JP2002263903A - Method and tool for turning - Google Patents

Method and tool for turning

Info

Publication number
JP2002263903A
JP2002263903A JP2001068038A JP2001068038A JP2002263903A JP 2002263903 A JP2002263903 A JP 2002263903A JP 2001068038 A JP2001068038 A JP 2001068038A JP 2001068038 A JP2001068038 A JP 2001068038A JP 2002263903 A JP2002263903 A JP 2002263903A
Authority
JP
Japan
Prior art keywords
tool
cutting
work
cutting edge
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001068038A
Other languages
Japanese (ja)
Other versions
JP3757807B2 (en
Inventor
Kokichi Yamamoto
浩吉 山本
Kazuhiko Tanaka
一彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001068038A priority Critical patent/JP3757807B2/en
Publication of JP2002263903A publication Critical patent/JP2002263903A/en
Application granted granted Critical
Publication of JP3757807B2 publication Critical patent/JP3757807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Turning (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for turning capable of remarkably increasing the surface roughess accuracy of a cut-finished surface. SOLUTION: A tool 10 is disposed aslant a specified angle βrelative to a work axis Q so that the linear cutting edge 10a of the tool 10 is twisted relative to the work axis Q. With the tool 10 held in the state that a feed for cutting by an amount of a desired depth of cut m given to the tool in an X direction, a feed F is given to the tool 10 in the tangential direction to the outer peripheral surface of the work. Where a cut point crossed with the linear cutting edge 10 on the outer peripheral surface of the work W is m, the cut point m is moved continuously also in the work axial direction Q for feed F to cut the outside diameter of the work W so as to form a cut-finished surface with high surface roughness accuracy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、切削加工後の仕上
げ面粗さの高精度化を目的とした旋削加工方法と旋削加
工用工具に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turning method and a turning tool for the purpose of improving the precision of a finished surface after cutting.

【0002】[0002]

【従来の技術】旋盤による円筒切削の代表的な形態とし
て丸棒外周切削の例を図12に示す。これは、工具(バ
イト)100をワーク101の外周側からその軸心方向
に移動させて所定の切り込み深さaだけ切り込んだの
ち、工具100にワーク101の軸心方向の送りF1と
してそのワーク1回転毎に一定の送り量Pを与えて切削
を行うものである。
2. Description of the Related Art FIG. 12 shows an example of round bar outer peripheral cutting as a typical form of cylindrical cutting by a lathe. This means that after the tool (bite) 100 is moved from the outer peripheral side of the work 101 in the axial direction thereof and cut by a predetermined cutting depth a, the tool 100 is fed to the tool 100 as a feed F1 in the axial direction of the work 101. The cutting is performed by giving a constant feed amount P for each rotation.

【0003】また、図13には溝切削の例を示す。これ
は、突っ切りバイトのごとき工具102にワーク103
の径方向の送りとしてワーク1回転毎に一定の切り込み
量bを順次与えて切削を行うものである(類似技術が例
えば特開2000−61702号公報および特開200
0−84780号公報に記載されている)。
FIG. 13 shows an example of groove cutting. This is because the tool 102, such as a parting tool,
(A similar technique is disclosed, for example, in Japanese Patent Application Laid-Open Nos. 2000-61702 and 200).
0-84780).

【0004】[0004]

【発明が解決しようとする課題】図12の例では、ワー
ク1回転毎に一定の送り量Pだけ工具101をワーク軸
心方向に移動させる方法となっているため、ワーク10
1の切削仕上げ面には工具101の刃先形状が螺旋状に
転写されたツールマークと呼ばれる加工痕104が形成
される。そして、ワーク軸心方向における切削仕上げ面
の面粗さはツールマーク104の山の大きさと工具10
1の切れ刃の面粗さとによってほぼ決定される。ツール
マーク104の山の大きさに比べて切れ刃の面粗さは小
さいため、切削仕上げ面の面粗さを小さくするにはワー
ク1回転毎の工具101の送り量Pを小さくするのが従
来の一般的な手法である。しかしながら、ワーク1回転
毎の工具101の送り量Pを小さくすると単位時間当た
りの切削量すなわち加工能率が低下するという問題点が
あった。
In the example shown in FIG. 12, the tool 101 is moved in the direction of the axis of the work by a constant feed amount P for each rotation of the work.
A machining mark 104 called a tool mark in which the cutting edge shape of the tool 101 is spirally transferred is formed on the first cut surface. The surface roughness of the cut surface in the direction of the workpiece axis is determined by the size of the peak of the tool mark 104 and the tool 10.
It is almost determined by the surface roughness of one cutting edge. Since the surface roughness of the cutting edge is smaller than the size of the ridge of the tool mark 104, it is conventional to reduce the feed amount P of the tool 101 per one rotation of the work to reduce the surface roughness of the cut surface. This is a general method. However, when the feed amount P of the tool 101 per rotation of the work is reduced, there is a problem that the cut amount per unit time, that is, the machining efficiency is reduced.

【0005】また、図13の例では、工具102をワー
ク103の径方向に切り込む加工方法であるため、切削
仕上げ面には上記のようなツールマーク104は発生せ
ずに切れ刃の凹凸形状が転写されるのみであり、したが
ってその面粗さは小さくなる。しかしながら、加工すべ
き溝幅と同じ幅寸法の工具102を用いて切削する必要
があるため、特に溝幅が大きい場合はそれに応じて切削
部の長さが大きくなり、切削抵抗が大きくなる。その結
果、いわゆるびびり現象が発生して面粗さが悪くなるほ
か、溝幅寸法によっては切削できないという問題点があ
った。
In the example shown in FIG. 13, the tool 102 is cut in the radial direction of the work 103. Therefore, the above-described tool mark 104 is not generated on the finished surface and the uneven shape of the cutting edge is obtained. It is only transferred, so its surface roughness is reduced. However, since it is necessary to perform cutting using the tool 102 having the same width as the groove width to be machined, especially when the groove width is large, the length of the cut portion increases accordingly, and the cutting resistance increases. As a result, a so-called chatter phenomenon occurs and the surface roughness deteriorates, and there is a problem that cutting cannot be performed depending on a groove width dimension.

【0006】本発明は以上のような課題に着目してなさ
れたもので、特に切削仕上げ面の面粗さ精度を向上させ
た旋削加工方法と旋削加工用工具を提供しようとするも
のである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a turning method and a turning tool with improved surface roughness accuracy of a cut surface.

【0007】[0007]

【課題を解決するための手段】請求項1に記載の発明
は、ワークの外周を円筒切削する旋削加工方法におい
て、直線状の切れ刃を持つ工具をその切れ刃(より具体
的にはその切れ刃の稜線もしくはエッジ部)がワーク軸
線に対して捻れの関係となるように傾斜させて配置し、
所望の切り込み量となるようにワーク外周側からワーク
軸心方向に工具を移動させた上で、工具にワーク切削仕
上げ面の接線方向の送りを与えて切削加工を施すことを
特徴としている。
According to a first aspect of the present invention, there is provided a turning method for cylindrically cutting an outer periphery of a work, wherein a tool having a linear cutting edge is used as the cutting edge (more specifically, the cutting edge). The edge or edge of the blade) is tilted and arranged so that it has a torsional relationship with the workpiece axis.
After the tool is moved in the axial direction of the work from the outer peripheral side of the work so as to obtain a desired cutting amount, the cutting is performed by giving the tool a feed in the tangential direction of the finished surface of the work.

【0008】したがって、この請求項1に記載の発明で
は、工具にワーク接線方向の送りを与えると、傾斜した
切れ刃とワークとの接点である切削点がワーク軸心方向
に連続的に移動することにより、いわゆる連続切削の形
態で切削が行われることから、切削仕上げ面の面粗さを
低下させるツールマークが発生しないことになる。
Therefore, according to the first aspect of the present invention, when the tool is fed in the tangential direction of the workpiece, the cutting point, which is the contact point between the inclined cutting edge and the workpiece, moves continuously in the axial direction of the workpiece. Thus, since the cutting is performed in a so-called continuous cutting mode, a tool mark that reduces the surface roughness of the cut surface is not generated.

【0009】請求項2に記載の発明は、請求項1に記載
の発明の旋削加工方法を前提とした上で、切削加工に先
立って、予め工具切れ刃に隣接する逃げ面の面粗さを測
定し、その粗さ曲線の谷底から山頂までの高さと山頂同
士のなす間隔およびワークの加工径寸法とに基づいて、
工具の送り付与時に上記粗さ曲線の谷底相当部の通過軌
跡をその谷底近傍の上記山頂相当部がトレースするのに
必要な上記接線方向の移動速度とワーク軸線方向の移動
速度との割合を算出し、この算出した移動速度の割合と
なるように工具の傾斜角度を設定することを特徴として
いる。
According to a second aspect of the present invention, on the premise of the turning method of the first aspect, prior to cutting, the surface roughness of the flank adjacent to the tool cutting edge is determined in advance. Measure, based on the height from the valley bottom to the peak of the roughness curve and the interval between the peaks and the processing diameter of the work,
Calculate the ratio of the tangential movement speed and the work axis direction movement speed required to trace the passing locus of the valley bottom equivalent part of the roughness curve at the time of tool feed application by the ridge top equivalent part near the valley bottom. The tool is characterized in that the inclination angle of the tool is set so as to become the ratio of the calculated moving speed.

【0010】ここでは、実際の切れ刃(主切れ刃)に隣
接する逃げ面の面粗さがワーク側の切削仕上げ面に転写
されることを前提としていることから、上記移動速度の
割合から算出される工具の傾斜角度は、切れ刃に隣接す
る逃げ面の凹部すなわち粗さ曲線の谷部に相当する部分
が転写されたことによってワーク側に形成される凸部
を、同じく切れ刃に隣接する逃げ面のうち上記凹部近傍
の凸部で削り取るようにするために、工具の送り付与時
に上記粗さ曲線の谷底相当部の通過軌跡をその谷底近傍
の上記山頂相当部がトレースできるような角度として求
める。
In this case, since it is assumed that the surface roughness of the flank adjacent to the actual cutting edge (main cutting edge) is transferred to the cut and finished surface on the work side, it is calculated from the above moving speed ratio. The inclination angle of the tool to be formed is such that the concave portion of the flank adjacent to the cutting edge, that is, the convex portion formed on the work side by transferring the portion corresponding to the valley portion of the roughness curve is also adjacent to the cutting edge. In order to scrape off the convex portion near the concave portion of the flank, the passage locus of the valley bottom equivalent portion of the roughness curve at the time of feeding of the tool is set as an angle such that the peak equivalent portion near the valley bottom can be traced. Ask.

【0011】したがって、この請求項2に記載の発明で
は、上記のように工具逃げ面の凹部の転写によってワー
ク側に形成される凸部を上記工具逃げ面の凹部に隣接す
る凸部で削り取ることにより、実際の切削仕上げ面は工
具切れ刃に隣接する逃げ面の面粗さすなわち凹凸形状が
そのまま転写されたものとはならず、必然的にその切削
仕上げ面の面粗さを工具側の逃げ面の面粗さよりも小さ
くすることができることになる。
Therefore, according to the second aspect of the present invention, as described above, the convex portion formed on the work side by the transfer of the concave portion of the tool flank is scraped off by the convex portion adjacent to the concave portion of the tool flank. Due to this, the actual cut surface does not reflect the surface roughness of the flank adjacent to the tool cutting edge, that is, the uneven shape is transferred as it is, and the surface roughness of the cut surface is inevitably reduced to the tool side relief. The surface roughness can be made smaller than the surface roughness.

【0012】請求項3に記載の発明は、工具自体に回転
送りを与えることによりワーク外周の凹状円弧状面を切
削する旋削加工用工具において、上記凹状円弧状面に対
応した曲率をもつ球状体にその中心を通る直線をもって
単一の工具回転中心線を設定するとともに、その球面に
沿って連続した切れ刃を形成し、この切れ刃を上記ワー
ク軸線および工具回転中心線のそれぞれに対して捻れの
関係となるように傾斜させたことを特徴としている。
According to a third aspect of the present invention, there is provided a turning tool for cutting a concave arc-shaped surface on the outer periphery of a workpiece by giving a rotary feed to the tool itself, wherein the spherical body has a curvature corresponding to the concave arc-shaped surface. In addition to setting a single tool rotation center line with a straight line passing through its center, a continuous cutting edge is formed along the spherical surface, and this cutting edge is twisted with respect to each of the work axis and the tool rotation center line. It is characterized by being inclined so as to satisfy the following relationship.

【0013】請求項4に記載の発明は、上記請求項3に
記載の発明の工具を用いた旋削加工方法であることを前
提として、加工対象となるワークの軸線と工具回転中心
線とを平行状態として、工具をその工具回転中心線まわ
りに回転させることにより送りを与えて切削加工を施す
ことを特徴としている。
The invention according to a fourth aspect is based on the premise that the turning method using the tool according to the third aspect is performed, and the axis of the workpiece to be machined and the tool rotation center line are parallel. The state is characterized in that the cutting is performed by giving a feed by rotating the tool around the tool rotation center line.

【0014】したがって、これらの請求項3,4に記載
の発明では、凹状の湾曲面切削に際して、請求項1に記
載の発明と同様にいわゆる連続切削の形態で切削が行わ
れることから、切削仕上げ面の面粗さを低下させるツー
ルマークが発生しないことになる。
Therefore, according to the third and fourth aspects of the present invention, when the concave curved surface is cut, the cutting is performed in a so-called continuous cutting mode in the same manner as the first aspect of the present invention. No tool mark for lowering the surface roughness is generated.

【0015】請求項5に記載の発明は、上記請求項3に
記載の発明の工具を用いた旋削加工方法であることを前
提として、切削加工に先立って、予め工具切れ刃に隣接
する逃げ面の面粗さを測定し、その粗さ曲線の谷底から
山頂までの高さと山頂同士のなす間隔および切れ刃を含
む工具球状部の直径寸法とに基づいて、工具回転時に上
記粗さ曲線の谷底相当部の通過軌跡をその谷底近傍の上
記山頂相当部がトレースするのに必要なワークの軸線に
対する工具回転中心線の傾斜角度を算出し、ワークの軸
線に対する工具回転中心線の角度が上記の算出した傾斜
角度となるように工具を傾斜させ、その状態で工具回転
中心線まわりに工具を回転させることにより送りを与え
て切削加工を施すことを特徴としている。
A fifth aspect of the present invention is based on the premise that the turning method using the tool according to the third aspect of the present invention is performed, and prior to cutting, a flank surface adjacent to a tool cutting edge is preliminarily provided. The surface roughness of the roughness curve is measured, and based on the height from the bottom to the top of the roughness curve, the distance between the tops and the diameter of the tool spherical portion including the cutting edge, the bottom of the roughness curve at the time of tool rotation. The inclination angle of the tool rotation center line with respect to the axis of the work required for tracing the passing locus of the corresponding part by the above-mentioned peak top near the valley bottom is calculated, and the angle of the tool rotation center line with respect to the axis of the work is calculated as described above. The tool is characterized in that the tool is tilted so as to have a predetermined tilt angle, and in that state, the tool is rotated around the tool rotation center line to give a feed to perform cutting.

【0016】したがって、この請求項5に記載の発明で
は、工具回転中心線の傾斜角度は請求項2に記載の発明
と同じ原理のもとに求めるものであるから、実際の切削
仕上げ面は工具側の切れ刃に隣接する逃げ面の面粗さす
なわち凹凸形状がそのまま転写されたものとはならず、
必然的にその切削仕上げ面の面粗さを工具側の逃げ面の
面粗さよりも小さくすることができることになる。
Therefore, according to the fifth aspect of the present invention, since the inclination angle of the tool rotation center line is obtained based on the same principle as the second aspect of the present invention, the actual cut surface is a tool. The surface roughness of the flank adjacent to the cutting edge on the side, that is, the uneven shape is not directly transferred,
Inevitably, the surface roughness of the finished surface can be made smaller than the surface roughness of the flank on the tool side.

【0017】[0017]

【発明の効果】請求項1に記載の発明によれば、直線状
の切れ刃をもつ工具をワーク軸線方向に対して傾斜して
設け、工具にワーク切削仕上げ面の接線方向の送りを与
えて切削するようにしたため、連続した切れ刃による連
続切削の形態となることによってツールマークが発生せ
ずに面粗さを小さくでき、結果として切削仕上げ面の表
面粗さ精度が大幅に向上する。また、加工長さが長い場
合においても、実際の切削点での切削幅が小さいために
びびり現象の発生をを未然に防止できるほか、切削に関
与する切れ刃が順次移動するために、切削に伴って切れ
刃に発生する切削熱が効率よく放熱されて工具寿命も長
くなる利点がある。
According to the first aspect of the present invention, a tool having a straight cutting edge is provided to be inclined with respect to the direction of the workpiece axis, and the tool is fed in the tangential direction of the workpiece cutting surface. Since the cutting is performed, the surface roughness can be reduced without generating a tool mark by forming a continuous cutting form with a continuous cutting edge, and as a result, the surface roughness accuracy of the cut surface is greatly improved. In addition, even when the processing length is long, the cutting width at the actual cutting point is small, so that the occurrence of chatter can be prevented beforehand, and the cutting edges involved in cutting move sequentially, Accordingly, there is an advantage that the cutting heat generated in the cutting edge is efficiently radiated and the tool life is extended.

【0018】請求項2に移載の発明によれば、予め工具
逃げ面の面粗さを測定し、工具の送り付与時に上記粗さ
曲線の谷底相当部の通過軌跡をその谷底近傍の上記山頂
相当部がトレースするのに必要な上記接線方向の移動速
度とワーク軸線方向の移動速度との割合を算出し、この
算出した移動速度の割合となるように工具の傾斜角度を
設定して切削加工を行うようにしたものであるから、請
求項1に記載の発明と同様の効果のほかに、ワーク切削
仕上げ面の面粗さを工具逃げ面の面粗さ以下となるまで
小さくすることができ、切削仕上げ面の表面粗さを一段
と高めることができる利点がある。
According to the second aspect of the present invention, the surface roughness of the flank of the tool is measured in advance, and the locus of the portion corresponding to the valley bottom of the roughness curve when the tool is fed is given to the peak of the valley near the valley bottom. Calculate the ratio between the tangential movement speed and the work axis direction movement speed required for the corresponding part to trace, and set the tool inclination angle to be the calculated movement speed ratio for cutting. Therefore, in addition to the same effect as the invention described in claim 1, it is possible to reduce the surface roughness of the finished surface of the workpiece until the surface roughness becomes equal to or less than the surface roughness of the tool flank. This has the advantage that the surface roughness of the finished surface can be further increased.

【0019】請求項3,4に記載の発明によれば、ワー
ク側の凹状円弧状面に対応した連続した切れ刃を有する
工具を用いて切削する方法としたため、請求項1に記載
の発明と同様にツールマークが発生せずに面粗さを小さ
くできるとともに、例えば従来のNC制御による二軸同
時加工での象限移動時に発生するバックラッシュならび
にそれに伴う加工精度の低下を防止することができる。
According to the third and fourth aspects of the present invention, the cutting method is performed using a tool having a continuous cutting edge corresponding to the concave arc-shaped surface on the workpiece side. Similarly, it is possible to reduce the surface roughness without generating a tool mark, and to prevent backlash which occurs during quadrant movement in, for example, simultaneous two-axis machining by conventional NC control, and a decrease in machining accuracy associated therewith.

【0020】請求項5に記載の発明によれば、請求項3
に記載の発明を前提として、請求項2に記載の発明と同
じ原理のもとに、予め工具切れ刃に隣接する逃げ面の面
粗さを測定し、工具回転時に上記粗さ曲線の谷底相当部
の通過軌跡をその谷底近傍の上記山頂相当部がトレース
するのに必要なワークの軸線に対する工具回転中心線の
傾斜角度を算出し、ワークの軸線に対する工具回転中心
線の角度が上記の算出した傾斜角度となるように工具を
傾斜させ、その状態で工具回転中心線まわりに工具を回
転させることにより送りを与えて切削加工を施すように
しているので、請求項3に記載の発明と同様の効果に加
えて、ワークの切削仕上げ面の面粗さを工具逃げ面の面
粗さ以下に小さくすることができ、切削仕上げ面の表面
粗さを一段と高めることができる利点がある。
According to the invention set forth in claim 5, according to claim 3,
Based on the same principle as the invention described in claim 2, the surface roughness of the flank adjacent to the tool cutting edge is measured in advance, and the root of the roughness curve corresponds to the roughness curve when the tool rotates. The inclination angle of the tool rotation center line with respect to the workpiece axis required for tracing the passing locus of the part by the above-mentioned peak top near the valley bottom was calculated, and the angle of the tool rotation center line with respect to the workpiece axis was calculated as described above. Since the tool is tilted so as to have an inclination angle, and the tool is rotated about the tool rotation center line in this state to feed and perform cutting, the same as the invention according to claim 3 is performed. In addition to the effect, there is an advantage that the surface roughness of the cut finished surface of the work can be reduced to be equal to or less than the surface roughness of the tool flank, and the surface roughness of the cut finished surface can be further increased.

【0021】[0021]

【発明の実施の形態】図1〜5は本発明の好ましい実施
の形態を示す図で、特に図1は本発明の旋削加工に用い
られる工作機械の正面図を、図2は同じくその平面図
を、図3は図1,2の要部拡大図をそれぞれ示してい
る。なお、この実施の形態は請求項1に記載の発明に対
応している。
1 to 5 show a preferred embodiment of the present invention. FIG. 1 is a front view of a machine tool used for turning according to the present invention, and FIG. 2 is a plan view of the same. FIG. 3 is an enlarged view of a main part of FIGS. This embodiment corresponds to the first aspect of the present invention.

【0022】図1,2に示すように、工作機械は大きく
分けてベッド1と、このベッド1上に設けられたヘッド
ストック2およびバーチカルヘッド3とから構成され
る。ヘッドストック2は、周知のようにモータ4(図3
参照)によって回転駆動される主軸5の先端に例えば丸
棒状のワークWを把持するためのチャック6を備える。
バーチカルユニット3は図示外のモータを主体とする送
り装置7(図3参照)によってベッド1上を水平方向
(Y方向,接線方向)に進退駆動されるコラム8に工具
主軸9を鉛直姿勢で支持させたもので、工具主軸9はそ
の先端に直線状の切れ刃10aをもつ工具10が装着さ
れるとともに、ワーク軸線Qに対して上記工具10の切
れ刃10aの傾斜角度を任意に変化させることができる
ようにモータ11にて割り出し回転されるようになって
いる。
As shown in FIGS. 1 and 2, the machine tool is roughly divided into a bed 1 and a head stock 2 and a vertical head 3 provided on the bed 1. As is well known, the head stock 2 is provided with a motor 4 (FIG. 3).
A chuck 6 for gripping, for example, a round bar-shaped workpiece W is provided at the tip of the main shaft 5 that is driven to rotate by the rotation of the main shaft 5.
The vertical unit 3 supports a tool spindle 9 in a vertical posture on a column 8 driven in a horizontal direction (Y direction, tangential direction) on the bed 1 by a feeder 7 (see FIG. 3) mainly composed of a motor (not shown). The tool spindle 9 is provided with a tool 10 having a straight cutting edge 10a at its tip, and the inclination angle of the cutting edge 10a of the tool 10 with respect to the workpiece axis Q is arbitrarily changed. The rotation is indexed by the motor 11 so that the rotation can be performed.

【0023】なお、モータ11には位置検出器としてロ
ータリーエンコーダ12が付設されている。また、ワー
ク回転駆動用のモータ4およびバーチカルユニット3の
送り装置7は図3に示すように制御装置13によって制
御される。
The motor 11 is provided with a rotary encoder 12 as a position detector. The motor 4 for driving the rotation of the workpiece and the feeder 7 of the vertical unit 3 are controlled by a controller 13 as shown in FIG.

【0024】図3の(A)は図1の要部拡大平面図であ
り、同図(B)は同図(A)をY方向から見た図を示し
ている。同図に示すようにワークWはチャック6に把持
されていて、このチャック6とともに矢印c方向に回転
駆動される。工具10は、ここでは直線状の切れ刃10
aを持つ単純な矩形状のもとして例示してあり、その直
線状の切れ刃10aすなわち切れ刃10aの稜線もしく
はそのエッジ部がワーク軸線Qに対していわゆる捻れの
関係となるように該ワーク軸線Qに対して角度βだけ傾
斜して配置される。
FIG. 3A is an enlarged plan view of a main part of FIG. 1, and FIG. 3B is a view of FIG. 3A viewed from the Y direction. As shown in the figure, the work W is held by the chuck 6 and is driven to rotate together with the chuck 6 in the direction of arrow c. The tool 10 has a straight cutting edge 10 here.
The work axis is illustrated as a simple rectangular one having a, and the straight cutting edge 10a, that is, the edge of the cutting edge 10a or the edge thereof has a so-called torsional relationship with the work axis Q. It is arranged at an angle β to Q.

【0025】そして、X方向に所望する切り込み量だけ
切り込み送りを与えた状態に工具10を保持した上で、
工具10にY方向の送りすなわちワーク外周面の接線方
向の送りFを付与する。ここで、ワークWの外周面上で
直線状の切れ刃10aが交差する点を切削点mとする
と、上記の送りFのために切削点mがワーク軸線方向Q
にも連続的に移動して、ワークWの外径が切削されて切
削仕上げ面Sが形成される。
Then, after holding the tool 10 in a state in which the desired amount of cutting has been applied in the X direction,
A feed in the Y direction, that is, a feed F in the tangential direction of the outer peripheral surface of the work is applied to the tool 10. Here, assuming that a point at which the linear cutting edge 10a intersects on the outer peripheral surface of the work W is a cutting point m, the cutting point m is shifted in the work axis direction Q due to the feed F described above.
And the outer diameter of the work W is cut to form the cut finish surface S.

【0026】このように直線状の切れ刃10aを持つ工
具10をワーク軸線Qに対して捻れの関係となるように
角度βだけ傾斜して配置し、その工具10をワーク外周
面の接線方向に移動させて切削する方法とすることによ
り、直線状の切れ刃10aでありながらもあたかもシン
グルポイント工具による連続切削のような形態となり、
従来例のようなツールマークが発生が皆無となってその
切削仕上げ面Sの面粗さを小さくできるようになる。ま
た切削幅が広い場合においてもびびり現象が発生するこ
となく滑らかに加工することができる。その上、切削に
直接関与する切れ刃10aが順次移動するために、切削
加工に伴ってその切れ刃10aに発生する切削熱が効率
よく放熱されることから、工具寿命も長いものとなる。
As described above, the tool 10 having the straight cutting edge 10a is arranged at an angle β so as to be twisted with respect to the workpiece axis Q, and the tool 10 is placed in the tangential direction of the outer peripheral surface of the workpiece. By adopting the method of moving and cutting, it becomes a form like continuous cutting by a single-point tool while being a straight cutting edge 10a,
There is no tool mark as in the conventional example, and the surface roughness of the cut surface S can be reduced. Further, even when the cutting width is large, it is possible to perform the machining smoothly without generating the chatter phenomenon. In addition, since the cutting edge 10a directly involved in the cutting moves sequentially, the cutting heat generated on the cutting edge 10a due to the cutting is efficiently radiated, so that the tool life is extended.

【0027】ここで、上記のような手順での切削加工に
先立って、工具10の切れ刃10aに隣接する逃げ面の
面粗さを予め測定し、その面粗さの程度に応じて上記工
具10の傾斜角度βを設定する。
Here, prior to the cutting in the above procedure, the surface roughness of the flank adjacent to the cutting edge 10a of the tool 10 is measured in advance, and the surface roughness of the tool is determined according to the degree of the surface roughness. The inclination angle β of 10 is set.

【0028】より詳しくは、図4に示すように、公知の
粗さ測定機を用いて工具10の切れ刃10aに隣接する
逃げ面の面粗さを測定して記録し、それを粗さ曲線とし
てプリントアウトする(ステップS1,S2)。図5は
上記逃げ面の面粗さを測定して得られた粗さ曲線の一例
を示す。そして、図5の粗さ曲線について、その谷底か
ら山頂までの高さHと山頂同士のなす間隔Lを求める。
求め方としては、例えば高さが大きい順に3番目までの
谷底と山頂の組み合わせを選抜し、それらの高さH1,
H2,H3と山頂同士のなす間隔L1,L2,L3とを
求めた上で、それらの平均値としてH=(H1+H2+
H3)/3およびL=(L1+L2+L3)/3をそれ
ぞれ求める(ステップS3)。
More specifically, as shown in FIG. 4, the surface roughness of the flank adjacent to the cutting edge 10a of the tool 10 is measured and recorded by using a known roughness measuring machine, and the surface roughness is measured and recorded. And print out (steps S1 and S2). FIG. 5 shows an example of a roughness curve obtained by measuring the surface roughness of the flank. Then, for the roughness curve of FIG. 5, the height H from the bottom of the valley to the peak and the interval L between the peaks are obtained.
As a method of obtaining, for example, combinations of valley bottoms and peaks up to the third in descending order of height are selected, and their heights H1,
After obtaining H2, H3 and intervals L1, L2, L3 between the peaks, H = (H1 + H2 +
H3) / 3 and L = (L1 + L2 + L3) / 3 are obtained (step S3).

【0029】次に、加工すべきワークWの指示図面から
切削仕上げ面Sの加工寸法を読み取り、上記H寸法とL
寸法およびワークWの加工径寸法の半径rとに基づい
て、図5のステップS5のように切削仕上げ面Sの接線
方向すなわちY方向における工具10の移動速度Vyと
ワーク軸線方向QすなわちZ方向における工具10の移
動速度Vzとの割合Vy:VzをVy:Vz=B:Lと
して求める。ただし、Bは次の(1)式によって求めら
れる。そして、Vy:Vz=B:Lの関係が成り立つよ
うにワーク軸線Qに対する工具10の傾斜角度βを設定
する(ステップS6)。
Next, the processing dimensions of the cut surface S are read from the instruction drawing of the work W to be processed, and the H dimensions and L dimensions are read.
Based on the dimensions and the radius r of the processing diameter of the workpiece W, the moving speed Vy of the tool 10 in the tangential direction of the cut surface S, ie, the Y direction, and the workpiece axial direction Q, ie, the Z direction, as in step S5 of FIG. The ratio Vy: Vz to the moving speed Vz of the tool 10 is obtained as Vy: Vz = B: L. Here, B is obtained by the following equation (1). Then, the inclination angle β of the tool 10 with respect to the work axis Q is set such that the relationship of Vy: Vz = B: L is satisfied (step S6).

【0030】[0030]

【数1】 (Equation 1)

【0031】上記計算式は、実際の切削加工を司る工具
切れ刃10aに隣接する工具逃げ面の面粗さがワーク側
の切削仕上げ面Sに転写されることを前提としており、
工具切れ刃10aに隣接する逃げ面の凹部が転写された
ことによるワークの切削仕上げ面S側の凸部を、同じく
上記逃げ面の凹部に隣接する凸部で切削するように、す
なわち工具10の送り付与時に上記粗さ曲線の谷底相当
部の通過軌跡をその谷底近傍の上記山頂相当部がトレー
スするように、上記接線方向の移動速度Vyとワーク軸
線方向Qの移動速度Vzとの割合Vy:VzがB:Lと
同じになるようにBの値を算出し、それに応じてワーク
軸線Qに対する工具10の傾斜角度βを設定する。
The above calculation formula is based on the premise that the surface roughness of the tool flank adjacent to the tool cutting edge 10a which controls the actual cutting is transferred to the cut surface S on the work side.
The convex portion on the cut surface S side of the work due to the transfer of the concave portion of the flank adjacent to the tool cutting edge 10a is also cut by the convex portion adjacent to the concave portion of the flank, that is, the tool 10 The ratio Vy of the moving speed Vy in the tangential direction and the moving speed Vz in the workpiece axis direction Q such that the trajectory of the valley bottom corresponding to the roughness curve traces the passing locus at the top of the valley bottom at the time of feeding. The value of B is calculated such that Vz becomes the same as B: L, and the inclination angle β of the tool 10 with respect to the workpiece axis Q is set accordingly.

【0032】これにより、図3の形態で実際の加工を行
ったときにはワークWの切削仕上げ面Sの面粗さを工具
逃げ面の面粗さより確実に小さくすることができ、切削
仕上げ面Sの表面粗さ精度が飛躍的に向上することにな
る。なお、この手順は請求項2に記載の発明に対応して
いる。
Accordingly, when the actual machining is performed in the form shown in FIG. 3, the surface roughness of the cut surface S of the work W can be surely made smaller than the surface roughness of the flank of the tool. The surface roughness accuracy will be greatly improved. This procedure corresponds to the invention described in claim 2.

【0033】図6,7は本発明の第2の実施の形態を示
し、図6は工作機械全体の正面図を、図7は図6の要部
拡大図をそれぞれ示し、特に図7の(A)は図6の要部
拡大平面図であり、同図(B)は同図(A)をY方向か
ら見たものである。なお、本実施の形態は請求項3,4
に記載の発明に対応している。
FIGS. 6 and 7 show a second embodiment of the present invention. FIG. 6 is a front view of the entire machine tool, and FIG. 7 is an enlarged view of a main part of FIG. FIG. 6A is an enlarged plan view of a main part of FIG. 6, and FIG. 6B is a view of FIG. 6A viewed from the Y direction. This embodiment is described in claims 3 and 4.
Corresponds to the invention described in (1).

【0034】図6に示すように、工作機械の基本構成は
図1に示したものと共通であって、工具主軸9の先端の
工具のみを持ち替えたものである。すなわち、略球状を
なす回転式の工具20と、この工具20を後述する工具
回転中心線Rまわりに回転駆動するためのモータ13と
をホルダ14に支持させて工具ユニット15とし、これ
を上記工具主軸9の先端に着脱可能に装着したものであ
る。そして、ワーク軸線Qと工具回転中心線Rとが互い
に平行となるように工具主軸9の回転角位置がモータ1
1(図1参照)によって割り出されている。
As shown in FIG. 6, the basic configuration of the machine tool is the same as that shown in FIG. 1, except that only the tool at the tip of the tool spindle 9 is changed. That is, a rotary unit 20 having a substantially spherical shape and a motor 13 for rotating the tool 20 around a tool rotation center line R described later are supported by a holder 14 to form a tool unit 15. It is detachably attached to the tip of the main shaft 9. The rotation angle position of the tool spindle 9 is adjusted so that the workpiece axis Q and the tool rotation center line R are parallel to each other.
1 (see FIG. 1).

【0035】図7に示すように、凹状円弧状面Kを有す
るワークすなわち略鼓形状のワークW1は、図1と同様
の工作機械のチャック6によって把持されて矢印方向c
に回転駆動される。工具20は、上記ワークW1側の凹
状円弧状面Kに対応する曲率をもった球状体16を主体
として形成されていて、ワーク軸線Qと平行となるよう
な工具回転中心線Rとして軸部17が形成されていると
ともに、切れ刃20aは球状体16の球面に沿って連続
したものとしてワーク軸線Qおよび工具回転中心線Rの
双方に対して捻れの関係となるようにそれぞれ傾斜して
形成されている。
As shown in FIG. 7, a workpiece having a concave arc-shaped surface K, that is, a substantially drum-shaped workpiece W1 is gripped by a chuck 6 of a machine tool similar to that shown in FIG.
Is driven to rotate. The tool 20 is formed mainly of a spherical body 16 having a curvature corresponding to the concave arc-shaped surface K on the work W1 side, and has a shaft portion 17 as a tool rotation center line R parallel to the work axis Q. Are formed, and the cutting edge 20a is formed to be continuous along the spherical surface of the spherical body 16 and to be inclined so as to be twisted with respect to both the workpiece axis Q and the tool rotation center line R. ing.

【0036】このような切れ刃20aを有する工具20
の軸部17がワーク軸線Qに対して平行となり、且つ所
望の切り込み量となるよう配置する。この状態で工具2
0をその軸部17を回転中心線Rとして回転させること
により、ワークWの凹状円弧状面Kが切削仕上げ面とし
て連続的に切削される。これにより、図1の場合と同様
に凹状円弧状をなす切削仕上げ面Kにはツールマークが
発生することなくその面粗さを小さくすることができ
る。特に従来のようにNC制御のX−Z二軸同時制御で
加工を行う場合と比べて、象限移動時に発生するバック
ラッシュを原因とする加工精度の低下を防止することが
できる。
The tool 20 having such a cutting edge 20a
Are arranged so as to be parallel to the workpiece axis Q and to have a desired cutting amount. In this state, tool 2
By rotating the shaft 0 as a rotation center line R, the concave arc-shaped surface K of the work W is continuously cut as a cut finish surface. This makes it possible to reduce the surface roughness of the cut finished surface K having a concave arc shape as in the case of FIG. 1 without generating a tool mark. In particular, it is possible to prevent a decrease in machining accuracy due to backlash generated during quadrant movement, as compared with a case where machining is performed by simultaneous X-Z two-axis control of NC control as in the related art.

【0037】図8〜11は本発明の第3の実施の形態を
示し、図8は工作機械全体の正面図を、図9は図8の要
部拡大図をそれぞれ示し、特に図9の(A)は図8の要
部拡大平面図であり、また同図(B)は同図(A)をY
方向から見たものである。なお、本実施の形態は請求項
5に記載の発明に対応している。
8 to 11 show a third embodiment of the present invention. FIG. 8 is a front view of the entire machine tool, FIG. 9 is an enlarged view of a main part of FIG. 8, and in particular, FIG. 8A is an enlarged plan view of a main part of FIG. 8, and FIG. 8B is a plan view of FIG.
Seen from the direction. This embodiment corresponds to the invention described in claim 5.

【0038】図8に示すように、工作機械およびワーク
W3のほか、球状体16の外周に切れ刃30aを有する
工具30の基本構成は図6,7に示したものと共通であ
って、後述するように工具回転中心線Rがワーク軸線Q
に対して捻れの関係となるように所定角度θだけ傾斜す
るように工具主軸9の回転角位置がモータ11(図1参
照)によって割り出されている。
As shown in FIG. 8, in addition to the machine tool and the work W3, the basic configuration of a tool 30 having a cutting edge 30a on the outer periphery of the spherical body 16 is common to that shown in FIGS. Tool rotation center line R
The rotation angle position of the tool spindle 9 is determined by the motor 11 (see FIG. 1) so as to incline by a predetermined angle θ so as to have a torsional relationship with respect to.

【0039】図9に示すように、工作機械のチャック6
に把持されているワークW2の軸線Qに対して、工具3
0の切れ刃30aがワーク軸線Qおよび工具回転中心線
Rの双方に対してそれぞれ捻れの関係をもって傾斜する
ようにワーク軸線Qに対する工具傾斜角度θが定められ
る。
As shown in FIG. 9, the chuck 6 of the machine tool
With respect to the axis Q of the workpiece W2
The tool inclination angle θ with respect to the work axis Q is determined so that the zero cutting edge 30a is inclined with respect to both the work axis Q and the tool rotation center line R in a torsional relationship.

【0040】このワークの軸線Qに対する工具回転中心
線Rの傾斜角度θを求めるには、図10に示すように、
最初に図4と同じ手順で公知の粗さ測定機を用いて工具
30の切れ刃30aに隣接する逃げ面の面粗さを測定し
て記録し、それを粗さ曲線としてプリントアウトする
(ステップS1,S2)。図11は上記逃げ面の面粗さ
を測定して得られた粗さ曲線の一例を示す。そして、図
11の粗さ曲線について、その谷底から山頂までの高さ
Hと山頂同士のなす間隔Lを求める。求め方としては、
上記と同様に例えば高さが大きい順に3番目までの谷底
と山頂の組み合わせを選抜し、それらの高さH1,H
2,H3と山頂同士のなす間隔L1,L2,L3とを求
めた上で、それらの平均値としてH=(H1+H2+H
3)/3およびL=(L1+L2+L3)/3をそれぞ
れ求める(ステップS3)。
In order to obtain the inclination angle θ of the tool rotation center line R with respect to the axis Q of the work, as shown in FIG.
First, the surface roughness of the flank adjacent to the cutting edge 30a of the tool 30 is measured and recorded using a known roughness measuring device in the same procedure as in FIG. 4, and is printed out as a roughness curve (step). S1, S2). FIG. 11 shows an example of a roughness curve obtained by measuring the surface roughness of the flank. Then, for the roughness curve of FIG. 11, the height H from the bottom of the valley to the peak and the interval L between the peaks are obtained. As for how to ask,
Similarly to the above, for example, combinations of valley bottoms and peaks up to the third in descending order of height are selected, and their heights H1, H
, H3 and the distances L1, L2, L3 between the peaks are obtained, and as an average thereof, H = (H1 + H2 + H
3) / 3 and L = (L1 + L2 + L3) / 3 are obtained (step S3).

【0041】次に、工具30の指示図面等から切れ刃3
0aを含む工具30の球状体16の直径寸法を読み取
り、上記H寸法とL寸法および工具30の直径寸法Mと
に基づいて、図10のステップS4,S5のように
(2)式をもってワーク軸線Qに対する工具回転中心線
Rの傾斜角度θを算出する。
Next, the cutting edge 3 is determined from the instruction drawing of the tool 30 and the like.
0a, the diameter of the spherical body 16 of the tool 30 is read, and based on the H and L dimensions and the diameter M of the tool 30, the work axis is calculated using the equation (2) as in steps S4 and S5 in FIG. The inclination angle θ of the tool rotation center line R with respect to Q is calculated.

【0042】[0042]

【数2】 (Equation 2)

【0043】上記計算式は、先に述べた(1)式と同様
に実際の切削加工を司る工具切れ刃30aに隣接する工
具逃げ面の面粗さがワークW側の切削仕上げ面Kに転写
されることを前提としており、工具切れ刃30aに隣接
する逃げ面の凹部が転写されたことによるワーク切削仕
上げ面K側の凸部を、同じく上記逃げ面の凹部に隣接す
る凸部で切削するように、すなわち工具30の送り付与
時に上記粗さ曲線の谷底相当部の通過軌跡をその谷底近
傍の上記山頂相当部がトレースするように、ワーク軸線
Qに対する工具30の傾斜角度θを設定する。
In the above equation, the surface roughness of the tool flank adjacent to the tool cutting edge 30a which controls the actual cutting is transferred to the cut surface K on the workpiece W side, similarly to the above-described equation (1). It is assumed that the convex portion on the workpiece cutting surface K side due to the transfer of the concave portion of the flank adjacent to the tool cutting edge 30a is also cut by the convex portion adjacent to the concave portion of the flank. In other words, the inclination angle θ of the tool 30 with respect to the workpiece axis Q is set such that, when the tool 30 is fed, the trajectory of the roughness curve at the valley bottom is traced by the ridge top near the valley bottom.

【0044】そして、この値をモータ11の制御系に入
力して、図9の(A)に示すように工具回転中心線Rを
ワーク軸線Qに対しθだけ傾斜して配置した上で、モー
タ13により工具30をその工具回転中心線Rまわりに
回転させて送りを与えることで、ワークW2の凹状円弧
状面Kが切削仕上げ面として連続的に切削される。
Then, this value is input to the control system of the motor 11, and as shown in FIG. By rotating the tool 30 around the tool rotation center line R by 13 and giving the feed, the concave arc-shaped surface K of the work W2 is continuously cut as a cut finish surface.

【0045】このように、ワーク軸線Qに対して工具回
転中心線Rを角度θだけ傾斜して設置することにより、
図7の場合と比べてワークW2の切削仕上げ面Kの面粗
さを工具逃げ面の面粗さより確実に小さくすることがで
き、切削仕上げ面Kの表面粗さ精度が飛躍的に向上す
る。
As described above, by installing the tool rotation center line R at an angle θ with respect to the workpiece axis Q,
As compared with the case of FIG. 7, the surface roughness of the cut finished surface K of the work W2 can be surely made smaller than the surface roughness of the tool flank, and the surface roughness accuracy of the cut finished surface K is dramatically improved.

【0046】なお、前述の実施の形態では工具に接線方
向(Y方向)の送りを付与していたが、これに限らずX
方向(上下方向,切り込み方向)に工具を移動させる送
り装置を設け、当該二つの送り装置により図4のフロー
チャートのステップS5で求めるY方向の工具の移動速
度VyおよびX方向の移動速度Vxに基づき工具を制御
することができるのはもちろんである。
In the above embodiment, the tool is fed in the tangential direction (Y direction). However, the present invention is not limited to this.
A feeder for moving the tool in the direction (vertical direction, cutting direction) is provided, and the two feeders are used based on the moving speed Vy in the Y direction and the moving speed Vx in the X direction obtained in step S5 of the flowchart of FIG. Of course, the tools can be controlled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を示す工作機械の正
面図。
FIG. 1 is a front view of a machine tool according to a first embodiment of the present invention.

【図2】図1の平面図。FIG. 2 is a plan view of FIG. 1;

【図3】第1の実施の態の詳細を示す図で、(A)は図
1の要部拡大平面図、(B)は同図(A)をY方向から
見た図。
3A and 3B are diagrams showing details of the first embodiment, wherein FIG. 3A is an enlarged plan view of a main part of FIG. 1, and FIG. 3B is a diagram of FIG.

【図4】図3での処理手順を示すフローチャート。FIG. 4 is a flowchart showing a processing procedure in FIG. 3;

【図5】図3の工具切れ刃に隣接する逃げ面の粗さ曲線
図。
FIG. 5 is a roughness curve diagram of a flank adjacent to the tool cutting edge of FIG. 3;

【図6】本発明の第2の実施の形態を示す工作機械の正
面図。
FIG. 6 is a front view of a machine tool according to a second embodiment of the present invention.

【図7】第2の実施の態の詳細を示す図で、(A)は図
6の要部拡大平面図、(B)は同図(A)をY方向から
見た図。
7A and 7B are diagrams showing details of the second embodiment, in which FIG. 7A is an enlarged plan view of a main part of FIG. 6, and FIG. 7B is a diagram of FIG.

【図8】本発明の第3の実施の形態を示す工作機械の正
面図。
FIG. 8 is a front view of a machine tool according to a third embodiment of the present invention.

【図9】第3の実施の態の詳細を示す図で、(A)は図
8の要部拡大平面図、(B)は同図(A)をY方向から
見た図。
9A and 9B are views showing details of the third embodiment, wherein FIG. 9A is an enlarged plan view of a main part of FIG. 8, and FIG. 9B is a view of FIG.

【図10】図9での処理手順を示すフローチャート。FIG. 10 is a flowchart showing a processing procedure in FIG. 9;

【図11】図9の工具切れ刃に隣接する逃げ面の粗さ曲
線図。
FIG. 11 is a roughness curve diagram of a flank adjacent to the tool cutting edge of FIG. 9;

【図12】従来の一般的な旋削加工方法を示す要部拡大
説明図。
FIG. 12 is an enlarged explanatory view of a main part showing a conventional general turning method.

【図13】従来の他の旋削加工方法を示す要部拡大説明
図。
FIG. 13 is an enlarged explanatory view of a main part showing another conventional turning method.

【符号の説明】[Explanation of symbols]

6…チャック 9…工具主軸 10…工具 10a…切れ刃 16…球状体 20…工具 20a…切れ刃 30…工具 30a…切れ刃 K…凹状円弧状面 Q…ワーク軸線 R…工具回転中心線 S…切削仕上げ面 W…ワーク W1…ワーク W2…ワーク 6 Chuck 9 Tool spindle 10 Tool 10a Cutting edge 16 Spherical body 20 Tool 20a Cutting edge 30 Tool 30a Cutting edge K ... Concave arcuate surface Q ... Work axis R ... Tool rotation center line S ... Cutting surface W: Work W1: Work W2: Work

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ワークの外周を円筒切削する旋削加工方
法において、 直線状の切れ刃を持つ工具をその切れ刃がワーク軸線に
対して捻れの関係となるように傾斜させて配置し、 所望の切り込み量となるようにワーク外周側からワーク
軸線方向に工具を移動させた上で、工具にワーク切削仕
上げ面の接線方向の送りを与えて切削加工を施すことを
特徴とする旋削加工方法。
In a turning method for cylindrically cutting the outer periphery of a work, a tool having a straight cutting edge is arranged so as to be inclined so that the cutting edge is twisted with respect to the work axis. A turning method comprising: moving a tool from an outer peripheral side of a work in an axial direction of a work so as to obtain a cutting amount; and performing a cutting process by feeding the tool in a tangential direction of a finished surface of the work.
【請求項2】 請求項1に記載の旋削加工方法におい
て、 切削加工に先立って、予め工具切れ刃に隣接する逃げ面
の面粗さを測定し、 その粗さ曲線の谷底から山頂までの高さと山頂同士のな
す間隔およびワークの加工径寸法とに基づいて、工具の
送り付与時に上記粗さ曲線の谷底相当部の通過軌跡をそ
の谷底近傍の上記山頂相当部がトレースするのに必要な
上記接線方向の移動速度とワーク軸線方向の移動速度と
の割合を算出し、 この算出した移動速度の割合となるように工具の傾斜角
度を設定することを特徴とする旋削加工方法。
2. The turning method according to claim 1, wherein prior to cutting, the surface roughness of the flank adjacent to the tool cutting edge is measured in advance, and the height of the roughness curve from the valley bottom to the peak is measured. And the distance between the peaks and the machining diameter of the workpiece, based on the machining path size of the workpiece, the above-mentioned trajectory necessary to trace the passage locus of the valley bottom equivalent portion of the roughness curve at the time of tool feed application near the valley bottom. A turning method comprising calculating a ratio between a moving speed in a tangential direction and a moving speed in a work axis direction, and setting a tilt angle of a tool so as to be a ratio of the calculated moving speed.
【請求項3】 工具自体に回転送りを与えることにより
ワーク外周の凹状円弧状面を切削する旋削加工用工具に
おいて、 上記凹状円弧状面に対応した曲率をもつ球状体にその中
心を通る直線をもって単一の工具回転中心線を設定する
とともに、その球面に沿って連続した切れ刃を形成し、 この切れ刃を上記ワーク軸線および工具回転中心線のそ
れぞれに対して捻れの関係となるように傾斜させたこと
を特徴とする旋削加工用工具。
3. A turning tool for cutting a concave arc-shaped surface on the outer periphery of a workpiece by giving a rotary feed to the tool itself, wherein a spherical body having a curvature corresponding to the concave arc-shaped surface has a straight line passing through the center thereof. A single tool rotation center line is set, and a continuous cutting edge is formed along the spherical surface, and the cutting edge is inclined so as to have a torsion relationship with respect to each of the work axis and the tool rotation center line. A turning tool characterized by having been turned on.
【請求項4】 請求項3に記載の工具を用いた旋削加工
方法において、 加工対象となるワークの軸線と工具回転中心線とを平行
状態として、工具をその工具回転中心線まわりに回転さ
せることにより送りを与えて切削加工を施すことを特徴
とする旋削加工方法。
4. A turning method using a tool according to claim 3, wherein the axis of the workpiece to be machined and the tool rotation center line are in a parallel state, and the tool is rotated around the tool rotation center line. A turning method characterized in that cutting is performed by giving a feed according to.
【請求項5】 請求項3に記載の工具を用いた旋削加工
方法において、 切削加工に先立って、予め工具切れ刃に隣接する逃げ面
の面粗さを測定し、 その粗さ曲線の谷底から山頂までの高さと山頂同士のな
す間隔および切れ刃を含む工具球状部の直径寸法とに基
づいて、工具回転時に上記粗さ曲線の谷底相当部の通過
軌跡をその谷底近傍の上記山頂相当部がトレースするの
に必要なワークの軸線に対する工具回転中心線の傾斜角
度を算出し、 ワークの軸線に対する工具回転中心線の角度が上記の算
出した傾斜角度となるように工具を傾斜させ、 その状態で工具回転中心線まわりに工具を回転させるこ
とにより送りを与えて切削加工を施すことを特徴とする
旋削加工方法。
5. A turning method using a tool according to claim 3, wherein prior to the cutting, the surface roughness of the flank adjacent to the tool cutting edge is measured in advance, and from the valley bottom of the roughness curve. Based on the height to the peak, the interval between the peaks, and the diameter of the tool spherical portion including the cutting edge, the path of passage of the valley bottom equivalent part of the roughness curve at the time of tool rotation is determined by the peak summation part near the valley bottom. Calculate the inclination angle of the tool rotation centerline with respect to the workpiece axis required for tracing, and incline the tool so that the angle of the tool rotation centerline with respect to the workpiece axis is the calculated inclination angle. A turning method characterized in that a feed is given by rotating a tool around a tool rotation center line to perform cutting.
JP2001068038A 2001-03-12 2001-03-12 Turning method and turning tools Expired - Fee Related JP3757807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001068038A JP3757807B2 (en) 2001-03-12 2001-03-12 Turning method and turning tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001068038A JP3757807B2 (en) 2001-03-12 2001-03-12 Turning method and turning tools

Publications (2)

Publication Number Publication Date
JP2002263903A true JP2002263903A (en) 2002-09-17
JP3757807B2 JP3757807B2 (en) 2006-03-22

Family

ID=18926286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001068038A Expired - Fee Related JP3757807B2 (en) 2001-03-12 2001-03-12 Turning method and turning tools

Country Status (1)

Country Link
JP (1) JP3757807B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349058A (en) * 2005-06-16 2006-12-28 Ntn Corp Screw groove machining method for ball screw
JP2016134078A (en) * 2015-01-21 2016-07-25 ファナック株式会社 Numerical control device for control over machine tool based on skiving processing command
WO2016152396A1 (en) * 2015-03-25 2016-09-29 アイシン機工株式会社 Cutting tool, skiving device, and method
CN114619056A (en) * 2020-12-10 2022-06-14 苏州领裕电子科技有限公司 Cutting method for removing male and female surfaces by using disc cutter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132252A1 (en) 2010-04-19 2011-10-27 ヤマザキマザック株式会社 Cutting method and cutting device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349058A (en) * 2005-06-16 2006-12-28 Ntn Corp Screw groove machining method for ball screw
JP4679257B2 (en) * 2005-06-16 2011-04-27 Ntn株式会社 Thread groove processing method for ball screw shaft
JP2016134078A (en) * 2015-01-21 2016-07-25 ファナック株式会社 Numerical control device for control over machine tool based on skiving processing command
US10261500B2 (en) 2015-01-21 2019-04-16 Fanuc Corporation Numerical controller controlling machining tool based on skiving instruction
WO2016152396A1 (en) * 2015-03-25 2016-09-29 アイシン機工株式会社 Cutting tool, skiving device, and method
CN107427929A (en) * 2015-03-25 2017-12-01 爱信机工株式会社 Processing unit (plant) and method are scraped in cutting element, rotation
JPWO2016152396A1 (en) * 2015-03-25 2018-01-25 アイシン機工株式会社 Cutting tool, skiving machine and method
JP2019014037A (en) * 2015-03-25 2019-01-31 アイシン機工株式会社 Cutting tool, skiving processing device and method
CN107427929B (en) * 2015-03-25 2019-04-12 爱信机工株式会社 Processing unit (plant) and method are scraped in cutting element, rotation
US10279395B2 (en) 2015-03-25 2019-05-07 Aisin Kiko Co., Ltd. Cutting tool, skiving apparatus and method
DE112016001390B4 (en) 2015-03-25 2023-06-07 Aisin Kiko Co., Ltd. Cutting tool, peeling device and method
CN114619056A (en) * 2020-12-10 2022-06-14 苏州领裕电子科技有限公司 Cutting method for removing male and female surfaces by using disc cutter

Also Published As

Publication number Publication date
JP3757807B2 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
CN100408260C (en) Composite working machine tool and working method in composite working machine tool
JP5761577B2 (en) Crown gear manufacturing apparatus and method
CN102256735A (en) Machine tool and method for producing gearing
JP2019206071A (en) Chamfering device of workpiece
US10702931B2 (en) Dimple processing method using rotary cutting tool
JP3246961B2 (en) Control device for crankshaft mirror
KR20170129163A (en) Device, method and cutting plate for machining a rotary work piece
JP2007229849A (en) Endmill, and machining method using the same
JP2007086953A (en) Numerical control correction machining method of machined face, and device for forming correction machining numerical control data
JP2002263903A (en) Method and tool for turning
JPH11138321A (en) Cam shaft processing machine
JPH06277901A (en) Control method for cutting tool and its device
JP7161254B2 (en) Processing method, processing equipment and program
JP2002304203A (en) Nc machine tool and machining method
JPH0613817Y2 (en) Grooving equipment
JP4183064B2 (en) Machining method of curved bevel gear
JP2011011295A (en) Fine recessed part working method and fine recessed part working machine
EP4029638A1 (en) Dimple machining method
JP7383078B1 (en) Processing methods, machine tools, cutting tools and cutting inserts
JP6565380B2 (en) Cutting device, cutting method and annular tool
JPH09239631A (en) Numerically controlled machine tool with tool forming function
JP2001129701A (en) Numerically controlled automatic lathe and method of machining workpiece by numerically controlled automatic lathe
JP3984313B2 (en) Three-dimensional curved surface processing method and processing apparatus
JPH11156616A (en) Boring cutter
JPH0683928B2 (en) Ball end mill

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050826

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20051206

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051219

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees