JP2002255643A - Method of enhancing fracture toughness of surface of functional ceramic material - Google Patents

Method of enhancing fracture toughness of surface of functional ceramic material

Info

Publication number
JP2002255643A
JP2002255643A JP2001049087A JP2001049087A JP2002255643A JP 2002255643 A JP2002255643 A JP 2002255643A JP 2001049087 A JP2001049087 A JP 2001049087A JP 2001049087 A JP2001049087 A JP 2001049087A JP 2002255643 A JP2002255643 A JP 2002255643A
Authority
JP
Japan
Prior art keywords
ceramic material
functional ceramic
indenter
functional
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001049087A
Other languages
Japanese (ja)
Inventor
Nobuaki Kawahara
伸章 川原
Kunihiko Hara
邦彦 原
Kimitaka Saka
公恭 坂
Katsuji Uchimura
内村  勝次
Moriyasu Izawa
守康 伊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINTO V CERAX Ltd
SHINTO V-CERAX Ltd
Sintobrator Ltd
Denso Corp
Original Assignee
SHINTO V CERAX Ltd
SHINTO V-CERAX Ltd
Sintobrator Ltd
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINTO V CERAX Ltd, SHINTO V-CERAX Ltd, Sintobrator Ltd, Denso Corp filed Critical SHINTO V CERAX Ltd
Priority to JP2001049087A priority Critical patent/JP2002255643A/en
Publication of JP2002255643A publication Critical patent/JP2002255643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of strengthening mechanical strengths of a functional ceramic material, by which the mechanical strengths, especially, the toughness of the surface of the functional ceramic material can be strengthened without changing piezoelectric characteristics such as the dielectric constant. SOLUTION: A fine indentation is formed on the surface of the functional ceramic material 3 by bringing an indenter 2 into contact with the surface of the functional ceramic at room temperature in such a manner that fine cracks are formed in the vicinity of the indentation. Thereafter, the functional ceramic is subjected to simple annealing at a temperature condition of >=0.5Tm and <Tm, wherein, Tm is the melting point, expressed by the absolute temperature, of the functional ceramic material 3, so that at least a portion of the fine cracks diminishes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,機能性セラミック材料の新規な
表面強靭化方法に関する。代表的な機能性セラミック材
料としては,PbZrO3−PbTiO3の固溶体(通
常,PZTと呼ばれる。)がある。
TECHNICAL FIELD The present invention relates to a novel surface toughening method for a functional ceramic material. Exemplary functional ceramic material, there is a solid solution of PbZrO 3 -PbTiO 3 (commonly referred to as PZT.).

【0002】[0002]

【従来技術】積層型の圧電素子としての機能性セラミッ
ク材料は,積層された複数の圧電体層と,これらの圧電
体層の間に介在し一層おきに交互に形成されている複数
の第1内部電極および第2内部電極とを有する。このよ
うな積層圧電素子は,両面に両内部電極が塗布されてい
るセラミックシートを交互に積層して焼結し,できあが
った焼結体をブロックに分割(ダイシング)するなどの
製造方法により製造されている。
2. Description of the Related Art A functional ceramic material as a laminated piezoelectric element is composed of a plurality of stacked piezoelectric layers and a plurality of first piezoelectric layers interposed between the piezoelectric layers and formed alternately. An internal electrode and a second internal electrode. Such a laminated piezoelectric element is manufactured by a manufacturing method such as alternately stacking and sintering ceramic sheets having both internal electrodes coated on both surfaces, and dividing (dicing) the completed sintered body into blocks. ing.

【0003】たとえば特開平4−179285号公報に
は,このような製造方法により製造されたブロックの両
側面に,露出している内部電極の端面を一層おきに絶縁
体で覆った後,残った内部電極の端面を導電性の外部電
極で接続する方法が,開示されている。こうして,圧電
体層および両内部電極の二つの側面にそれぞれ形成され
第1内部電極および第2内部電極にそれぞれ接続されて
いる第1外部電極および第2外部電極とを有する積層型
の圧電素子が製造される。
For example, in Japanese Patent Application Laid-Open No. 4-179285, the end faces of the internal electrodes exposed on both sides of the block manufactured by such a manufacturing method are covered with an insulator every other layer and remain. A method of connecting the end faces of the internal electrodes with conductive external electrodes is disclosed. Thus, a laminated piezoelectric element having the first external electrode and the second external electrode formed on the piezoelectric layer and the two side surfaces of the two internal electrodes and connected to the first internal electrode and the second internal electrode, respectively, is obtained. Manufactured.

