 2001067440A JP 2002264013 A JP2002264013 A JP 2002264013A
Authority
JP
Japan
Prior art keywords
polishing
program
curved surface
tool
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001067440A
Other languages
Japanese (ja)
Other versions
JP4403662B2 (en
Inventor
Hidetoshi Sakae
英利 寒河江
Kenichi Ichikawa
憲一 市川
Hiroyuki Endo
弘之 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001067440A priority Critical patent/JP4403662B2/en
Publication of JP2002264013A publication Critical patent/JP2002264013A/en
Application granted granted Critical
Publication of JP4403662B2 publication Critical patent/JP4403662B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Numerical Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-efficiency and high-accuracy corrective polishing system capable of easily converting a correction amount of undulation and a shape error as an NC program with high accuracy. SOLUTION: This curved surface corrective polishing system executes a curved surface polishing process for reducing the undulation and the shape error by a preprocess on the basis of a shape measurement result. The system has a position command point calculation part generating polishing-position command points at intervals necessary for operation of a machining machine along a tool contact track on a predetermined machined surface with required position accuracy under a speed command, such that the contact track is equally divided on the contact track passing the center of a machining area; a two-dimensional coordinate point group file showing the polishing-position command points in a two-dimensional coordinate system and a storage part storing the two-dimensional coordinate point group file; a shape estimation part extracting the undulate and the shape error; and a polishing amount calculation part outputting a polishing removal amount necessary for correction of the error in each the position command point.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザビームプリ
ンタのポリゴンスキャナ光学系に用いられる、走査用レ
ンズやその金型の加工技術に関し、また計測データに基
づき、前加工の誤差修正を目的とした曲面切削技術ある
いは曲面研削技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a processing technique for a scanning lens and its mold used in a polygon scanner optical system of a laser beam printer, and an object of the present invention is to correct an error in pre-processing based on measurement data. It relates to a curved surface cutting technology or a curved surface grinding technology.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】自由曲
面の研磨加工法として、小径の工具を一定の力で押し付
け、これをトラバースする方式が従来より用いられてい
る。このトラバース速度を工具位置に応じて変化させる
ことで、除去深さに変化を与えて、曲面の形状精度の向
上またはうねり除去を行う技術が従来より知られてい
る。トラバース条件の決定手段は、研磨による除去深さ
がトラバース速度の逆数である工具滞留時間に比例する
事を前提とした演算手法が数多く提案され、これらが一
般的に用いられてる。
2. Description of the Related Art Conventionally, as a method of polishing a free-form surface, a method of pressing a small-diameter tool with a constant force and traversing the tool has been conventionally used. There has been conventionally known a technique of changing the traverse speed according to the tool position to change the removal depth, thereby improving the shape accuracy of the curved surface or removing the undulation. As the means for determining the traverse conditions, many calculation methods have been proposed on the assumption that the removal depth by polishing is proportional to the tool residence time, which is the reciprocal of the traverse speed, and these methods are generally used.

【0003】曲面研磨のための研磨軌跡生成法として
は、加工する領域を2次元平面座標系内の長方形で定義
し、これを被加工面上に投影し、その投影領域を工具接
触面で塗りつぶすような研磨軌跡を設定する方式が知ら
れている。たとえば特開平6−83426号公報、特開
平9−323252号公報、特開平10−315111
号公報などに開示されている技術がこれに相当する。こ
こでの研磨軌跡とは、工具接触領域の中心点が移動する
経路を指している。この研磨軌跡を発生させるために、
工具に特定の運動軌跡を与えることとなる。被加工面が
平面あるいは工具の曲率半径に対して十分大きな曲率半
径を有する場合には、工具中心の運動軌跡と工具接触部
位の軌跡がほぼ一致するため、加工に必要とされる工具
運動軌跡を容易に設定することができる。
[0003] As a polishing trajectory generation method for curved surface polishing, a region to be processed is defined by a rectangle in a two-dimensional plane coordinate system, and this is projected on a surface to be processed, and the projected region is filled with a tool contact surface. A method of setting such a polishing locus is known. For example, JP-A-6-83426, JP-A-9-323252, JP-A-10-315111
The technology disclosed in, for example, Japanese Unexamined Patent Application Publication No. 2000-163456 corresponds to this. The polishing locus here indicates a path along which the center point of the tool contact area moves. In order to generate this polishing locus,
A specific motion trajectory is given to the tool. If the surface to be machined has a plane or a radius of curvature that is sufficiently large with respect to the radius of curvature of the tool, the trajectory of the tool center and the trajectory of the tool contact area almost coincide with each other. It can be easily set.

【0004】しかしながら、この工具滞留時間を用いた
形状修正技術を、十数mm〜数十mmRの比較的小さい
曲率半径を有する自由曲面に適用するには、精度確保の
上でいくつかの課題がある。すなわち、十数mm〜数十
mmRの比較的小さい曲率半径を有する自由曲面を数m
m〜十数mmの曲率半径の工具で研磨する場合、工具中
心の運動軌跡とその研磨軌跡の間には、工具曲率半径分
のオフセットが無視できぬ大きさで存在し、両軌跡の差
は大きな違いとして表れる。
However, in order to apply the shape correcting technique using the tool residence time to a free-form surface having a relatively small radius of curvature of tens of mm to tens of mmR, there are some problems in securing accuracy. is there. That is, a free-form surface having a relatively small radius of curvature of several tens mm to several tens mm
When polishing with a tool having a radius of curvature of m to tens of millimeters, an offset of the radius of curvature of the tool exists between the motion trajectory of the tool center and the polishing trajectory with a size that cannot be ignored, and the difference between the two trajectories is It appears as a big difference.

【0005】従って、工具中心が直線運動をなすような
工具運動軌跡を与えた場合でもその接触軌跡は曲がり生
じ、接触軌跡を一定の間隔で分布させることができない
という問題が生じてくる。この対策としては被加工曲面
に対して等ピッチで縦断面をとり、この断面曲線上に研
磨軌跡を指定するための研磨位置指令点を設定し、各指
令点において法線方向に工具の曲率半径分だけ研磨位置
指令点をオフセットして工具位置指令点を算出し、工具
運動軌跡を求める手法がとられている。この工具位置指
令点の座標が、そのまま加工用のNCプログラムとして
用いられている。以上の手段によれば、ある程度研磨軌
跡の密度の均一化は図れるが、研磨位置指令点がXY平
面上で直線上に配置されるため研磨軌跡の密度均一化に
制限が生ずる、研磨位置指令点の間隔はXY軸の直線上
で等間隔であり曲面上では等間隔にはなっていない、と
いった点が依然問題として残っている。
[0005] Therefore, even when a tool motion trajectory in which the tool center makes a linear motion is given, the contact trajectory is bent, and a problem arises in that the contact trajectory cannot be distributed at regular intervals. As a countermeasure, a vertical section is taken at the same pitch with respect to the curved surface to be processed, a polishing position command point for specifying a polishing locus is set on this cross-sectional curve, and the radius of curvature of the tool in the normal direction at each command point. A method has been adopted in which a tool position command point is calculated by offsetting a polishing position command point by an amount, and a tool motion trajectory is obtained. The coordinates of the tool position command point are used as it is as a machining NC program. According to the above means, the polishing locus density can be made uniform to some extent. However, since the polishing position command points are arranged on a straight line on the XY plane, the polishing locus density uniformity is limited. Is still an issue on the straight line of the XY axes, but not on the curved surface.

【0006】走査線の粗密は場所による表面粗さを生ず
る原因となるため、高品位な光学部品加工には望ましく
ないものである。また工具接触軌跡の粗密は研磨の除去
深さ変化させる因子であり、上述のように滞留時間制御
で形状誤差やうねりを低減させる工法においては、滞留
時間導出のアルゴリズムにこれの影響を組み込む必要が
ある。同様に研磨軌跡上の研磨位置指令点に粗密がある
と、修正加工用NCプログラム内の滞留時間分布に、そ
の影響を加味する必要が生じてくる。
Since the density of the scanning lines causes surface roughness depending on places, it is not desirable for processing high-quality optical parts. Also, the density of the tool contact trajectory is a factor that changes the removal depth of polishing.In the method of reducing shape errors and undulations by controlling the residence time as described above, it is necessary to incorporate this effect into the algorithm for deriving the residence time. is there. Similarly, if the polishing position command points on the polishing trajectory vary in density, it is necessary to take the influence into the residence time distribution in the NC program for correction processing into account.

