JP2002263458A - Gas-liquid separating membrane - Google Patents

Gas-liquid separating membrane

Info

Publication number
JP2002263458A
JP2002263458A JP2001111961A JP2001111961A JP2002263458A JP 2002263458 A JP2002263458 A JP 2002263458A JP 2001111961 A JP2001111961 A JP 2001111961A JP 2001111961 A JP2001111961 A JP 2001111961A JP 2002263458 A JP2002263458 A JP 2002263458A
Authority
JP
Japan
Prior art keywords
gas
silicon substrate
liquid separation
silicon
shallow groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001111961A
Other languages
Japanese (ja)
Other versions
JP4818529B2 (en
JP2002263458A5 (en
Inventor
Hiromitsu Yatani
宏光 八谷
Manabu Negishi
学 根岸
Hiroya Shimizu
博弥 清水
Satoru Ito
哲 伊東
Akira Yo
明 楊
Seishiro Oya
誠志郎 大屋
Zen Nakano
禅 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Prefecture
National Institute of Advanced Industrial Science and Technology AIST
DKK TOA Corp
Original Assignee
Kanagawa Prefecture
National Institute of Advanced Industrial Science and Technology AIST
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Prefecture, National Institute of Advanced Industrial Science and Technology AIST, DKK TOA Corp filed Critical Kanagawa Prefecture
Priority to JP2001111961A priority Critical patent/JP4818529B2/en
Publication of JP2002263458A publication Critical patent/JP2002263458A/en
Publication of JP2002263458A5 publication Critical patent/JP2002263458A5/ja
Application granted granted Critical
Publication of JP4818529B2 publication Critical patent/JP4818529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a gas-liquid separating membrane for a diaphragm type chemical sensor, which is easily bonded to a sensor body even when the sensor is micronized, is adaptive to production, does not warp, keeps the rigidity and the satisfactory gas permeability and surely holds an internal liquid. SOLUTION: Two silicon substrates are bonded to each other. A gas- permeable pore is prepared by forming a submicron shallow groove concavely along the bonded surface on any of the bonded surfaces. Through-holes through which gas can entrance and exit are formed on each of the silicon substrates so that the through-holes on one silicon substrate are made to communicate with those on the other silicon substrate through the shallow groove. The vicinity of the part of the through-hole on any of the silicon substrates to be connected with the shallow groove is treated to have water repellence. Thereby, the objective gas-liquid separating membrane is obtained. As a result, the obtained gas-liquid separating membrane shows excellent gas permeability and excellent sensitivity, holds the internal liquid surely, keeps the rigidity and is adaptive to mass production.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、気体は透過させる
が、液体の透過は遮断する気液分離膜に関連する。更に
詳しくは、内部に検知極、対極、電解液(内部液)など
を保持した構造の種々の隔膜式センサの隔膜として使用
が可能な気液分離膜に関連する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas-liquid separation membrane that allows gas to permeate but blocks liquid permeation. More specifically, the present invention relates to a gas-liquid separation membrane that can be used as a diaphragm of various diaphragm sensors having a structure in which a detection electrode, a counter electrode, an electrolytic solution (internal solution), and the like are held.

【0002】[0002]

【従来の技術】従来からセンチメートルサイズの電量式
及び定電位電解式の各種センサが実用化されている。な
かでも漏洩ガス検知警報器などに広く用いられており、
許容濃度(ACGIH又は日本産業衛生学会の勧告値)
付近の低濃度ガスに対しても迅速に応答する性能を有し
たセンサとなっている。
2. Description of the Related Art Conventionally, various sensors of a coulometric type and a constant potential electrolytic type having a centimeter size have been put to practical use. Especially, it is widely used for leak gas detection alarms, etc.
Tolerable concentration (ACGIH or recommended value by Japan Society for Occupational Health)
The sensor has the ability to quickly respond to low concentration gas in the vicinity.

【0003】これらの電量式及び定電位電解式ガスセン
サは、より広くは電気化学的センサと呼ばれ、気液分離
膜(隔膜)とセンサ本体等の内部に、作用極(検知極)
・対極などとともに内部液(電解液)などを保持した構
造となっている。ここで隔膜として用いる気液分離膜の
機能は、測定対象試料気体中の成分ガスをセンサの内部
に輸送し、電気化学的な検出反応に供するとともに、反
応に不可欠な電解液をセンサの内部に閉じこめて保持す
ることである。気液分離膜には、目的によって、種々の
ものが用いられてきた。大気中レベルの酸素センサの場
合は、高濃度(%オーダー)であるためにポアサイズや
気孔率が小さい気液分離膜で使用可能であり、分子間の
空隙を利用したふっ素化合物やシリコーンなど連続膜の
フィルムも使用できた。
[0003] These coulometric and potentiostatic gas sensors are more widely called electrochemical sensors and include a working electrode (detection electrode) inside a gas-liquid separation membrane (diaphragm) and a sensor body.
・ It has a structure that holds the internal liquid (electrolyte) together with the counter electrode. Here, the function of the gas-liquid separation membrane used as a diaphragm is to transport the component gas in the sample gas to be measured to the inside of the sensor and provide it for the electrochemical detection reaction, and to put the electrolytic solution essential for the reaction inside the sensor. It is to keep it closed. Various gas-liquid separation membranes have been used depending on the purpose. High-concentration (% order) oxygen sensors at the atmospheric level can be used for gas-liquid separation membranes with small pore size and porosity, and continuous membranes such as fluorine compounds and silicones utilizing intermolecular voids. Could be used.

【0004】一方、塩素ガス検知センサの場合は、対象
ガスが有毒ガスであり、ppb〜ppmオーダーと低濃
度ガスであるために、所定の感度を確保し、また十分な
応答速度を得るためには、気液分離膜としては、ポリテ
トラフルオロエチレン等のフッ素化合物を延伸して作製
した有効径が1ミクロン以下(サブミクロン)のレベル
の多数の空隙を有する気孔率が50−70%のいわゆる
多孔質メンプレン等が用いられてきた。
On the other hand, in the case of a chlorine gas detection sensor, since the target gas is a toxic gas and is a gas having a low concentration on the order of ppb to ppm, it is necessary to secure a predetermined sensitivity and obtain a sufficient response speed. Is a so-called gas-liquid separation membrane having a large number of voids having an effective diameter of 1 micron or less (submicron) and having a porosity of 50-70%, which is produced by stretching a fluorine compound such as polytetrafluoroethylene. Porous membranes and the like have been used.

【0005】しかしセンサそのものが、小型・微小化し
て、特願平2000−132990のように例えば、5
mm×5mm×3mm程度の石英ガラスブロックに電極
の本体を加工したセンサ本体や、特公平6−1254号
公報に記載された酸素センサのようにシリコン基板上
に、異方性エッチングにより作成されたセンサ本体の場
合は、微小であるために、気液分離膜に、既存のポリテ
トラフルオロエチレンなどを延伸した多孔質メンブレン
を用いると、たわみなどを生じ、検知電極と隔膜との位
置関係を微小サイズにおいて厳密に管理することは困難
で隔膜と検知電極との距離を一定にしにくく、低濃度測
定の場合、精度上問題が生じるだけでなく、組立作業上
の困難も多い。
However, the sensor itself has become smaller and smaller, and for example, as disclosed in Japanese Patent Application No. 2000-132990, 5
The sensor body was formed by anisotropic etching on a silicon substrate like a sensor body obtained by processing the body of an electrode on a quartz glass block of about mm × 5 mm × 3 mm or an oxygen sensor described in Japanese Patent Publication No. 6-1254. In the case of the sensor body, since it is very small, if a porous membrane made by stretching an existing polytetrafluoroethylene or the like is used for the gas-liquid separation membrane, deflection etc. will occur, and the positional relationship between the detection electrode and the diaphragm will be minute. It is difficult to strictly control the size, and it is difficult to keep the distance between the diaphragm and the detection electrode constant. In the case of low concentration measurement, not only a problem occurs in accuracy, but also there are many difficulties in assembling work.

【0006】そこでこうしたガラスやシリコンウエハと
いった新しい微小センサ本体の材質に適合した気液分離
膜の開発が課題となっており、シリコンウエハーをDe
epRIE(反応性イオンエッチング)により孔あけ加
工した膜材や、アルミナを陽極酸化して多孔質化した膜
材等が検討されている。例えば、厚さ160μmのシリ
コンウェハーに、DeepRIEにより、ポアサイズが
φ30μmからφ100μm程度の貫通孔をあけること
ができる。また、厚さ10μmのアルミナに陽極酸化法
によって、ポアサイズφ0.03μm程度の貫通口をあ
けることができる。
Therefore, the development of a gas-liquid separation film suitable for the material of such a new microsensor body such as glass or silicon wafer has become an issue.
A film material formed by piercing by epRIE (reactive ion etching) and a film material obtained by anodizing alumina to make it porous have been studied. For example, a through hole having a pore size of about 30 μm to about 100 μm can be formed in a silicon wafer having a thickness of 160 μm by DeepRIE. Further, a through hole having a pore size of about 0.03 μm can be formed in an alumina having a thickness of 10 μm by anodization.

【0007】[0007]

【発明が解決しようとする課題】発明者等は既存の延伸
して作製されたポリテトラフルオロエチレンなどの材質
によらない気液分離膜として、厚さ160μm程度のシ
リコンウエハーにDeepRIEによりポアサイズがφ
30μmの貫通孔をあけたものを、1,1,1,3,
3,3−ヘキサメチルジシラザンなどの試薬を用いてシ
ラン化処理により撥水化して用いるなどの方法を検討
し、更にポアサイズを小さくする検討を行ってきた。一
定の厚みをもったシリコンウエハ等に直接、細孔を貫通
させるために方法にはプラズマ状のイオンを基板上にた
たきつけて孔をあける方法などがある。
SUMMARY OF THE INVENTION The inventors of the present invention have developed a conventional stretch-formed gas-liquid separation membrane which is not made of a material such as polytetrafluoroethylene and has a pore size of φ160 μm on a silicon wafer having a thickness of about 160 μm by DeepRIE.
The one with a 30 μm through hole was made 1,1,1,3,
A method of using a reagent such as 3,3-hexamethyldisilazane to make it water-repellent by a silanization treatment and the like has been studied, and further studies have been made to reduce the pore size. As a method for directly penetrating pores into a silicon wafer or the like having a certain thickness, there is a method of punching holes by striking plasma-like ions on a substrate.

【0008】DeepRIE法(RIEはリアクティフ
゛・イオン・エッチンク゛の略)は、周辺の基板材質
が、プラズマ状のイオンによって削られるために細孔径
が、意図した孔径よりも拡がってアスペクト比が低くな
るという問題を改善できる方法である。プラズマ状のイ
オンを基板上にたたきつけて孔をあける際に、周辺の基
板材質が、削られて細孔径が、意図した孔径よりも拡が
ってアスペクト比が低くなるのを避けるために、保護膜
になる材質を細孔周辺に形成しつつ、エッチングを進め
る方法で、アスペクト比が向上し、より細い孔を開穿す
るのに、比較的、適している。
In the Deep RIE method (RIE is an abbreviation for reactive ion etching), since the surrounding substrate material is shaved by plasma-like ions, the pore diameter becomes larger than intended and the aspect ratio becomes lower. This is a method that can improve the problem. When drilling holes by striking plasma-like ions on the substrate, the surrounding substrate material is shaved to prevent the pore diameter from expanding beyond the intended hole diameter and lowering the aspect ratio. A method in which the material is formed around the pores while etching is performed, the aspect ratio is improved, and the method is relatively suitable for forming finer holes.

【0009】この技術を用いた場合でも、アスペクト比
が20でウエハの厚みが100ミクロンであった場合に
は5ミクロンの孔が到達できる最小孔径である。実際に
は、気液分離膜に用いる孔径はサブミクロンのオーダー
であって、サブミクロンの孔径を開穿しようとすると厚
み10ミクロンのシリコンウエハを用いることになり、
機械的強度や保持安定性に難点が出てきて気体用の化学
センサの隔膜として適しているサブミクロンのオーダー
の細い孔径の膜を製作することは、実質的に困難であっ
た。更に細孔を気液分離機能を付与するためには、所定
の細孔径を確保するともに、孔の周辺部に撥水性を持っ
た物質を配置する必要があった。
Even when this technique is used, when the aspect ratio is 20 and the thickness of the wafer is 100 μm, the diameter of the hole is the minimum diameter at which a hole of 5 μm can reach. Actually, the pore size used for the gas-liquid separation membrane is on the order of submicron, and if a pore size of submicron is to be drilled, a silicon wafer having a thickness of 10 micron will be used.
Difficulties have emerged in mechanical strength and retention stability, and it has been substantially difficult to produce a membrane with a small pore size on the order of submicrons suitable as a diaphragm for a chemical sensor for gas. Further, in order to provide the pores with a gas-liquid separation function, it is necessary to secure a predetermined pore diameter and to arrange a water-repellent substance around the pores.

【0010】[0010]

【課題を解決するための手段】発明者らは、こうした従
来技術の到達点を吟味し、シリコン基板を材料物質とし
て(1)機械的にも堅牢でたわみを発生せず、(2)気
液分離膜として使用できる程度に気液分離機能を維持し
つつ気体が透過できるような気体の経路の孔径や断面積
(実効透過面積)及び透過距離の見積り(3)孔近傍へ
のを撥水性の付与方法になどについて、検討した結果、
本発明に想到した。
The inventors of the present invention have examined the point of the prior art, and have found that using a silicon substrate as a material, (1) it is mechanically robust and does not generate deflection, and (2) gas-liquid Estimation of the hole diameter, cross-sectional area (effective transmission area) and transmission distance of the gas path through which the gas can pass while maintaining the gas-liquid separation function to the extent that it can be used as a separation membrane. As a result of examining the grant method, etc.,
The present invention has been made.

【0011】発明者らは、膜としての機械的な強度を向
上させるために、シリコン基板を2枚張り合わせる方法
をとった。また気体が通過する経路としては、2層の接
合平面に、微細なギャップを設け、これを孔径と見立て
て気液分離膜とすることを検討した。つまり2枚のシリ
コン基板を接合し、接合面のいずれかの一面に接合面に
沿って浅溝を凹設してなり、各シリコン基板に設けられ
た貫通孔が、前記浅溝を介してのみ連通するようにして
なるとともに、いずれか一方のシリコン基板の貫通孔の
凹設された浅溝への連接部の近傍を撥水性にすることに
より気液分離膜とする。
The inventors have adopted a method of bonding two silicon substrates in order to improve the mechanical strength of the film. Further, as a path through which the gas passes, a fine gap was provided in the joint plane of the two layers, and a gas-liquid separation membrane was examined by regarding this as a hole diameter. In other words, two silicon substrates are joined together, and a shallow groove is formed along one of the joining surfaces along the joining surface, and the through holes provided in each silicon substrate are formed only through the shallow groove. In addition, the gas-liquid separation film is formed by making the vicinity of the portion connected to the recessed shallow groove of the through hole of one of the silicon substrates water-repellent.

【0012】この方法においては、 (1)まず二枚のシリコン基板には、DeepRIEを
用いて数多くのミクロンレベルの貫通孔を、両シリコン
基板を重ね合わせたときに、両シリコン基板の貫通孔同
士が重なり合わず図2に記載するような接合面に沿って
凹状に開穿した溝によってのみ、連通するように形成す
る。
In this method, (1) First, when a large number of micron-level through-holes are formed on two silicon substrates by using Deep RIE, when the two silicon substrates are overlapped, the through-holes of the two silicon substrates are connected to each other. Are formed so as to communicate with each other only by grooves which are not overlapped with each other and are concavely opened along the joining surface as shown in FIG.

【0013】(2)次に気体の気液による選択性が制御
されて透過する経路をシリコンウエハを用いるにあたっ
て、基板を貫通する孔を開穿して形成するという従来技
術にかえて、シリコンウエハの平面上に凹状の溝を開穿
して形成する。この開穿方法は、以下の通りである。 1)2枚のシリコン基板のうち、一方のシリコン基板の
片面に溝の幅や長さや形状を所定の設計に従って、レー
ザ加工などでパターニングしたステンシルなどをマスク
材として張り合わせておく。 2)このパターニングした部分にイオンプラズマによる
ECR(ECRはエレクトロサイクロトロンレゾナンス
の略)エッチングを施す。アルゴンイオンによるエッチ
ングの場合、溝の深さ方向の開穿速度は、1分間あたり
ナノメートルレベルの程度で制御できるので、エッチン
グ時間を設定することにより、この凹状の溝を所望のサ
ブミクロンのレベルで開穿することは十分に可能であ
る。
(2) Next, in using a silicon wafer for a path through which gas gas-liquid selectivity is controlled and using a silicon wafer, a silicon wafer is formed instead of a conventional technique in which a hole penetrating a substrate is formed. A concave groove is formed by drilling on the flat surface. The method for perforating is as follows. 1) A stencil or the like patterned by laser processing or the like is pasted as a mask material on one surface of one of the two silicon substrates according to a predetermined design with a groove having a width, a length, and a shape. 2) ECR (ECR is an abbreviation for Electrocyclotron Resonance) etching is performed on the patterned portion by ion plasma. In the case of etching with argon ions, the opening rate in the depth direction of the groove can be controlled on the order of nanometers per minute. Therefore, by setting the etching time, the concave groove can be formed at a desired submicron level. It is quite possible to pierce with.

【0014】(3)二枚のシリコン基板のうち、片面に
浅溝を凹設したシリコン基板に対して浅溝を凹設した面
の反対側からプラズマCVD処理などを施して貫通孔の
凹設された浅溝への連接部を撥水性にする。 (4)二枚のシリコン基板を片面に浅溝を凹設した面を
接合面として、すでに知られた接合方法で接合する。こ
こで貫通孔の大きさや形状、その数は、シリコン基板の
機械的な強度が失われない程度であってセンサの隔膜と
して使用な程度に有効面積を有しているならば、特に限
定はない。
(3) Of the two silicon substrates, a silicon substrate having a shallow groove recessed on one surface is subjected to plasma CVD treatment or the like from the opposite side of the surface having the shallow groove recessed to form a through hole. The connection to the shallow groove made water repellent. (4) The two silicon substrates are joined by a known joining method with the surface having a shallow groove recessed on one surface as the joining surface. Here, the size, shape, and number of the through-holes are not particularly limited as long as the mechanical strength of the silicon substrate is not lost and the through-hole has an effective area enough to be used as a sensor diaphragm. .

【0015】また請求項2の気液分離膜では、二枚のシ
リコン膜に設ける貫通孔を細長のスリット孔とする。つ
まり、一のシリコン基板には貫通孔を複数スリット状に
設け、該基板の片面に各細長スリット間にスリットに対
して直角方向に複数の浅溝を凹設せしめる。このシリコ
ン基板の浅溝を凹設していない反対側の面の貫通孔の部
分に、プラズマCVD法でフッ化ビニリデンを既に知ら
れた手法で撥水性処理を施す。他のシリコン基板には2
枚を重ね合わせた際に、一シリコン基板の細長スリット
と重なり合わない位置に貫通孔を細長スリット状に設け
て、一のシリコン基板の浅溝を凹設した面を重なり面と
して両基板をすでに知られた接合方法のうち、好適な方
法である有機接着剤接合方法で接合した。
Further, in the gas-liquid separation membrane of the present invention, the through holes provided in the two silicon films are elongated slit holes. In other words, a plurality of through holes are formed in one silicon substrate in the form of slits, and a plurality of shallow grooves are formed on one surface of the substrate between the elongated slits in a direction perpendicular to the slits. The silicon substrate is subjected to a water-repellent treatment by plasma CVD using a known method using vinylidene fluoride in the portion of the through-hole on the opposite surface where the shallow groove is not recessed. 2 for other silicon substrates
When the two substrates are stacked, a through-hole is provided in the shape of an elongated slit at a position that does not overlap with the elongated slit of one silicon substrate, and the surface with the shallow groove of one silicon substrate recessed is used as an overlapping surface, and both substrates are already Among known joining methods, joining was performed by an organic adhesive joining method which is a suitable method.

【0016】基本的な構造と製造方法は請求孔1の気液
分離膜と同様であるが、広くガスの透過面を形成できる
とともに、貫通孔としての細長スリットと直角方向に交
差するかたちで細長に浅溝を凹設するので、2枚のシリ
コン基板を重ね合わせたとき、各基板に形成された貫通
孔は確実に凹設された浅溝で連通し、かつ両基板の貫通
孔同士が直接、重なりあってリークを生じる危険性がな
いという特徴がある。この発明による気液分離膜は、シ
リコン基板を材料としているので、作用極やセンサボデ
ィなどもシリコン基板で作成することによって、センサ
全体を組み立てる場合の気液分離膜との接合も、シリコ
ン同士の接合となり、製造プロセスが単純になる。
Although the basic structure and manufacturing method are the same as those of the gas-liquid separation membrane of claim 1, the gas permeable surface can be formed widely and the slit is elongated at right angles to the elongated slit as a through hole. When two silicon substrates are overlapped, the through-holes formed in each substrate are reliably communicated with the recessed shallow grooves, and the through-holes of both substrates are directly connected to each other. There is a characteristic that there is no danger of leakage due to overlapping. Since the gas-liquid separation film according to the present invention uses a silicon substrate as a material, the working electrode and the sensor body are also made of the silicon substrate, so that the bonding with the gas-liquid separation film when assembling the entire sensor can be performed by silicon-to-silicon bonding. Joining simplifies the manufacturing process.

【0017】[0017]

【発明の実施の形態】以下、図に沿って本発明の実施形
態を説明する。図1は本発明に係る気液分離膜を用いた
シリコン基板を接合して隔膜式化学センサの実施形態を
示す分解斜視図である。図1のシリコン基板を接合した
隔膜式化学センサにおいて、対極1は、厚さ300μm
のシリコン基板にステンシルマスクを使用して白金をス
パッタリングして形成している。センサボディ2は、内
部に電解液を収容する内部液溜めである。厚さ500μ
mのシリコンウエハを使用している。作用極3は100
μmのシリコンウエハに水酸化カリウムで異方性エッチ
ングでスリット状に形成され電解液の収容される空間と
気液分離部を貫通させるとともに、貫通部壁面にステン
シルマスクを使用して白金層をスパッタリングなどで形
成して電極表面としている。厚み100μmのシリコン
基板(一)4は2枚の気液分離膜を構成するシリコン基
板のうちの一枚で撥水性処理を施していないものであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an exploded perspective view showing an embodiment of a diaphragm type chemical sensor obtained by bonding a silicon substrate using a gas-liquid separation membrane according to the present invention. In the diaphragm type chemical sensor in which the silicon substrate of FIG. 1 is bonded, the counter electrode 1 has a thickness of 300 μm.
Is formed by sputtering platinum on a silicon substrate using a stencil mask. The sensor body 2 is an internal liquid reservoir that stores an electrolyte therein. 500μ thickness
m silicon wafers are used. Working electrode 3 is 100
A slit is formed by anisotropic etching with potassium hydroxide on a silicon wafer of μm and penetrates the space where the electrolyte is stored and the gas-liquid separation part, and a platinum layer is sputtered on the wall of the penetration part using a stencil mask. It is formed as an electrode surface. The silicon substrate (1) 4 having a thickness of 100 μm is one of the two silicon substrates constituting the gas-liquid separation film, which has not been subjected to the water-repellent treatment.

【0018】厚み100μmのシリコン基板(二)5は
他の一枚で接合面に浅溝を凹設してあり、外気に晒され
る面からスリット状貫通孔にプラズマCVD法でフッ化
ビニリデンを堆積させるなど既に知られた手法で撥水性
処理を施した。微小空気孔への撥水性処理を施した場合
の耐水圧については、理論的には、次のような式にした
がって気液分離膜として既知のポリテトラフルオロエチ
レン等のフッ素化合物を延伸して有効径が1ミクロン以
下(サブミクロン)のレベル多数の空隙を有する気孔率
が50−70%のいわゆる多孔質メンプレンとの比較推
定が可能である。 耐水圧P=−2γCOSΘ(1/w+1/h) γ 表面張力: 水の場合 0.073N/m Θ 接触角: 110° w 孔横幅 h 孔縦幅
Another silicon substrate (2) 5 having a thickness of 100 μm has a shallow groove recessed in the joint surface, and vinylidene fluoride is deposited on the slit-shaped through-hole from the surface exposed to the outside by a plasma CVD method. Water repellency treatment was performed by a known method. For the water pressure resistance when water repellency treatment is applied to micro air holes, theoretically, it is effective by stretching a fluorine compound such as polytetrafluoroethylene known as a gas-liquid separation membrane according to the following formula It is possible to make a comparative estimation with a so-called porous membrane having a porosity of 50 to 70% having a large number of voids at a level of 1 micron or less (submicron). Water pressure P = -2γCOSΘ (1 / w + 1 / h) γ Surface tension: 0.073 N / m in the case of water Contact angle: 110 ° w Width of hole h Width of hole

【0019】センサの大きさは20mm角のシリコン基
板から各層のセンサ材料がそれぞれ12個取ることがで
き、仕上がり寸法は約3mm強角のセンサを得ることが
できる
As for the size of the sensor, twelve sensor materials of each layer can be obtained from a silicon substrate having a square of 20 mm, and a sensor having a finished dimension of about 3 mm can be obtained.

【0020】図2は、気液分離膜を含む隔膜式化学セン
サの断面図である。この図により本発明になる気液分離
膜を更に詳しく説明する。図1と対応して、対極1、セ
ンサボディ(内部液溜め)2、作用極3である。気液分
離膜を構成するシリコン基板(一)4には、スリット状
に貫通孔6が形成されており、他方の気液分離膜を構成
するシリコン基板(二)5には、接合されたときに貫通
孔6と重ならないようにスリット状の貫通孔7が形成さ
れている。このスリットの重ね合わせで貫通孔6と貫通
孔7は、シリコン基板5のシリコン基板(一)4に接合
する面に凹設された浅溝8(太線で表示)によって連通
している。この実施の形態では、シリコン基板(一)4
に開穿されたスリット状貫通孔は、長さが1.84mm
で幅が0.11mmであって、0.27mm間隔で7本
形成されている。またシリコン基板(二)5のシリコン
基板に開穿されたスリット状貫通孔は、長さが4.と同
じ1.84mmで幅が0.06mm(60μm)と細く
なっており、ピッチは4.と同様に0.27mm間隔で
6本形成されており、2枚を重ね合わせたときに、2対
のスリット孔同士が重なり合わないように配置してすで
に知られた接合方法のうち、好適な方法である有機接着
剤接合方法で接合した。このスリット状の貫通孔はDe
epRIE法(RIEはリアクティフ゛・イオン・エッ
チンク゛の略)によって行う。シリコン基板(二)5接
合する面には、スリットに直角に、長さ1.84mm幅
0.29mm(290μm)の凹形の浅溝が5本凹設さ
れており、この浅溝の深さは約0.2μm程度に浅く加
工しているが、この加工はECR(ECRはエレクトロ
サイクロトロンレゾナンスの略)エッチングによれば、
溝の深さ方向の開穿速度は、1分間あたりナノメートル
レベルなので、10nm程度の精度で可能であり、気液
を選択透過させるギャップを安定して形成することが可
能である。このようにして形成したギャップは幅が29
0μm、高さ約0.2μm、貫通孔同士を連通する気体
の透過する経路長は、上下2枚のシリコン基板に開穿さ
れたスリット幅の差の半分に相当し、25μmとなる。
この実施の形態によるとギャップ幅290μm、ギャッ
プ高さ約0.2μm、経路長25μmの孔が60個開穿
される。この気液分離膜の耐水圧は、すでに記載した理
論式から250KPa程度であり、PTFEの場合と比
較しても気液分離性能に遜色はない。
FIG. 2 is a sectional view of a diaphragm type chemical sensor including a gas-liquid separation membrane. The gas-liquid separation membrane according to the present invention will be described in more detail with reference to FIG. 1, a counter electrode 1, a sensor body (internal liquid reservoir) 2, and a working electrode 3 correspond to FIG. A slit-shaped through hole 6 is formed in the silicon substrate (1) 4 constituting the gas-liquid separation film, and the silicon substrate (2) 5 constituting the other gas-liquid separation film has A slit-shaped through hole 7 is formed so as not to overlap with the through hole 6. The through holes 6 and the through holes 7 are communicated with each other by a shallow groove 8 (shown by a thick line) formed in a surface of the silicon substrate 5 that is joined to the silicon substrate (1) 4 by overlapping the slits. In this embodiment, the silicon substrate (1) 4
The slit-shaped through hole is 1.84 mm long
The width is 0.11 mm, and seven lines are formed at intervals of 0.27 mm. The slit-shaped through hole formed in the silicon substrate of the silicon substrate (2) 5 has a length of 4. 1.84 mm, the same width as 0.06 mm (60 μm), and the pitch is 4. 6 are formed at intervals of 0.27 mm in the same manner as described above, and when two sheets are overlapped, two pairs of slit holes are arranged so as not to overlap with each other, and among the known joining methods, suitable ones are used. Joining was performed using an organic adhesive joining method. This slit-shaped through hole is De
This is performed by the epRIE method (RIE is an abbreviation for reactive ion etching). Five concave shallow grooves of 1.84 mm in length and 0.29 mm in width (290 μm) are provided at right angles to the slit on the surface to be bonded to the silicon substrate (2) 5. Is processed as shallow as about 0.2 μm. According to ECR (ECR is an abbreviation for Electrocyclotron Resonance) etching,
Since the opening speed in the depth direction of the groove is on the order of nanometers per minute, it is possible with an accuracy of about 10 nm, and it is possible to stably form a gap for selectively transmitting gas and liquid. The gap thus formed has a width of 29.
A path length of 0 μm, a height of about 0.2 μm, and a gas passing through the through-holes is 25 μm, which corresponds to a half of a difference between slit widths formed in two upper and lower silicon substrates.
According to this embodiment, 60 holes having a gap width of 290 μm, a gap height of about 0.2 μm, and a path length of 25 μm are formed. The water pressure resistance of this gas-liquid separation membrane is about 250 KPa from the theoretical formula already described, and the gas-liquid separation performance is comparable to that of PTFE.

【0021】こうして作成された気液分離膜を用いてこ
の化学センサを内部液に4.6モルの臭化リチウム溶液
を封入して作用極に対して−0.250〜−0.300
Vを印加して1ppmの塩素ガスに晒した際の出力電流
は、10nAであり、電極を微細化してはいるが電極の
単位面積当たりの出力は従来の電極と比較して遜色な
く、本発明による気液分離膜が、ガス透過膜としても、
有効に機能していることが確認された。
Using the thus-prepared gas-liquid separation membrane, this chemical sensor is filled with a 4.6 mol lithium bromide solution in the internal liquid, and the working electrode is -0.250 to -0.300 with respect to the working electrode.
The output current when applying V and exposing to 1 ppm of chlorine gas was 10 nA. Although the electrode was miniaturized, the output per unit area of the electrode was not inferior to that of the conventional electrode. Gas-liquid separation membrane, as a gas permeable membrane,
It was confirmed that it was working effectively.

【0022】[0022]

【発明の効果】この発明によれば、 (1)貫通孔を形成したシリコン基板を二枚重ね合わせ
て、この接合面にガスの透過する面を高い精度でサブミ
クロンレベルの面エッチンング加工を施し、この狭いギ
ャップを気体の透過する経路として、貫通孔を連通させ
るようにして、貫通孔の近傍には撥水性処理を施してい
るので、確実に気液分離特性を与えることができる。 (2)この気液分離膜の作成方法はいわゆる半導体製造
技術に基づいているので、微細なセンサの隔膜にも容易
に接合することが可能であり、大量生産も可能である。 (3)従来のシリコン基板に気体の透過孔を開穿する方
法と較べて、基板の面にサブミクロンレベルの気体が透
過する浅溝を凹設するので、使用するシリコン基板は1
00μmのレベルであって、サンサに接合した場合のた
わみなどに懸念がなく、しかも2枚張り合わせて用いる
ために、構造的にも堅牢である。 などの効果を確認することができる。
According to the present invention, (1) two silicon substrates having through holes formed thereon are superimposed, and a gas-permeable surface is subjected to submicron level surface etching with high accuracy on this joint surface. Since the through holes communicate with the narrow gap as a path through which the gas passes, and the water repellent treatment is performed in the vicinity of the through holes, the gas-liquid separation characteristics can be reliably provided. (2) Since the method for producing the gas-liquid separation membrane is based on the so-called semiconductor manufacturing technology, it can be easily joined to a fine sensor diaphragm, and mass production is possible. (3) Compared to the conventional method of forming a gas-permeable hole in a silicon substrate, a shallow groove through which a gas of a submicron level permeates is recessed in the surface of the substrate.
It is at a level of 00 μm, and there is no concern about bending or the like when it is joined to a sensor, and since it is used by laminating two sheets, it is structurally robust. And other effects can be confirmed.

【0023】この発明ではシリコン基板を用いてこの片
面にサブミクロンレベルの浅溝を凹設する加工を既知の
エッチング加工を施して気液分離膜を作製した。シリコ
ン基板に限らず、平坦な面を有する堅牢な材料であっ
て、サブミクロンのレベルでその面に浅溝を穿つことが
できる材料として、例えばガラス基板やポリイミド膜な
どを用いても、同様な気液分離膜を作製することが可能
である。さらには浅溝を凹設する基板をシリコン基板で
作製し、このシリコン基板を接合される基板としてシリ
コン基板以外のガラス基板や、ポリイミド膜などを選ぶ
組み合わせも可能である。また請求項2において、二つ
の基板に閑穿スリットは細長状としたが、円周状とし
て、凹設する浅溝を円周の中心から放射状に形成するな
ど、請求項1の範囲で多くの設計が可能である。貫通孔
の近傍に撥水性を付与する方法として、発明の実施の形
態では、プラズマCVD法などでフッ化ビニリデンなど
撥水性の化合物を堆積し、導入する方法を採用したが、
この方法に限定されず、表面を多孔構造にするなど幾何
学的構造を変化させて撥水性を付与しても良い。
According to the present invention, a gas-liquid separation film is manufactured by performing a known etching process for forming a submicron level shallow groove on one surface of a silicon substrate. Not only the silicon substrate but also a robust material having a flat surface and a material capable of forming shallow grooves on the surface at a submicron level, for example, a glass substrate or a polyimide film may be used. It is possible to produce a gas-liquid separation membrane. Further, it is also possible to produce a substrate in which a shallow groove is formed by a silicon substrate, and to select a glass substrate other than the silicon substrate, a polyimide film, or the like as a substrate to which the silicon substrate is bonded. In the second aspect, the slits are elongated in the two substrates, but are formed in a circular shape, and the shallow grooves to be recessed are formed radially from the center of the circumference. Design is possible. As a method of imparting water repellency in the vicinity of the through hole, in the embodiment of the invention, a method of depositing and introducing a water repellent compound such as vinylidene fluoride by a plasma CVD method or the like is employed,
The method is not limited to this method, and water repellency may be imparted by changing the geometric structure such as making the surface porous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る気液分離膜を含む隔
膜式センサの分解斜視図である。
FIG. 1 is an exploded perspective view of a diaphragm type sensor including a gas-liquid separation membrane according to an embodiment of the present invention.

【図2】本発明の一実施形態に係る気液分離膜を含む隔
膜式センサの断面図である。
FIG. 2 is a cross-sectional view of a diaphragm sensor including a gas-liquid separation membrane according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 対極 2 センサボディ(内部液溜め) 3 作用極 4 シリコン基板(一) 5 シリコン基板(二) 6 貫通孔 7 貫通孔 8 浅溝 DESCRIPTION OF SYMBOLS 1 Counter electrode 2 Sensor body (internal reservoir) 3 Working electrode 4 Silicon substrate (1) 5 Silicon substrate (2) 6 Through hole 7 Through hole 8 Shallow groove

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 27/30 341J 27/46 316Z (72)発明者 根岸 学 東京都武蔵野市吉祥寺北町4丁目13番14号 東亜ディーケーケー株式会社内 (72)発明者 清水 博弥 東京都武蔵野市吉祥寺北町4丁目13番14号 東亜ディーケーケー株式会社内 (72)発明者 伊東 哲 東京都武蔵野市吉祥寺北町4丁目13番14号 東亜ディーケーケー株式会社内 (72)発明者 楊 明 東京都八王子市南大沢1−1 東京都立大 学工学部内 (72)発明者 大屋 誠志郎 海老名市下今泉705−1 神奈川県産業技 術総合研究所内 (72)発明者 中野 禅 茨城県つくば市並木一丁目2番地 経済産 業省産業技術総合研究所 機械技術研究所 内 Fターム(参考) 4D006 GA32 MA03 MA08 MB10 MB16 MC02X NA31 NA45 NA54 PC38 PC80 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme Court ゛ (Reference) G01N 27/30 341J 27/46 316Z (72) Inventor Manabu Manabu Negishi 4-13-14 Kichijoji Kitamachi, Musashino City, Tokyo No. Within Toa DK Co., Ltd. (72) Inventor Hiroya Shimizu 4--13-14, Kichijoji Kitamachi, Musashino City, Tokyo Inside Toa DK Co., Ltd. (72) Inventor Yang Ming 1-1, Minami-Osawa, Hachioji-shi, Tokyo, Japan Inside the Faculty of Engineering, Tokyo Metropolitan University (72) Inventor, Seishiro Oya 705-1 Shimo-Imaizumi, Ebina City, Kanagawa Industrial Technology Research Institute (72 Inventor Zen Nakano 1-2-2 Namiki, Tsukuba, Ibaraki Pref., Ministry of Economy, Trade and Industry 4D006 GA32 MA03 MA08 MB10 MB16 MC02X NA31 NA45 NA54 PC38 PC80

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】2枚のシリコン基板を接合し、接合面のい
ずれかの一面に接合面に沿って浅溝を凹設してなり、各
シリコン基板に設けられた貫通孔が、前記浅溝を介して
のみ連通するようにしてなるとともに、いずれか一方の
シリコン基板の貫通孔の前記凹設された浅溝への連接部
の近傍を撥水性にしてなるを特徴とする気液分離膜。
1. A method comprising: bonding two silicon substrates; forming a shallow groove in one of the bonding surfaces along the bonding surface; A gas-liquid separation membrane characterized in that the gas-liquid separation membrane is made to be water-repellent in the vicinity of the connecting portion of the through hole of one of the silicon substrates to the recessed shallow groove.
【請求項2】2枚のシリコン基板からなり、一のシリコ
ン基板には貫通孔を複数細長スリット状に設け、該基板
の片面に各細長スリット間にスリットに対して直角方向
に複数の浅溝を凹設せしめ、他のシリコン基板には2枚
を重ね合わせた際に、一のスリットと重なり合わない位
置に貫通孔を細長スリット状に設けて、一のシリコン基
板の浅溝を凹設した面を重なり面として両基板を接合
し、一のシリコン基板の貫通孔と前記凹設された浅溝へ
の連接部の近傍に撥水性処理を施したことを特徴とする
請求項1に記載の気液分離膜。
2. A silicon substrate, wherein one silicon substrate has a plurality of through-holes formed in a plurality of elongated slits, and a plurality of shallow grooves formed on one surface of the substrate between the elongated slits in a direction perpendicular to the slits. When two were overlapped on another silicon substrate, a through-hole was provided in an elongated slit shape at a position that did not overlap with one slit, and a shallow groove of one silicon substrate was recessed. 2. The substrate according to claim 1, wherein the two substrates are joined with the surfaces as overlapping surfaces, and a water-repellent treatment is applied to the vicinity of a through hole of one silicon substrate and a portion connected to the recessed shallow groove. Gas-liquid separation membrane.
JP2001111961A 2001-03-07 2001-03-07 Gas-liquid separation membrane for diaphragm type sensor Expired - Lifetime JP4818529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001111961A JP4818529B2 (en) 2001-03-07 2001-03-07 Gas-liquid separation membrane for diaphragm type sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001111961A JP4818529B2 (en) 2001-03-07 2001-03-07 Gas-liquid separation membrane for diaphragm type sensor

Publications (3)

Publication Number Publication Date
JP2002263458A true JP2002263458A (en) 2002-09-17
JP2002263458A5 JP2002263458A5 (en) 2008-05-08
JP4818529B2 JP4818529B2 (en) 2011-11-16

Family

ID=18963454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001111961A Expired - Lifetime JP4818529B2 (en) 2001-03-07 2001-03-07 Gas-liquid separation membrane for diaphragm type sensor

Country Status (1)

Country Link
JP (1) JP4818529B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005125232A (en) * 2003-10-23 2005-05-19 Dkk Toa Corp Gas-liquid separation membrane and its manufacturing method
JP2013537469A (en) * 2010-05-03 2013-10-03 クリーティービー マイクロテック, インク. Polymer microfilter and manufacturing method thereof
JP2014130018A (en) * 2012-12-28 2014-07-10 Riken Keiki Co Ltd Action pole for electrochemical gas sensor, and manufacturing method of the same
JP2015164728A (en) * 2010-06-16 2015-09-17 日東電工株式会社 Waterproof ventilation filter and manufacturing method of the same
JP2015178105A (en) * 2010-06-16 2015-10-08 日東電工株式会社 Waterproof air-permeable filter and method of manufacturing the same
CN114768552A (en) * 2022-04-11 2022-07-22 重庆工程职业技术学院 Preparation method of silicon nanopore oil-water separation film and oil-water separator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115003A (en) * 1988-10-25 1990-04-27 Nissin Electric Co Ltd Apparatus for separating gas in oil
JPH05115735A (en) * 1991-10-25 1993-05-14 Mitsubishi Electric Corp Moisture removing device
JPH09155169A (en) * 1995-12-07 1997-06-17 Junkosha Co Ltd Gas permeable film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115003A (en) * 1988-10-25 1990-04-27 Nissin Electric Co Ltd Apparatus for separating gas in oil
JPH05115735A (en) * 1991-10-25 1993-05-14 Mitsubishi Electric Corp Moisture removing device
JPH09155169A (en) * 1995-12-07 1997-06-17 Junkosha Co Ltd Gas permeable film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005125232A (en) * 2003-10-23 2005-05-19 Dkk Toa Corp Gas-liquid separation membrane and its manufacturing method
JP4552002B2 (en) * 2003-10-23 2010-09-29 東亜ディーケーケー株式会社 Gas-liquid separation membrane and method for producing the same
JP2013537469A (en) * 2010-05-03 2013-10-03 クリーティービー マイクロテック, インク. Polymer microfilter and manufacturing method thereof
JP2015164728A (en) * 2010-06-16 2015-09-17 日東電工株式会社 Waterproof ventilation filter and manufacturing method of the same
JP2015178105A (en) * 2010-06-16 2015-10-08 日東電工株式会社 Waterproof air-permeable filter and method of manufacturing the same
JP2014130018A (en) * 2012-12-28 2014-07-10 Riken Keiki Co Ltd Action pole for electrochemical gas sensor, and manufacturing method of the same
CN114768552A (en) * 2022-04-11 2022-07-22 重庆工程职业技术学院 Preparation method of silicon nanopore oil-water separation film and oil-water separator
CN114768552B (en) * 2022-04-11 2024-01-12 重庆工程职业技术学院 Preparation method of silicon nano-pore oil-water separation film and oil-water separator

Also Published As

Publication number Publication date
JP4818529B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4807358B2 (en) Pressure differential bubble movement control method, and gas exchange device, conductivity measuring device, total organic carbon measuring device, reaction device, and cell culture device using the method
Metz et al. Polyimide microfluidic devices with integrated nanoporous filtration areas manufactured by micromachining and ion track technology
US11774400B2 (en) Device for sequencing
JPH11503826A (en) Method of defining electrode area
US9387444B2 (en) Method to fabricate functionalized conical nanopores
WO2010113997A1 (en) Microchannel chip and method for gas-liquid phase separation using same
JP2002263458A (en) Gas-liquid separating membrane
EP3218922B1 (en) A system for extracting and analyising including a device for extracting volatile species from a liquid
US20160207798A1 (en) Nanoporous graphene membrane for desalination of salt water
JP7011137B2 (en) Selective permeable membrane and its manufacturing method, water treatment method using the selective permeable membrane
US6187446B1 (en) Carrier matrix for integrated microanalysis systems, method for the production thereof and use of the same
US11607871B2 (en) Partition wall for formation of lipid bilayer membrane, and method for producing same
JP2003503702A (en) General purpose transducer
US6660648B1 (en) Process for manufacture of semipermeable silicon nitride membranes
Katayama et al. Next-Generation Nanoporous PTFE Membrane
GB2124545A (en) Membrane fro regulating permeation of glucose therethrough
JPH07241512A (en) Device for forming black film
JP4427659B2 (en) Gas detection device
KR102086414B1 (en) Method for manufacturing nanopipette having an membrane comprising saturated ionophore
KR102086107B1 (en) Nanopipette having an membrane comprising saturated ionophore
JPWO2002075324A1 (en) Fabrication method of microchannel structure and functional polymer film
JP4736534B2 (en) Gas permeation filter, gas exchange chip, and total organic carbon measuring device
JP4747852B2 (en) Cell electrophysiological sensor and manufacturing method thereof
JP2005087975A (en) Gas-liquid separator and its producing method
JP2002214106A (en) Analytical method of dissolved gas in liquid and device therefor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20010322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20010530

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20010926

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20011010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20011226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4818529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term