【0004】ここで,セラミックスの強度を向上させる
方法としては,製造方法と添加物からのアプローチがあ
る。まず,製造方法からのアプローチでは,気孔率をな
るべく小さくする,すなわち焼結密度を増加させる,粒
成長を抑制する,セラミックス表面からの亀裂の進行を
防ぐ等の方法がある。特に,セラミック表面の亀裂を抑
える工夫をするのは,破壊は表面の亀裂から始まること
が多いことから,表面を鏡面研磨するなり,ガラスや樹
脂等で表面をコーティングすることによって強度の向上
が期待できることが知られている。
Here, as a method for improving the strength of ceramics, there are approaches from a manufacturing method and an additive. First, in the approach from the manufacturing method, there are methods of reducing the porosity as much as possible, that is, increasing the sintering density, suppressing grain growth, and preventing the progress of cracks from the ceramic surface. In particular, measures to suppress cracks on the ceramic surface are that the fracture often starts with a crack on the surface, so the surface must be mirror-polished and the strength can be improved by coating the surface with glass or resin. It is known that it can be done.

【0005】つぎに,添加物からのアプローチでは,誘
電率の向上,誘電率の温度依存性の改善,耐電圧特性の
向上,機械的強度の向上,電極材料とのマッチング,焼
結温度の低下等を目的として様々なドーパントが添加さ
れている。添加物により機械的な強度を向上すると,誘
電率など圧電特性が変化し,本来の機能性セラミック材
料の特性が変化し,アクチュエータ自体の構造までも見
直す必要があった。
[0005] Next, in the approach from the additive, improvement of the dielectric constant, improvement of the temperature dependence of the dielectric constant, improvement of the withstand voltage characteristic, improvement of the mechanical strength, matching with the electrode material, reduction of the sintering temperature are considered. Various dopants are added for the purpose. When the mechanical strength is improved by the additive, the piezoelectric characteristics such as the dielectric constant change, the characteristics of the original functional ceramic material change, and it is necessary to review the structure of the actuator itself.

【0006】[0006]

【解決しようとする課題】そこで,本発明の課題は機能
性セラミック材料において,誘電率など圧電特性を変化
させることなく,機能性セラミック材料の機械的な強
度,特に,表面の靭性を強化する方法を提供することで
ある。
Accordingly, an object of the present invention is to provide a method for enhancing the mechanical strength of a functional ceramic material, particularly the surface toughness, without changing piezoelectric characteristics such as dielectric constant in the functional ceramic material. It is to provide.

【0007】[0007]

【課題の解決手段】本発明(請求項1の発明)は,機能
性セラミック材料の表面に,室温において圧子を接触さ
せて微細圧痕を形成すると共に少なくともその近傍に微
小亀裂を形成した後,上記機能性セラミック材料の融点
の絶対温度をTmとした場合における0.5Tm以上T
m未満の温度雰囲気中で上記微小亀裂の少なくとも一部
が消失するように単純焼鈍することを特徴とする機能性
セラミック材料の表面強靭化方法にある。
According to the present invention (invention of claim 1), an indenter is brought into contact with the surface of a functional ceramic material at room temperature to form a fine indentation and to form a fine crack at least in the vicinity thereof. 0.5 Tm or more T when the absolute temperature of the melting point of the functional ceramic material is Tm
The present invention provides a method for toughening the surface of a functional ceramic material, characterized by performing simple annealing so that at least a part of the microcracks disappears in an atmosphere having a temperature of less than m.