【0007】本発明は、上記従来技術における問題点に
かんがみ、形状誤差及びうねりの修正量をNCプログラ
ムとして容易かつ高精度に変換する仕組みを提供し、高
能率及び高精度な修正研磨システムを実現させることを
目的とする。また、小径研磨工具による自由曲面のトラ
バース研磨工法において、新規の研磨用NCプログラム
作成手法を提供し、容易に曲面上で密度分布の少ない工
具接触軌跡の生成及び研磨位置指令点の生成を可能とす
る。また、曲面上でむらの小さい研磨位置指令点を前提
とすることと同時に、形状誤差及びうねりを研磨位置指
令点における2次元配列の離散値で表現する形態をとる
ことで、この配列データから修正加工に必要な工具の滞
留時間といった加工機への指令値が容易に算出可能とす
る。
In view of the above problems in the prior art, the present invention provides a mechanism for easily and accurately converting a correction amount of a shape error and an undulation as an NC program, and realizes a highly efficient and highly accurate correction polishing system. The purpose is to let them. In addition, in the traverse polishing method of a free-form surface using a small-diameter polishing tool, a new NC program creation method for polishing is provided, and it is possible to easily generate a tool contact locus with a low density distribution on a curved surface and generate a polishing position command point. I do. In addition, it is assumed that a polishing position command point having small unevenness on a curved surface is assumed, and at the same time, a form in which the shape error and the undulation are expressed by discrete values of a two-dimensional array at the polishing position command point is corrected from this array data. It is possible to easily calculate a command value to the processing machine, such as a tool residence time required for processing.

【0008】[0008]

【課題を解決するための手段】本発明の請求項1に係る
曲面修正研磨システムは、上記目的を達成するために、
形状計測結果に基づき前加工による形状誤差及びうねり
を低減させる曲面研磨工程に行う曲面修正研磨システム
において、あらかじめ決定された被加工面上での工具接
触軌跡に対し、加工機がこの軌跡を所望の位置精度及び
速度指令で動作するために必要な間隔でかつ加工領域中
央を通過する接触軌跡上にて該接触軌跡を等分割するよ
うな研磨位置指令点を生成する位置指令点演算部と、上
記研磨位置指令点を2次元平面座標系で示した2次元座
標点群ファイル及び該2次元座標点群ファイルを格納す
る記憶部と、形状誤差及びうねり抽出する形状評価部
と、上記誤差を修正するために必要な研磨除去量を位置
指令点の各点において出力する研磨量演算部とを有する
ことを特徴とする。
According to a first aspect of the present invention, there is provided a curved surface correction polishing system for achieving the above object.
In a curved surface correction polishing system that performs a curved surface polishing process for reducing a shape error and waviness due to pre-processing based on a shape measurement result, a processing machine determines a desired tool contact trajectory on a work surface by using this trajectory. A position command point calculation unit that generates a polishing position command point that equally divides the contact trajectory on a contact trajectory passing through the center of the processing area at intervals necessary to operate with position accuracy and speed command, A storage unit for storing a two-dimensional coordinate point group file and a two-dimensional coordinate point group file indicating polishing position command points in a two-dimensional plane coordinate system, a shape evaluation unit for extracting shape errors and undulations, and correcting the errors And a polishing amount calculating section for outputting a polishing removal amount necessary for each of the position command points.

【0009】同請求項2に係るものは、上記目的を達成
するために、請求項1の曲面修正研磨システムにおい
て、上記位置指令点の各点における必要除去量にあわせ
て研磨除去深さを変化させる手段を有し、工具送り速
度、工具回転数、工具押し付け力のいずれかを変化さ
せ、研磨除去深さに強弱をつけることを特徴とする。
According to a second aspect of the present invention, in order to achieve the above object, in the curved surface correction polishing system according to the first aspect, the polishing removal depth is changed according to the required removal amount at each of the position command points. Means for changing the feed rate of the tool, the number of revolutions of the tool, and the pressing force of the tool to change the polishing removal depth.

【0010】同請求項3に係るものは、上記目的を達成
するために、請求項1または2の曲面修正研磨システム
において、修正加工用にNCプログラムを用い、該NC
プログラムは、研磨位置の指令を行う各行ごとに送り速
度、送り速度の逆数、工具回転数、研磨荷重のいずれか
の指令値を含むフォーマットからなることを特徴とす
る。
According to a third aspect of the present invention, in order to achieve the above object, in the curved surface correction polishing system according to the first or second aspect, an NC program is used for repair processing.
The program is characterized in that it has a format including a command value of any one of a feed rate, a reciprocal of the feed rate, a tool rotation speed, and a polishing load for each row for which a command for a polishing position is issued.

【0011】同請求項4に係るものは、上記目的を達成
するために、請求項3の曲面修正研磨システムにおい
て、上記NCプログラム内の研磨位置指令点は、工具の
接触位置を2次元平面座標で直接記載したフォーマット
であり、研磨位置指令点における被加工面の法線ベクト
ルまたは工具輪郭の曲率中心位置の計算は、加工装置内
部のNC指令値解読部で行わせることを特徴とする。
According to a fourth aspect of the present invention, in order to achieve the above object, in the curved surface correcting polishing system according to the third aspect, the polishing position command point in the NC program indicates a contact position of the tool with a two-dimensional plane coordinate. And the calculation of the normal vector of the surface to be processed or the center of curvature of the tool contour at the polishing position command point is performed by an NC command value decoding unit inside the processing apparatus.

【0012】同請求項5に係るNC研磨装置は、上記目
的を達成するために、請求項3の曲面修正研磨システム
を用い、上記NCプログラムによって動作することを特
徴とする。
According to a fifth aspect of the present invention, there is provided an NC polishing apparatus which uses the curved surface correction polishing system according to the third aspect of the present invention and operates according to the NC program.

【0013】同請求項6に係るものは、上記目的を達成
するために、請求項5のNC研磨装置において、研磨位
置指令点における被加工面の法線と工具押し付け方向を
一致させる法線制御が可能であることを特徴とする。
According to a sixth aspect of the present invention, in order to achieve the above object, in the NC polishing apparatus of the fifth aspect, a normal line control for matching a normal line of a surface to be processed at a polishing position command point with a tool pressing direction. Is possible.

【0014】同請求項7に係る光学部品研磨用のNCプ
ログラム作成方法は、上記目的を達成するために、請求
項3の曲面修正研磨システムに用いる光学部品研磨用の
NCプログラム作成方法であって、上記NCプログラム
内の研磨位置指令点は、その座標を2次元平面座標系で
表記し、該2次元平面座標系は光学的有効域を示す平面
と平行に設定することを特徴とする。
According to a seventh aspect of the present invention, there is provided an NC program creating method for polishing an optical component used in the curved surface correction polishing system according to the third aspect, in order to achieve the above object. The coordinates of the polishing position command point in the NC program are expressed in a two-dimensional plane coordinate system, and the two-dimensional plane coordinate system is set parallel to a plane indicating an optically effective area.

【0015】同請求項8に係るものは、上記目的を達成
するために、請求項3の曲面修正研磨システムに用いる
光学部品研磨用のNCプログラム作成方法であって、上
記NCプログラム内の研磨位置指令点は、光学的有効域
を表す長方形の長辺及また短辺のいずれかに平行な中心
線を曲面上に投影し、得られた曲線を等しい長さ分割す
るような点を通過するような工具経路を設定することを
特徴とする。
According to a eighth aspect of the present invention, there is provided an NC program creating method for polishing an optical component used in the curved surface correction polishing system according to the third aspect of the present invention. The command point is such that the center line parallel to either the long side or the short side of the rectangle representing the optical effective area is projected on the curved surface, and passes through a point that divides the obtained curve into equal lengths. A characteristic tool path is set.

