JP2002263476A - Method of equalizing heat distribution in reactor tube - Google Patents

Method of equalizing heat distribution in reactor tube

Info

Publication number
JP2002263476A
JP2002263476A JP2001393138A JP2001393138A JP2002263476A JP 2002263476 A JP2002263476 A JP 2002263476A JP 2001393138 A JP2001393138 A JP 2001393138A JP 2001393138 A JP2001393138 A JP 2001393138A JP 2002263476 A JP2002263476 A JP 2002263476A
Authority
JP
Japan
Prior art keywords
catalyst
monolith
heat
tube
catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001393138A
Other languages
Japanese (ja)
Inventor
James Allen Wambaugh
ジエームズ・アリン・ワムボー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of JP2002263476A publication Critical patent/JP2002263476A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2485Monolithic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/2425Tubular reactors in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3332Catalytic processes with metal oxides or metal sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • B01J2208/025Two or more types of catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of equalizing heat distribution in a reactor tube housing a catalyst. SOLUTION: When a catalyst monolith is used, reaction heat can be dispersed as desired and consequently a heat gradient is lowered and efficiently and catalyst performance are improved. The method of equalizing the heat distribution on the catalyst of the tubular reactor is provided and this method comprises packing >=1 catalytic monolith into the respective tubes of the tubular reactor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、触媒を収容してい
る反応管における熱分布の均等化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for equalizing heat distribution in a reaction tube containing a catalyst.

【0002】[0002]

【発明の背景】触媒を充填している恒温管型反応器の性
能は触媒充填管における熱伝達により制限されている。
吸熱反応では、熱は管の中心から除去され、管壁の温度
は管中心の温度よりも実質的に高くなる。発熱反応で
は、反応熱により触媒床の中心ゾーンの触媒の温度は管
壁近くの触媒床の外側領域の温度よりも実質的に高くな
る。温度差によりいろいろな悪影響が生じる恐れがあ
る。充填物の低温部分は効果的接触処理のためには余り
に低いままであり得、充填物の高温部分は予想以上に短
い寿命を有し得る。いずれの場合にも、処理効率は低下
する。
BACKGROUND OF THE INVENTION The performance of a constant temperature tube reactor packed with catalyst is limited by heat transfer in the catalyst packed tube.
In an endothermic reaction, heat is removed from the center of the tube and the temperature at the tube wall is substantially higher than at the tube center. In an exothermic reaction, the heat of reaction causes the temperature of the catalyst in the central zone of the catalyst bed to be substantially higher than the temperature in the outer region of the catalyst bed near the tube wall. Various adverse effects may occur due to the temperature difference. The cold part of the filling may remain too low for effective contact treatment, and the hot part of the filling may have a shorter life than expected. In either case, processing efficiency is reduced.

【0003】熱伝達の問題により、断熱系に比して恒温
反応器の効率は低下し、その商業的魅力も低下する。こ
れは、管の中心に対して十分な熱を与えるために恒温反
応器において高い管壁温度を必要とする吸熱系で特に当
てはまり、その結果高い温度勾配が生じ、最適性能では
ない。
[0003] Heat transfer problems reduce the efficiency of isothermal reactors and their commercial appeal as compared to adiabatic systems. This is especially true for endothermic systems that require high tube wall temperatures in a thermostatic reactor to provide sufficient heat to the center of the tube, resulting in high temperature gradients and non-optimal performance.

【0004】[0004]

【発明の要旨】触媒モノリスを使用すると、熱は所望方
向に向けられ得、よって熱勾配が低下し、効率及び触媒
性能が向上する。管型反応器における触媒上の熱分布の
均等化方法が提供され、その方法は管型反応器の各管に
1つ以上の触媒モノリスを充填することを特徴とする。
SUMMARY OF THE INVENTION With the use of a catalytic monolith, heat can be directed in the desired direction, thus reducing thermal gradients and improving efficiency and catalytic performance. A method is provided for equalizing the heat distribution on a catalyst in a tubular reactor, the method comprising charging each tube of the tubular reactor with one or more catalytic monoliths.

【0005】[0005]

【詳細な説明】「モノリス触媒」は、単方向もしくは多
方向チャネルを有する通常セラミック支持体を含む触媒
を意味する。前記支持体に1つ以上の触媒反応性金属を
含浸させてもよく、或いは支持体材料そのものが触媒反
応性材料(例えば、酸化鉄)であってもまたは触媒反応
性材料を含んでいてもよい。モノリス触媒は、容器の形
に近い形に形成され得るという利点を有する。よって、
管型反応器用モノリス触媒は十分に長い(数インチ〜数
フィートの長さ)円筒形であってもよく、通常その直径
はモノリス触媒を配置する管の内径よりもやや小さい。
単方向もしくは多方向チャネルは供給物が所望通りに流
れるようにモノリスに成形され得る。このようにして、
各チャネルは多くのルーズ触媒粒子に等しい表面積を有
する。
DETAILED DESCRIPTION "Monolith catalyst" means a catalyst comprising a conventional ceramic support having unidirectional or multidirectional channels. The support may be impregnated with one or more catalytically reactive metals, or the support material itself may be a catalytically reactive material (eg, iron oxide) or may include a catalytically reactive material. . Monolithic catalysts have the advantage that they can be formed in a shape close to that of a container. Therefore,
Monolithic catalysts for tubular reactors may be sufficiently long (several inches to several feet long) cylindrical and usually have a diameter slightly smaller than the inside diameter of the tube in which the monolithic catalyst is located.
Unidirectional or multidirectional channels can be formed into a monolith so that the feed flows as desired. In this way,
Each channel has a surface area equal to many loose catalyst particles.

【0006】チャネルの表面に触媒活性金属または金属
化合物を含浸させて、各チャネルを該チャネルの表面積
に等しい表面積を有する触媒として有効なものとしても
よい。或いは、モノリスを触媒反応性材料から構成して
もよい。
[0006] The surfaces of the channels may be impregnated with a catalytically active metal or metal compound to render each channel effective as a catalyst having a surface area equal to the surface area of the channel. Alternatively, the monolith may be composed of a catalytically reactive material.

【0007】管型反応器における触媒上の熱分布は、管
型反応器の管に充填したモノリス触媒のチャネルに熱を
所望のように下方に向けることにより均等化される。熱
は、吸熱反応器の管の温度プロフィルを均等化するため
には内向きに、または発熱反応の管の温度プロフィルを
均等化するためには外向きに向けられ得る。
[0007] The heat distribution on the catalyst in a tubular reactor is equalized by directing heat as desired downward to the channels of the monolith catalyst packed in the tubes of the tubular reactor. The heat may be directed inward to equalize the temperature profile of the tubes of the endothermic reactor or outward to equalize the temperature profile of the tubes of the exothermic reaction.

【0008】上記したように使用されるモノリス触媒
は、触媒床中の圧力低下を抑えるという別の利点を有す
る。
[0008] The monolithic catalyst used as described above has another advantage in that the pressure drop in the catalyst bed is suppressed.

【0009】本発明の方法は特に、吸熱反応であるエチ
ルベンゼンの脱水素化によりスチレンを製造するための
市販の恒温反応器に使用される。前記反応器は下記する
3つの重大な問題を有する:反応のために液空間速度は
低くなければならず、直径がより大きい管が必要とな
る。スチレン反応は吸熱反応であるので、熱を加えなけ
ればならず、大きな管では管の外側から触媒床の中心ま
での温度差が大きくなり、その結果触媒性能は悪くな
る。更に、熱を充填物の中心に加えるべく管壁の温度を
上昇させると、管壁の温度はエチルベンゼン及びスチレ
ンが分解し、よって望ましくない副生成物が生ずる恐れ
があるレベルに達し得る;管型恒温反応器は本質的に半
径流断熱反応器に比して高い圧力低下を示す。このため
に、活性及び選択性の点で管型反応器は不利である;供
給材料(エチルベンゼン)1モルが生成物(スチレン+
水素)2モルとなるので、上記した問題が顕著になる。
The process according to the invention is used in particular in a commercial thermostatic reactor for the production of styrene by the endothermic dehydrogenation of ethylbenzene. The reactor has three major problems: the liquid space velocity must be low for the reaction, and a larger diameter tube is required. Since the styrene reaction is an endothermic reaction, heat must be applied, and in large tubes the temperature difference from the outside of the tube to the center of the catalyst bed is large, resulting in poor catalyst performance. Furthermore, as the temperature of the tube wall is increased to apply heat to the center of the fill, the temperature of the tube wall can reach levels at which ethylbenzene and styrene can decompose and thus produce undesirable by-products; Isothermal reactors exhibit a substantially higher pressure drop compared to radial adiabatic reactors. For this reason, tubular reactors are disadvantageous in terms of activity and selectivity; one mole of feed (ethylbenzene) is converted to product (styrene +
(Hydrogen) 2 mol, so that the above-mentioned problem becomes remarkable.

【0010】モノリス触媒を使用すると、熱は各管中の
触媒床の中心に向けられ、管壁の温度が低下し、供給材
料及び生成物の望ましくない副生成物への分解が抑えら
れる。また、生ずる圧力低下はスチレン反応にとって有
利である。
With the use of monolith catalysts, heat is directed to the center of the catalyst bed in each tube, reducing the temperature of the tube walls and reducing the decomposition of feedstock and products into unwanted by-products. The resulting pressure drop is also advantageous for the styrene reaction.

【0011】前記したモノリス触媒は、他の吸熱反応
(例えば、脱水素化方法及びオレフィン分解方法)の管
温度プロフィールをコントロールするのに有用である。
モノリス触媒を、チャネルにより反応管の中心から放熱
させ、よってエポキシドの気相製造、他の酸化方法及び
ヒドロクラッキング方法のような発熱反応にも有用とな
るように改質してもよい。
The monolithic catalysts described above are useful for controlling the tube temperature profile of other endothermic reactions (eg, dehydrogenation and olefin cracking processes).
The monolith catalyst may be modified to radiate heat from the center of the reaction tube through the channel and thus be useful for exothermic reactions such as epoxide gas phase production, other oxidation methods and hydrocracking methods.

【0012】本明細書に記載の本発明の趣旨または範囲
を逸脱することなく本発明に対して多くの変更及び改変
をなし得ることは当業者に自明である。
It will be apparent to those skilled in the art that many changes and modifications can be made to the present invention without departing from the spirit or scope of the invention described herein.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G075 AA03 AA45 AA62 AA63 BA05 BA06 BD01 BD14 CA02 CA03 CA54 EE33 4H006 AA02 AC12 BA05 BA14 BA18 BA30 BC10 BC11 BD20 4H039 CA21 CC10  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G075 AA03 AA45 AA62 AA63 BA05 BA06 BD01 BD14 CA02 CA03 CA54 EE33 4H006 AA02 AC12 BA05 BA14 BA18 BA30 BC10 BC11 BD20 4H039 CA21 CC10

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 管型反応器の各管に1つ以上の触媒モノ
リスを充填することを特徴とする管型反応器における触
媒上の熱分布の均等化方法。
1. A method for equalizing heat distribution on a catalyst in a tubular reactor, wherein each tube of the tubular reactor is filled with one or more catalyst monoliths.
【請求項2】 触媒モノリスが1つ以上の触媒反応性金
属を含浸させたセラミックモノリス支持体を含むことを
特徴とする請求項1に記載の方法。
2. The method according to claim 1, wherein the catalytic monolith comprises a ceramic monolith support impregnated with one or more catalytically reactive metals.
【請求項3】 触媒モノリスがエチルベンゼンのスチレ
ンへの接触脱水素化に有用な酸化鉄を含み、熱が各管の
中心に向かうように触媒モノリス中の流路が配列されて
いることを特徴とする請求項1に記載の方法。
3. The catalyst monolith contains iron oxide useful for catalytic dehydrogenation of ethylbenzene to styrene, and the channels in the catalyst monolith are arranged so that heat is directed toward the center of each tube. The method of claim 1, wherein
【請求項4】 触媒反応性金属がニッケル、コバルト及
びモリブデンからなる群から選択され、触媒モノリスが
炭化水素の脱水素化に有用であり、熱が各管の中心に向
かうように触媒モノリス中の流路が配列されていること
を特徴とする請求項2に記載の方法。
4. The catalyst-reactive metal is selected from the group consisting of nickel, cobalt and molybdenum, wherein the catalyst monolith is useful for hydrocarbon dehydrogenation and the heat in the catalyst monolith is such that heat is directed to the center of each tube. 3. The method according to claim 2, wherein the channels are arranged.
【請求項5】 触媒反応性金属が銀であり、触媒モノリ
スがエポキシドの気相製造に有用であり、熱が各管の中
心から去るように触媒モノリス中の流路が配列されてい
ることを特徴とする請求項2に記載の方法。
5. The method of claim 1, wherein the catalytically reactive metal is silver, the catalytic monolith is useful for the vapor phase production of epoxides, and the channels in the catalytic monolith are arranged so that heat leaves the center of each tube. 3. The method according to claim 2, wherein the method comprises:
JP2001393138A 2001-01-04 2001-12-26 Method of equalizing heat distribution in reactor tube Pending JP2002263476A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US754793 2001-01-04
US09/754,793 US20020085975A1 (en) 2001-01-04 2001-01-04 Method to equalize heat distribution in reactor tube

Publications (1)

Publication Number Publication Date
JP2002263476A true JP2002263476A (en) 2002-09-17

Family

ID=25036361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001393138A Pending JP2002263476A (en) 2001-01-04 2001-12-26 Method of equalizing heat distribution in reactor tube

Country Status (3)

Country Link
US (1) US20020085975A1 (en)
JP (1) JP2002263476A (en)
DE (1) DE10200050A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018531969A (en) * 2015-11-04 2018-11-01 エクソンモービル ケミカル パテンツ インコーポレイテッド Heating tube conversion system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110312571A (en) * 2017-01-24 2019-10-08 巴斯夫公司 For epoxidised integral catalyzer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912077A (en) * 1988-07-15 1990-03-27 Corning Incorporated Catalytically active materials and method for their preparation
SK279333B6 (en) * 1989-10-16 1998-10-07 Haldor Topsoe A/S Catalyst for preparing aldehydes
US6005143A (en) * 1998-08-07 1999-12-21 Air Products And Chemicals, Inc. Use of a monolith catalyst for the hydrogenation of dinitrotoluene to toluenediamine
MY124615A (en) * 1998-09-03 2006-06-30 Dow Global Technologies Inc Autothermal process for the production of olefins
US6623707B1 (en) * 2000-06-19 2003-09-23 Corning Incorporated Monolithic catalyst dehydrogenation reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018531969A (en) * 2015-11-04 2018-11-01 エクソンモービル ケミカル パテンツ インコーポレイテッド Heating tube conversion system and method

Also Published As

Publication number Publication date
US20020085975A1 (en) 2002-07-04
DE10200050A1 (en) 2003-02-06

Similar Documents

Publication Publication Date Title
JP5667624B2 (en) Multi-stage, multi-tube shell-and-tube reactor
JP6877148B2 (en) Improved dehydrogenation process with exothermic material
JP4554359B2 (en) Catalytic oxidative dehydrogenation process and microchannel reactor therefor
KR101547713B1 (en) Improved endothermic hydrocarbon conversion process
JP5089008B2 (en) Rod insert in reaction tube
TWI324244B (en) Shell-and-tube reactor or heat exchanger, method for producing an oxide by using the same, and method for increasing the heat transfer coefficient of first tubes of the same
EP1358441B2 (en) Reactor and cooler assembly for exothermic reactions
JP2003507161A5 (en)
WO2014131435A1 (en) Reactor for an auto-poisoning proces
CN112105593B (en) High energy efficiency carbon dioxide conversion system and method
US20070219279A1 (en) Method for enhancing catalyst selectivity
JP2002521192A5 (en)
US20170106360A1 (en) Isothermal chemical process
TWI288127B (en) Method of producing unsaturated acid in fixed-bed catalytic partial oxidation reactor with enhanced heat control system
CN1845785B (en) Method of producing unsaturated aldehyde and unsaturated acid in fixed-bed catalytic partial oxidation reactor with enhanced heat control system
JP2002263476A (en) Method of equalizing heat distribution in reactor tube
US7678343B2 (en) Metallic monolith catalyst support for selective gas phase reactions in tubular fixed bed reactors
JPS63216835A (en) Production of methacrolein and/or methacrylic acid
WO2018234975A1 (en) Improved reactor designs for heterogeneous catalytic reactions
WO1994012274A1 (en) Reactor and process for highly exothermic or endothermic reactions
AU2002241969A1 (en) Exothermic reaction system
JPH08127545A (en) Production of methane from carbon dioxide
JP2024511854A (en) Process carried out adiabatically for the production of 1,3-butadiene from a mixture of ethanol and acetaldehyde
KR100992173B1 (en) Shell-and-tube heat exchanger type reactor and method of producing unsaturated aldehyde and/or unsaturated fatty acid using the same
CN116688877A (en) Reactor and method for preparing carbon dioxide by oxidative coupling of methane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070328

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070911