【0008】本発明者等は,機能性セラミック材料の表
面を強靱化する方法を鋭意検討する中で,機能性セラミ
ック材料の中に変形と共に転位などの格子欠陥を導入す
ることによって,強靭性を高めることができるのではな
いかと考え,種々の試みを行った。その中で,室温で微
小亀裂導入後,高温での単純焼鈍によって,亜粒界(転
位)を形成することができ,これにより強靱性を高める
ことができるのであろうということを見い出したのであ
る。
The present inventors have been studying a method for toughening the surface of a functional ceramic material, and have introduced toughness by introducing lattice defects such as dislocations together with deformation into the functional ceramic material. We thought that it could be raised and made various attempts. Among them, they found that after the introduction of microcracks at room temperature, simple graining at high temperatures could form subgrain boundaries (dislocations), thereby increasing toughness. .

【0009】[0009]

【発明の実施の形態】本発明をより詳細に説明する。上
記微細圧痕と微小亀裂を形成した後の加熱による単純焼
鈍(ヒーリングまたはアニーリング)は,0.5Tm
(但しTmは融点の絶対温度)以上Tm未満で行うこと
ができる。0.5Tm以上の塑性変形を起こす状態で格
子欠陥を導入する手段を適用しなければ,強靭化を達成
できないと思われていたものが,本発明では,微細圧痕
と微小亀裂を室温で形成した後に,単純焼鈍するだけで
機能性セラミック材料の強靭化を達成できる。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in more detail. Simple annealing (healing or annealing) by heating after the formation of the fine indentations and microcracks is 0.5 Tm
(Where Tm is the absolute temperature of the melting point) or more and less than Tm. Although it was thought that toughening could not be achieved without applying means for introducing lattice defects in a state where plastic deformation of 0.5 Tm or more was caused, in the present invention, fine indentations and microcracks were formed at room temperature. Later, toughening of the functional ceramic material can be achieved only by simple annealing.

【0010】上記微小亀裂は,溝幅が0.001〜1μ
m,深さが0.1〜50μmであることが好ましい(請
求項2)。上記微細圧痕の溝幅の下限を0.001μm
とすることが好ましいのは,ヒーリングによって導入さ
れる転位密度が本発明の目的を達成するには小さいから
であり,上限を1μmとしたのはヒーリングに長時間を
要するからである。また,上記微小亀裂の深さは0.1
〜50μmとすることが好ましいが,これは表面部分の
剥離防止を図るためである。また,実験結果から,上記
微細圧痕は,500〜10,000個/mm2の密度と
なるよう形成することが好ましい(請求項3)。
The micro-crack has a groove width of 0.001 to 1 μm.
m, and the depth is preferably 0.1 to 50 μm. The lower limit of the groove width of the fine indentation is 0.001 μm
Is preferable because the dislocation density introduced by healing is small to achieve the object of the present invention, and the upper limit is set to 1 μm because healing requires a long time. The depth of the microcracks is 0.1
The thickness is preferably set to 50 μm in order to prevent peeling of the surface portion. From the experimental results, it is preferable that the fine indentations are formed so as to have a density of 500 to 10,000 / mm 2 (claim 3).

【0011】ここで,上記微細圧痕を形成する圧子は,
後述するビッカース硬度計の圧子やショトピーニングに
用いられる固体粒子,あるいはその他のものも含み,上
記微細圧痕および微小亀裂を機械的処理によって形成で
きるものを総称するものである。また,上記微細圧痕お
よび微小亀裂の形成手段としては,上記のような微細圧
痕および微小亀裂が形成できる手段であればどのような
ものでも良いが,後述するごとく,ビッカース硬度計,
ショットピーニング(金属材料の表面に硬い粒子を打ち
付けて表面近傍だけを塑性変形させる方法に用いられて
いる技術である。)などを用いる手段を好ましいものと
して挙げることができる。
[0011] Here, the indenter for forming the fine indentation is as follows.
It is a generic term for those which include the indenter of a Vickers hardness tester described later, solid particles used for shot peening, and others, and which can form the fine indentations and microcracks by mechanical treatment. The means for forming the fine indentations and micro-cracks may be any means capable of forming the fine indents and micro-cracks as described above.
Means such as shot peening (a technique used for hitting hard particles on the surface of a metal material and plastically deforming only the vicinity of the surface) and the like can be cited as preferable examples.

【0012】すなわち,上記圧子は,荷重100〜50
0gを加えたビッカース硬度計の圧子を適用することが
できる(請求項4)。また,上記機能性セラミック材料
表面に上記圧子としての固体粒子を投射することにより
上記微細圧痕及び上記微小亀裂を形成することもできる
(請求項5)。特にショットピーニングによる微細圧痕
及び微細亀裂の形成は,本発明の工業化には有力な方法
である。
That is, the indenter has a load of 100 to 50.
An indenter of a Vickers hardness meter to which 0 g is added can be applied (claim 4). Further, the fine indentations and the fine cracks can be formed by projecting the solid particles as the indenter on the surface of the functional ceramic material (claim 5). In particular, formation of fine indentations and fine cracks by shot peening is a powerful method for industrialization of the present invention.

【0013】また,上記固体粒子の粒径は1μm以上で
あることが好ましい(請求項6)。これにより,上記微
細圧痕を容易に形成することができる。更に,上記固体
粒子は,0.05MPa以上の搬送エアを用いて投射す
ることが好ましい(請求項7)。これにより,上記固体
粒子の衝突による上記微細圧痕の形成を容易に行うこと
ができる。
It is preferable that the solid particles have a particle size of 1 μm or more. Thereby, the fine indentations can be easily formed. Furthermore, it is preferable that the solid particles are projected using a carrier air of 0.05 MPa or more (claim 7). This makes it possible to easily form the fine indentations due to the collision of the solid particles.

【0014】また,上記方法を適用できる機能性セラミ
ック材料としては,チタン・ジルコン酸鉛(請求項
8),すなわちPbZrO3−PbTiO3の固溶体(通
常,PZTと呼ばれる)を主体とした圧電/電歪セラミ
ックス,あるいは,BaTiO3(チタン酸バリウム)
などがある。
The functional ceramic material to which the above method can be applied is a piezoelectric / electrode mainly composed of titanium / lead zirconate (claim 8), that is, a solid solution of PbZrO 3 -PbTiO 3 (usually called PZT). Strained ceramics or BaTiO 3 (barium titanate)
and so on.

【0015】そして,上記機能性セラミック材料を単独
で表面の靱性を向上させることもできるし,複数の機能
性セラミック材料を積層した積層体の表面の強靱化も可
能である。すなわち,上記機能性セラミック材料が,圧
電セラミックスあるいは電歪セラミックスよりなる複数
層のセラミック層と,該セラミック層間に介在させた内
部電極層とを一体的に焼成してなる積層一体焼成型の電
気機械変換素子である場合にも,上記表面強靱化方法を
有効に活用することができる(請求項9)。すなわち,
上記積層一体焼成型の電気機械変換素子は,その耐久性
の向上が強く要請されている。この背景において,上記
表面強靱化方法を上記電気機械変換素子に適用すること
によって,電気機械変換素子全体の表面を強靱化するこ
とができ,耐久性を向上させることができるのである。
The surface toughness can be improved by using the above-mentioned functional ceramic material alone, and the surface of a laminate in which a plurality of functional ceramic materials are laminated can be made tough. That is, a laminated monolithic electric machine in which the functional ceramic material is formed by integrally firing a plurality of ceramic layers made of piezoelectric ceramics or electrostrictive ceramics and an internal electrode layer interposed between the ceramic layers. Even in the case of a conversion element, the surface toughening method can be effectively used (claim 9). That is,
There is a strong demand for improvement in the durability of the electro-mechanical conversion element of the laminated integral firing type. In this background, by applying the surface toughening method to the electromechanical transducer, the surface of the entire electromechanical transducer can be toughened, and the durability can be improved.

【0016】[0016]

【実施例】実施例1 本例では,PZTを主体とした機能性セラミック材料の
表面に,室温において圧子を接触させて微細圧痕を形成
すると共に少なくともその近傍に微小亀裂を形成した。
その後,上記機能性セラミック材料の融点の絶対温度を
Tmとした場合の0.5Tm以上Tm未満の温度雰囲気
中で上記微小亀裂の少なくとも一部が消失するように単
純焼鈍した。
EXAMPLE 1 In this example, an indenter was brought into contact with the surface of a functional ceramic material mainly composed of PZT at room temperature to form a fine indentation and a microcrack was formed at least in the vicinity thereof.
Thereafter, simple annealing was performed in an atmosphere at a temperature of 0.5 Tm or more and less than Tm, where the absolute temperature of the melting point of the functional ceramic material was Tm, so that at least a part of the microcracks disappeared.

【0017】本例は,特に,ショットピーニングを利用
して,上記機能性セラミック材料表面に上記圧子として
の固体粒子を投射する方法を適用した例である。すなわ
ち,図1に示すごとく,機能性セラミック材料3に対し
て,圧子としての固体粒子(投射材)2が表面に投射さ
れる。代表的な例として,多結晶PZT表面に対して,
100μmのガラスビーズ投射材を0.2MPaのエア
で搬送し,投射ノズル1(内径8mm)から投射した。
This embodiment is an example in which shot particles are used to project the solid particles as the indenter onto the surface of the functional ceramic material. That is, as shown in FIG. 1, the solid particles (projection material) 2 as an indenter are projected on the surface of the functional ceramic material 3. As a typical example, for a polycrystalline PZT surface,
A 100 μm glass bead projecting material was conveyed by air of 0.2 MPa and projected from a projection nozzle 1 (inner diameter: 8 mm).

【0018】機能性セラミック材料3に対してノズル1
までの距離が100mmの場合,投射範囲は直径25m
m程度になるので,ノズル1を機能性セラミック材料に
対してXY方向に移動させながら投射を行った。個体粒
子2の投射量は,およそ200g/minとした。
Nozzle 1 for functional ceramic material 3
When the distance to is 100mm, the projection range is 25m in diameter
m, projection was performed while moving the nozzle 1 in the XY directions with respect to the functional ceramic material. The projection amount of the solid particles 2 was approximately 200 g / min.

【0019】そして,本例では,上記圧子としての固体
粒子の投射後の単純焼鈍(アニール)温度を変化させ,
その温度と表面靭性値の関係を求めた。図2には,横軸
に単純焼鈍の温度を,縦軸に表面靱性値をとったグラフ
を示す。同図より知られるごとく,機能性セラミック材
料の融点Tmに対して,0.5Tmまでは,強靱化の効
果はなく,アニール温度が0.5Tmを越えたあたりか
ら強靱化の効果が観察される。これは,上記固体粒子2
の投射により機能性セラミック材料3の表面に欠陥(転
位等)が導入され,アニール(単純焼鈍)により,前述
のヒーリングが起こるためと考えられる。
In this embodiment, the simple annealing (annealing) temperature after the projection of the solid particles as the indenter is changed,
The relationship between the temperature and the surface toughness value was determined. FIG. 2 is a graph in which the horizontal axis represents the temperature of simple annealing and the vertical axis represents the surface toughness. As can be seen from the figure, the toughening effect is not observed up to 0.5 Tm with respect to the melting point Tm of the functional ceramic material, and the toughening effect is observed from around the annealing temperature exceeding 0.5 Tm. . This is the solid particles 2
It is considered that defects (dislocations and the like) are introduced into the surface of the functional ceramic material 3 by the projection of the material, and the above-described healing occurs by annealing (simple annealing).

【0020】なお,破壊靱性は次の式を用いて算出する
ことができる。 KIC[破壊靭性(靭性強度)]=0.016(E/H)
1/2(P/c3/2),(但し,Eはヤング率,Hはビッカ
ース強度,Pは荷重,cは亀裂長さの半分である)に,
E=286.78Pa,H=1410,P=0.98
N,c=測定した微小亀裂の長さを代入することによっ
て靭性強度が求められる。
The fracture toughness can be calculated using the following equation. K IC [fracture toughness (toughness strength)] = 0.016 (E / H)
1/2 (P / c 3/2 ), where E is Young's modulus, H is Vickers strength, P is load, and c is half of crack length.
E = 286.78 Pa, H = 1410, P = 0.98
The toughness is determined by substituting N, c = the length of the measured microcrack.

【0021】このように,本例では,機能性セラミック
材料としてのPZTを主体とした圧電/電歪セラミック
スの表面を十分に強靱化できることがわかる。
Thus, in this example, it can be seen that the surface of a piezoelectric / electrostrictive ceramic mainly composed of PZT as a functional ceramic material can be sufficiently toughened.

【0022】実施例2 本例では,実施例1における機能性セラミック材料3に
代えて,積層一体焼成型の電気機械変換素子4に上記方
法を適用した例である。すなわち,本例では,図3に示
すごとく,機能性セラミック材料として,圧電セラミッ
クスあるいは電歪セラミックスよりなる複数層のセラミ
ック層41と,該セラミック層41間に介在させた内部
電極層51,52とを一体的に焼成してなる積層一体焼
成型の電気機械変換素子4を用いる。
Embodiment 2 In this embodiment, the above method is applied to an electromechanical transducer 4 of a laminated integral firing type, instead of the functional ceramic material 3 in Embodiment 1. That is, in this example, as shown in FIG. 3, a plurality of ceramic layers 41 made of piezoelectric ceramics or electrostrictive ceramics as functional ceramic materials, and internal electrode layers 51 and 52 interposed between the ceramic layers 41 are formed. Are integrally fired, and a laminated integrated fired electromechanical transducer 4 is used.

【0023】そして,図4に示すごとく,電気機械変換
素子4の外周面全体に実施例2と同条件でショットピー
ニング処理を施す。そして,その後,0.5Tm〜Tm
の間の温度で単純焼鈍す。これにより,表面の靱性が強
化された積層一体焼成型の電気機械変換素子4が得られ
る。
Then, as shown in FIG. 4, the entire outer peripheral surface of the electromechanical transducer 4 is subjected to a shot peening process under the same conditions as in the second embodiment. And then, 0.5Tm to Tm
Simple annealing at a temperature between As a result, a laminated integrated firing type electromechanical transducer 4 having an enhanced surface toughness is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例2における,機能性セラミック材料に固
体粒子を投射している状態を示す説明図。
FIG. 1 is an explanatory view showing a state in which solid particles are projected on a functional ceramic material in Example 2.

【図2】実施例2における,単純焼鈍温度と表面靱性値
との関係を示す説明図。
FIG. 2 is an explanatory diagram showing a relationship between a simple annealing temperature and a surface toughness value in Example 2.

【図3】実施例3における,積層一体焼成型の電気機械
変換素子の構成を示す説明図。
FIG. 3 is an explanatory view showing a configuration of a laminated integral firing type electromechanical conversion element according to a third embodiment.

【図4】実施例3における,電気機械変換素子に固体粒
子を投射している状態を示す説明図。
FIG. 4 is an explanatory view showing a state in which solid particles are projected on the electromechanical transducer in the third embodiment.

【符号の説明】[Explanation of symbols]

1...投射ノズル, 2...固体粒子, 3...機能性セラミック材料, 4...積層一体型の電気機械変換素子, 41...セラミック層, 51,52...内部電極層, 1. . . Projection nozzle, 2. . . 2. solid particles; . . Functional ceramic material, 4. . . 41. a layered electromechanical transducer; . . Ceramic layer, 51, 52. . . Internal electrode layer,

───────────────────────────────────────────────────── フロントページの続き (71)出願人 500443361 坂 公恭 愛知県春日井市高座台1丁目5番53 (72)発明者 川原 伸章 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 原 邦彦 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 坂 公恭 愛知県春日井市高座台1−5−53 (72)発明者 内村 勝次 愛知県豊川市穂ノ原三丁目一番 新東ブイ セラックス株式会社内 (72)発明者 伊澤 守康 愛知県西春日井郡西春町宇福寺神明51 新 東ブレーター株式会社内 Fターム(参考) 4G031 AA11 AA12 AA32 BA10 BA20 GA15 GA16  ────────────────────────────────────────────────── ─── Continuing from the front page (71) Applicant 500443361 Kimiyasu Saka 1-53-5 Kozadai, Kasugai-shi, Aichi (72) Inventor Shinsho Kawahara 1-1-1, Showa-cho, Kariya-shi, Aichi Pref. 72) Inventor Kunihiko Hara 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture Inside DENSO Corporation (72) Inventor Kimitaka Saka 1-53-53 Takazadai, Kasugai-shi, Aichi Prefecture (72) Inventor Katsuji Uchimura Aichi Prefecture 3-72 Honohara, Toyokawa Shinto-buoy Ceralux Co., Ltd. (72) Inventor Moriyasu Izawa 51 Shinmei Ufuji Temple, Nishiharu-cho, Nishikasugai-gun, Aichi Prefecture F-term in New East Brater Co., Ltd. 4G031 AA11 AA12 AA32 BA10 BA20 GA15 GA16

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 機能性セラミック材料の表面に,室温に
おいて圧子を接触させて微細圧痕を形成すると共に少な
くともその近傍に微小亀裂を形成した後,上記機能性セ
ラミック材料の融点の絶対温度をTmとした場合の,
0.5Tm以上Tm未満の温度雰囲気中で上記微小亀裂
の少なくとも一部が消失するように単純焼鈍することを
特徴とする機能性セラミック材料の表面強靭化方法。
An indenter is brought into contact with the surface of a functional ceramic material at room temperature to form a fine indentation and to form a microcrack at least in the vicinity thereof. Then, the absolute temperature of the melting point of the functional ceramic material is defined as Tm. If you do
A method for toughening the surface of a functional ceramic material, comprising performing simple annealing in an atmosphere at a temperature of 0.5 Tm or more and less than Tm so that at least a part of the microcracks disappears.
【請求項2】 請求項1において,上記微小亀裂は,溝
幅が0.001〜1μm,深さが0.1〜50μmであ
ることを特徴とする機能性セラミック材料の表面強靭化
方法。
2. The method of claim 1, wherein the micro-cracks have a groove width of 0.001 to 1 μm and a depth of 0.1 to 50 μm.
【請求項3】 請求項1又は2において,上記微細圧痕
は,500〜10,000個/mm2の密度となるよう
形成することを特徴とする機能性セラミック材料の表面
強靭化方法。
3. The method of claim 1, wherein the fine indentations are formed to have a density of 500 to 10,000 / mm 2 .
【請求項4】 請求項1〜3のいずれか1項において,
上記圧子は,荷重100〜500gを加えたビッカース
硬度計の圧子であることを特徴とする機能性セラミック
材料の表面強靭化方法。
4. The method according to claim 1, wherein:
The method according to claim 1, wherein the indenter is an indenter of a Vickers hardness meter to which a load of 100 to 500 g is applied.
【請求項5】 請求項1〜4のいずれか1項において,
上記機能性セラミック材料表面に上記圧子としての固体
粒子を投射することにより上記微細圧痕及び上記微小亀
裂を形成することを特徴とする機能性セラミック材料の
表面強靭化方法。
5. The method according to claim 1, wherein:
A method for toughening the surface of a functional ceramic material, wherein the fine indentations and the microcracks are formed by projecting the solid particles as the indenter on the surface of the functional ceramic material.
【請求項6】 請求項5において,上記固体粒子の粒径
は1μm以上であることを特徴とする機能性セラミック
材料の表面強靭化方法。
6. The method according to claim 5, wherein the particle diameter of the solid particles is 1 μm or more.
【請求項7】 請求項5又は6において,上記固体粒子
は,0.05MPa以上の搬送エアを用いて投射するこ
とを特徴とする機能性セラミック材料の表面強靭化方
法。
7. The method according to claim 5, wherein the solid particles are projected using a carrier air of 0.05 MPa or more.
【請求項8】 請求項1〜7のいずれか1項において,
上記機能性セラミック材料がチタン・ジルコン酸鉛であ
ることを特徴とする機能性セラミック材料の表面強靭化
方法。
8. The method according to claim 1, wherein:
A method for toughening a surface of a functional ceramic material, wherein the functional ceramic material is titanium / zirconate lead.
【請求項9】 請求項1〜8のいずれか1項において,
上記機能性セラミック材料は,圧電セラミックスあるい
は電歪セラミックスよりなる複数層のセラミック層と,
該セラミック層間に介在させた内部電極層とを一体的に
焼成してなる積層一体焼成型の電気機械変換素子である
ことを特徴とする機能性セラミック材料。
9. The method according to claim 1, wherein:
The functional ceramic material includes a plurality of ceramic layers made of piezoelectric ceramics or electrostrictive ceramics,
A functional ceramic material, which is a laminated integral firing type electromechanical conversion element obtained by integrally firing an internal electrode layer interposed between the ceramic layers.
JP2001049087A 2001-02-23 2001-02-23 Method of enhancing fracture toughness of surface of functional ceramic material Pending JP2002255643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001049087A JP2002255643A (en) 2001-02-23 2001-02-23 Method of enhancing fracture toughness of surface of functional ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001049087A JP2002255643A (en) 2001-02-23 2001-02-23 Method of enhancing fracture toughness of surface of functional ceramic material

Publications (1)

Publication Number Publication Date
JP2002255643A true JP2002255643A (en) 2002-09-11

Family

ID=18910244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001049087A Pending JP2002255643A (en) 2001-02-23 2001-02-23 Method of enhancing fracture toughness of surface of functional ceramic material

Country Status (1)

Country Link
JP (1) JP2002255643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156493A (en) * 2011-01-07 2012-08-16 Canon Inc Piezoelectric element, liquid ejection head, ultrasonic motor and dust removal device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181099A (en) * 1999-12-21 2001-07-03 Japan Science & Technology Corp Surface toughening method of brittle material
WO2002024605A1 (en) * 2000-09-21 2002-03-28 Sintokogio, Ltd. Method for toughening modification of ceramic and ceramic product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181099A (en) * 1999-12-21 2001-07-03 Japan Science & Technology Corp Surface toughening method of brittle material
WO2002024605A1 (en) * 2000-09-21 2002-03-28 Sintokogio, Ltd. Method for toughening modification of ceramic and ceramic product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156493A (en) * 2011-01-07 2012-08-16 Canon Inc Piezoelectric element, liquid ejection head, ultrasonic motor and dust removal device
US9825213B2 (en) 2011-01-07 2017-11-21 Canon Kabushiki Kaisha Piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device

Similar Documents

Publication Publication Date Title
KR100789021B1 (en) Method for toughening modification of ceramic and ceramic product
JP5361206B2 (en) Multilayer piezoelectric ceramic actuator and method for manufacturing multilayer piezoelectric ceramic actuator
JP6632450B2 (en) Piezoelectric element
JP4338091B2 (en) Resonator
JP2002280630A (en) Piezoelectric ceramics multi-layer actuator and method for manufacturing the same
EP2677558A1 (en) Piezoelectric element
JP2004136372A (en) Surface toughening method of ceramics and ceramic product
JP2004048015A (en) Method of manufacturing multilayer piezo-electric actuator and actuator manufactured by the same
JP4771649B2 (en) Manufacturing method of multilayer electronic component
JP2002255643A (en) Method of enhancing fracture toughness of surface of functional ceramic material
JP2009078964A (en) Method for producing piezoelectric ceramic
JP2006008497A (en) Setter, method of manufacturing ceramic substrate and ceramic substrate
EP0987101B1 (en) Method for producing a ceramic diaphragm structure
CN105924165B (en) A kind of high strength ceramics material and preparation method thereof for frequency converter
JPH07240546A (en) Piezoelectric ceramic for large displacement and polarization treatment method of piezoelectric ceramic
JP2002333282A (en) Sintering setter and its producing method
JPH07115232A (en) Fabrication of piezoelectric device
JP2003306392A (en) Jig for heat-treating ceramic for electronic part and its manufacturing process
JPH06224486A (en) Polarizing method for piezoelectric ceramics
JP4889200B2 (en) Multilayer piezoelectric element and injection device
US20220231217A1 (en) Electromechanical actuator having ceramic insulation and method for production thereof
JP2551431B2 (en) Method for manufacturing high density piezoelectric ceramics
JP3070799B2 (en) Polarization method for piezoelectric ceramics
JP2001068749A (en) Laminated piezoelectric actuator
JP2007056298A (en) Method of forming dielectric film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329