【0016】同請求項9に係る研磨用NCプログラム作
成方法は、上記目的を達成するために、請求項4の曲面
修正研磨システムに用いる研磨用NCプログラム作成方
法であって、被加工面上での工具の接触領域に相当する
面積を単位面積として、単位面積あたりに存在する上記
工具位置指令点の密度または工具軌跡の密度を演算し、
この粗密を表す数値によって各点における研磨除去量を
修正する機能を有することを特徴とする。
According to a ninth aspect of the present invention, there is provided a method for creating an NC program for polishing used in the curved surface correction polishing system according to the fourth aspect of the present invention. With the area corresponding to the contact area of the tool as the unit area, the density of the tool position command points or the density of the tool path existing per unit area is calculated,
It is characterized in that it has a function of correcting the polishing removal amount at each point by the numerical value representing the density.

【0017】同請求項10に係るものは、上記目的を達
成するために、請求項3の曲面修正研磨システムに用い
る研磨用NCプログラム作成方法であって、工具軌跡を
生成するための研磨位置指令点の間隔は、修正すべきう
ねりの空間的な波長の1/2以下であることを特徴とす
る。
According to a tenth aspect of the present invention, there is provided a method for creating an NC program for polishing used in the curved surface correction polishing system according to the third aspect of the present invention, in order to achieve the above object, wherein a polishing position command for generating a tool path is provided. The interval between the points is characterized by being equal to or less than half the spatial wavelength of the undulation to be corrected.

【0018】同請求項11に係るNCプログラム用2次
元座標点群ファイルの作成方法は、上記目的を達成する
ために、請求項1の曲面修正研磨システムに用いるNC
プログラム用2次元座標点群ファイルの作成方法であっ
て、隣り合う工具接触軌跡が可能な限りで等間隔となる
ように軌跡を設定し、その上で軌跡上の位置指令点を可
能な限り等間隔となるように設定することを特徴とす
る。
According to the eleventh aspect of the present invention, there is provided a method for creating a two-dimensional coordinate point group file for an NC program, wherein the NC used in the curved surface correction polishing system of the first aspect is provided to achieve the above object.
This is a method of creating a two-dimensional coordinate point group file for a program, in which trajectories are set so that adjacent tool contact trajectories are at equal intervals as much as possible, and position command points on the trajectories are set as much as possible. It is characterized in that the interval is set.

【0019】同請求項12に係るNCプログラム作成方
法は、上記目的を達成するために、請求項2の曲面修正
研磨システムに用いるNCプログラム作成方法であっ
て、上記NCプログラム内の研磨位置指令点は、光学的
有効域を表す長方形の長辺及また短辺のいずれかに平行
な中心線を曲面上に投影し、得られた曲線を等しい長さ
分割するような点を通過するような工具経路を設定して
得た2次元座標点群ファイルとこれに対応する必要研磨
除去量を求め、該研磨除去量を表す1次元の数値配列に
対して任意の定数を乗算することで各接触点における工
具送り速度の逆数、工具回転数、工具押し付け力のいず
れかに変換し、工具走査に同期させた制御指令値として
用いることを特徴とする。
According to a twelfth aspect of the present invention, there is provided an NC program creating method for use in the curved surface correction polishing system according to the second aspect, in order to achieve the above object. Is a tool that projects a center line parallel to either the long side or the short side of the rectangle representing the optically effective area on a curved surface and passes through a point that divides the obtained curve into equal lengths A two-dimensional coordinate point group file obtained by setting a path and a required polishing removal amount corresponding thereto are obtained, and a one-dimensional numerical array representing the polishing removal amount is multiplied by an arbitrary constant to obtain each contact point. , Is converted into one of the reciprocal of the tool feed speed, the tool rotation speed, and the tool pressing force, and is used as a control command value synchronized with tool scanning.

【0020】同請求項13に係るものは、上記目的を達
成するために、請求項1ないし3のいずれかの曲面修正
研磨システムにおいて、直動軸を直交3軸のXYZと
し、X軸まわりの回転運動をA軸、Y軸まわりの回転を
B軸とするとき、工具軌跡を生成するための研磨位置指
令点を、各点におけ法線ベクトルにもとづいて、上記A
軸または上記B軸成分の値が一定となる点を設定し、こ
れらを通過する工具経路を生成することを特徴とする。
According to a thirteenth aspect of the present invention, in order to achieve the above object, in the curved surface correction polishing system according to any one of the first to third aspects, the linear motion axes are XYZ of three orthogonal axes, and When the rotational motion is the A axis and the rotation about the Y axis is the B axis, the polishing position command point for generating the tool trajectory is determined based on the normal vector at each point.
It is characterized in that a point at which the value of the axis or the B-axis component becomes constant is set, and a tool path passing through these points is generated.

【0021】同請求項14に係るNCプログラムの自動
作成プログラムは、上記目的を達成するために、請求項
6ないし11のいずれかのNCプログラム作成方法のい
ずれかを機能として含むことを特徴とする。
According to a fourteenth aspect of the present invention, in order to achieve the above object, an NC program automatic creation program includes, as a function, any one of the NC program creation methods according to any one of the sixth to eleventh aspects. .

【0022】同請求項15に係る研磨用NCプログラム
を記録した記録媒体は、上記目的を達成するために、請
求項9の研磨用NCプログラム作成方法により作成した
ものである。
According to a fifteenth aspect of the present invention, a recording medium on which a polishing NC program is recorded is created by the polishing NC program creating method according to the ninth aspect of the present invention.

【0023】同請求項16に係る曲面修正研磨システム
は、上記目的を達成するために、請求項1の曲面修正研
磨システムにおいて、各点における必要研磨除去量を出
力する研磨除去量演算部は、加工点における法線方向成
分及び上記平面座標系に直交する成分を出力する機能を
有することを特徴とする。
According to a sixteenth aspect of the present invention, there is provided a curved surface correction polishing system according to the first aspect, wherein the polishing removal amount calculating unit for outputting a required polishing removal amount at each point is provided. It has a function of outputting a normal direction component at a processing point and a component orthogonal to the plane coordinate system.

【0024】同請求項17に係る光学部品またはその金
型は、上記目的を達成するために、請求項1の曲面修正
研磨システムにより製作したものである。
An optical component or a mold for the optical component according to claim 17 is manufactured by the curved surface correction polishing system according to claim 1 in order to achieve the above object.

【0025】[0025]

【発明の実施の形態及び実施例】以下本発明の実施の形
態及び実施例を図面を参照して説明する。本実施形態
は、曲面形状レンズに生じた振幅100nmのうねり
を、滞留時間制御で除去した事例である。工具姿勢を加
工点法線に対して一定に保つ工法を採用するため、図1
に示すようなXYAB軸方向の4軸同時制御ができるN
C研磨装置を用いた。本実施形態は、新規なNCプログ
ラム作成手順及び専用のNCプログラムフォーマット及
びこれらを活用した形状修正量から滞留時間への変換手
法の3つの要素で構成される。
Embodiments and examples of the present invention will be described below with reference to the drawings. The present embodiment is an example in which undulation having an amplitude of 100 nm generated in a curved lens is removed by residence time control. In order to adopt a construction method that keeps the tool posture constant with respect to the machining point normal,
N that allows simultaneous control of four axes in the XYAB axis direction as shown in
C polishing machine was used. The present embodiment is composed of three elements: a new NC program creation procedure, a dedicated NC program format, and a method of converting a shape correction amount into a staying time using these NC program formats.

【0026】図1は第1の要素であるNCプログラムの
作成手順を示したものである。ここでの特徴は研磨位置
指令点より簡易な手法で曲面上において均等にむらなく
生成する事である。手順1でまず曲面の設計を完了させ
る。レンズのような光学部品ではその形状は式表現され
ており、これを前提として以下に説明を進める。
FIG. 1 shows a procedure for creating an NC program which is the first element. The feature here is that it is generated evenly on a curved surface by a simpler method than the polishing position command point. First, in step 1, the design of the curved surface is completed. The shape of an optical component such as a lens is expressed by a formula, and the description will be given below based on this assumption.

【0027】手順2で、曲面上に加工領域を指定する長
方形を設定する。これはレンズの有効域に対してその外
周を数mm拡大したものである。これは加工領域の境界
線が欠陥になりやすく、それを回避するためである。X
Y平面での長方形である。本事例ではその長辺がX軸と
平行に、短辺がY軸と平行となるように設定している。
In step 2, a rectangle for designating a processing area is set on the curved surface. This is obtained by enlarging the outer periphery by several mm with respect to the effective area of the lens. This is because the boundary of the processing region is liable to be a defect and is avoided. X
It is a rectangle on the Y plane. In this case, the long side is set parallel to the X axis, and the short side is set parallel to the Y axis.

【0028】手順3でこの長方形を被加工面上に投影す
る。これによって被加工面上に加工領域をしめす境界線
5(図2に符号5で示す。)が生成される。
In step 3, this rectangle is projected on the surface to be processed. As a result, a boundary line 5 (indicated by reference numeral 5 in FIG. 2) indicating the processing region on the processing surface is generated.

【0029】手順4でツールパス生成の条件を入力す
る。本加工では図5に符号16または17で示すように
Y方向に走査し、X方向に1指令点分微少量移動して再
びY走査をする軌跡を採用したため、X方向ならびにY
方向の研磨位置指令点のピッチを入力する。特にXピッ
チは研磨加工面の粗さと相関が強く工具の研磨痕形状に
基づいて決定される。
In step 4, conditions for tool path generation are input. In this processing, as shown by the reference numeral 16 or 17 in FIG. 5, a trajectory for scanning in the Y direction, moving a small amount by one command point in the X direction, and performing Y scanning again is employed.
Enter the pitch of the polishing position command point in the direction. Particularly, the X pitch has a strong correlation with the roughness of the polished surface and is determined based on the shape of the polishing mark of the tool.

【0030】以上は、本発明と従来法が手順を同じくす
る部分である。以下に本発明の特徴的手順を説明する。
The above is the portion where the procedure is the same between the present invention and the conventional method. Hereinafter, the characteristic procedure of the present invention will be described.

【0031】図1の手順5bにおいて、図4に示す加
工領域指定用の長方形4に対して中心線10及び9を設
定する。これを同様に加工面上に投影し曲面上で曲線1
1及び12を得る(図4)。続いて、図1の手順6b
において、優先して分割する方向を決定する。これは走
査レンズ型のような場合うねり精度の厳しい方にとる場
合が多い。本事例ではレンズの長手に相当するX方向と
した。従って長手方向の中心線12(図4及び)に
対して、曲線上の長さが等分割となるように分割点13
を形成した。続いて、図1の手順7bにおいて分割点1
3を含みX軸に直交する平面21と、境界線5で示され
る曲面との交線をとり断面曲線14を形成する。断面曲
線14は、先に設定した分割点13と同数形成されるこ
とになる(図4)。本実施形態の形状においては、断
面曲線13を得るためにX軸に直交する平面21を用い
たが、形状によっては曲線12と直交する平面を利用す
ることも可能である。最終的に形成される研磨位置指令
点の粗密が小さくな方を選択している。すべての断面曲
線14に対して同様に分割点15を設定する。以上の工
程で分割点15が研磨位置指令点となる。
In step 5b of FIG. 1, center lines 10 and 9 are set for the rectangle 4 for designating a processing area shown in FIG. This is similarly projected on the processing surface, and the curve 1 is drawn on the curved surface.
1 and 12 are obtained (FIG. 4). Then, the procedure 6b of FIG.
In, the direction to be divided with priority is determined. This is often used for those with severe undulation accuracy in the case of a scanning lens type. In this case, the X direction corresponds to the length of the lens. Therefore, with respect to the longitudinal center line 12 (FIG. 4 and FIG. 4), the dividing point
Was formed. Subsequently, in step 7b of FIG.
The cross-section of the plane 21 including 3 and orthogonal to the X axis and the curved surface indicated by the boundary line 5 is formed to form the cross-sectional curve 14. The same number of sectional curves 14 as the previously set division points 13 are formed (FIG. 4). In the shape of the present embodiment, the plane 21 orthogonal to the X axis is used to obtain the cross-sectional curve 13, but a plane orthogonal to the curve 12 may be used depending on the shape. The one where the density of the polishing position command point finally formed is smaller is selected. The division points 15 are set for all the cross-sectional curves 14 in the same manner. In the above steps, the division point 15 becomes the polishing position command point.

【0032】図4は、本実施形態により形成した研磨位
置指令点をXY平面図で示したものである。曲面上で等
間隔となるような配置をしているため、XY平面図にお
いては、X方向Y方向ともに粗密を生じている。一方、
従来法による場合はXY平面表現において等間隔な研磨
位置指令点8となっている。研磨位置指令点15及び8
を一筆書きの要領でつないでゆくと研磨経路17及び1
6が形成できる。
FIG. 4 is a XY plan view showing polishing position command points formed according to the present embodiment. Since they are arranged at regular intervals on a curved surface, in the XY plan view, the density is uneven in both the X and Y directions. on the other hand,
In the case of the conventional method, the polishing position command points 8 are equally spaced in the XY plane expression. Polishing position command points 15 and 8
And the polishing paths 17 and 1
6 can be formed.

【0033】以下、本発明の第2及び第3の要素である
NCプログラムの新規フォーマットと滞留時間の算出法
を図6を用いて説明する。新規フォーマットにおいて
は、研磨位置指令点をXYの2次元平面座標で表記し、
各位置での滞留時間をWというパラメータで記載してい
る。従来法との大きな違いは、工具のオフセット計算な
しで、研磨位置指令点が直接入力できる点と、XYAB
の4軸制御加工でありながらNCプログラム中では必要
最小限であるXY座標のみの表記にしている点である。
従来法では工具の曲率中心位置を求めるオフセット計算
を行い加工機の軸数分の指令値を記載する必要があっ
た。さらに、形状誤差を修正する滞留時間の導出は、複
雑な積分計算を用いて行われることが多かった。加工機
側に曲面を指定する式をあらかじめ入力しておき、オフ
セット計算は加工機内部でおこなうこととしたため可能
となった。
The new format of the NC program and the method of calculating the residence time, which are the second and third elements of the present invention, will be described below with reference to FIG. In the new format, the polishing position command point is expressed by XY two-dimensional plane coordinates,
The residence time at each position is indicated by a parameter W. The major difference from the conventional method is that the polishing position command point can be directly input without calculating the offset of the tool, and XYAB
Is that only the XY coordinates, which are the minimum required in the NC program, are described in the four-axis control machining.
In the conventional method, it is necessary to calculate the offset for obtaining the center position of the curvature of the tool and to describe command values for the number of axes of the processing machine. Further, the derivation of the residence time for correcting the shape error is often performed using a complicated integral calculation. An equation to specify the curved surface was input to the processing machine in advance, and the offset calculation was performed inside the processing machine, making it possible.

【0034】新規のフォーマットは、行末のWの項を形
状誤差を示したZ高さに入れ替えることで、形状及びう
ねり評価にもちいることができる。このように計測評価
ファイルとNCプログラムを共通フォーマットとする事
で、誤差データをフィードバックした修正加工用NCプ
ログラム生成が飛躍的に簡易かつ正確にできるようにな
った。具体的には、前述のZ高さの数列を滞留時間Wに
変換するだけでよい。既に説明したように、研磨位置指
令点は、曲面上でむらなく配置されているため、この変
換も、Zの値に特定の定数を乗算するだけで容易Wへ変
換することができる。この定数は、研磨工具の加工痕形
状、研磨条件、工具軌跡、及び研磨位置指令点の間隔等
によって決まるものであるが、あらかじめ、工具軌跡を
定めて実験する、あるいは簡易なシミュレーションによ
って簡単に求められるものである。
The new format can be used for shape and swell evaluation by replacing the term W at the end of the line with the Z height indicating a shape error. By using the measurement evaluation file and the NC program in a common format in this way, it is possible to dramatically and easily generate an NC program for correction processing by feeding back error data. Specifically, it is only necessary to convert the above-mentioned sequence of Z heights into the residence time W. As described above, since the polishing position command points are evenly arranged on the curved surface, this conversion can be easily converted to W simply by multiplying the value of Z by a specific constant. This constant is determined by the shape of the processing mark of the polishing tool, the polishing conditions, the tool trajectory, the interval between the polishing position command points, and the like. It is something that can be done.

【0035】以上の手段により、曲面レンズ型のうねり
除去実験を実施した。研磨工具1は図1に示すようなタ
イヤ形状を有する発泡ポリウレタンで、砥粒にはダイヤ
モンドスラリーを用いた。回転軸はその押しつけ方向と
直交している。被加工面はダイヤモンド切削を施したN
iメッキ面である。加工領域は10×10mm四方とし
た。切削面の計測評価では図7の19断面曲線が得ら
れ、振幅で100nm程度のうねりが発見された。加工
領域全面を触針式形状評価機で評価して、そのうねり誤
差を、曲面上で0。1mmピッチ間隔のXYZ座標で出
力した。これは図6右側のフォーマットと同一で、パラ
メータがWとZで異なるのみである。Zの値は各点での
必要な除去量を示しており、単位はμmを用いた。続い
てシミュレーションにて求めた変換係数K=3。2を各
行のZに乗算し、滞留時間Wに変換した。このファイル
をそのままNCプログラムとして修正研磨を実施した。
加工後の断面曲線図7−20は振幅で41nmとなり、
うねりを加工前の4割にまで低減することができた。N
Cプログラムの準備期間は従来比で1/3となり、工程
としての能率も比較的に向上した。
With the above-mentioned means, a curved lens type waviness removal experiment was carried out. The polishing tool 1 was a polyurethane foam having a tire shape as shown in FIG. 1, and diamond slurry was used as abrasive grains. The rotation axis is orthogonal to the pressing direction. Work surface is diamond cut N
i-plated surface. The processing area was 10 × 10 mm square. In the measurement evaluation of the cut surface, a 19-section curve in FIG. 7 was obtained, and a swell of about 100 nm in amplitude was found. The entire processing area was evaluated by a stylus type shape evaluator, and the waviness error was output on a curved surface in XYZ coordinates at a pitch of 0.1 mm. This is the same as the format on the right side of FIG. 6, except that the parameters differ between W and Z. The value of Z indicates the necessary removal amount at each point, and the unit is μm. Subsequently, Z of each row was multiplied by a conversion coefficient K = 3.2 obtained by a simulation, and converted to a residence time W. This file was used as it is as an NC program to carry out modified polishing.
The cross-sectional curve diagram 7-20 after processing is 41 nm in amplitude,
The swell was reduced to 40% before processing. N
The preparation period of the C program was reduced to 1/3 of the conventional one, and the efficiency as a process was relatively improved.

【0036】[0036]

【発明の効果】請求項1に係る発明は、以上説明してき
たように、NCプログラムに研磨位置指令点を直接記載
する事、研磨位置指令点を等間隔とすること、位置情報
について計測評価ファイルと研磨用NCプログラムを同
一フォーマットとすることをあわせて実施することで、
形状誤差及びうねりの修正に必要とされる除去量から、
工具滞留時間等の、それを加工機動作動作に容易かつ正
確に変換可能となる。
According to the first aspect of the present invention, as described above, the polishing position command points are directly described in the NC program, the polishing position command points are set at equal intervals, and the position information is measured and evaluated. And the NC program for polishing have the same format.
From the removal amount required to correct the shape error and undulation,
It can be easily and accurately converted to the operation of the working machine, such as the tool residence time.

【0037】請求項2に係る発明は、以上説明してきた
ように、3つのパラメータは研磨深さと直線関係があ
り、特定の定数を乗算するだけで各点での必要除去量を
加工機動作に変換することができる。
According to the second aspect of the present invention, as described above, the three parameters have a linear relationship with the polishing depth, and the required removal amount at each point can be determined by the operation of the processing machine simply by multiplying by a specific constant. Can be converted.

【0038】請求項3に係る発明は、以上説明してきた
ように、研磨位置指令点の各点で、個別に形状誤差また
はうねり除去に必要な加工機動作情報持たせることで、
その点を任意につないでも、順番のみを管理するだけで
容易に修正用NCプログラムが作成できる。また形状誤
差データZの数と修正動作Wの数が一致し、修正量の受
け渡しが容易である。
According to the third aspect of the present invention, as described above, at each of the polishing position command points, processing machine operation information necessary for removing a shape error or undulation is individually provided.
Even if the points are arbitrarily connected, the correction NC program can be easily created only by managing the order. In addition, the number of shape error data Z and the number of correction operations W match, and the delivery of the correction amount is easy.

【0039】請求項4及び7に係る発明は、以上説明し
てきたように、計測評価ファイルと研磨用NCプログラ
ムフォーマットの共通化が実現でき、NCプログラムへ
の修正量の受け渡しが容易かつ正確に実施できる。
According to the fourth and seventh aspects of the present invention, as described above, the measurement evaluation file and the NC program format for polishing can be shared, and the correction amount can be easily and accurately transferred to the NC program. it can.

【0040】請求項5に係る発明は、以上説明してきた
ように、本システムを用いた修正研磨工程が実施でき
る。
According to the fifth aspect of the present invention, as described above, a modified polishing step using the present system can be performed.

【0041】請求項6に係る発明は、以上説明してきた
ように、加工面法線に対して、工具姿勢を一定に保つこ
とで、加工点における工具の正確な荷重制御及び周速制
御が可能となり、加工精度の向上が実現できる。
According to the sixth aspect of the present invention, as described above, accurate load control and peripheral speed control of the tool at the processing point can be performed by keeping the tool posture constant with respect to the processing surface normal. And the improvement of the processing accuracy can be realized.

【0042】請求項8に係る発明は、以上説明してきた
ように、研磨位置指令点を曲面上に正確に均等配置する
ことは、その間隔が極めて小さくないと困難を伴うよう
な場合、均等性を維持する箇所の優先順位を指定するこ
とで、走査レンズにおいて走査方向と平行な中心線を最
重視する必要があるが、そのような不均等性に伴う光学
的機能の不具合を極力抑えることが可能となる。
According to the eighth aspect of the present invention, as described above, it is difficult to arrange the polishing position command points accurately and evenly on a curved surface if the intervals between them are difficult to achieve unless the intervals are extremely small. It is necessary to give the highest priority to the center line parallel to the scanning direction in the scanning lens by specifying the priority order of the parts that maintain, but it is possible to minimize the malfunction of the optical function due to such unevenness. It becomes possible.

【0043】請求項9に係る発明は、以上説明してきた
ように、研磨位置指令点の不均一は完全にはさけられな
いため、それを修正する場合において、工具接触面積を
基準として修正するという最も効果的な修正ができる。
According to the ninth aspect of the present invention, as described above, since the nonuniformity of the polishing position command point cannot be completely avoided, the correction is performed based on the tool contact area when correcting it. The most effective modification can be made.

【0044】請求項10に係る発明は、以上説明してき
たように、うねり振幅を評価してうねりの除去に用いる
場合には、最低でも記載の数値範囲とする必要がある
が、研磨位置指令点の数が形状評価の点では少ないので
能率的である。
According to the tenth aspect of the present invention, as described above, when the undulation is evaluated by using the undulation amplitude, it is necessary to set the polishing position at least within the numerical range described. Is efficient in the point of shape evaluation.

【0045】請求項11に係る発明は、以上説明してき
たように、研磨位置指令点を曲面上の長さにおいて均等
配置することで、各点での必要除去量に一定の定数を乗
算するだけで、滞留時間等の加工機動作に変換すること
ができる。
According to the eleventh aspect of the present invention, as described above, the required removal amount at each point is multiplied by a fixed constant by uniformly arranging the polishing position command points in the length on the curved surface. Thus, it can be converted into a processing machine operation such as a residence time.

【0046】請求項12に係る発明は、以上説明してき
たように、簡単な作業で、必要除去量が加工機動作へ変
換でき、効率的に修正加工が実施できる。
According to the twelfth aspect of the present invention, as described above, the required removal amount can be converted into the operation of the processing machine by a simple operation, and the correction processing can be performed efficiently.

【0047】請求項13に係る発明は、以上説明してき
たように、特定の形状に対しては記載のルールと研磨位
置指令点の均等配置を両立できる場合に、研磨工具のト
ラバースに伴う同時制御の軸数を減らすことができ、機
械運動動作にともなう加工誤差の低減が期待できる。
According to the thirteenth aspect of the present invention, as described above, the simultaneous control associated with the traverse of the polishing tool when the described rule and the uniform arrangement of the polishing position command points can be compatible for a specific shape. , The number of axes can be reduced, and a reduction in machining errors due to the mechanical motion can be expected.

【0048】請求項14及び15に係る発明は、以上説
明してきたように、手法を汎用のソフトウエア化するこ
とでそれを容易に移植可能となる。
As described above, the invention according to claims 14 and 15 can be easily ported by converting the method into general-purpose software.

【0049】請求項16に係る発明は、以上説明してき
たように、その出力により、本研磨システムを工具姿勢
を加工点法線に対して一定に保つXYZABの5軸制御
及びXYABの4軸制御、チルト制御を含まないXYZ
の3軸制御、XYの2軸制御のいずれの加工形態におい
ても活用可能とすることができる。
According to the sixteenth aspect of the present invention, as described above, the output of the present polishing system causes the XYZAB five-axis control and the XYAB four-axis control to keep the tool posture constant with respect to the processing point normal. , XYZ not including tilt control
It can be utilized in any of the three-axis control and the XY two-axis control.

【0050】請求項17に係る発明は、以上説明してき
たように、従来なし得なかった形状精度とうねり低減が
実現でき、光学性能を飛躍的に向上させた部品生産が可
能となる。
According to the seventeenth aspect of the present invention, as described above, it is possible to realize shape accuracy and swell reduction which could not be achieved conventionally, and it is possible to produce parts with greatly improved optical performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による曲面形状の修正加工用NCプログ
ラムの作成手順を説明するフローチャートである。
FIG. 1 is a flowchart illustrating a procedure for creating an NC program for correcting a curved surface shape according to the present invention.

【図2】図1のNCプログラム作成手順の中の、手順2
及び3の具体的な方法を説明する斜視図である。
FIG. 2 is a procedure 2 in the NC program creating procedure of FIG. 1;
FIG. 6 is a perspective view illustrating a specific method of (3) and (3).

【図3】図1のNCプログラム作成手順の中の、従来法
による手順6a及び7aの具体的な方法を説明する図で
ある。
FIG. 3 is a diagram illustrating a specific method of procedures 6a and 7a according to a conventional method in the NC program creation procedure of FIG.

【図4】図1のNCプログラム作成手順の中の、本発明
による手順5b、6b及び7aの具体的な方法を説明す
る図である。
FIG. 4 is a diagram for explaining a specific method of procedures 5b, 6b and 7a according to the present invention in the NC program creating procedure of FIG. 1;

【図5】本発明の手順によって生成した研磨位置指令点
と従来法による場合の位置座標の違いを説明した図であ
る。
FIG. 5 is a diagram illustrating a difference between a polishing position command point generated by the procedure of the present invention and a position coordinate in the case of a conventional method.

【図6】本発明の研磨システムで用いるNCプログラム
フォーマットの例を示す図である。
FIG. 6 is a diagram showing an example of an NC program format used in the polishing system of the present invention.

【図7】曲面上のうねりに対し、本発明の研磨システム
を用いてうねりの除去加工を実施した結果を示す図であ
る。
FIG. 7 is a view showing a result of performing undulation removal processing on undulation on a curved surface using the polishing system of the present invention.

【符号の説明】[Explanation of symbols]

1 研磨工具 2 研磨用スピンドル 3 曲面レンズ金型 4 加工領域指定用の長方形 5 加工領域の境界線 6 X軸に直交する平面 7 Y方向断面曲線 8 Y軸上で等ピッチの分割点 9 加工領域指定用の長方形の短手中心線 10 加工領域指定用の長方形の長手中心線 11 曲面上に投影された短手中心線9 12 曲面上に投影された長手中心線10 13 曲線12の長さを等分割する分割点 14 Y軸方向断面曲線 15 曲線14の長さを等分割する分割点 16 従来法による研磨軌跡 17 本発明による研磨軌跡 19 研磨前の加工面うねりを示す断面曲線 20 研磨後のうねり低減効果を示す断面曲線 21 分割点13を通りかつX軸に直交する平面 DESCRIPTION OF SYMBOLS 1 Polishing tool 2 Polishing spindle 3 Curved lens mold 4 Rectangle for specifying processing area 5 Boundary of processing area 6 Plane orthogonal to X axis 7 Cross section curve in Y direction 8 Division point of equal pitch on Y axis 9 Processing area Short rectangular center line for designation of rectangle 10 Longitudinal center line of rectangular for processing area designation 11 Short center line 9 12 projected on curved surface 12 Long center line 10 13 projected on curved surface 13 Length of curve 12 Division point for equally dividing 14 Sectional curve in the Y-axis direction 15 Division point for equally dividing the length of the curve 14 Polishing trajectory according to the conventional method 17 Polishing trajectory according to the present invention 19 Cross-sectional curve showing the undulation of the machined surface before polishing 20 After polishing Sectional curve 21 showing undulation reduction effect 21 Plane passing through division point 13 and orthogonal to X axis

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3C034 AA07 AA13 CA05 CB02 CB06 CB18 3C049 AA02 BA02 BB06 BB08 BB09 CA01 CA03 CB01 CB04 5H269 AB01 AB07 CC02 DD01 EE25 EE29 (54)【発明の名称】 曲面修正研磨システム、NC研磨装置、光学部品研磨用のNCプログラム作成方法、研磨用NC プログラム作成方法、NCプログラム用2次元座標点群ファイルの作成方法、NCプログラム作 成方法、NCプログラムの自動作成プログラム、研磨用NCプログラムを記録した記録媒体、光 学部品またはその金型 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3C034 AA07 AA13 CA05 CB02 CB06 CB18 3C049 AA02 BA02 BB06 BB08 BB09 CA01 CA03 CB01 CB04 5H269 AB01 AB07 CC02 DD01 EE25 EE29 (54) [Title of Invention] Curved surface polishing system, NC Polishing apparatus, method for creating NC program for polishing optical components, method for creating NC program for polishing, method for creating two-dimensional coordinate point group file for NC program, method for creating NC program, automatic program for creating NC program, NC program for polishing Media, optical parts or their dies on which

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 形状計測結果に基づき前加工による形状
誤差及びうねりを低減させる曲面研磨工程に行う曲面修
正研磨システムにおいて、あらかじめ決定された被加工
面上での工具接触軌跡に対し、加工機がこの軌跡を所望
の位置精度及び速度指令で動作するために必要な間隔で
かつ加工領域中央を通過する接触軌跡上にて該接触軌跡
を等分割するような研磨位置指令点を生成する位置指令
点演算部と、上記研磨位置指令点を2次元平面座標系で
示した2次元座標点群ファイル及び該2次元座標点群フ
ァイルを格納する記憶部と、形状誤差及びうねり抽出す
る形状評価部と、上記誤差を修正するために必要な研磨
除去量を位置指令点の各点において出力する研磨量演算
部とを有することを特徴とする曲面修正研磨システム。
In a curved surface correction polishing system for performing a curved surface polishing process for reducing a shape error and waviness due to pre-processing based on a shape measurement result, a processing machine is adapted to perform a predetermined tool contact trajectory on a surface to be processed. A position command point that generates a polishing position command point that divides the contact trajectory equally on the contact trajectory passing through the center of the processing area at intervals necessary to operate this trajectory with desired position accuracy and speed command An arithmetic unit, a storage unit for storing a two-dimensional coordinate point group file indicating the polishing position command point in a two-dimensional plane coordinate system and the two-dimensional coordinate point group file, a shape evaluation unit for extracting shape errors and undulations, A polishing amount calculation unit for outputting a polishing removal amount necessary for correcting the error at each of the position command points.
【請求項2】 請求項1の曲面修正研磨システムにおい
て、上記位置指令点の各点における必要除去量にあわせ
て研磨除去深さを変化させる手段を有し、工具送り速
度、工具回転数、工具押し付け力のいずれかを変化さ
せ、研磨除去深さに強弱をつけることを特徴とする曲面
修正研磨システム。
2. The curved surface correction polishing system according to claim 1, further comprising means for changing a polishing removal depth in accordance with a required removal amount at each of said position command points, wherein a tool feed speed, a tool rotation speed, and a tool are provided. A curved surface correction polishing system characterized in that any one of the pressing forces is changed to increase or decrease the polishing removal depth.
【請求項3】 請求項1または2の曲面修正研磨システ
ムにおいて、修正加工用にNCプログラムを用い、該N
Cプログラムは、研磨位置の指令を行う各行ごとに送り
速度、送り速度の逆数、工具回転数、研磨荷重のいずれ
かの指令値を含むフォーマットからなることを特徴とす
る曲面修正研磨システム。
3. The curved surface correction polishing system according to claim 1, wherein an NC program is used for correction processing.
A curved surface correction polishing system characterized in that the C program has a format including a command value of any one of a feed rate, a reciprocal of the feed rate, a tool rotation speed, and a polishing load for each row for commanding a polishing position.
【請求項4】 請求項3の曲面修正研磨システムにおい
て、上記NCプログラム内の研磨位置指令点は、工具の
接触位置を2次元平面座標で直接記載したフォーマット
であり、研磨位置指令点における被加工面の法線ベクト
ルまたは工具輪郭の曲率中心位置の計算は、加工装置内
部のNC指令値解読部で行わせることを特徴とする曲面
修正研磨システム。
4. The curved surface correction polishing system according to claim 3, wherein the polishing position command point in the NC program is a format in which the contact position of the tool is directly described in two-dimensional plane coordinates, and the processing at the polishing position command point is performed. A curved surface correction polishing system characterized in that the calculation of the normal vector of the surface or the center of curvature of the tool contour is performed by an NC command value decoding unit inside the processing apparatus.
【請求項5】 請求項3の曲面修正研磨システムを用
い、上記NCプログラムによって動作することを特徴と
するNC研磨装置。
5. An NC polishing apparatus using the curved surface correction polishing system according to claim 3 and operating according to the NC program.
【請求項6】 請求項5のNC研磨装置において、研磨
位置指令点における被加工面の法線と工具押し付け方向
を一致させる法線制御が可能であることを特徴とするN
C研磨装置。
6. The NC polishing apparatus according to claim 5, wherein a normal line control for matching a normal line of the surface to be processed at a polishing position command point with a tool pressing direction is possible.
C polishing machine.
【請求項7】 請求項3の曲面修正研磨システムに用い
る光学部品研磨用のNCプログラム作成方法であって、
上記NCプログラム内の研磨位置指令点は、その座標を
2次元平面座標系で表記し、該2次元平面座標系は光学
的有効域を示す平面と平行に設定することを特徴とする
光学部品研磨用のNCプログラム作成方法。
7. An NC program creating method for polishing an optical component used in the curved surface correction polishing system according to claim 3,
The polishing position command point in the NC program is expressed in coordinates in a two-dimensional plane coordinate system, and the two-dimensional plane coordinate system is set parallel to a plane indicating an optically effective area. NC program creation method for
【請求項8】 請求項3の曲面修正研磨システムに用い
る光学部品研磨用のNCプログラム作成方法であって、
上記NCプログラム内の研磨位置指令点は、光学的有効
域を表す長方形の長辺及また短辺のいずれかに平行な中
心線を曲面上に投影し、得られた曲線を等しい長さ分割
するような点を通過するような工具経路を設定すること
を特徴とする光学部品研磨用のNCプログラム作成方
法。
8. An NC program creating method for polishing an optical component used in the curved surface correction polishing system according to claim 3,
The polishing position command point in the NC program projects a center line parallel to either a long side or a short side of a rectangle representing an optically effective area on a curved surface, and divides the obtained curve into equal lengths. A method for creating an NC program for polishing an optical component, comprising setting a tool path that passes through such a point.
【請求項9】 請求項4の曲面修正研磨システムに用い
る研磨用NCプログラム作成方法であって、被加工面上
での工具の接触領域に相当する面積を単位面積として、
単位面積あたりに存在する上記工具位置指令点の密度ま
たは工具軌跡の密度を演算し、この粗密を表す数値によ
って各点における研磨除去量を修正する機能を有するこ
とを特徴とする研磨用NCプログラム作成方法。
9. A method for creating an NC program for polishing used in the curved surface correction polishing system according to claim 4, wherein an area corresponding to a contact area of a tool on a surface to be processed is defined as a unit area.
NC program for polishing characterized by having a function of calculating the density of the tool position command points or the density of tool trajectories existing per unit area and correcting the removal amount of polishing at each point by a numerical value representing the density. Method.
【請求項10】 請求項3の曲面修正研磨システムに用
いる研磨用NCプログラム作成方法であって、工具軌跡
を生成するための研磨位置指令点の間隔は、修正すべき
うねりの空間的な波長の1/2以下であることを特徴と
する研磨用NCプログラム作成方法。
10. A method for creating an NC program for polishing used in the curved surface correction polishing system according to claim 3, wherein the interval between the polishing position command points for generating the tool trajectory is the spatial wavelength of the undulation to be corrected. A method for creating an NC program for polishing characterized by being 1/2 or less.
【請求項11】 請求項1の曲面修正研磨システムに用
いるNCプログラム用2次元座標点群ファイルの作成方
法であって、隣り合う工具接触軌跡が可能な限りで等間
隔となるように軌跡を設定し、その上で軌跡上の位置指
令点を可能な限り等間隔となるように設定することを特
徴とするNCプログラム用2次元座標点群ファイルの作
成方法。
11. A method for creating a two-dimensional coordinate point group file for an NC program used in the curved surface correction polishing system according to claim 1, wherein trajectories are set such that adjacent tool contact trajectories are as evenly spaced as possible. A method for creating a two-dimensional coordinate point group file for an NC program, wherein position command points on a trajectory are set at equal intervals as much as possible.
【請求項12】 請求項2の曲面修正研磨システムに用
いるNCプログラム作成方法であって、上記NCプログ
ラム内の研磨位置指令点は、光学的有効域を表す長方形
の長辺及また短辺のいずれかに平行な中心線を曲面上に
投影し、得られた曲線を等しい長さ分割するような点を
通過するような工具経路を設定して得た2次元座標点群
ファイルとこれに対応する必要研磨除去量を求め、該研
磨除去量を表す1次元の数値配列に対して任意の定数を
乗算することで各接触点における工具送り速度の逆数、
工具回転数、工具押し付け力のいずれかに変換し、工具
走査に同期させた制御指令値として用いることを特徴と
するNCプログラム作成方法。
12. An NC program creating method used in the curved surface correction polishing system according to claim 2, wherein the polishing position command point in the NC program is any one of a long side and a short side of a rectangle representing an optically effective area. A two-dimensional coordinate point group file obtained by projecting a center line parallel to the crab on a curved surface and setting a tool path that passes through a point that divides the obtained curve into equal lengths, and corresponding files The required polishing removal amount is obtained, and the reciprocal of the tool feed speed at each contact point is obtained by multiplying a one-dimensional numerical array representing the polishing removal amount by an arbitrary constant.
An NC program creating method, wherein the method is converted into one of a tool rotation speed and a tool pressing force and used as a control command value synchronized with tool scanning.
【請求項13】 請求項1ないし3のいずれかの曲面修
正研磨システムにおいて、直動軸を直交3軸のXYZと
し、X軸まわりの回転運動をA軸、Y軸まわりの回転を
B軸とするとき、工具軌跡を生成するための研磨位置指
令点を、各点におけ法線ベクトルにもとづいて、上記A
軸または上記B軸成分の値が一定となる点を設定し、こ
れらを通過する工具経路を生成することを特徴とするN
Cプログラム作成方法。
13. The curved surface correction polishing system according to claim 1, wherein the linear motion axis is XYZ of three orthogonal axes, the rotation about the X axis is A axis, and the rotation about the Y axis is B axis. In this case, the polishing position command point for generating the tool path is determined based on the normal vector at each point based on the above-mentioned A.
A point at which the value of the axis or the B-axis component is constant, and generating a tool path passing therethrough.
C program creation method.
【請求項14】 請求項6ないし11のいずれかのNC
プログラム作成方法のいずれかを機能として含むことを
特徴とするNCプログラムの自動作成プログラム。
14. The NC according to claim 6, wherein:
An automatic NC program creation program characterized by including any one of the program creation methods as a function.
【請求項15】 請求項9の研磨用NCプログラム作成
方法により作成した研磨用NCプログラムを記録した記
録媒体。
15. A recording medium which records an NC program for polishing created by the method for creating an NC program for polishing according to claim 9.
【請求項16】 請求項1の曲面修正研磨システムにお
いて、各点における必要研磨除去量を出力する研磨除去
量演算部は、加工点における法線方向成分及び上記平面
座標系に直交する成分を出力する機能を有することを特
徴とする曲面修正研磨システム。
16. The polishing system according to claim 1, wherein the polishing-removal-amount calculating unit for outputting the required polishing removal amount at each point outputs a normal direction component at the processing point and a component orthogonal to the plane coordinate system. A curved surface correction polishing system characterized by having a function to perform.
【請求項17】 請求項1の曲面修正研磨システムによ
り製作した光学部品またはその金型。
17. An optical component manufactured by the curved surface correction polishing system according to claim 1, or a mold thereof.
JP2001067440A 2001-03-09 2001-03-09 Curved surface correction polishing system, NC polishing apparatus, NC program generation method for optical component polishing, NC program generation method for polishing, two-dimensional coordinate point group file generation method for NC program, NC program generation method Expired - Fee Related JP4403662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001067440A JP4403662B2 (en) 2001-03-09 2001-03-09 Curved surface correction polishing system, NC polishing apparatus, NC program generation method for optical component polishing, NC program generation method for polishing, two-dimensional coordinate point group file generation method for NC program, NC program generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001067440A JP4403662B2 (en) 2001-03-09 2001-03-09 Curved surface correction polishing system, NC polishing apparatus, NC program generation method for optical component polishing, NC program generation method for polishing, two-dimensional coordinate point group file generation method for NC program, NC program generation method

Publications (2)

Publication Number Publication Date
JP2002264013A true JP2002264013A (en) 2002-09-18
JP4403662B2 JP4403662B2 (en) 2010-01-27

Family

ID=18925791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001067440A Expired - Fee Related JP4403662B2 (en) 2001-03-09 2001-03-09 Curved surface correction polishing system, NC polishing apparatus, NC program generation method for optical component polishing, NC program generation method for polishing, two-dimensional coordinate point group file generation method for NC program, NC program generation method

Country Status (1)

Country Link
JP (1) JP4403662B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004174665A (en) * 2002-11-27 2004-06-24 Ricoh Co Ltd Curved surface machining method and curved surface machining device
JP2010169395A (en) * 2008-07-08 2010-08-05 Samsung Heavy Ind Co Ltd System and method for evaluating degree of completion of processing of curve-shaped member
CN107081641A (en) * 2017-05-17 2017-08-22 中国工程物理研究院机械制造工艺研究所 A kind of flexible cutter automatic tool setting device and method
CN114670108A (en) * 2022-03-28 2022-06-28 广东名视智能科技有限公司 Control method for polishing curved plate based on magnetic grid ruler and incremental encoder
CN114818175A (en) * 2022-04-13 2022-07-29 南京航空航天大学 Offset track curvature correction method for complex curved surface
CN115008314A (en) * 2022-06-27 2022-09-06 中国科学院沈阳自动化研究所 Robot automatic grinding and polishing machining equipment and machining method for complex curved surface
CN115415886A (en) * 2022-08-30 2022-12-02 天津大学 Inner wall optical surface polishing path calculation method
CN117885028A (en) * 2024-02-01 2024-04-16 成都天兴山田车用部品有限公司 System and method for analyzing automatic grinding effect of ball valve
CN118060981A (en) * 2024-04-17 2024-05-24 商飞智能技术有限公司 Curved surface polishing track planning method and device and electronic equipment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004174665A (en) * 2002-11-27 2004-06-24 Ricoh Co Ltd Curved surface machining method and curved surface machining device
JP2010169395A (en) * 2008-07-08 2010-08-05 Samsung Heavy Ind Co Ltd System and method for evaluating degree of completion of processing of curve-shaped member
CN107081641A (en) * 2017-05-17 2017-08-22 中国工程物理研究院机械制造工艺研究所 A kind of flexible cutter automatic tool setting device and method
CN107081641B (en) * 2017-05-17 2019-04-26 中国工程物理研究院机械制造工艺研究所 A kind of flexibility cutter automatic tool setting device and method
CN114670108A (en) * 2022-03-28 2022-06-28 广东名视智能科技有限公司 Control method for polishing curved plate based on magnetic grid ruler and incremental encoder
CN114818175A (en) * 2022-04-13 2022-07-29 南京航空航天大学 Offset track curvature correction method for complex curved surface
CN115008314A (en) * 2022-06-27 2022-09-06 中国科学院沈阳自动化研究所 Robot automatic grinding and polishing machining equipment and machining method for complex curved surface
CN115415886A (en) * 2022-08-30 2022-12-02 天津大学 Inner wall optical surface polishing path calculation method
CN115415886B (en) * 2022-08-30 2023-09-26 天津大学 Method for calculating polishing path of optical surface of inner wall
CN117885028A (en) * 2024-02-01 2024-04-16 成都天兴山田车用部品有限公司 System and method for analyzing automatic grinding effect of ball valve
CN118060981A (en) * 2024-04-17 2024-05-24 商飞智能技术有限公司 Curved surface polishing track planning method and device and electronic equipment

Also Published As

Publication number Publication date
JP4403662B2 (en) 2010-01-27

Similar Documents

Publication Publication Date Title
US10289096B2 (en) Computer controlled work tool apparatus and method
JP6033668B2 (en) CAM device and product shape processing method
US5953233A (en) Process of generating discrete points defining cutter path, so as to meet selected workpiece machining requirements
JP2020508219A (en) How to machine a workpiece surface with a laser
JPH10143223A (en) Three-dimensional work method, and medium recording control program for three-dimensional work
US5033005A (en) Analytical computer-aided machining system and method
US11745305B2 (en) System and method for correcting machining error during a precision jig grinding process
JP2010003018A (en) Tool path calculator, tool path calculation program, and tool path calculation method
US20230004140A1 (en) Tool path generation method, tool path generation device, and machine tool control device
US6298279B1 (en) CAD/CAM apparatus and machining apparatus for processing position/force information
JP2002264013A (en) Curved surface corrective polishing system, nc polishing device, nc program creating method for polishing optical component, nc program creating method for polishing, creating method for two-dimensional coordinate point group file for nc program, nc program creating method, automatic creating program for nc program, recording medium recorded with nc program for polishing, optical component or mold therefor
JP4346630B2 (en) Machining condition acquisition device and program thereof
JP4529789B2 (en) NC data generation method
CN116958178B (en) Autonomous planning method and system for weld polishing based on laser vision
US7793403B2 (en) Manufacturing method of optical component or molding die therefor
JP2006318268A (en) Machining data production method and cutting method
JP2007286858A (en) Preparation device and preparing method for surface model
JP2001242919A (en) Calculation method for cutter reference surface, computer readable storage medium to store program of cutter reference surface calculation and computer equipment for it
JP2916529B2 (en) Tool control method in NC machine tool
JP2023046731A (en) Processing assist device and processing data correcting method
JPS6362641A (en) Machining information production system freely curved surface considering finished surface roughness
JP2801384B2 (en) High accuracy method for machining offset surface
CN118752091A (en) Polyhedron cutting method, apparatus, equipment and storage medium for machine tool
Kaneko et al. Development of Tool Shape Estimation Method Integrating Multidirectional Optical Measurement
JP2003062751A (en) Waviness removing method, polishing device, workpiece, mold for molding optical element, optical element and printing processor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060327

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4403662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees