JP2007229849A - Endmill, and machining method using the same - Google Patents

Endmill, and machining method using the same Download PDF

Info

Publication number
JP2007229849A
JP2007229849A JP2006053210A JP2006053210A JP2007229849A JP 2007229849 A JP2007229849 A JP 2007229849A JP 2006053210 A JP2006053210 A JP 2006053210A JP 2006053210 A JP2006053210 A JP 2006053210A JP 2007229849 A JP2007229849 A JP 2007229849A
Authority
JP
Japan
Prior art keywords
cutting edge
arc
end mill
shank
arc cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006053210A
Other languages
Japanese (ja)
Inventor
Tadayuki Abe
忠之 阿部
Tetsuo Shibukawa
哲郎 渋川
Kenji Hamada
賢治 濱田
Yoshihiko Yamada
良彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2006053210A priority Critical patent/JP2007229849A/en
Publication of JP2007229849A publication Critical patent/JP2007229849A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2215/00Details of workpieces
    • B23C2215/44Turbine blades

Abstract

<P>PROBLEM TO BE SOLVED: To provide an endmill which can accurately and efficiently machine a three-dimensional recessed curved surface to be used in a jet engine, etc., and further to provide a machining method using the same endmill. <P>SOLUTION: A circular arc cutting edge 11 of a cutting edge portion formed on the tip end portion of a shank 13 is formed so as to have a shape to be inscribed to an imaginary body 15 of revolution formed by turning a circular arc 14 about a rotary axis 12. The center of the circular arc is positioned on the shank side so as to separate from the rear end 16 of the circular arc cutting edge by a specified distance. By this configuration, the tilting angle of the rotary axis with respect to the common tangent of the circular arc cutting edge of the endmill 10 and the surface to be machined can be set to be large. Therefore, the shank does not interfere with the edge portion of the recessed curved surface to be machined when, for example, a central flat surface portion of the recessed curved surface to be machined, such as a blade of the jet engine, is being machined by means of the circular arc cutting edge. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ジェットエンジンブレード等の3次元凹曲面を加工するのに適したエンドミル及びそれを用いた加工方法に関するものである。   The present invention relates to an end mill suitable for processing a three-dimensional concave curved surface such as a jet engine blade and a processing method using the end mill.

従来、ジェットエンジンブレードのような凹曲面形状を5軸数値制御工作機械により加工する場合、シャンクの先端にシャンクと同径の半球状の切れ刃部が形成されたボールエンドミルが使用されている。また、特許文献1には、特許文献1の図2,3に示されるように、エンドミル本体1の一端に円弧状の切れ刃4を軸線方向に備え、他端にはシャンク7を備えたソリッドエンドミルにおいて、円弧状の切れ刃の円弧半径を刃径の0.6倍ないし3倍とする円弧刃エンドミルが記載されている。   Conventionally, when a concave curved surface shape such as a jet engine blade is processed by a 5-axis numerically controlled machine tool, a ball end mill in which a hemispherical cutting edge portion having the same diameter as the shank is formed at the tip of the shank is used. Further, in Patent Document 1, as shown in FIGS. 2 and 3 of Patent Document 1, an end mill body 1 is provided with an arcuate cutting edge 4 at one end in the axial direction and a solid with a shank 7 at the other end. In the end mill, an arc blade end mill is described in which the arc radius of the arc-shaped cutting edge is 0.6 to 3 times the blade diameter.

この円弧刃エンドミルによれば、工作物を加工する円弧状の切れ刃の半径がシャンクの半径より大きいので、ピック送り量を大きくしてピックフィード加工しても、ピック送り量に応じて生じるカスプ高さが小さくなり、特に金型等の勾配の険しい斜面を切削能率よく加工することができる。
特開平11−156621号公報(第2頁、図2,3)
According to this arc-blade end mill, the radius of the arc-shaped cutting edge for machining the workpiece is larger than the radius of the shank. The height is reduced, and particularly steep slopes such as dies can be processed with high cutting efficiency.
Japanese Patent Laid-Open No. 11-156621 (second page, FIGS. 2 and 3)

上述の円弧刃エンドミルでは、特許文献1の段落〔0006〕に記載されているように、円弧半径をエンドミル直径の0.6倍とした場合、エンドミル軸と平行から30度程度の傾斜面を余裕を持って切削することができる。   In the above-described arc-blade end mill, as described in paragraph [0006] of Patent Document 1, when the arc radius is 0.6 times the end mill diameter, an inclined surface of about 30 degrees from the end mill axis is allowed. Can be cut.

しかしながら、かかる円弧刃エンドミルでは、特許文献1の図3に示されているように、円弧刃4の円弧の中心が、円弧刃4の後端においてエンドミル軸と直交する直線上に位置するので、円弧刃4と被加工面との共通接線に対するエンドミル軸の傾斜角度を大きくとることができない。従って、該円弧刃エンドミルを主軸を工作物に対して相対的に傾斜させる回転軸を有する数値制御工作機械の主軸に装着し、ジェットエンジンブレードのような凹曲面の加工に使用すると、図8に示すように、円弧刃4が凹曲面の中央水平面部を加工するときにシャンク7が凹局面の縁部と干渉する問題が生じる。つまり、該円弧刃エンドミルは、主軸が工作物に対して常に直交している3軸数値制御工作機械で用いることを前提とするものであり、主軸を工作物に対して相対的に傾斜させる回転軸を有する数値制御工作機械での使用には適さない。   However, in such an arc blade end mill, as shown in FIG. 3 of Patent Document 1, the center of the arc of the arc blade 4 is located on a straight line orthogonal to the end mill axis at the rear end of the arc blade 4. The inclination angle of the end mill shaft with respect to the common tangent line between the arcuate blade 4 and the work surface cannot be increased. Accordingly, when the arc-blade end mill is mounted on a spindle of a numerically controlled machine tool having a rotation axis that tilts the spindle relative to the workpiece and used for machining a concave curved surface such as a jet engine blade, FIG. As shown, there is a problem that the shank 7 interferes with the edge of the concave surface when the arcuate blade 4 processes the central horizontal surface portion of the concave curved surface. In other words, the arc-blade end mill is premised on the use of a three-axis numerically controlled machine tool whose main axis is always orthogonal to the workpiece, and the main axis rotates relative to the workpiece. Not suitable for use on numerically controlled machine tools with axes.

本発明は係る点に鑑みてなされたもので、ジェットエンジン等の凹曲面を高い面精度に切削能率よく3次元曲面加工することができるエンドミル及びそれを用いた加工方法を提供することである。    The present invention has been made in view of this point, and it is an object of the present invention to provide an end mill capable of machining a concave curved surface of a jet engine or the like with a high surface accuracy with a high cutting efficiency and a machining method using the same.

上記の課題を解決するため、請求項1に係る発明の構成上の特徴は、円弧が回転軸線回りに回転された仮想回転体に内接する形状の複数の円弧切れ刃を有する切れ刃部と、該切れ刃部から前記回転軸線と同軸に後方に突出されたシャンクとを備えたエンドミルにおいて、前記円弧の中心が前記円弧切れ刃の後端より所定量シャンク側に位置するとともに、前記円弧の半径が前記仮想回転体の最大半径より大きいことである。   In order to solve the above-described problem, a structural feature of the invention according to claim 1 is that a cutting edge portion having a plurality of arc cutting edges in a shape inscribed in a virtual rotating body in which an arc is rotated around a rotation axis, In an end mill having a shank protruding rearward from the cutting edge portion coaxially with the rotation axis, the center of the arc is located a predetermined amount from the rear end of the arc cutting edge, and the radius of the arc Is larger than the maximum radius of the virtual rotating body.

請求項1において、前記仮想回転体の前記円弧切れ刃後端での外径が、前記シャンクの外径より大きくなるように前記切れ刃部が形成されていることである。   In Claim 1, the said cutting blade part is formed so that the outer diameter in the said circular cutting edge rear end of the said virtual rotary body may become larger than the outer diameter of the said shank.

請求項3に係る発明の構成上の特徴は、工作物を保持するワークテーブルに対して直交3直線軸方向に相対移動可能かつ少なくとも一つの回転軸回りに相対回転可能に装架された主軸ヘッドと、該主軸ヘッドに回転駆動可能に軸承され先端に工具を保持する主軸と、前記主軸ヘッドの前記直交3軸方向の直線移動および前記回転軸回りの回転移動を数値制御する数値制御装置と、を備えた数値制御工作機械において、前記主軸に請求項1又は請求項2に係るエンドミルを同軸に保持させ、前記エンドミルにより加工される被加工凹曲面と前記仮想回転体とが前記円弧切れ刃部分で接するように前記主軸ヘッドを前記ワークテーブルに対して数値制御して移動させ、前記工作物の被加工凹曲面を前記エンドミルの円弧切れ刃により加工することである。   The structural feature of the invention according to claim 3 is that the spindle head is mounted so as to be relatively movable in the directions of the three orthogonal linear axes with respect to the work table holding the workpiece and to be relatively rotatable around at least one rotation axis. A spindle that is rotatably supported by the spindle head and holds a tool at the tip, and a numerical controller that numerically controls linear movement of the spindle head in the three orthogonal directions and rotational movement about the rotation axis; The end mill according to claim 1 or 2 is coaxially held on the main shaft, and the work concave surface to be machined by the end mill and the virtual rotating body are the arc cutting edge portion. The spindle head is moved numerically with respect to the work table so as to come into contact with the workpiece table, and the concave curved surface of the workpiece is machined by the arc cutting edge of the end mill. A.

上記のように構成した請求項1に係る発明においては、シャンク先端に形成された切れ刃部の円弧切れ刃が、円弧を回転軸線回りに回転させた仮想回転体に内接する形状に形成され、該円弧の中心が、円弧切れ刃の後端より所定量シャンク側に位置している。これにより、かかるエンドミルの円弧切れ刃と被加工面との共通接線に対する回転軸線の傾斜角度を大きくすることができるので、ジェットエンジンブレードのような被加工凹曲面の例えば中央水平面部が円弧切れ刃により加工されているときに、シャンクが被加工凹曲面の縁部と干渉することがない。さらに、円弧切れ刃が内接する仮想回転体の円弧の半径が、仮想回転体の最大半径より大きいので、エンドミルが被加工凹曲面の両端の間を各端でピック送りされて回転軸線と直角方向に往復移動され、円弧切れ刃により被加工凹曲面を加工するとき、切削能率を高くするためにピック送り量を大きくしても、高い面精度を得ることができる。   In the invention according to claim 1 configured as described above, the arc cutting edge of the cutting edge portion formed at the tip of the shank is formed in a shape inscribed in a virtual rotating body obtained by rotating the arc around the rotation axis, The center of the arc is located on the shank side by a predetermined amount from the rear end of the arc cutting edge. As a result, the inclination angle of the rotation axis with respect to the common tangent line between the arc cutting edge of the end mill and the work surface can be increased, so that, for example, the central horizontal surface portion of the concave work surface such as a jet engine blade is an arc cutting edge. The shank does not interfere with the edge of the concave surface to be processed. Furthermore, since the radius of the arc of the virtual rotating body inscribed by the arc cutting edge is larger than the maximum radius of the virtual rotating body, the end mill is picked between the both ends of the concave surface to be processed at each end and perpendicular to the rotation axis. When a concave curved surface to be processed is processed by an arc cutting edge, high surface accuracy can be obtained even if the pick feed amount is increased to increase the cutting efficiency.

上記のように構成した請求項2に係る発明においては、複数の円弧切れ刃が内接する仮想回転体の円弧切れ刃後端での外径が、シャンクの外径より大きいので、エンドミルが被加工凹曲面の両端の間を回転軸線と直角方向に送り移動されるときに、回転軸線回りに回転する各円弧切れ刃により切り残されるカスプの高さが小さくなり、送り移動速度を速くして切削能率を高くしても、被加工凹曲面を高い面精度に加工することができる。   In the invention according to claim 2 configured as described above, since the outer diameter at the rear end of the arc cutting edge of the virtual rotating body inscribed by the plurality of arc cutting edges is larger than the outer diameter of the shank, the end mill is processed. When feeding between both ends of the concave curved surface in a direction perpendicular to the rotation axis, the height of the cusps left by each arc cutting blade rotating around the rotation axis is reduced, and cutting is performed by increasing the feed movement speed. Even if the efficiency is increased, the concave surface to be processed can be processed with high surface accuracy.

さらに、円弧切れ刃後端での外径がシャンクの外径より大きい仮想回転体に内接する円弧切れ刃で加工するので、切れ刃部を工作物に向かって切り込む切込み量を多くしても、シャンクが工作物と干渉することがなく、加工能率を向上することができる。   Furthermore, since the outer diameter at the rear end of the arc cutting edge is processed with the arc cutting edge inscribed in the virtual rotating body larger than the outer diameter of the shank, even if the cutting amount for cutting the cutting edge portion toward the workpiece is increased, The shank does not interfere with the workpiece, and the machining efficiency can be improved.

上記のように構成した請求項3に係る発明においては、請求項1又は請求項2に係るエンドミルが、円弧切れ刃が内接する仮想回転体と被加工凹曲面とが円弧切れ刃部分で接するように工作物に対して数値制御により移動されるので、ピック送り量を大きくして被加工凹曲面を高い切削能率で高い面精度に加工することができるとともに、円弧切れ刃が、例えば被加工凹曲面の中央水平面部を加工しているときに、シャンクが被加工凹曲面の縁部と干渉することがない。   In the invention according to claim 3 configured as described above, the end mill according to claim 1 or 2 is configured such that the virtual rotating body inscribed by the arc cutting edge and the concave curved surface to be processed are in contact at the arc cutting edge portion. Since the workpiece is moved by numerical control, the pick feed amount can be increased to process the concave curved surface to be processed with high cutting efficiency and high surface accuracy. When processing the central horizontal surface of the curved surface, the shank does not interfere with the edge of the concave curved surface to be processed.

以下、本発明に係るエンドミル及び該エンドミルを用いた加工方法の実施形態を図面に基づいて説明する。図1において、エンドミル10は、複数、例えば4枚の円弧切れ刃11が回転軸線O回りにねじれて形成された切れ刃部12を備え、切れ刃部12からシャンク13が回転軸線Oと同軸に後方に突出されている。各円弧切れ刃11は回転軸線方向に長さLを有し、各円弧切れ刃11の外周縁が円弧14を回転軸線O回りに回転させた仮想回転体15に内接する形状に形成されている。   Hereinafter, embodiments of an end mill and a processing method using the end mill according to the present invention will be described with reference to the drawings. In FIG. 1, the end mill 10 includes a plurality of, for example, four, arc cutting edges 11 formed by twisting around a rotation axis O, and a shank 13 is coaxial with the rotation axis O from the cutting edge 12. It protrudes backward. Each arc cutting edge 11 has a length L in the rotation axis direction, and the outer peripheral edge of each arc cutting edge 11 is formed in a shape inscribed in a virtual rotating body 15 that rotates the arc 14 around the rotation axis O. .

円弧切れ刃11は、シャンク13側の後端16でシャンク13の外周面と交差し、円弧14の中心ROは、円弧切れ刃11の後端16より所定量Sだけシャンク13側に位置されている。そして、円弧14の半径Rは、仮想回転体15の最大半径rとなるシャンク13の半径より大きくされている。   The arc cutting edge 11 intersects the outer peripheral surface of the shank 13 at the rear end 16 on the shank 13 side, and the center RO of the arc 14 is positioned on the shank 13 side by a predetermined amount S from the rear end 16 of the arc cutting edge 11. Yes. The radius R of the circular arc 14 is larger than the radius of the shank 13 that is the maximum radius r of the virtual rotating body 15.

これにより、図2に示すように、エンドミル10の円弧切れ刃11と被加工面との共通接線に対する回転軸線Oの傾斜角度αを大きくすることができるので、ジェットエンジンブレードのような工作物Wの被加工凹曲面17の中央水平面部を円弧切れ刃11が加工しているときに、シャンク13が被加工凹曲面17の縁部18と干渉することがない。さらに、図3に示すように、円弧切れ刃11が内接する仮想回転体15の円弧14の半径Rが仮想回転体15の最大半径より大きいので、エンドミル10が被加工凹曲面17の両端の間を各端でピック送りされて回転軸線Oと直角方向に往復移動され、被加工凹曲面17が円弧切れ刃11により加工されるとき、切削能率を高くするためにピック送り量Pfを大きくしても、円弧切れ刃11により切り残されるカスプ19の高さhが小さくなり、高い面精度を得ることができる。円弧切れ刃11の半径がR、ピック送り量がPfである場合、カスプ19の高さhは、式R=(R−h)+(Pf/2)から算出することができる。 As a result, as shown in FIG. 2, the inclination angle α of the rotation axis O with respect to the common tangent line between the arc cutting edge 11 of the end mill 10 and the surface to be machined can be increased. When the arc cutting edge 11 is processing the central horizontal surface portion of the processed concave curved surface 17, the shank 13 does not interfere with the edge portion 18 of the processed concave curved surface 17. Further, as shown in FIG. 3, the radius R of the arc 14 of the virtual rotating body 15 inscribed by the arc cutting edge 11 is larger than the maximum radius of the virtual rotating body 15, so Is picked up at each end and reciprocated in a direction perpendicular to the rotation axis O, and when the work concave surface 17 is machined by the arc cutting edge 11, the pick feed amount Pf is increased in order to increase the cutting efficiency. However, the height h of the cusp 19 left uncut by the arc cutting edge 11 is reduced, and high surface accuracy can be obtained. When the radius of the arc cutting edge 11 is R and the pick feed amount is Pf, the height h of the cusp 19 can be calculated from the formula R 2 = (R−h) 2 + (Pf / 2) 2 .

シャンク13の直径Dが20mmの場合、円弧14の半径Rは、0.6D=12mm、1.0D=20mm、1.5D=30mm、3.0D=60mm、5D=100mm等にすることができる。特に、円弧14の半径Rを100mmとし場合、円弧14の半径Rが従来の切れ刃部が半球状のエンドミルの切れ刃部の半径の10倍となるので、被加工凹曲面17を高い切削能率で高い面精度に加工することができるとともに、円弧切れ刃11が被加工凹曲面17の中央水平面部を加工しているときに、シャンク13が被加工凹曲面17の縁部18と干渉することがない。   When the diameter D of the shank 13 is 20 mm, the radius R of the arc 14 can be 0.6D = 12 mm, 1.0D = 20 mm, 1.5D = 30 mm, 3.0D = 60 mm, 5D = 100 mm, etc. . In particular, when the radius R of the arc 14 is 100 mm, the radius R of the arc 14 is 10 times the radius of the end mill of the hemispherical end mill, so that the concave curved surface 17 to be processed has a high cutting efficiency. And the shank 13 interferes with the edge 18 of the processed concave surface 17 when the arc cutting edge 11 is processing the central horizontal surface portion of the processed concave surface 17. There is no.

なお、円弧切れ刃11の後端16に続いて逃げ切れ刃をシャンク13の先端部に形成してもよい。この場合、切れ刃部12は、円弧切れ刃11と逃げ切れ刃により構成される。   Note that a relief cutting edge may be formed at the tip of the shank 13 following the rear end 16 of the arc cutting edge 11. In this case, the cutting edge portion 12 is constituted by the arc cutting edge 11 and the escape cutting edge.

図4に示すエンドミル21においては、円弧切れ刃11が内接する仮想回転体15の円弧切れ刃後端16での外径が、シャンク13の外径より大きくなるように円弧切れ刃11が形成されている。他の構成はエンドミル10と同じであるので、同一要素に同一参照番号を付して説明を省略する。   In the end mill 21 shown in FIG. 4, the arc cutting edge 11 is formed so that the outer diameter at the arc cutting edge rear end 16 of the virtual rotating body 15 in contact with the arc cutting edge 11 is larger than the outer diameter of the shank 13. ing. Since other configurations are the same as those of the end mill 10, the same reference numerals are assigned to the same elements, and descriptions thereof are omitted.

これにより、エンドミル21が被加工凹曲面17の両端の間を回転軸線Oと直角方向に送り移動されるときに、回転軸線O回りに回転する各円弧切れ刃11により切り残されるカスプ20の高さhが小さくなり、送り移動速度vを速くして切削能率を高くしても、被加工凹曲面を高い面精度に加工することができる(図5参照)。さらに、円弧切れ刃11後端での外径2×rが、シャンク13の外径より大きい仮想回転体15に内接する円弧切れ刃11で加工するので、円弧切れ刃11の後端における仮想回転体15の回転軸線Oと直角な断面での半径rが、主軸10に装着可能な最大シャンクの半径より大きい円弧切れ刃11で加工することができ、切れ刃部12を工作物Wに向かって切り込む切込み量を多くしても、シャンク13が工作物Wと干渉することがなく、加工能率を向上することができる。   As a result, when the end mill 21 is fed and moved in the direction perpendicular to the rotational axis O between both ends of the workpiece concave curved surface 17, the height of the cusp 20 left uncut by each arc cutting edge 11 rotating around the rotational axis O is obtained. Even if the length h is reduced and the feed movement speed v is increased to increase the cutting efficiency, the concave surface to be processed can be processed with high surface accuracy (see FIG. 5). Furthermore, since the outer diameter 2 × r at the rear end of the arc cutting edge 11 is processed by the arc cutting edge 11 inscribed in the virtual rotating body 15 larger than the outer diameter of the shank 13, the virtual rotation at the rear end of the arc cutting edge 11 is performed. The radius r in the cross section perpendicular to the rotation axis O of the body 15 can be machined with the arc cutting blade 11 that is larger than the radius of the largest shank that can be mounted on the main shaft 10, and the cutting edge portion 12 is directed toward the workpiece W. Even if the cutting depth is increased, the shank 13 does not interfere with the workpiece W, and the machining efficiency can be improved.

エンドミル10,21において円弧切れ刃11の前端部及び後端部に、各端部での仮想回転体15の半径より小さい半径の円弧部を設けることにより円弧切れ刃11の端部の剛性を向上することができる。   In the end mills 10 and 21, the front end portion and the rear end portion of the arc cutting edge 11 are provided with arc portions having a radius smaller than the radius of the virtual rotating body 15 at each end portion, thereby improving the rigidity of the end portion of the arc cutting edge 11. can do.

次に、エンドミルを5軸数値制御工作機械の主軸先端に同軸に保持し、エンドミルにより加工される工作物の被加工凹曲面と仮想回転体とが円弧切れ刃部分で接するように、主軸が軸承された主軸ヘッドが工作物を保持する回転テーブルに対して5軸数値制御により相対移動され、被加工凹曲面をエンドミルの円弧切れ刃11により加工するエンドミルを用いた加工方法について説明する。   Next, hold the end mill coaxially at the tip of the spindle of the 5-axis numerically controlled machine tool, and the spindle is supported so that the workpiece concave surface to be machined by the end mill and the virtual rotating body are in contact with each other at the arc cutting edge. A machining method using an end mill in which the main spindle head is moved relative to the rotary table holding the workpiece by 5-axis numerical control and the workpiece concave surface is machined by the arc cutting blade 11 of the end mill will be described.

図6において、5軸数値制御工作機械22のベッド23上にはコラム24が水平面内でZ軸方向に移動可能に支承され、ベッド23に回転可能に軸承された送りネジを有する送りネジ機構及び送りネジを回転駆動するサーボモータ25によりZ軸方向に往復移動される。コラム24には、主軸ヘッド26が上下のY軸方向に移動可能に支承され、一対のサーボモータ27及び図略の送りネジ機構によりY軸方向に移動される。主軸ヘッド26には先端にエンドミル10又は21を着脱自在に保持する主軸28がZ軸方向に軸承され、図略の主軸モータにより回転駆動される。    In FIG. 6, a column 24 is supported on a bed 23 of a 5-axis numerically controlled machine tool 22 so as to be movable in the Z-axis direction within a horizontal plane, and a feed screw mechanism having a feed screw rotatably supported on the bed 23; The servomotor 25 that rotationally drives the feed screw is reciprocated in the Z-axis direction. A spindle head 26 is supported on the column 24 so as to be movable in the vertical Y-axis direction, and is moved in the Y-axis direction by a pair of servo motors 27 and a feed screw mechanism (not shown). The spindle head 26 is supported by a spindle 28 that detachably holds the end mill 10 or 21 at the tip in the Z-axis direction, and is driven to rotate by a spindle motor (not shown).

ベッド23にはテーブル29がコラム24と対向してX軸方向に水平面内で移動可能に装架され、一対のサーボモータ30及び図略の送りネジ機構によりX軸方向に往復移動されるようになっている。テーブル29上にはチルトテーブル31がX軸と平行なA軸回りに回動可能に支承され、サーボモータ32により旋回駆動される。チルトテーブル31上には、ワークを保持するワークテーブルとしての回転テーブル33が回転可能に支承され、図略のサーボモータによりB軸回りに回転されるようになっている。回転テーブル33にはワークWが取付けられるパレット35が着脱可能に装着されている。数値制御装置34は、サーボモータ25,27,30の回転を数値制御してコラム24、主軸ヘッド26、テーブル29をX,Y,Z軸方向に直線移動させ、サーボモータ32等の回転を数値制御してチルトテーブル31、回転テーブル33をA,B軸回りに回転移動させる。このようにして主軸ヘッド26は、工作物Wを保持するワークテーブルである回転テーブル33に対して直交3直線軸方向に相対移動可能かつ直交2回転軸回りに相対回転可能にベッド23上に装架されている。    A table 29 is mounted on the bed 23 so as to face the column 24 so as to be movable in a horizontal plane in the X-axis direction, and is reciprocated in the X-axis direction by a pair of servo motors 30 and a feed screw mechanism (not shown). It has become. A tilt table 31 is supported on the table 29 so as to be rotatable about an A axis parallel to the X axis, and is rotated by a servo motor 32. On the tilt table 31, a rotary table 33 as a work table for holding a work is rotatably supported, and is rotated around the B axis by a servo motor (not shown). A pallet 35 to which the work W is attached is detachably mounted on the rotary table 33. The numerical controller 34 numerically controls the rotation of the servo motors 25, 27, and 30 to linearly move the column 24, the spindle head 26, and the table 29 in the X, Y, and Z axis directions, and numerically determines the rotation of the servo motor 32 and the like. By controlling, the tilt table 31 and the rotary table 33 are rotated around the A and B axes. In this way, the spindle head 26 is mounted on the bed 23 so that it can move relative to the rotary table 33, which is a work table holding the workpiece W, in the three orthogonal linear axes and relative to the two rotary axes. It is built.

エンドミル10又は21により工作物Wの被加工凹曲面17を加工する場合、5軸数値制御工作機械22の主軸28の先端に例えばエンドミル10が同軸に保持され、回転テーブル33上に工作物Wが保持される。   When machining the workpiece concave surface 17 of the workpiece W by the end mill 10 or 21, for example, the end mill 10 is coaxially held at the tip of the main shaft 28 of the 5-axis numerically controlled machine tool 22, and the workpiece W is placed on the rotary table 33. Retained.

数値制御装置34は、エンドミル10の円弧切れ刃11が内接する仮想回転体15が被加工曲面17と円弧切れ刃11部分で接するように主軸ヘッド26と回転テーブル33とを5軸制御により相対移動させながら、テーブル29をX軸方向に往復移動させる。即ち、数値制御装置34は、図7に示すように、被加工凹曲面17のX−Z平面による断面曲線上の点Pの接線の傾きβ(図7参照)及び該接線と直角方向の接線の傾きに拘わらず、エンドミル10の仮想回転体15が点Pで被加工凹曲面17と接するように、サーボモータ25,27,30,32等を数値制御してコラム24、主軸ヘッド26、テーブル29を直線移動させ、チルトテーブル31、回転テーブル33回転移動させる。   The numerical control device 34 relatively moves the spindle head 26 and the rotary table 33 by 5-axis control so that the virtual rotating body 15 in contact with the arc cutting edge 11 of the end mill 10 is in contact with the workpiece curved surface 17 at the arc cutting edge 11 portion. Then, the table 29 is reciprocated in the X axis direction. That is, as shown in FIG. 7, the numerical controller 34 has a slope β (see FIG. 7) of a tangent to a point P on the cross-sectional curve by the XZ plane of the concave surface 17 to be processed and a tangent perpendicular to the tangent. Regardless of the inclination, the column 24, the spindle head 26, and the table are numerically controlled by controlling the servo motors 25, 27, 30, 32, etc. so that the virtual rotating body 15 of the end mill 10 is in contact with the concave curved surface 17 to be processed at the point P. 29 is moved linearly, and the tilt table 31 and the rotation table 33 are rotated.

そして、数値制御装置34は、エンドミル10が被加工凹曲面17のX軸方向の両端部に到達する度に主軸ヘッド26と回転テーブル33との相対移動を同時5軸制御して円弧切れ刃11を被加工凹曲面内でX軸と直角方向にピックフィード量Pfだけ移動させる。   The numerical control device 34 simultaneously controls the relative movement of the spindle head 26 and the rotary table 33 every time the end mill 10 reaches both ends of the workpiece concave curved surface 17 in the X-axis direction to simultaneously control the arc cutting blade 11. Is moved by a pick feed amount Pf in a direction perpendicular to the X axis within the workpiece concave curved surface.

このように、円弧切れ刃11が内接する仮想回転体15と被加工凹曲面17とが円弧切れ刃11部分で接するように、エンドミル10が工作物Wに対して5軸数値制御により移動されるので、ピック送り量Pfを大きくして被加工凹曲面17を高い切削能率で高い面精度に加工することができるとともに、円弧切れ刃11が被加工凹曲面17の例えば中央水平面部を加工しているときに、シャンク13が被加工凹曲面17の縁部18と干渉することがない。    In this way, the end mill 10 is moved by the 5-axis numerical control with respect to the workpiece W so that the virtual rotating body 15 inscribed by the arc cutting edge 11 and the workpiece concave curved surface 17 are in contact with each other at the arc cutting edge 11 portion. Therefore, it is possible to increase the pick feed amount Pf and process the processed concave curved surface 17 with high cutting efficiency and high surface accuracy, and the arc cutting edge 11 processes, for example, the central horizontal plane portion of the processed concave curved surface 17. The shank 13 does not interfere with the edge 18 of the processed concave curved surface 17 when it is in contact.

上記実施の形態では、主軸ヘッドとワークテーブルの相対的なX,Y,Z軸方向の直線移動及びA,B軸回りの回転移動を数値制御する5軸数値制御工作機械に本エンドミルを使用して加工を行っているが、本エンドミルを使用する数値制御工作機械としては、主軸ヘッド26がさらにX軸と平行な回転軸回りに数値制御により回転移動可能な6軸数値制御工作機械でもよく、さらに主軸が主軸ヘッドに対して数値制御により進退移動される7軸数値制御装置でもよい。また、主軸ヘッドとワークテーブルのX,Y,Z軸方向の直線移動及びB軸回りの回転移動を数値制御する4軸数値制御工作機械で本エンドミルを用いて加工してもよい。    In the above embodiment, this end mill is used for a 5-axis numerical control machine tool that numerically controls the relative linear movement of the spindle head and work table in the X, Y, and Z axis directions and the rotational movement about the A and B axes. The numerically controlled machine tool using this end mill may be a 6-axis numerically controlled machine tool in which the spindle head 26 can be further rotated by numerical control around a rotation axis parallel to the X axis. Further, a seven-axis numerical control device in which the main shaft is moved back and forth by numerical control with respect to the main shaft head may be used. Moreover, you may process using this end mill with the 4-axis numerical control machine tool which numerically controls the linear movement of the spindle head and the work table in the X, Y, and Z-axis directions and the rotational movement around the B-axis.

また、例えば、上記の5軸数値制御工作機械22では、ワークテーブルを2軸回りに回転させる回転機構を設けて、エンドミル10,21とワークWとを相対回転可能としているが、主軸ヘッドを2軸回りに回転させる2軸回転機構を設けてもよい。更に、ワークテーブルを回転させる1軸回転機構、主軸ヘッドを回転させる1軸回転機構を設ける構成としてもよい。    Further, for example, in the 5-axis numerically controlled machine tool 22 described above, a rotation mechanism that rotates the work table about two axes is provided so that the end mills 10 and 21 and the work W can be rotated relative to each other. A biaxial rotating mechanism that rotates around the axis may be provided. Furthermore, it is good also as a structure which provides the 1 axis | shaft rotation mechanism which rotates a work table, and the 1 axis | shaft rotation mechanism which rotates a spindle head.

上記の5軸数値制御工作機械では、主軸ヘッドとワークテーブルは、直線案内機構によりX,Y,Z軸方向に直線移動され、回転機構によりA,B軸回りに回転移動されるが、ワークテーブルに対して主軸ヘッドが、円周方向等角度位置で3組のパラレルリンク機構により支持され、各パラレルリンク機構がサーボモータにより駆動されることによって、主軸ヘッドがワークテーブルに対して直交3直線軸方向に相対移動されるとともに2回転軸回りに回転移動されるようにしてもよい。さらに、多関節ロボットのアーム先端に主軸ヘッドが装着され、主軸ヘッドが直交3直線軸方向に移動され、かつ2回転軸回りに回転されるようにしてもよい。    In the above 5-axis numerically controlled machine tool, the spindle head and the work table are linearly moved in the X, Y, and Z axis directions by the linear guide mechanism, and rotated around the A and B axes by the rotation mechanism. The spindle head is supported by three sets of parallel link mechanisms at equiangular positions in the circumferential direction, and each parallel link mechanism is driven by a servo motor so that the spindle head is orthogonal to the work table by three linear axes. The relative movement in the direction and the rotational movement about the two rotation axes may be performed. Furthermore, a spindle head may be attached to the arm tip of the articulated robot, and the spindle head may be moved in the directions of three orthogonal linear axes and rotated about two rotation axes.

本実施の形態に係るエンドミルを示す図。The figure which shows the end mill which concerns on this Embodiment. エンドミルの円弧切れ刃と被加工面との共通接線に対する回転軸線の傾斜角度を示す図。The figure which shows the inclination-angle of a rotating shaft line with respect to the common tangent of the circular arc cutting edge of an end mill, and a to-be-processed surface. 円弧切れ刃の円弧に基づくカスプを示す図。The figure which shows the cusp based on the circular arc of a circular arc cutting edge. エンドミルの他の実施形態を示す図。The figure which shows other embodiment of an end mill. エンドミルの直径に基づくカスプを示す図。The figure which shows the cusp based on the diameter of an end mill. 5軸数値制御工作機械を示す斜視図。The perspective view which shows a 5-axis numerical control machine tool. エンドミルと被加工凹曲面との位置関係を示す図。The figure which shows the positional relationship of an end mill and a to-be-processed concave curved surface. 従来の円弧刃エンドミルで凹曲面の中央水平面部を加工するとシャンクが凹局面の縁部と干渉することを示す図。The figure which shows that a shank interferes with the edge of a concave surface, if the center horizontal surface part of a concave curved surface is processed with the conventional circular-arc blade end mill.

符号の説明Explanation of symbols

10,21…エンドミル、11…円弧切れ刃、12…回転軸線、13…シャンク、14…円弧、15…仮想回転体、16…後端、R…半径、17…被加工凹曲面、18…縁部、19,20…カスプ、22…5軸数値制御工作機械、23…ベッド、24…コラム、25,27,30,32…サーボモータ、26…主軸ヘッド、28…主軸、29…テーブル、31…チルトテーブル、33…回転テーブル(ワークテーブル)、34…数値制御装置、O…回転軸線、W…工作物。   DESCRIPTION OF SYMBOLS 10,21 ... End mill, 11 ... Arc cutting edge, 12 ... Rotation axis, 13 ... Shank, 14 ... Arc, 15 ... Virtual rotating body, 16 ... Rear end, R ... Radius, 17 ... Concave surface to be processed, 18 ... Edge Part, 19, 20 ... cusp, 22 ... 5-axis numerical control machine tool, 23 ... bed, 24 ... column, 25,27,30,32 ... servo motor, 26 ... spindle head, 28 ... spindle, 29 ... table, 31 ... Tilt table, 33 ... Rotation table (work table), 34 ... Numerical control device, O ... Rotation axis, W ... Workpiece.

Claims (3)

円弧が回転軸線回りに回転された仮想回転体に内接する形状の複数の円弧切れ刃を有する切れ刃部と、該切れ刃部から前記回転軸線と同軸に後方に突出されたシャンクとを備えたエンドミルにおいて、
前記円弧の中心が前記円弧切れ刃の後端より所定量シャンク側に位置するとともに、前記円弧の半径が前記仮想回転体の最大半径より大きいことを特徴とするエンドミル。
A cutting edge portion having a plurality of arc cutting edges inscribed in a virtual rotating body whose arc is rotated around a rotation axis, and a shank protruding rearward from the cutting edge portion coaxially with the rotation axis. In the end mill,
An end mill characterized in that the center of the arc is positioned a predetermined amount on the shank side from the rear end of the arc cutting edge, and the radius of the arc is larger than the maximum radius of the virtual rotating body.
請求項1において、前記仮想回転体の前記円弧切れ刃後端での外径が、前記シャンクの外径より大きくなるように前記切れ刃部が形成されていることを特徴とするエンドミル。   2. The end mill according to claim 1, wherein the cutting edge portion is formed such that an outer diameter of the virtual rotating body at a rear end of the arc cutting edge is larger than an outer diameter of the shank. 工作物を保持するワークテーブルに対して直交3直線軸方向に相対移動可能かつ少なくとも一つの回転軸回りに相対回転可能に装架された主軸ヘッドと、該主軸ヘッドに回転駆動可能に軸承され先端に工具を保持する主軸と、前記主軸ヘッドの前記直交3軸方向の直線移動および前記回転軸回りの回転移動を数値制御する数値制御装置と、を備えた数値制御工作機械において、
前記主軸に請求項1又は請求項2に係るエンドミルを同軸に保持させ、
前記エンドミルにより加工される被加工凹曲面と前記仮想回転体とが前記円弧切れ刃部分で接するように前記主軸ヘッドを前記ワークテーブルに対して数値制御して移動させ、
前記工作物の被加工凹曲面を前記エンドミルの円弧切れ刃により加工することを特徴とするエンドミルを用いた加工方法。
A spindle head mounted so as to be relatively movable in three orthogonal linear axis directions with respect to a work table holding a workpiece and to be relatively rotatable around at least one rotation axis, and a tip supported by the spindle head so as to be rotatable. A numerically controlled machine tool comprising: a spindle that holds a tool; and a numerical control device that numerically controls the linear movement of the spindle head in the three orthogonal directions and the rotational movement around the rotational axis.
The main shaft is held coaxially with the end mill according to claim 1 or claim 2,
The spindle head is moved numerically with respect to the work table so that the processed concave curved surface processed by the end mill and the virtual rotating body are in contact with the arc cutting edge part,
A machining method using an end mill, characterized in that the workpiece concave curved surface of the workpiece is machined by an arc cutting edge of the end mill.
JP2006053210A 2006-02-28 2006-02-28 Endmill, and machining method using the same Pending JP2007229849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006053210A JP2007229849A (en) 2006-02-28 2006-02-28 Endmill, and machining method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006053210A JP2007229849A (en) 2006-02-28 2006-02-28 Endmill, and machining method using the same

Publications (1)

Publication Number Publication Date
JP2007229849A true JP2007229849A (en) 2007-09-13

Family

ID=38550955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006053210A Pending JP2007229849A (en) 2006-02-28 2006-02-28 Endmill, and machining method using the same

Country Status (1)

Country Link
JP (1) JP2007229849A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1625450B1 (en) * 2003-05-17 2010-09-15 MTU Aero Engines AG Method for cutting freeform surfaces
CN103692008A (en) * 2013-12-20 2014-04-02 无锡雨田精密工具有限公司 Arc-shaped milling cutter
WO2016150575A1 (en) * 2015-03-26 2016-09-29 Open Mind Technologies Ag Method for machining flat surfaces of a workpiece
JP2018008323A (en) * 2016-07-11 2018-01-18 国立大学法人名古屋大学 Cutting processing device, cutting tool, processing support device and processing method
WO2020075489A1 (en) * 2018-10-11 2020-04-16 三菱日立ツール株式会社 End mill
WO2021149638A1 (en) * 2020-01-23 2021-07-29 ファナック株式会社 Workpiece machining method
WO2022084914A1 (en) * 2020-10-21 2022-04-28 Rc Stampi Srl Mould for cast cosmetic products, manufacturing system and method of manufacturing said moulds
US11673199B2 (en) * 2017-06-06 2023-06-13 Ceratizit Austria Gesellschaft M.B.H. Milling method and use of a cutting insert

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393014A (en) * 1989-09-05 1991-04-18 Citizen Watch Co Ltd Magnetic head
JPH08252713A (en) * 1995-03-17 1996-10-01 Rikagaku Kenkyusho Cutting edge tool and cutting work method using it
JPH11156621A (en) * 1997-11-25 1999-06-15 Hitachi Tool Eng Ltd Circular arc end mill
JPH11156620A (en) * 1997-11-25 1999-06-15 Hitachi Tool Eng Ltd Circular arc blade end mill

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393014A (en) * 1989-09-05 1991-04-18 Citizen Watch Co Ltd Magnetic head
JPH08252713A (en) * 1995-03-17 1996-10-01 Rikagaku Kenkyusho Cutting edge tool and cutting work method using it
JPH11156621A (en) * 1997-11-25 1999-06-15 Hitachi Tool Eng Ltd Circular arc end mill
JPH11156620A (en) * 1997-11-25 1999-06-15 Hitachi Tool Eng Ltd Circular arc blade end mill

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1625450B1 (en) * 2003-05-17 2010-09-15 MTU Aero Engines AG Method for cutting freeform surfaces
US8096215B2 (en) 2003-05-17 2012-01-17 Mtu Aero Engines Gmbh Method for cutting freeform surfaces, cutting tool and use of the cutting tool
CN103692008A (en) * 2013-12-20 2014-04-02 无锡雨田精密工具有限公司 Arc-shaped milling cutter
JP2018509307A (en) * 2015-03-26 2018-04-05 オープン マインド テクノロジーズ アーゲー Machining method of flat surface of workpiece
KR20170129945A (en) * 2015-03-26 2017-11-27 오픈마인드 테크놀로지스 아게 How to process a flat surface of a workpiece
WO2016150575A1 (en) * 2015-03-26 2016-09-29 Open Mind Technologies Ag Method for machining flat surfaces of a workpiece
KR102023125B1 (en) * 2015-03-26 2019-09-19 오픈마인드 테크놀로지스 아게 How to machine the flat surface of the workpiece
US10449610B2 (en) 2015-03-26 2019-10-22 Open Mind Technologies Ag Method for machining flat surfaces of a workpiece
JP2018008323A (en) * 2016-07-11 2018-01-18 国立大学法人名古屋大学 Cutting processing device, cutting tool, processing support device and processing method
US11673199B2 (en) * 2017-06-06 2023-06-13 Ceratizit Austria Gesellschaft M.B.H. Milling method and use of a cutting insert
WO2020075489A1 (en) * 2018-10-11 2020-04-16 三菱日立ツール株式会社 End mill
JP7364921B2 (en) 2018-10-11 2023-10-19 株式会社Moldino end mill
WO2021149638A1 (en) * 2020-01-23 2021-07-29 ファナック株式会社 Workpiece machining method
CN114929418A (en) * 2020-01-23 2022-08-19 发那科株式会社 Workpiece machining method
WO2022084914A1 (en) * 2020-10-21 2022-04-28 Rc Stampi Srl Mould for cast cosmetic products, manufacturing system and method of manufacturing said moulds

Similar Documents

Publication Publication Date Title
JP4843238B2 (en) Method for chamfering and / or deburring edges of bevel gear teeth
JP2007229849A (en) Endmill, and machining method using the same
JP3884884B2 (en) In-corner cutting method and cutting tool
JP4997240B2 (en) Automatic lathe with multiple turrets
JPH0622786B2 (en) Program controlled grinding machine
JPH08215962A (en) Machine tool
JPS60155310A (en) Machining method and device thereof
JP2007086953A (en) Numerical control correction machining method of machined face, and device for forming correction machining numerical control data
JP2005022034A (en) Machine tool
KR102004890B1 (en) Method for cutting or machining gear teeth and gear-cutting machine
JPH089124B2 (en) Free curved surface processing method
JP7036662B2 (en) Machine Tools
JPH11138321A (en) Cam shaft processing machine
JP2002224902A (en) Spherical processing method of workpiece for lathe
JP4712586B2 (en) NC machine tool
JPH11207514A (en) Machining method and finishing machine
JPH06711A (en) Cutting method
JP5246435B2 (en) Grooving method and apparatus
JPH10315077A (en) Horizontal type machining center
WO2021149638A1 (en) Workpiece machining method
JP2000280101A (en) Curved surface processing method
JP6565380B2 (en) Cutting device, cutting method and annular tool
EP3715045B1 (en) Machine tool
JP2001269816A (en) Gear machining method and gear machining device
JP2008110458A (en) Manufacturing method of end mill having circular arc blade

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A131 Notification of reasons for refusal

Effective date: 20110823

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120110

Free format text: JAPANESE INTERMEDIATE CODE: A02