JP2002257884A - Photoelectric field sensor - Google Patents

Photoelectric field sensor

Info

Publication number
JP2002257884A
JP2002257884A JP2001058043A JP2001058043A JP2002257884A JP 2002257884 A JP2002257884 A JP 2002257884A JP 2001058043 A JP2001058043 A JP 2001058043A JP 2001058043 A JP2001058043 A JP 2001058043A JP 2002257884 A JP2002257884 A JP 2002257884A
Authority
JP
Japan
Prior art keywords
optical
electric field
field sensor
axis
zehnder interferometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001058043A
Other languages
Japanese (ja)
Other versions
JP3727051B2 (en
Inventor
Shigenori Torihata
成典 鳥畑
Yoshiaki Tarusawa
芳明 垂澤
Toshio Nojima
俊雄 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Tokin Corp
Original Assignee
NTT Docomo Inc
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc, NEC Tokin Corp filed Critical NTT Docomo Inc
Priority to JP2001058043A priority Critical patent/JP3727051B2/en
Publication of JP2002257884A publication Critical patent/JP2002257884A/en
Application granted granted Critical
Publication of JP3727051B2 publication Critical patent/JP3727051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a small photoelectric field sensor, capable of measuring an electric field in three-axis directions stably and accurately, even in a narrow space region. SOLUTION: The present photoelectric field sensor contains in a sensor head 41, an optical modulator consisting of a reflection-type Mach-Zehnder interferometer for measuring electric fields in three-axis directions of X, Y and Z. The sensor is constituted, by cladding a polarization holding type 3-core optical fiber 43 connected to each Mach-Zehnder interferometer in the optical modulator, with a non-metal holder rod 42 connected with the end surface of the sensor head 41. In the sensor head 41, the optical modulator is constituted, by installing 3 kinds of electric field sensor (reflection-type Mach-Zehnder interferometer) of a single-axis photoelectric field sensor 11 for X-axis direction, a single axis photoelectric field sensor 12 for Y-axis direction and single-axis photoelectric field sensor 13 for Z-axis direction for measuring the electric fields of three-axis directions of X, Y and Z on each side surface of support member 14 of a triangle column, having a rectangular triangle cross section which is arranged near the center of a housing 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として光を用い
て電界の測定を行う光電界センサであって、詳しくは狭
い空間領域におけるX,Y,Zの3軸方向の電界測定用
に好適な小型の光電界センサ及びそれを使用した電界セ
ンシング装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical electric field sensor for measuring an electric field mainly using light, and more particularly, to an electric field sensor suitable for measuring electric fields in three directions of X, Y and Z in a narrow space area. The present invention relates to a small optical electric field sensor and an electric field sensing device using the same.

【0002】[0002]

【従来の技術】従来、電気光学効果を利用した干渉型光
導波路を用いた光電界センサは、金属部を殆ど持たない
ために被測定電界を乱さないこと、光ファイバで検出信
号を伝送するので途中で誘導や電気的雑音の影響を受け
ないこと、結晶の電気光学効果を利用するために高速応
答が可能であり、且つその検出信号をそのまま少ない損
失で伝送できること、センサ部に電源を必要としないこ
と、光導波路とアンテナ電極が一体である上に電源を有
しないために小型化が容易なこと等の諸点で優れた特徴
を持っている。このような特徴を有する故、光電界セン
サは電磁干渉(EMC)分野等の電界測定に用いられて
いる。
2. Description of the Related Art Conventionally, an optical electric field sensor using an interference type optical waveguide utilizing the electro-optic effect does not disturb the electric field to be measured because it has almost no metal part, and transmits a detection signal through an optical fiber. It must not be affected by induction or electrical noise on the way, be capable of high-speed response by utilizing the electro-optic effect of the crystal, and be able to transmit its detection signal with little loss, and require a power supply for the sensor unit. This is an excellent feature in that the optical waveguide and the antenna electrode are integrated, and there is no power supply, so that miniaturization is easy. Because of these features, the optical electric field sensor is used for electric field measurement in fields such as electromagnetic interference (EMC).

【0003】図7は、従来の光電界センサの基本構成を
示した斜視図であり、同図(a)は1軸方向の電界測定
用タイプに関するもの,同図(b)は3軸方向の電界測
定用タイプに関するものである。
FIG. 7 is a perspective view showing the basic structure of a conventional optical electric field sensor. FIG. 7 (a) relates to a uniaxial electric field measuring type, and FIG. It relates to an electric field measurement type.

【0004】図7(a)を参照すれば、1軸方向の電界
測定用タイプの光電界センサは、一端側に反射ミラー7
1が設けられたLiNbO3 単結晶から成るLiNbO
3 単結晶基板67上に他端側から一端側に向かって入出
射光導波路68より分岐された2本の分岐光導波路69
a,69bが反射ミラー71に結合されるように設けら
れると共に、LiNbO3 単結晶基板67における他端
側の入出射光導波路68には光ファイバ60が結合さ
れ、更にLiNbO3 単結晶基板67上の一端側寄り箇
所であって、分岐光導波路69aを挟む所定の箇所に
は、対向する金属電極70a,70bが配設されて構成
されている。これらの金属電極70a,70bは、分岐
光導波路69a,69bの延在方向と垂直な方向Mにお
ける電界強度に対する感度が高くなるように形成されて
いる。
Referring to FIG. 7 (a), an optical electric field sensor of a type for measuring an electric field in a uniaxial direction has a reflecting mirror 7 at one end.
LiNbO 3 composed of LiNbO 3 single crystal provided with
(3 ) Two branched optical waveguides 69 branched from the input / output optical waveguide 68 on the single crystal substrate 67 from the other end to the one end.
a, 69b together are provided to be coupled to a reflecting mirror 71, optical fiber 60 is coupled to the other end of the input and output optical waveguide 68 in the LiNbO 3 single crystal substrate 67, further LiNbO 3 single crystal substrate 67 on The metal electrodes 70a and 70b facing each other are arranged at predetermined positions on both sides of the branch optical waveguide 69a. These metal electrodes 70a and 70b are formed such that the sensitivity to the electric field strength in a direction M perpendicular to the extending direction of the branch optical waveguides 69a and 69b is increased.

【0005】この光電界センサの場合、光ファイバ60
から入射した光がLiNbO3 単結晶基板67上の入出
射光導波路68を経て2本の分岐光導波路69a,69
bに分岐され、このとき一方の分岐光導波路69aには
金属電極70a,70bにより電界が印加されて屈折率
の変化が生じるが、他方の分岐光導波路69bには電界
による屈折率の変化は無く、何れの分岐光導波路69
a,69bを伝播する光も反射ミラー71で反射された
後、分岐光導波路69a,69bを逆方向に伝播して再
び入出射光導波路68で合波される。この合波に際し
て、2つの光路の屈折率の差異により生じる位相差のた
め、合波後の光強度は変化し、この後は光ファイバ60
に結合して出射する。
In the case of this optical electric field sensor, the optical fiber 60
Incident on the LiNbO 3 single crystal substrate 67 passes through the input / output optical waveguide 68 and the two branched optical waveguides 69 a and 69.
At this time, an electric field is applied to one of the branch optical waveguides 69a by the metal electrodes 70a and 70b to cause a change in the refractive index, whereas the other branch optical waveguide 69b has no change in the refractive index due to the electric field. , Which branch optical waveguide 69
The light propagating through a and 69b is also reflected by the reflection mirror 71, then propagates in the opposite directions through the branch optical waveguides 69a and 69b and is multiplexed again by the input / output optical waveguide 68. At the time of this multiplexing, the light intensity after the multiplexing changes due to the phase difference caused by the difference in the refractive index between the two optical paths.
And is emitted.

【0006】これに対し、図7(b)を参照すれば、3
軸方向の電界測定用タイプの光電界センサは、図7
(a)に示した1軸方向の反射型光電界センサをそれぞ
れX軸方向,Y軸方向,Z軸方向に配置して3軸方向の
電界を測定することが可能な構成、即ち、LiNbO3
単結晶基板64,65,66をそれぞれX方向,Y方
向,及びZ方向の電界を検出するように配置することに
より、光ファイバ61,62,63から入射した光がそ
れぞれX方向,Y方向,及びZ方向の電界により変調さ
れて出射するようになっている。尚、ここで変調出射さ
れた光は、更に光ファイバや光サーキュレータを経て光
検出器へと導かれ、電気信号に変換される。
On the other hand, referring to FIG.
The optical electric field sensor of the type for measuring the electric field in the axial direction is shown in FIG.
A configuration in which the uniaxial reflection-type optical electric field sensor shown in FIG. 1A is arranged in the X-axis direction, the Y-axis direction, and the Z-axis direction to measure electric fields in three-axis directions, ie, LiNbO 3
By arranging the single crystal substrates 64, 65, and 66 so as to detect electric fields in the X, Y, and Z directions, light incident from the optical fibers 61, 62, and 63 can be transmitted in the X, Y, and Y directions, respectively. And is modulated by an electric field in the Z direction and emitted. The light modulated and emitted here is further guided to a photodetector via an optical fiber and an optical circulator, and is converted into an electric signal.

【0007】ところで、最近では携帯電話機等、人体の
頭部の近くから送信される電磁波による人体の頭部への
影響に関する本格的な研究が行われており、この研究分
野においては、人体の頭部と同じ誘電率を有する頭部ダ
ミーの内部における電界強度の分布を測定することが重
要視されている。こうした場合に電界測定を行うために
使用される3軸方向の電界測定用タイプの光電界センサ
には、特に小型で安定して精度良く3軸方向の電界測定
を可能であることが要求されている。又、自動車のエン
ジンルームや車室内等の狭小な場所における電界測定を
行う場合においても、3軸方向の電界測定用タイプの光
電界センサには、特に小型で安定して精度良く3軸方向
の電界測定を可能であることが要求されている。
In recent years, full-scale research has been conducted on the effects of electromagnetic waves transmitted from the vicinity of the head of a human body, such as a portable telephone, on the head of the human body. It is important to measure the distribution of the electric field intensity inside the head dummy having the same dielectric constant as the part. In such a case, the optical electric field sensor for measuring electric fields in three axes used for measuring electric fields in such a case is required to be particularly small, stable and capable of measuring electric fields in three axes accurately with high accuracy. I have. Even when measuring electric fields in a small place such as an engine room or a vehicle interior of an automobile, a small-sized, stable and highly accurate three-axis direction electric field sensor is particularly suitable for a triaxial electric field measuring type optical electric field sensor. It is required that electric field measurement be possible.

【0008】[0008]

【発明が解決しようとする課題】上述した3軸方向の電
界測定用タイプの光電界センサの場合、小型で安定して
精度良く3軸方向の電界測定を可能であることが要求さ
れているが、実際には図7(b)に示したような従来型
の光電界センサでは光ファイバの取り扱い上の制限があ
るため、小型化することが困難であるという問題があ
る。
In the case of the above-mentioned optical electric field sensor for measuring the electric field in the three-axis direction, it is required that the electric field sensor in the three-axis direction can be measured stably and accurately with a small size. However, in practice, the conventional optical electric field sensor as shown in FIG. 7B has a problem in that it is difficult to miniaturize the optical fiber because there is a restriction in handling the optical fiber.

【0009】この光ファイバの取り扱い上の制限に関す
る理由として、光ファイバは曲げの曲率が増すと光損失
が増大し、その光損失が変動し易いという特性を有する
ため、光変調部に光を入出力する光ファイバの曲率は低
く抑えなければならないことや、LiNbO3 単結晶基
板の光導波路と光ファイバとの接続において熱的に高信
頼性を持つ接続部を得るためには、接続部に光ファイバ
の曲げによる歪みが生じないことが重要視されているこ
と等が挙げられ、こうした事情により光ファイバの取り
扱い上の制限が生じることにより、3軸方向の電界測定
用タイプの光電界センサの小型化を困難にしている。
The reason for the restriction on the handling of the optical fiber is that the optical fiber has a characteristic that the optical loss increases as the bending curvature increases, and the optical loss tends to fluctuate. In order to keep the curvature of the output optical fiber low and to obtain a thermally reliable connection between the optical waveguide of the LiNbO 3 single crystal substrate and the optical fiber, an optical fiber must be connected to the connection. The importance of not causing distortion due to bending of the fiber is considered important. Due to such circumstances, the handling of the optical fiber is restricted. Making it difficult.

【0010】本発明は、このような問題点を解決すべく
なされたもので、その技術的課題は、狭い空間領域にあ
っても安定して精度良く3軸方向の電界測定が可能な小
型の光電界センサを提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve such problems, and the technical problem thereof is that a small-sized small-sized electric field can be stably and accurately measured even in a narrow space area. An optical electric field sensor is provided.

【0011】[0011]

【課題を解決するための手段】本発明によれば、電気光
学結晶による電気光学結晶基板上に電極と分岐光導波路
とを配設して成り、且つ該分岐光導波路に対して平行な
方向の電界検出が可能な1個の第1の反射型マッハツェ
ンダ干渉計、並びに電気光学結晶による電気光学結晶基
板上に電極と分岐光導波路とを配設して成り、且つ該分
岐光導波路に対してそれぞれ異なる垂直な方向の電界検
出が可能な2個の第2の反射型マッハツェンダ干渉計を
組み合わせて成る光変調部と、光変調部に対して光を入
出力するために1個の第1の反射型マッハツェンダ干渉
計及び2個の第2の反射型マッハツェンダ干渉計と結合
される光ファイバとを備えて構成される光電界センサで
あって、光変調部では、1個の第1の反射型マッハツェ
ンダ干渉計及び2個の第2の反射型マッハツェンダ干渉
計における分岐光導波路の全ての延在方向が互いにほぼ
平行に配置されると共に、光ファイバの引き出し方向が
ほぼ同一方向に配置され、且つ該2個の第2の反射型マ
ッハツェンダ干渉計における電界検出する方向の成す角
度がほぼ直角になるように配置された光電界センサが得
られる。
According to the present invention, an electrode and a branch optical waveguide are provided on an electro-optic crystal substrate made of an electro-optic crystal, and the electrode and the branch optical waveguide are arranged in a direction parallel to the branch optical waveguide. An electrode and a branch optical waveguide are provided on one first reflection type Mach-Zehnder interferometer capable of detecting an electric field, and an electro-optic crystal substrate made of an electro-optic crystal, and An optical modulation unit formed by combining two second reflection type Mach-Zehnder interferometers capable of detecting electric fields in different vertical directions, and one first reflection unit for inputting and outputting light to and from the optical modulation unit An electric field sensor comprising an optical fiber coupled to the Mach-Zehnder interferometer and two second reflection-type Mach-Zehnder interferometers, wherein the optical modulator includes one first Mach-Zehnder interferometer. Interferometer and 2 In the second reflection type Mach-Zehnder interferometer, all the extending directions of the branch optical waveguides are arranged substantially in parallel to each other, and the optical fibers are pulled out in substantially the same direction, and the two second An optical electric field sensor is obtained in which the angle formed by the electric field detection direction in the reflection type Mach-Zehnder interferometer is substantially a right angle.

【0012】又、本発明によれば、上記光電界センサに
おいて、光ファイバは、3芯光ファイバである光電界セ
ンサが得られる。
Further, according to the present invention, in the above-mentioned optical electric field sensor, an optical electric field sensor in which the optical fiber is a three-core optical fiber is obtained.

【0013】更に、本発明によれば、上記何れかの光電
界センサにおいて、電気光学結晶は、LiNbO3 単結
晶であり、分岐光導波路は、電気光学結晶基板としてL
iNbO3 単結晶によるLiNbO3 単結晶基板上にT
iイオンを拡散して形成された光電界センサが得られ
る。
Further, according to the present invention, in any of the above optical electric field sensors, the electro-optic crystal is a LiNbO 3 single crystal, and the branch optical waveguide is an L-type electro-optic crystal substrate.
T on the LiNbO 3 single crystal substrate by iNbO 3 single crystal
An optical electric field sensor formed by diffusing i ions is obtained.

【0014】一方、本発明によれば、上記何れか一つの
光電界センサと、それぞれ3組の光源部,光サーキュレ
ータ,及び光検出器とを備えて構成される電界センシン
グ装置が得られる。
On the other hand, according to the present invention, there is provided an electric field sensing device including any one of the above-described optical electric field sensors and three sets of light source units, optical circulators, and photodetectors.

【0015】この電界センシング装置において、3組の
光源部は、光源として半導体レーザを備えて成ること、
或いは光源として半導体レーザ励起のNd:YAGレー
ザを備えて成ることは、それぞれ好ましい。
In this electric field sensing device, the three sets of light sources include a semiconductor laser as a light source;
Alternatively, it is preferable to provide a semiconductor laser-pumped Nd: YAG laser as a light source.

【0016】[0016]

【発明の実施の形態】以下に実施例を挙げ、本発明の光
電界センサ及びそれを使用した電界センシング装置につ
いて、図面を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The optical electric field sensor of the present invention and an electric field sensing device using the same will be described below in detail with reference to the drawings.

【0017】図1は、本発明の一実施例に係る3軸方向
の電界測定用タイプの光電界センサの基本構成を示した
もので、同図(a)は一部を破断した全体の外観斜視図
に関するもの,同図(b)はその局部を成すセンサヘッ
ド部41の上面から見た断面図に関するものである。
FIG. 1 shows the basic structure of a three-axis electric field measuring type optical electric field sensor according to one embodiment of the present invention. FIG. FIG. 2B is a perspective view, and FIG. 2B is a cross-sectional view of the sensor head 41 as a local part thereof, as viewed from above.

【0018】この光電界センサは、図1(a)を参照す
れば、外観上において、X,Y,Zの3軸方向の電界を
測定するための反射型マッハツェンダ干渉計から成る光
変調部を収納した口径φが12mmで高さHが35mm
のセンサヘッド部41と、光変調部の反射型マッハツェ
ンダ干渉計に結合された偏波保持型の3芯光ファイバ4
3と、3芯光ファイバ43を被覆してセンサヘッド部4
1の端面に結合された非金属製の保持ロッド42とから
構成されている。
Referring to FIG. 1 (a), this optical electric field sensor has an optical modulator comprising a reflection type Mach-Zehnder interferometer for measuring electric fields in three directions of X, Y and Z. The stored diameter φ is 12mm and the height H is 35mm
And a polarization-maintaining three-core optical fiber 4 coupled to the reflection type Mach-Zehnder interferometer of the optical modulator.
3 and the sensor head 4 covering the three-core optical fiber 43.
1 and a non-metallic holding rod 42 coupled to the end face.

【0019】又、図1(b)を参照すれば、このセンサ
ヘッド部41は、ハウジング15内の略中心部分に配置
された直角三角形の断面を有する三角柱状の支持部材1
4の各側面にX,Y,Zの3軸方向の電界を測定するた
めの1軸方向の電界測定用タイプの光電界センサ(上述
した反射型マッハツェンダ干渉計)の3種として、直角
を成す一方の辺部における側面にX軸方向の電界を測定
するためのX軸方向用1軸光電界センサ11を装着し、
直角を成す他方の辺部における側面にY軸方向の電界を
測定するためのY軸方向用1軸光電界センサ12を装着
し、斜辺における側面にZ軸方向の電界を測定するため
のZ軸方向用1軸光電界センサ13を装着して光変調部
を構成している。
Referring to FIG. 1B, the sensor head portion 41 is a triangular prism-shaped support member 1 having a right-angled triangular cross section and disposed at a substantially central portion in the housing 15.
Each of the four sides forms a right angle as one of three types of optical electric field sensors (reflection type Mach-Zehnder interferometer described above) for measuring electric fields in three axial directions of X, Y and Z in one axis direction. A uniaxial optical electric field sensor 11 for X-axis direction for measuring an electric field in the X-axis direction is attached to a side surface on one side,
A one-axis Y-axis direction electric field sensor 12 for measuring the electric field in the Y-axis direction is mounted on the side surface on the other side forming a right angle, and the Z-axis for measuring the electric field in the Z-axis direction on the side surface on the oblique side. The optical modulator is configured by mounting the uniaxial optical electric field sensor 13 for direction.

【0020】このうち、Z軸方向用1軸光電界センサ1
3は、電気光学結晶としてLiNbO3 単結晶によるL
iNbO3 単結晶基板上に電極と分岐光導波路とを配設
し、且つ分岐光導波路に対して平行な方向の電界検出が
可能な1個の第1の反射型マッハツェンダ干渉計(分岐
光導波路に対して平行な方向の電界検出に高い感度を有
する反射型LiNbO3 光変調器)として構成され、X
軸方向用1軸光電界センサ11及びY軸方向用1軸光電
界センサ12は、同様に電気光学結晶としてLiNbO
3 単結晶によるLiNbO3 単結晶基板上に電極と分岐
光導波路とを配設し、且つ分岐光導波路に対してそれぞ
れ異なる垂直な方向の電界検出が可能な2個の第2の反
射型マッハツェンダ干渉計(分岐光導波路に対して垂直
な方向の電界検出に高い感度を有する2個の反射型Li
NbO3 光変調器)として構成され、これらの総計3個
の反射型マッハツェンダ干渉計が組み合わされて光変調
部を構成している。
Among them, the one-axis optical electric field sensor 1 for the Z-axis direction
Reference numeral 3 denotes L made of LiNbO 3 single crystal as an electro-optic crystal.
An electrode and a branch optical waveguide are arranged on an iNbO 3 single crystal substrate, and one first reflection type Mach-Zehnder interferometer capable of detecting an electric field in a direction parallel to the branch optical waveguide (for a branch optical waveguide) And a reflective LiNbO 3 optical modulator having high sensitivity for detecting an electric field in a direction parallel to
Similarly, the uniaxial optical electric field sensor 11 for the axial direction and the uniaxial optical electric field sensor 12 for the Y axis direction are made of LiNbO
An electrode and a branch optical waveguide are arranged on a LiNbO 3 single crystal substrate made of three single crystals, and two second reflection type Mach-Zehnder interferences capable of detecting electric fields in directions perpendicular to the branch optical waveguide respectively. Meter (two reflective Lis with high sensitivity for electric field detection in the direction perpendicular to the branch optical waveguide)
NbO 3 optical modulator), and these three reflective Mach-Zehnder interferometers are combined to form an optical modulator.

【0021】3芯光ファイバ43は、光変調部に対して
光を入出力するために結合される光ファイバであって、
1個の第1の反射型マッハツェンダ干渉計(Z軸方向用
1軸光電界センサ13)と2個の第2の反射型マッハツ
ェンダ干渉計(X軸方向用1軸光電界センサ11及びY
軸方向用1軸光電界センサ12)とに結合される3芯構
造となっている。
The three-core optical fiber 43 is an optical fiber that is coupled to input and output light to and from the light modulation unit.
One first reflection type Mach-Zehnder interferometer (one-axis optical electric field sensor 13 for Z-axis direction) and two second reflection type Mach-Zehnder interferometers (one-axis optical electric field sensor 11 for X-axis direction and Y)
It has a three-core structure that is coupled to the axial single-axis optical electric field sensor 12).

【0022】この3軸方向の電界測定用タイプの光電界
センサの場合、光変調部では、総計3個の各反射型マッ
ハツェンダ干渉計における分岐光導波路の全ての延在方
向が互いにほぼ平行に配置されると共に、3芯光ファイ
バ43の引き出し方向がほぼ同一方向に配置され(ここ
では各分岐光導波路の延在方向と3芯光ファイバ43の
引き出し方向とが紙面に垂直なZ軸方向に延びてい
る)、且つ2個の第2の反射型マッハツェンダ干渉計に
おける電界検出する方向の成す角度がほぼ直角になるよ
うに配置され、これによって小型に構成されている。
In the case of the optical electric field sensor of the type for measuring electric fields in three axial directions, in the optical modulation section, the extending directions of all the branch optical waveguides in each of the three reflective Mach-Zehnder interferometers are arranged substantially in parallel with each other. And the pull-out direction of the three-core optical fiber 43 is arranged in substantially the same direction (here, the extending direction of each branch optical waveguide and the pull-out direction of the three-core optical fiber 43 extend in the Z-axis direction perpendicular to the paper surface). And the two reflection-type Mach-Zehnder interferometers are arranged so that the angles formed by the directions in which the electric field is detected are substantially perpendicular to each other.

【0023】尚、X軸方向用1軸光電界センサ11,Y
軸方向用1軸光電界センサ12,及びZ軸方向用1軸光
電界センサ13では、分岐光導波路が何れもLiNbO
3 単結晶基板上にTiイオンを拡散して形成されるTi
拡散導波路により作製されており、その他に分岐光導波
路へ電圧を印加する金属電極,反射ミラー,及び偏波保
持光ファイバを備えて構成される。
The uniaxial optical electric field sensor 11 for the X-axis direction, Y
In the uniaxial optical electric field sensor 12 for the axial direction and the uniaxial optical electric field sensor 13 for the Z axis direction, the branch optical waveguides are both LiNbO 2.
3 Ti which is formed by diffusing Ti ions on a single crystal substrate
It is made of a diffusion waveguide, and further includes a metal electrode for applying a voltage to the branch optical waveguide, a reflection mirror, and a polarization maintaining optical fiber.

【0024】図2は、上述したX軸方向用1軸光電界セ
ンサ11,Y軸方向用1軸光電界センサ12の基本構成
を示した外観斜視図である。
FIG. 2 is an external perspective view showing the basic configuration of the above-described uniaxial optical electric field sensor 11 for the X-axis direction and the aforementioned uniaxial optical electric field sensor 12 for the Y-axis direction.

【0025】これらのX軸方向用1軸光電界センサ1
1,Y軸方向用1軸光電界センサ12は、図7(a)に
示した従来の1軸方向の電界測定用タイプの光電界セン
サとほぼ同様に構成され、一端側に反射ミラー26が設
けられたLiNbO3 単結晶から成るLiNbO3 単結
晶基板22上に他端側から一端側に向かって入出射光導
波路23より分岐された2本の分岐光導波路24a,2
4bが反射ミラー26に結合されるように設けられると
共に、LiNbO3 単結晶基板22における他端側の入
出射光導波路23には偏波保持光ファイバ21が結合さ
れ、更にLiNbO3 単結晶基板22上の一端側寄り部
分から他端側へと延びた箇所であって、分岐光導波路2
4aを挟む所定の箇所には、対向する金属電極25が3
つ並びで配設されて構成されている。この金属電極25
は、三角形の金属膜の組み合わせにより形成され、矢印
で示すX軸方向,Y軸方向の電界によって誘起された電
圧を分岐光導波路24aに印加するようにそのパターン
が決められている。又、特に電界に対する感度を高める
ために、ここでは金属電極25を3対の三角形の金属膜
から成るパターンとして増設している。
These one-axis optical electric field sensors 1 for the X-axis direction
The one-axis one-axis optical electric field sensor 12 for the Y-axis direction is substantially the same as the conventional one-axis direction electric field measurement type optical electric field sensor shown in FIG. provided the LiNbO 3 the two that are branched from the input and output optical waveguide 23 toward the one end from the other end on the LiNbO 3 single crystal substrate 22 of monocrystalline branch optical waveguide 24a, 2
4b together are provided so as to be coupled to the reflecting mirror 26, LiNbO 3 polarization maintaining optical fiber 21 is coupled to the other end of the input and output optical waveguide 23 in the single crystal substrate 22, further LiNbO 3 single crystal substrate 22 A portion extending from the upper end near the one end side to the other end side, and the branch optical waveguide 2
4a, the opposing metal electrodes 25
They are arranged side by side. This metal electrode 25
Is formed by a combination of triangular metal films, and its pattern is determined so that a voltage induced by an electric field in the X-axis direction and the Y-axis direction indicated by arrows is applied to the branch optical waveguide 24a. Further, in order to particularly increase the sensitivity to an electric field, the metal electrodes 25 are added here as a pattern made of three pairs of triangular metal films.

【0026】これらのX軸方向用1軸光電界センサ1
1,Y軸方向用1軸光電界センサ12の場合も、偏波保
持光ファイバ21から入射した光がLiNbO3 単結晶
基板22上の入出射光導波路23を経て2本の分岐光導
波路24a,24bに分岐され、このとき一方の分岐光
導波路24aには金属電極25により電界が印加されて
屈折率の変化が生じるが、他方の分岐光導波路24bに
は電界による屈折率の変化は無く、何れの分岐光導波路
24a,24bを伝播する光も反射ミラー26で反射さ
れた後、分岐光導波路24a,24bを逆方向に伝播し
て再び入出射光導波路23で合波される。この合波に際
して、2つの光路の屈折率の差異により生じる位相差の
ため、合波後の光強度は変化し、この後は偏波保持光フ
ァイバ21に結合して出射する。
The single-axis optical electric field sensor 1 for the X-axis direction
Also in the case of the one-axis optical electric field sensor 12 for the Y-axis direction, the light incident from the polarization maintaining optical fiber 21 passes through the input / output optical waveguide 23 on the LiNbO 3 single crystal substrate 22 and the two branch optical waveguides 24 a, At this time, an electric field is applied to one of the branch optical waveguides 24a by the metal electrode 25 to cause a change in the refractive index. However, the other branch optical waveguide 24b has no change in the refractive index due to the electric field. The light propagating through the branch optical waveguides 24a and 24b is also reflected by the reflection mirror 26, then propagates in the opposite directions through the branch optical waveguides 24a and 24b, and is multiplexed again by the input / output optical waveguide 23. At the time of the multiplexing, the light intensity after the multiplexing changes due to the phase difference caused by the difference in the refractive index between the two optical paths, and thereafter, the light is coupled to the polarization maintaining optical fiber 21 and emitted.

【0027】図3は、上述したZ軸方向用1軸光電界セ
ンサ13の基本構成を示した外観斜視図である。
FIG. 3 is an external perspective view showing the basic structure of the above-described uniaxial optical electric field sensor 13 for the Z-axis direction.

【0028】このZ軸方向用1軸光電界センサ13は、
一端側に反射ミラー36が設けられたLiNbO3 単結
晶から成るLiNbO3 単結晶基板32上に他端側から
一端側に向かって入出射光導波路33より分岐された2
本の分岐光導波路34a,34bが反射ミラー36に結
合されるように設けられると共に、LiNbO3 単結晶
基板32における他端側の入出射光導波路33には偏波
保持光ファイバ31が結合され、更にLiNbO3 単結
晶基板32上の一端側寄り部分から他端側へと延びた箇
所であって、分岐光導波路24aを跨ぐ所定の箇所に
は、金属電極35が4つ並びで配設されて構成されてい
る。この金属電極35は、そのパターンを除いては図2
に示したX軸方向用1軸光電界センサ11,Y軸方向用
1軸光電界センサ12の金属電極25の場合と同様な形
態となっており、Z軸方向の電界、即ち、分岐光導波路
34aに平行な電界によって誘起された電圧を分岐光導
波路34aに印加するように形成されている。又、特に
電界に対する感度を高めるために、ここでは金属電極3
5を4個の複合形の金属膜から成るパターンとして増設
している。
The uniaxial optical electric field sensor 13 for the Z-axis direction
On a LiNbO 3 single crystal substrate 32 made of a LiNbO 3 single crystal provided with a reflection mirror 36 on one end side, the light branched from the input / output optical waveguide 33 from the other end side toward one end side.
The branch optical waveguides 34 a and 34 b are provided so as to be coupled to the reflection mirror 36, and the polarization maintaining optical fiber 31 is coupled to the input / output optical waveguide 33 at the other end of the LiNbO 3 single crystal substrate 32. Further, four metal electrodes 35 are arranged in a row at a predetermined location on the LiNbO 3 single crystal substrate 32 extending from the portion near one end to the other end and straddling the branch optical waveguide 24a. It is configured. This metal electrode 35 is the same as that shown in FIG.
And the metal electrode 25 of the uniaxial optical electric field sensor 11 for the X-axis direction and the uniaxial optical electric field sensor 12 for the Y-axis direction shown in FIG. It is formed so that a voltage induced by an electric field parallel to 34a is applied to the branch optical waveguide 34a. In addition, in order to particularly increase the sensitivity to an electric field, the metal electrode 3 is used here.
5 is added as a pattern composed of four composite metal films.

【0029】このZ軸方向用1軸光電界センサ13の場
合も、偏波保持光ファイバ31から入射した光がLiN
bO3 単結晶基板32上の入出射光導波路33を経て2
本の分岐光導波路34a,34bに分岐され、このとき
一方の分岐光導波路34aには金属電極35により電界
が印加されて屈折率の変化が生じるが、他方の分岐光導
波路34bには電界による屈折率の変化は無く、何れの
分岐光導波路34a,34bを伝播する光も反射ミラー
36で反射された後、分岐光導波路34a,34bを逆
方向に伝播して再び入出射光導波路33で合波される。
この合波に際して、2つの光路の屈折率の差異により生
じる位相差のため、合波後の光強度は変化し、この後は
偏波保持光ファイバ31に結合して出射する。
Also in the case of the uniaxial optical electric field sensor 13 for the Z-axis direction, the light incident from the polarization maintaining optical fiber 31 is LiN
2 through the input / output optical waveguide 33 on the bO 3 single crystal substrate 32
The light is branched into two branch optical waveguides 34a and 34b. At this time, an electric field is applied to one of the branch optical waveguides 34a by the metal electrode 35 to change the refractive index, while the other branch optical waveguide 34b is refracted by the electric field. There is no change in the rate, and the light propagating in any of the branch optical waveguides 34a and 34b is reflected by the reflection mirror 36, and then propagates in the branch optical waveguides 34a and 34b in the opposite directions and is multiplexed again by the input / output optical waveguide 33. Is done.
At the time of this multiplexing, the light intensity after the multiplexing changes due to the phase difference caused by the difference in the refractive index between the two optical paths, and thereafter, the light is coupled to the polarization maintaining optical fiber 31 and emitted.

【0030】ところで、このような構成の3軸方向の電
界測定用タイプの光電界センサ(3軸光電界センサと呼
ばれても良い)は、それぞれ3組の光源部,光サーキュ
レータ,及び光検出器と組み合わせることで、電界セン
シング装置として構成することができる。
The three-axis electric field measuring type optical electric field sensor (also referred to as a three-axis optical electric field sensor) having such a configuration has three sets of light source units, optical circulators, and light detection units. By combining with a device, it can be configured as an electric field sensing device.

【0031】図4は、上述した3軸光電界センサ50を
用いた電界センシング装置の基本構成を示したブロック
図である。
FIG. 4 is a block diagram showing a basic configuration of an electric field sensing device using the above-described three-axis optical electric field sensor 50.

【0032】この電界センシング装置は、偏波保持光フ
ァイバ81,84,87によりそれぞれ3組の第1〜第
3の光源部51,52,53に対して接続されると共
に、偏波保持光ファイバ83,86,89によりそれぞ
れ3組の第1〜第3の光検出器(O/E)57,58,
59に対して接続された3組の第1〜第3のサーキュレ
ータ54,55,56をそれぞれ偏波保持光ファイバ8
2,85,88を用いて3軸光電界センサ50に対して
接続して構成されている。
This electric field sensing device is connected to three sets of first to third light sources 51, 52 and 53 by polarization maintaining optical fibers 81, 84 and 87, respectively. 83, 86, 89, three sets of first to third photodetectors (O / E) 57, 58,
59. The three sets of first to third circulators 54, 55, 56 connected to the
2, 85, 88 are used to connect to the three-axis optical electric field sensor 50.

【0033】このうち、3組の第1〜第3の光源部5
1,52,53で用いる光源の波長は、光変調部の各反
射型マッハツェンダ干渉計における分岐光導波路(Ti
拡散導波路)の電気光学効果と光損失とを考慮して1.
2μm〜1.6μm程度の波長を選定し、光源としてR
IN(相対雑音強度)特性の良い半導体レーザ励起N
d:YAGレーザか、或いは低消費電力の半導体レーザ
を適用することが好ましい。尚、半導体レーザ励起のN
d:YAGレーザを光源として用いる場合には1.3μ
m、或いは1.34μmのレーザ波長が使い易く、半導
体レーザを光源として用いる場合には高出力が得られる
1.31μm、1.48μm、或いは1.55μmのレ
ーザ波長が使い易い。又、3組の第1〜第3の光検出器
(O/E)57,58,59は、それぞれフォトダイオ
ードと増幅器(アンプ)との組み合わせにより構成され
る。
Of these, three sets of first to third light source units 5
The wavelength of the light source used in each of the optical modulators 1, 52, and 53 depends on the branching optical waveguide (Ti
1. Considering the electro-optic effect and light loss of the diffused waveguide,
A wavelength of about 2 μm to 1.6 μm is selected, and R
Semiconductor laser pumping N with good IN (relative noise intensity) characteristics
d: It is preferable to use a YAG laser or a semiconductor laser with low power consumption. Note that the N
d: 1.3 μm when a YAG laser is used as a light source
m or 1.34 μm is easy to use, and when a semiconductor laser is used as a light source, a laser wavelength of 1.31 μm, 1.48 μm, or 1.55 μm that can provide high output is easy to use. The three sets of first to third photodetectors (O / E) 57, 58, and 59 are each configured by a combination of a photodiode and an amplifier.

【0034】次に、この電界センシング装置の動作につ
いて説明する。先ず、1軸方向の電界に対するセンシン
グ系として、第1の光源部51から出射した直線偏光の
光は、偏波保持光ファイバ81,第1のサーキュレータ
54,及び偏波保持光ファイバ82を経て3軸光電界セ
ンサ50に入射し、ここで被測定電界による強度変調を
受けから再び偏波保持光ファイバ82に入射し、その後
に変調された光は、第1の光サーキュレータ54を経て
第1の光検出器(O/E)57に入射し、ここで電気信
号に変換される。又、他の2軸方向の電界に対するセン
シング系は、1軸方向の電界に対するセンシング系の場
合と同様である。即ち、第2の光源部52から出射した
直線偏光の光は、偏波保持光ファイバ84,第2のサー
キュレータ55,及び偏波保持光ファイバ85を経て3
軸光電界センサ50に入射し、ここで被測定電界による
強度変調を受けから再び偏波保持光ファイバ85に入射
し、その後に変調された光は、第2の光サーキュレータ
55を経て第2の光検出器(O/E)58に入射し、こ
こで電気信号に変換される。第3の光源部53から出射
した直線偏光の光は、偏波保持光ファイバ87,第3の
サーキュレータ56,及び偏波保持光ファイバ88を経
て3軸光電界センサ50に入射し、ここで被測定電界に
よる強度変調を受けから再び偏波保持光ファイバ88に
入射し、その後に変調された光は、第3の光サーキュレ
ータ56を経て第2の光検出器(O/E)59に入射
し、ここで電気信号に変換される。
Next, the operation of the electric field sensing device will be described. First, as a sensing system for an electric field in one axis direction, linearly polarized light emitted from the first light source unit 51 passes through the polarization maintaining optical fiber 81, the first circulator 54, and the polarization maintaining optical fiber 82, and then becomes 3. The light enters the axial optical electric field sensor 50, receives the intensity modulation by the electric field to be measured, and then enters the polarization maintaining optical fiber 82 again. The light modulated thereafter passes through the first optical circulator 54 to the first optical circulator 54. The light enters the photodetector (O / E) 57, where it is converted into an electric signal. The sensing system for the electric field in the other two axes is the same as the sensing system for the electric field in the one axis. That is, the linearly-polarized light emitted from the second light source unit 52 passes through the polarization maintaining optical fiber 84, the second circulator 55, and the polarization maintaining optical fiber 85, and
The light enters the axial optical electric field sensor 50, receives the intensity modulation by the electric field to be measured, and then enters the polarization maintaining optical fiber 85 again. The light modulated thereafter passes through the second optical circulator 55 to the second optical circulator 55. The light enters a photodetector (O / E) 58, where it is converted into an electric signal. The linearly polarized light emitted from the third light source unit 53 enters the three-axis optical electric field sensor 50 via the polarization maintaining optical fiber 87, the third circulator 56, and the polarization maintaining optical fiber 88, where the light is received. After receiving the intensity modulation by the measurement electric field, the light enters the polarization-maintaining optical fiber 88 again, and the modulated light thereafter enters the second optical detector (O / E) 59 via the third optical circulator 56. , Where it is converted to an electrical signal.

【0035】このような構成により、電界センシング装
置は直交3軸方向の電界を測定することができる。
With such a configuration, the electric field sensing device can measure electric fields in three orthogonal directions.

【0036】更に、この電界センシング装置の感度特性
を説明する。ここでは、G−TEMセル内において、一
定方向に一定偏波で進行する電磁波に対して図1
(a),(b)に示した光電界センサをX軸,Y軸,Z
軸の回りで回転して電界強度を測定した。
Further, the sensitivity characteristics of the electric field sensing device will be described. Here, in the G-TEM cell, an electromagnetic wave traveling in a certain direction with a certain polarization is shown in FIG.
The optical electric field sensor shown in FIGS.
The electric field strength was measured by rotating around the axis.

【0037】図5は、図1(a),(b)に示すY軸方
向に進行すると共に、X軸方向に電界が振動している電
磁波に対してY軸方向の回りで光電界センサのセンサヘ
ッド部41を回転させた場合における総計3個の1軸光
電界センサからの出力のうちの図1(b)に示すX軸方
向用1軸光電界センサ11からの出力が回転角度に依存
して変化する様子を示したものである。但し、図5中で
は光電界センサのセンサヘッド部41の中心軸がZ軸方
向に一致したときの角度を0度とし、出力をdB単位の
相対値によって示している。
FIG. 5 shows an optical electric field sensor which travels in the Y-axis direction shown in FIGS. 1 (a) and 1 (b), and rotates around the Y-axis direction against an electromagnetic wave whose electric field is oscillating in the X-axis direction. When the sensor head 41 is rotated, the output from the single-axis optical electric field sensor 11 for the X-axis direction shown in FIG. 1B among the outputs from the total of three single-axis optical electric field sensors depends on the rotation angle. It is shown how it changes. However, in FIG. 5, the angle when the center axis of the sensor head 41 of the optical electric field sensor coincides with the Z-axis direction is set to 0 degree, and the output is indicated by a relative value in dB.

【0038】図5からは、0度又は180度の方向で感
度が最大になり、90度又は180度の方向で感度が最
小になることが判る。
FIG. 5 shows that the sensitivity becomes maximum in the direction of 0 or 180 degrees, and becomes minimum in the direction of 90 or 180 degrees.

【0039】又、同様に図1(a),(b)に示すX軸
方向に進行すると共に、Y軸方向に電界が振動している
電磁波に対してX軸方向の回りで光電界センサのセンサ
ヘッド部41を回転させた場合における総計3個の1軸
光電界センサからの出力のうちの図1(b)に示すY軸
方向用1軸光電界センサ12からの出力が回転角度に依
存して変化する様子は,図5に示す様子と全く同じなの
で省図する。
Similarly, the electromagnetic wave traveling in the X-axis direction shown in FIGS. When the sensor head 41 is rotated, the output from the single-axis optical electric field sensor 12 for the Y-axis direction shown in FIG. 1B among the outputs from the total of three single-axis optical electric field sensors depends on the rotation angle. The state of the change is exactly the same as the state shown in FIG.

【0040】これに対し、図6は、図1(a),(b)
に示すX−Y面内の何れかの方向に進行すると共に、Z
軸方向で電界が振動している電磁波に対して図1(b)
に示すZ軸方向用1軸光電界センサ13のLiNbO3
単結晶基板面を垂直に保った状態で光電界センサのヘッ
ドセンサ部41を電磁波の進行方向を軸として回転させ
た場合におけるZ軸方向用1軸光電界センサ13からの
出力が回転角度に依存して変化する様子を示したもので
ある。但し、図6中では光電界センサのセンサヘッド部
41の中心軸がZ軸方向に一致したときの角度を0度と
し、出力をdB単位の相対値によって示している。
On the other hand, FIG. 6 shows FIGS. 1 (a) and 1 (b).
While traveling in any direction in the XY plane shown in FIG.
Fig. 1 (b) for an electromagnetic wave with an electric field oscillating in the axial direction
LiNbO 3 of the uniaxial optical electric field sensor 13 for the Z-axis direction shown in FIG.
When the head sensor unit 41 of the optical electric field sensor is rotated about the traveling direction of the electromagnetic wave while keeping the single crystal substrate surface vertical, the output from the uniaxial optical electric field sensor 13 for the Z-axis direction depends on the rotation angle. It is shown how it changes. However, in FIG. 6, the angle when the central axis of the sensor head 41 of the optical electric field sensor coincides with the Z-axis direction is set to 0 degree, and the output is indicated by a relative value in dB.

【0041】図6からは、0度又は180度の方向で感
度が最小になり、90度又は180度の方向で感度が最
大になることが判る。
From FIG. 6, it can be seen that the sensitivity becomes minimum in the direction of 0 or 180 degrees, and becomes maximum in the direction of 90 or 180 degrees.

【0042】以上の結果を光電界センサのセンサヘッド
部41を固定した状態に対して換言すれば、図1
(a),(b)に示す光電界センサの場合、このセンサ
ヘッド部41の中心軸に垂直な方向、即ち、X−Y面内
のあらゆる方向から入射する電磁波に対して電界ベクト
ルの方向に拘らず電界強度の測定を可能にする。又、セ
ンサヘッド部41の中心軸方向に進行する電磁波に対し
ては、この電界の振動方向はX−Y面内にあり、その電
界ベクトルは、X軸方向又はY軸方向に進行する電磁波
の電界ベクトルと等しいため、X軸方向用1軸光電界セ
ンサ11又はY軸方向用1軸光電界センサ12による測
定が可能である。即ち、一実施例に係る光電界センサを
用いると、3次元のあらゆる方向に進行する電磁波に対
してその電界強度を測定することができる。因みに、一
実施例に係る光電界センサにおいて、光変調部における
総計3個の1軸光電界センサの最大感度の方向は互いに
直交しているが、こうした条件下にあれば測定電界の振
動ベクトルを決定するときの演算処理を容易にすること
ができる。
In other words, the above result is obtained with respect to the state where the sensor head 41 of the optical electric field sensor is fixed.
In the case of the optical electric field sensor shown in (a) and (b), in the direction perpendicular to the central axis of the sensor head 41, that is, in the direction of the electric field vector with respect to electromagnetic waves incident from all directions in the XY plane. Regardless, it is possible to measure the electric field strength. Also, for an electromagnetic wave traveling in the direction of the central axis of the sensor head portion 41, the direction of oscillation of this electric field is in the XY plane, and the electric field vector is the electromagnetic wave traveling in the X-axis direction or the Y-axis direction. Since it is equal to the electric field vector, the measurement can be performed by the uniaxial optical electric field sensor 11 for the X-axis direction or the uniaxial optical electric field sensor 12 for the Y-axis direction. That is, the use of the optical electric field sensor according to one embodiment makes it possible to measure the electric field strength of electromagnetic waves traveling in all three-dimensional directions. Incidentally, in the optical electric field sensor according to one embodiment, the directions of the maximum sensitivity of the total of three uniaxial optical electric field sensors in the optical modulator are orthogonal to each other. Arithmetic processing for the determination can be facilitated.

【0043】尚、一実施例に係る光電界センサでは、光
変調部における電気光学結晶基板の電気光学結晶として
LiNbO3 単結晶を用いた場合を説明したが、LiN
bO 3 単結晶に代えて例えばLiTaO3 単結晶を用い
ることも可能であり、この場合にはレーザ光による光損
失を低減することができる。又、分岐光導波路がLiN
bO3 単結晶基板上にTiイオンを拡散して形成される
Ti拡散導波路により作製される場合を説明したが、T
i拡散導波路に代えてH+ 交換導波路を用いることもで
きる。
In the optical electric field sensor according to the embodiment, the light
As an electro-optic crystal on the electro-optic crystal substrate in the modulation section
LiNbOThreeThe case where a single crystal is used has been described.
bO ThreeInstead of a single crystal, for example, LiTaOThreeUsing a single crystal
In this case, it is possible to
Loss can be reduced. The branch optical waveguide is made of LiN.
bOThreeFormed by diffusing Ti ions on a single crystal substrate
The case of manufacturing with a Ti diffusion waveguide has been described.
H instead of i-diffusion waveguide+ You can also use an exchange waveguide
Wear.

【0044】[0044]

【発明の効果】以上に述べた通り、本発明の光電界セン
サによれば、X,Y,Zの3軸方向の電界を測定するた
めの反射型マッハツェンダ干渉計から成る光変調部をセ
ンサヘッド部に収納すると共に、光変調部の各反射型マ
ッハツェンダ干渉計に接続される偏波保持型の3芯光フ
ァイバをセンサヘッド部の端面に結合される非金属製の
保持ロッドで被覆した構成とし、更に、センサヘッド部
ではハウジング内の略中心部分に配置された直角三角形
の断面を有する三角柱状の支持部材の各側面にX,Y,
Zの3軸方向の電界を測定するための光電界センサ(反
射型マッハツェンダ干渉計)の3種としてX軸方向用1
軸光電界センサ,Y軸方向用1軸光電界センサ,Z軸方
向用1軸光電界センサを装着して光変調部を構成してい
るので、狭い空間領域にあっても安定して精度良く3軸
方向の電界測定が可能な小型の光電界センサを提供する
ことができ、この光電界センサを用いて同様な機能を有
する電界センシング装置を小型で構成できるようにな
る。
As described above, according to the optical electric field sensor of the present invention, the optical modulation section comprising the reflection type Mach-Zehnder interferometer for measuring the electric field in the three axes of X, Y, and Z is used as the sensor head. And a polarization-maintaining three-core optical fiber connected to each reflection type Mach-Zehnder interferometer of the light modulation unit is covered with a non-metallic holding rod coupled to the end face of the sensor head unit. Further, in the sensor head portion, X, Y, and X are provided on each side surface of a triangular prism-shaped support member having a right-angled triangular cross section disposed at a substantially central portion in the housing.
One of three types of optical electric field sensors (reflection type Mach-Zehnder interferometer) for measuring electric fields in the three axial directions of Z
Since the optical modulator is configured by mounting the axial optical electric field sensor, the Y-axis uniaxial optical electric field sensor, and the Z-axial uniaxial optical electric field sensor, it is stable and accurate even in a narrow space area. A small-sized optical electric field sensor capable of measuring electric fields in three axial directions can be provided, and an electric field sensing device having a similar function can be configured in a small size using the optical electric field sensor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る3軸方向の電界測定用
タイプの光電界センサの基本構成を示したもので、
(a)は一部を破断した全体の外観斜視図に関するも
の,(b)はその局部を成すセンサヘッド部の上面から
見た断面図に関するものである。
FIG. 1 shows a basic configuration of a three-axis direction electric field measuring type optical electric field sensor according to an embodiment of the present invention.
(A) relates to a partially cutaway perspective view of the entire appearance, and (b) relates to a cross-sectional view as viewed from the top of a sensor head portion forming a local portion thereof.

【図2】図1に示す光電界センサの光変調部に備えられ
るX軸方向用1軸光電界センサ,Y軸方向用1軸光電界
センサの基本構成を示した外観斜視図である。
FIG. 2 is an external perspective view showing a basic configuration of a single-axis optical electric field sensor for an X-axis direction and a single-axis optical electric field sensor for a Y-axis direction provided in a light modulator of the optical electric field sensor shown in FIG.

【図3】図1に示す光電界センサの光変調部に備えられ
るZ軸方向用1軸光電界センサの基本構成を示した外観
斜視図である。
3 is an external perspective view illustrating a basic configuration of a single-axis optical electric field sensor for a Z-axis direction provided in a light modulator of the optical electric field sensor illustrated in FIG. 1;

【図4】図1に示す光電界センサ(3軸光電界センサ)
を用いた電界センシング装置の基本構成を示したブロッ
ク図である。
FIG. 4 is an optical electric field sensor (a three-axis optical electric field sensor) shown in FIG.
FIG. 2 is a block diagram showing a basic configuration of an electric field sensing device using the device.

【図5】図1(a),(b)に示すY軸方向に進行する
と共に、X軸方向に電界が振動している電磁波に対して
Y軸方向の回りで光電界センサのセンサヘッド部を回転
させた場合におけるX軸方向用1軸光電界センサからの
出力が回転角度に依存して変化する様子を示したもので
ある。
FIG. 5 shows a sensor head portion of an optical electric field sensor which travels in the Y-axis direction shown in FIGS. 1 (a) and 1 (b) and rotates around the Y-axis direction with respect to an electromagnetic wave whose electric field oscillates in the X-axis direction. FIG. 6 shows a state in which the output from the uniaxial optical electric field sensor for the X-axis direction changes depending on the rotation angle when is rotated.

【図6】図1(a),(b)に示すX−Y面内の何れか
の方向に進行すると共に、Z軸方向で電界が振動してい
る電磁波に対してZ軸方向用1軸光電界センサのLiN
bO3 単結晶基板面を垂直に保った状態で光電界センサ
のヘッドセンサ部を電磁波の進行方向を軸として回転さ
せた場合におけるZ軸方向用1軸光電界センサからの出
力が回転角度に依存して変化する様子を示したものであ
る。
FIG. 6 is a diagram showing one axis for the Z-axis direction with respect to an electromagnetic wave traveling in any direction in the XY plane shown in FIGS. 1A and 1B and having an electric field vibrating in the Z-axis direction. LiN for optical electric field sensor
When the head sensor of the optical electric field sensor is rotated about the traveling direction of the electromagnetic wave with the bO 3 single crystal substrate surface kept vertical, the output from the uniaxial optical electric field sensor for the Z-axis direction depends on the rotation angle. It is shown how it changes.

【図7】従来の光電界センサの基本構成を示した外観斜
視図であり、(a)は1軸方向の電界測定用タイプに関
するもの,(b)は3軸方向の電界測定用タイプに関す
るものである。
FIG. 7 is an external perspective view showing a basic configuration of a conventional optical electric field sensor, in which (a) relates to a uniaxial electric field measuring type, and (b) relates to a triaxial electric field measuring type. It is.

【符号の説明】[Explanation of symbols]

11 X軸方向用1軸光電界センサ 12 Y軸方向用1軸光電界センサ 13 Z軸方向用1軸光電界センサ 14 支持部材 15 ハウジング 21,31,81〜89 偏波保持光ファイバ 22,32,68 入出射光導波路 23,33,65〜67 LiNbO3 単結晶基板 24a,24b,34a,34b,69a,69b 分
岐光導波路 25,35,70a,70b 金属電極 26,36,71 反射ミラー 41 センサヘッド部 43 3芯光ファイバ 50 3軸光電界センサ 51,52,53 光源部 54,55,56 光サーキュレータ 57,58,59 光検出器(O/E) 60〜63 光ファイバ
DESCRIPTION OF SYMBOLS 11 1-axis optical electric field sensor for X-axis directions 12 1-axis optical electric field sensor for Y-axis directions 13 1-axis optical electric field sensor for Z-axis directions 14 Support member 15 Housing 21, 31, 81-89 Polarization-maintaining optical fibers 22, 32 , 68 Input / output optical waveguides 23, 33, 65-67 LiNbO 3 single crystal substrate 24a, 24b, 34a, 34b, 69a, 69b Branched optical waveguides 25, 35, 70a, 70b Metal electrodes 26, 36, 71 Reflecting mirror 41 Sensor Head unit 43 3-core optical fiber 50 3-axis optical electric field sensor 51, 52, 53 Light source unit 54, 55, 56 Optical circulator 57, 58, 59 Optical detector (O / E) 60 to 63 Optical fiber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 垂澤 芳明 東京都千代田区永田町二丁目11番1号 株 式会社エヌ・ティ・ティ・ドコモ内 (72)発明者 野島 俊雄 東京都千代田区永田町二丁目11番1号 株 式会社エヌ・ティ・ティ・ドコモ内 Fターム(参考) 2G025 AA05 AB11 AC06  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshiaki Tarusawa 2-11-1, Nagatacho, Chiyoda-ku, Tokyo Inside NTT DoCoMo, Inc. (72) Inventor Toshio Nojima Machiji Nagata, Chiyoda-ku, Tokyo F-term (reference) in NTT DoCoMo, Inc. 11-11 chome 2G025 AA05 AB11 AC06

Claims (6)

【特許請求の範囲】[The claims] 【請求項1】 電気光学結晶による電気光学結晶基板上
に電極と分岐光導波路とを配設して成り、且つ該分岐光
導波路に対して平行な方向の電界検出が可能な1個の第
1の反射型マッハツェンダ干渉計、並びに電気光学結晶
による電気光学結晶基板上に電極と分岐光導波路とを配
設して成り、且つ該分岐光導波路に対してそれぞれ異な
る垂直な方向の電界検出が可能な2個の第2の反射型マ
ッハツェンダ干渉計を組み合わせて成る光変調部と、前
記光変調部に対して光を入出力するために前記1個の第
1の反射型マッハツェンダ干渉計及び前記2個の第2の
反射型マッハツェンダ干渉計と結合される光ファイバと
を備えて構成される光電界センサであって、前記光変調
部では、前記1個の第1の反射型マッハツェンダ干渉計
及び前記2個の第2の反射型マッハツェンダ干渉計にお
ける前記分岐光導波路の全ての延在方向が互いにほぼ平
行に配置されると共に、前記光ファイバの引き出し方向
がほぼ同一方向に配置され、且つ該2個の第2の反射型
マッハツェンダ干渉計における前記電界検出する方向の
成す角度がほぼ直角になるように配置されたことを特徴
とする光電界センサ。
An electrode and a branch optical waveguide are provided on an electro-optic crystal substrate made of an electro-optic crystal, and one first first electrode capable of detecting an electric field in a direction parallel to the branch optical waveguide. A reflection type Mach-Zehnder interferometer, and an electrode and a branch optical waveguide disposed on an electro-optic crystal substrate made of an electro-optic crystal, and electric fields can be detected in different vertical directions with respect to the branch optical waveguide. An optical modulator comprising a combination of two second reflective Mach-Zehnder interferometers; one first reflective Mach-Zehnder interferometer for inputting and outputting light to and from the optical modulator; An optical electric field sensor comprising an optical fiber coupled to the second reflection type Mach-Zehnder interferometer of the first aspect of the invention, wherein the optical modulation unit includes the one first reflection-type Mach-Zehnder interferometer and the second reflection type Mach-Zehnder interferometer. Second In the reflection type Mach-Zehnder interferometer, all the extending directions of the branch optical waveguides are arranged substantially in parallel with each other, and the drawing directions of the optical fibers are arranged in substantially the same direction. An optical electric field sensor, wherein the angle formed by the direction in which the electric field is detected in the Mach-Zehnder interferometer is substantially perpendicular.
【請求項2】 請求項1記載の光電界センサにおいて、
前記光ファイバは、3芯光ファイバであることを特徴と
する光電界センサ。
2. The optical electric field sensor according to claim 1, wherein
The optical fiber sensor is characterized in that the optical fiber is a three-core optical fiber.
【請求項3】 請求項1又は2記載の光電界センサにお
いて、前記電気光学結晶は、LiNbO3 単結晶であ
り、前記分岐光導波路は、前記電気光学結晶基板として
前記LiNbO3 単結晶によるLiNbO3 単結晶基板
上にTiイオンを拡散して形成されたことを特徴とする
光電界センサ。
3. The optical electric field sensor according to claim 1 or 2, wherein said electro-optical crystal is a LiNbO 3 single crystal, the branched optical waveguide, LiNbO 3 by the LiNbO 3 single crystal as the electro-optical crystal substrate An optical electric field sensor formed by diffusing Ti ions on a single crystal substrate.
【請求項4】 請求項1〜3の何れか一つに記載の光電
界センサと、それぞれ3組の光源部,光サーキュレー
タ,及び光検出器とを備えて構成されることを特徴とす
る電界センシング装置。
4. An electric field comprising the optical electric field sensor according to claim 1, and three sets of a light source unit, an optical circulator, and a photodetector, respectively. Sensing device.
【請求項5】 請求項4記載の電界センシング装置にお
いて、前記3組の光源部は、光源として半導体レーザを
備えて成ることを特徴とする電界センシング装置。
5. The electric field sensing device according to claim 4, wherein the three sets of light source units include a semiconductor laser as a light source.
【請求項6】 請求項4記載の電界センシング装置にお
いて、前記3組の光源部は、光源として半導体レーザ励
起のNd:YAGレーザを備えて成ることを特徴とする
電界センシング装置。
6. The electric field sensing device according to claim 4, wherein the three sets of light source units include a semiconductor laser-excited Nd: YAG laser as a light source.
JP2001058043A 2001-03-02 2001-03-02 Optical electric field sensor Expired - Lifetime JP3727051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001058043A JP3727051B2 (en) 2001-03-02 2001-03-02 Optical electric field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001058043A JP3727051B2 (en) 2001-03-02 2001-03-02 Optical electric field sensor

Publications (2)

Publication Number Publication Date
JP2002257884A true JP2002257884A (en) 2002-09-11
JP3727051B2 JP3727051B2 (en) 2005-12-14

Family

ID=18917831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001058043A Expired - Lifetime JP3727051B2 (en) 2001-03-02 2001-03-02 Optical electric field sensor

Country Status (1)

Country Link
JP (1) JP3727051B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091072A (en) * 2003-09-16 2005-04-07 Sureway Inc Apparatus for measuring electric field
JP2006132970A (en) * 2004-11-02 2006-05-25 Ntt Docomo Inc System and method for measuring specific absorption rate
JP2007240175A (en) * 2006-03-06 2007-09-20 Yazaki Corp Electric field estimation apparatus
CN104793059A (en) * 2014-12-26 2015-07-22 中国舰船研究设计中心 Optical fiber field intensity sensor
CN105067897A (en) * 2015-07-17 2015-11-18 李俊杰 Triangular pyramid-shaped three-dimensional pulsed electric field measurement device and method
EP3092504A4 (en) * 2014-01-07 2018-01-17 Power Survey LLC Apparatus and method for monitoring and controlling detection of stray voltage anomalies using a photonic sensor
CN111308158A (en) * 2020-03-31 2020-06-19 国网山东省电力公司济南供电公司 Near-electric induction system of power transmission line

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091072A (en) * 2003-09-16 2005-04-07 Sureway Inc Apparatus for measuring electric field
JP2006132970A (en) * 2004-11-02 2006-05-25 Ntt Docomo Inc System and method for measuring specific absorption rate
JP2007240175A (en) * 2006-03-06 2007-09-20 Yazaki Corp Electric field estimation apparatus
EP3092504A4 (en) * 2014-01-07 2018-01-17 Power Survey LLC Apparatus and method for monitoring and controlling detection of stray voltage anomalies using a photonic sensor
EP3546960A1 (en) * 2014-01-07 2019-10-02 Power Survey LLC Apparatus and method for monitoring and controlling detection of stray voltage anomalies using a photonic sensor
US10802067B2 (en) 2014-01-07 2020-10-13 Osmose Utilities Services, Inc. Apparatus and method for monitoring and controlling detection of stray voltage anomalies using a photonic sensor
CN104793059A (en) * 2014-12-26 2015-07-22 中国舰船研究设计中心 Optical fiber field intensity sensor
CN105067897A (en) * 2015-07-17 2015-11-18 李俊杰 Triangular pyramid-shaped three-dimensional pulsed electric field measurement device and method
CN111308158A (en) * 2020-03-31 2020-06-19 国网山东省电力公司济南供电公司 Near-electric induction system of power transmission line

Also Published As

Publication number Publication date
JP3727051B2 (en) 2005-12-14

Similar Documents

Publication Publication Date Title
US10451420B2 (en) Non-interferometric optical gyroscope based on polarization sensing
US4495411A (en) Fiber optic sensors operating at DC
Bergh et al. An overview of fiber-optic gyroscopes
CN111089578B (en) Interference type optical fiber gyroscope
CN101294810B (en) Resonant vibration type hollow photon crystal optical fiber gyroscope
US4420258A (en) Dual input gyroscope
US6801319B2 (en) Symmetrical depolarized fiber optic gyroscope
KR0164227B1 (en) Integrated optics pockels cell voltage sensor
EP0683889B1 (en) Control of spectral shift errors
CN101261127A (en) MZ resonance interference principle optical fiber gyro
CN110174547A (en) A kind of inverse piezoelectric type optical fibre voltage sensor
EP0563279A1 (en) Fiber optic gyro.
JP2002257884A (en) Photoelectric field sensor
JP3253621B2 (en) Method and sensor for measuring voltage and / or electric field strength
US4461574A (en) Environmentally independent fiber optic rotation sensor
JPH09500734A (en) Depolarized fiber optic rotation sensor with low Faraday effect drift
JP3720327B2 (en) 3-axis optical electric field sensor
RU2724458C1 (en) Sensor device with built-in beam splitter
JP2007078633A (en) High sensitivity three-axis photoelectric field sensor
CN1382958A (en) Beat frequency detection method for travelling-wave annular resonance cavity of non-mechanical gyro
Wang et al. Silicon photonics multi-function integrated optical circuit for miniaturized fiber optic gyroscope
JPH0743264B2 (en) Integrated optic interferometric fiber gyroscope module
Arditty et al. Integrated-optic fiber gyroscope: Progresses towards a tactical application
JP2004219088A (en) Triaxial optical field sensor element
JP2841863B2 (en) Ring interferometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050926

R150 Certificate of patent or registration of utility model

Ref document number: 3727051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081007

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term