JP2002254211A - Cutting tool made of surface-coated cemented carbide exerting excellent wear resistance in cutting at high speed - Google Patents

Cutting tool made of surface-coated cemented carbide exerting excellent wear resistance in cutting at high speed

Info

Publication number
JP2002254211A
JP2002254211A JP2001054098A JP2001054098A JP2002254211A JP 2002254211 A JP2002254211 A JP 2002254211A JP 2001054098 A JP2001054098 A JP 2001054098A JP 2001054098 A JP2001054098 A JP 2001054098A JP 2002254211 A JP2002254211 A JP 2002254211A
Authority
JP
Japan
Prior art keywords
layer
carbide
cutting
cemented carbide
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001054098A
Other languages
Japanese (ja)
Inventor
Keiji Nakamura
惠滋 中村
Yasuhiko Tashiro
安彦 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001054098A priority Critical patent/JP2002254211A/en
Priority to DE10115390A priority patent/DE10115390A1/en
Priority to US09/820,838 priority patent/US6565957B2/en
Publication of JP2002254211A publication Critical patent/JP2002254211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tool made of surface-coated cemented carbide exerting excellent wear resistance in cutting at a high speed. SOLUTION: On the surface of a cemented carbide tool base, which is made of a sintered body of green compacts having a mixed composition 4-12% of Co: 5-30% of one or more than two kinds among TiC, NbC, TaC, (Nb, Ta)C, and (Ti, W)C: and WC for the remaining by a mass percentage, a hard coated layer composed of (a) a physically vapor-deposited (Ti, Al)N layer having an average layer thickness of 0.5-10 μm and also satisfying a composition formula: (Ti1- XAlX)N (here, X is 0.2-0.6 by an atomic percentage), as an inner side layer, and (b) an Al2 O3 layer having an average layer thickness of 0.1-5 μm chemically vapor-deposited under a medium temperature, as an exterior side layer, is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、炭化タングステ
ン基超硬合金基体(以下、超硬基体という)がすぐれた
高温強度を有すると共に、硬質被覆層がすぐれた高温強
度と高温硬さを有し、したがって高熱発生を伴なう鋼や
鋳鉄などの高速切削加工に用いた場合に、すぐれた耐摩
耗性を発揮する表面被覆超硬合金製切削工具(以下、被
覆超硬工具という)に関するものである。
The present invention relates to a tungsten carbide-based cemented carbide substrate (hereinafter referred to as a cemented carbide substrate) having excellent high-temperature strength and a hard coating layer having excellent high-temperature strength and high-temperature hardness. Therefore, when used for high-speed cutting of steel or cast iron with high heat generation, it relates to cutting tools made of surface-coated cemented carbide (hereinafter referred to as coated carbide tools) that exhibit excellent wear resistance. is there.

【0002】[0002]

【従来の技術】一般に、切削工具には、各種の鋼や鋳鉄
などの被削材の旋削加工や平削り加工にバイトの先端部
に着脱自在に取り付けて用いられるスローアウエイチッ
プ、前記被削材の穴あけ切削加工などに用いられるドリ
ルやミニチュアドリル、さらに前記被削材の面削加工や
溝加工、肩加工などに用いられるソリッドタイプのエン
ドミルなどがあり、また前記スローアウエイチップを着
脱自在に取り付けて前記ソリッドタイプのエンドミルと
同様に切削加工を行うスローアウエイエンドミル工具な
どが知られている。
2. Description of the Related Art Generally, cutting tools include a throw-away tip which is detachably attached to a tip of a cutting tool for turning or planing of various materials such as steel and cast iron. Drills and miniature drills used for drilling and drilling, and solid type end mills used for face milling and grooving of the work material, shoulder milling, and the like, and the detachable insert is detachably attached. In addition, a throw-away end mill tool or the like that performs cutting in the same manner as the solid type end mill is known.

【0003】また、上記の各種切削工具のうちのある種
の被覆超硬工具が、例えば図1に概略説明図で示される
物理蒸着装置の1種であるアークイオンプレーティング
装置を用い、基本的に、ヒータで装置内を、例えば雰囲
気を3Paの真空として、500℃の温度に加熱した状
態で、アノード電極と、所定の成分組成を有する合金が
セットされたカソード電極(蒸発源)との間に、例えば
電圧:35V、電流:100Aの条件でアーク放電を発
生させ、同時に装置内に反応ガスとして窒素ガスなどを
導入し、一方基体として、例えば炭化タングステン(以
下、WCで示す)基超硬合金基体(以下、超硬基体と云
う)を装着し、この超硬基体には、例えば−100Vの
バイアス電圧を印加した条件で、前記超硬基体の表面
に、上記カソード電極を構成する合金の成分の窒化物層
などからなる硬質被覆層を蒸着することにより製造され
ることも知られている。
[0003] Further, a certain coated cemented carbide tool among the various cutting tools described above uses, for example, an arc ion plating apparatus which is a kind of physical vapor deposition apparatus schematically shown in FIG. In a state where the inside of the apparatus is heated to a temperature of 500 ° C. by, for example, setting the atmosphere in a vacuum of 3 Pa with a heater, the anode electrode and the cathode electrode (evaporation source) on which an alloy having a predetermined component composition is set are heated. For example, an arc discharge is generated under the conditions of, for example, a voltage of 35 V and a current of 100 A, and at the same time, a nitrogen gas or the like is introduced as a reaction gas into the apparatus. On the other hand, as a substrate, for example, a tungsten carbide (hereinafter referred to as WC) -based carbide An alloy substrate (hereinafter, referred to as a cemented carbide substrate) is mounted on the surface of the cemented carbide substrate under the condition that a bias voltage of, for example, -100 V is applied. It is also known that are produced by depositing a hard coating layer made of a nitride layer of the components of the alloy constituting the.

【0004】さらに、被覆超硬工具が、通常の化学蒸着
装置内に上記の超硬基体を装着し、装置内を950〜1
050℃の範囲内の所定の温度に加熱した状態で、これ
に反応ガスとして、形成しようとする硬質被覆層が、例
えば炭窒化チタン層であればTiCl4、N2、CH3
N(またはCH4)、およびH2の混合ガス、またα型や
κ型の結晶構造を有する酸化アルミニウム(Al23
示す)層であればAlCl3、CO2、HCl、H2S、
およびH2の混合ガスを導入し、気相分解ガス反応によ
り前記超硬基体の表面に前記硬質被覆層を蒸着形成する
ことにより製造されることも良く知られるところであ
る。
Further, a coated carbide tool is prepared by mounting the above-mentioned carbide substrate in an ordinary chemical vapor deposition apparatus, and 950 to 1 in the apparatus.
When heated to a predetermined temperature in the range of 050 ° C., and the hard coating layer to be formed as a reaction gas is TiCl 4 , N 2 , CH 3 C, for example, if it is a titanium carbonitride layer
A mixed gas of N (or CH 4 ) and H 2 , or AlCl 3 , CO 2 , HCl, H 2 S in the case of an aluminum oxide (shown by Al 2 O 3 ) layer having an α-type or κ-type crystal structure ,
And introducing a mixed gas of H 2, it is where, also known to be produced by the hard coating layer on a surface of the carbide substrate by vapor phase decomposition gas reaction formed by evaporation.

【0005】[0005]

【発明が解決しようとする課題】一方、近年の切削加工
に対する省力化および省エネ化、さらに低コスト化の要
求は強く、これに伴い、切削加工は切削機械の高性能化
とも相俟って高速化の傾向にあるが、従来提案されてい
る各種の被覆超硬工具においては、これを鋼や鋳鉄など
の通常の条件での切削加工に用いた場合には問題はない
が、これを高速切削条件で用いると、切削加工時に発生
する高熱によって、特に切刃部に偏摩耗の原因となる熱
塑性変形が発生するようになるばかりでなく、前記切刃
部の高温硬さの著しい低下とも相俟って摩耗進行が促進
し、この結果比較的短時間で使用寿命に至るのが現状で
ある。
On the other hand, in recent years, there has been a strong demand for labor saving, energy saving, and further cost reduction in cutting work, and with this, cutting work has been performed at high speeds in conjunction with high performance of cutting machines. Although there is no problem with the various types of coated carbide tools that have been proposed in the past when they are used for cutting under ordinary conditions such as steel or cast iron, this is not a problem. When used under the conditions, not only the high heat generated during the cutting process causes not only the thermoplastic deformation to cause uneven wear on the cutting edge portion but also the remarkable decrease in the high-temperature hardness of the cutting edge portion. At the present, wear progress is accelerated, and as a result, the service life is reached in a relatively short time.

【0006】[0006]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、すぐれた高温強度と高温硬さを
具備した被覆超硬工具を開発すべく研究を行った結果、 (a)原料粉末として、炭化タングステン(以下、WC
で示す)粉末、炭化チタン(以下、TiCで示す)粉末、
炭化ニオブ(以下、NbCで示す)粉末、炭化タンタル
(以下、TaCで示す)粉末、NbとTaの複合炭化物
[以下、(Nb,Ta)Cで示す]粉末、TiとWの複
合炭化物[以下、(Ti,W)Cで示す]粉末、および
Co粉末を用いて、配合組成を、 Co:4〜12%、 TiC、NbC、TaC、(Nb,Ta)C、および
(Ti,W)Cのうちの1種または2種以上:5〜30
%、 WC:残り、としてなる圧粉体の焼結体は、WCに加え
て、硬質相として存在するようになる上記TiC、Nb
C、TaC、(Nb,Ta)C、および(Ti,W)C
の作用によって一段と高い高温強度をもつようになるこ
と。
Means for Solving the Problems Accordingly, the present inventors have
From the above viewpoints, research was conducted to develop coated carbide tools having excellent high-temperature strength and high-temperature hardness. (A) As a raw material powder, tungsten carbide (hereinafter referred to as WC)
) Powder, titanium carbide (hereinafter, referred to as TiC) powder,
Niobium carbide (hereinafter referred to as NbC) powder, tantalum carbide
Powder (hereinafter referred to as TaC), composite carbide of Nb and Ta [hereinafter referred to as (Nb, Ta) C] powder, composite carbide of Ti and W [hereinafter referred to as (Ti, W) C] powder, and Using a Co powder, the composition of the composition is determined as follows: Co: 4 to 12%, one or more of TiC, NbC, TaC, (Nb, Ta) C, and (Ti, W) C: 5 to 30
%, WC: the remaining sintered compact of TiC and Nb which is present as a hard phase in addition to WC
C, TaC, (Nb, Ta) C, and (Ti, W) C
To have higher high temperature strength.

【0007】(b)上記(a)の焼結体を基体(超硬基
体)とし、これの表面に硬質被覆層として物理蒸着法を
用いて形成した、組成式:(Ti1-XAlX)N(ただ
し、Xは、原子比で0.2〜0.6)を有する(Ti,
Al)N層はすぐれた高温強度をもつこと。
[0007] (b) the sintered body of (a) a substrate (cemented carbide substrate) was formed using a physical vapor deposition method to the surface as a hard coating layer, the composition formula: (Ti 1-X Al X ) N (where X is 0.2-0.6 in atomic ratio) (Ti,
The Al) N layer has excellent high-temperature strength.

【0008】(c)上記(b)の物理蒸着(Ti,A
l)N層は、上記の通りすぐれた高温強度をもつもの
の、高速切削加工時の高温下で十分な高温硬さを維持す
るものではないが、これを内側層とし、この内側層の上
に外側層として、反応ガス雰囲気温度を、通常の950
〜1050℃に比して低温の750〜850℃とした中
温化学蒸着法で結晶構造がα型やκ型のAl23層を形
成すると、このAl23層は高い高温硬さもつことか
ら、前期内側層の(Ti,Al)N層と前記外側層のA
23層との積層からなる硬質被覆層はすぐれた高温強
度と高温硬さを具備するようになること。
(C) The physical vapor deposition (Ti, A
l) Although the N layer has excellent high-temperature strength as described above, it does not maintain sufficient high-temperature hardness under high temperatures during high-speed cutting, but this is used as an inner layer, and As the outer layer, the reaction gas atmosphere temperature is adjusted to a normal 950 temperature.
When an Al 2 O 3 layer having an α-type or κ-type crystal structure is formed by a medium temperature chemical vapor deposition method at a temperature lower than 750 ° C. to 850 ° C. as compared with −1050 ° C., the Al 2 O 3 layer has high high-temperature hardness. Therefore, the (Ti, Al) N layer of the inner layer and the A layer of the outer layer
l 2 hard coating layer comprising a lamination of the O 3 layer to become comprises a high-temperature strength and high-temperature hardness with excellent.

【0009】(d)したがって、上記(a)の超硬基体
の表面に上記(b)および(c)の硬質被覆層を形成し
てなる被覆超硬工具は、前記超硬基体がすぐれた高温強
度(耐熱塑性変形性)を具備し、かつ硬質被覆層を構成
する前記物理蒸着(Ti,Al)N層の内側層と中温化
学蒸着Al23層の外側層がすぐれた高温強度と高温硬
さをもつことから、これを高熱発生を伴なう高速切削加
工に用いても偏摩耗が著しく抑制され、長期に亘ってす
ぐれた耐摩耗性を発揮すること。以上(a)〜(d)に
示される研究結果が得られたのである。
(D) Accordingly, the coated carbide tool obtained by forming the hard coating layers of (b) and (c) on the surface of the cemented carbide substrate of (a) is characterized in that the cemented carbide substrate has an excellent high temperature. The inner layer of the physical vapor-deposited (Ti, Al) N layer and the outer layer of the medium-temperature chemical vapor-deposited Al 2 O 3 layer having strength (heat-resistant plastic deformability) and constituting the hard coating layer have excellent high-temperature strength and high temperature. Due to its hardness, even when it is used for high-speed cutting with high heat generation, uneven wear is remarkably suppressed and excellent wear resistance is exhibited over a long period of time. The research results shown in (a) to (d) above were obtained.

【0010】この発明は、上記の研究結果に基づいてな
されたものであって、 Co:4〜12%、 TiC、NbC、TaC、(Nb,Ta)C、および
(Ti,W)Cのうちの1種っまたは2種以上:5〜3
0%、 WC:残り、からなる配合組成を有する圧粉体の焼結体
で構成された超硬基体の表面に、(a)内側層として、
0.5〜10μmの平均層厚を有し、かつ組成式:(T
1-XAlX)N(ただし、原子比で、Xは0.2〜0.
6を示す)を満足する物理蒸着(Ti,Al)N層、
(b)外側層として、0.1〜5μmの平均層厚を有す
る中温化学蒸着Al23層、以上(a)および(b)で
構成された硬質被覆層を形成してなる、高速切削ですぐ
れた耐摩耗性を発揮する被覆超硬工具に特徴を有するも
のである。
The present invention has been made on the basis of the above-mentioned research results, wherein Co: 4 to 12%, among TiC, NbC, TaC, (Nb, Ta) C and (Ti, W) C One or more of the following: 5-3
0%, WC: on the surface of a cemented carbide substrate composed of a sintered compact of a compact having a composition consisting of:
It has an average layer thickness of 0.5 to 10 μm and has a composition formula: (T
i 1-x Al x ) N (where X is 0.2 to 0.
6, a physical vapor deposition (Ti, Al) N layer satisfying
(B) High-speed cutting by forming, as an outer layer, a medium-temperature chemical vapor deposition Al 2 O 3 layer having an average layer thickness of 0.1 to 5 μm, and a hard coating layer composed of the above (a) and (b). It is characterized by coated carbide tools exhibiting excellent wear resistance.

【0011】つぎに、この発明の被覆超硬工具におい
て、これを構成する超硬基体(焼結体)の配合組成、硬
質被覆層のうちの内側層のX値、さらに内側層および外
側層の平均層厚を上記の通りに限定した理由を説明す
る。 (1)超硬基体の配合組成 (a)Co Co成分には、焼結性を向上させ、かつ焼結体の常温強
度を向上させる作用があるが、その割合が4%未満で
は、前記作用に所望の向上効果が得られず、一方その割
合が12%を越えると、焼結体の高温強度に低下傾向が
現われ、切刃部に塑性変形が発生し易くなり、この結果
摩耗進行促進の原因となる偏摩耗が切刃部に発生するよ
うになることから、その割合を4〜12%と定めた。
Next, in the coated cemented carbide tool according to the present invention, the composition of the cemented carbide substrate (sintered body), the X value of the inner layer of the hard coating layer, and the X value of the inner layer and the outer layer. The reason why the average layer thickness is limited as described above will be described. (1) Composition of Carbide Substrate (a) Co The Co component has the effect of improving the sinterability and improving the room-temperature strength of the sintered body. However, if the desired improvement effect is not obtained, on the other hand, if the ratio exceeds 12%, the high-temperature strength of the sintered body tends to decrease, and plastic deformation tends to occur in the cutting edge portion, and as a result, the progress of wear progress is accelerated. Since the unbalanced wear causing the problem occurs in the cutting edge portion, the ratio is set to 4 to 12%.

【0012】(b)TiC、NbC、TaC、(Nb,
Ta)C、および(Ti,W)C これらの成分には、WCと共に、硬質相を形成して焼結
体の高温強度を向上させ、もって切刃部に熱塑性変形が
発生するのを抑制する作用があるが、その割合が5%未
満では、所望の高温強度向上効果が得られず、一方その
割合が30%を越えると、焼結体の常温強度が急激に低
下し、切刃部にチッピング(微小欠け)が発生し易くな
ることから、その割合を5〜30%と定めた。
(B) TiC, NbC, TaC, (Nb,
Ta) C and (Ti, W) C These components, together with WC, form a hard phase to improve the high-temperature strength of the sintered body, thereby suppressing the occurrence of thermoplastic deformation at the cutting edge. If the ratio is less than 5%, the desired high-temperature strength improvement effect cannot be obtained, while if the ratio exceeds 30%, the normal-temperature strength of the sintered body decreases rapidly, and Since chipping (small chipping) easily occurs, the ratio is set to 5 to 30%.

【0013】(2)硬質被覆層の内側層のX値 (Ti,Al)N層におけるAlは高靭性(高強度)を
有するTiNに対して耐熱性を付与し、もってすぐれた
高温強度を具備するようにするために固溶するものであ
り、したがって組成式:(Ti1-XAlX)NのX値が
0.2未満では所望のすぐれた高温強度を確保すること
ができず、一方その値が0.6を越えると、脆化し、高
温強度が低下するようになることから、X値を0.2〜
0.6と定めた。
(2) X value of the inner layer of the hard coating layer Al in the (Ti, Al) N layer imparts heat resistance to TiN having high toughness (high strength) and has excellent high-temperature strength. Therefore, if the X value of the composition formula (Ti 1-x Al x ) N is less than 0.2, a desired excellent high-temperature strength cannot be secured. When the value exceeds 0.6, embrittlement occurs and high-temperature strength decreases, so that the X value is set to 0.2 to 0.2.
It was determined to be 0.6.

【0014】(3)硬質被覆層の平均層厚 硬質被覆層の上記内側層を構成する物理蒸着(Ti,A
l)N層の平均層厚を、0.5〜10μmとしたのは、
その平均層厚が0.5μm未満では、硬質被覆層に所望
の高温強度を付与することができず、この結果切刃部に
チッピングが発生し易くなり、一方その層厚が10μm
を越えると、切刃部における摩耗進行が局部的になり、
これが使用寿命短命化の原因となるという理由からであ
る。また、同じく外側層を構成する中温化学蒸着Al2
3層の平均層厚を0.1〜5μmとしたのは、その層
厚が0.1μm未満では硬質被覆層に所望の高温硬さを
付与することができないので、切刃部の耐摩耗性に所望
の向上効果が得られず、一方その層厚が5μmを越える
と、切刃部にチッピングが発生し易くなるという理由に
よるものである。
(3) Average thickness of hard coating layer Physical vapor deposition (Ti, A
l) The average layer thickness of the N layer is 0.5 to 10 μm
If the average layer thickness is less than 0.5 μm, the desired high-temperature strength cannot be imparted to the hard coating layer, and as a result, chipping tends to occur in the cutting edge portion, while the layer thickness is 10 μm.
Above, the wear progress at the cutting edge becomes localized,
This is because the service life is shortened. Also, medium temperature chemical vapor deposition Al 2 which also constitutes the outer layer
The reason why the average layer thickness of the O 3 layer is 0.1 to 5 μm is that if the layer thickness is less than 0.1 μm, the desired high-temperature hardness cannot be imparted to the hard coating layer. This is because the desired effect of improving the properties cannot be obtained, while if the layer thickness exceeds 5 μm, chipping is likely to occur at the cutting edge.

【0015】[0015]

【発明の実施の形態】つぎに、この発明の被覆超硬工具
を実施例により具体的に説明する。 (実施例1)原料粉末として、平均粒径:5.5μmを
有する中粗粒WC粉末、同0.8μmの微粒WC粉末、
同1.5μmのTiC粉末、同1.3μmのTaC粉
末、同1.2μmのNbC粉末、同1.0μmの(T
a,Nb)C[質量比で、TaC/NbC=50/5
0]粉末、同1.0μmの(Ti,W)C[質量比で、
TiC/WC=70/30]粉末、および同1.8μm
のCo粉末を用意し、これら原料粉末をそれぞれ表1に
示される配合組成に配合し、さらにワックスを加えてア
セトン中で24時間ボールミル混合し、減圧乾燥した
後、1MPaの圧力で所定形状の圧粉体にプレス成形
し、これらの圧粉体を、6Paの真空雰囲気中、7℃/
分の昇温速度で1370〜1470℃の範囲内の所定の
温度に昇温し、この温度に1時間保持後、炉冷の条件で
焼結し、焼結後、切刃部にR:0.05のホーニング加
工を施してISO規格・CNMG120408の形状を
もったチップ超硬基体A〜Iをそれぞれ製造した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the coated carbide tool of the present invention will be specifically described with reference to examples. (Example 1) As raw material powders, medium coarse WC powder having an average particle size of 5.5 µm, fine WC powder having the same 0.8 µm,
1.5 μm TiC powder, 1.3 μm TaC powder, 1.2 μm NbC powder, 1.0 μm (T
a, Nb) C [TaC / NbC = 50/5 by mass ratio]
0] powder, (Ti, W) C of the same 1.0 μm [by mass ratio,
TiC / WC = 70/30] powder and 1.8 μm
Co powders were prepared, each of these raw material powders was blended in the blending composition shown in Table 1, wax was added thereto, and the mixture was ball-milled in acetone for 24 hours, and dried under reduced pressure. These compacts are press-formed into powder at 7 ° C. /
The temperature was raised to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 1 minute, kept at this temperature for 1 hour, sintered under furnace cooling conditions, and after sintering, R: 0 was added to the cutting edge. By performing honing processing of .05, chip cemented carbide substrates A to I each having the shape of ISO standard CNMG120408 were manufactured.

【0016】ついで、これらのチップ超硬基体A〜I
を、アセトン中で超音波洗浄し、乾燥した状態で、それ
ぞれ図1に例示される通常のアークイオンプレーティン
グ装置に装入し、一方カソード電極(蒸発源)として種
々の組成をもったTi−Al合金、さらに超硬基体表面
ボンバート用金属Tiを装着し、装置内を排気して0.
5Paの真空に保持しながら、ヒーターで装置内を50
0℃に加熱した後、Arガスを装置内に導入して2.5
PaのAr雰囲気とし、この状態で前記超硬基体に−8
00vのバイアス電圧を印加して前記超硬基体表面をA
rガスボンバート洗浄し、さらに前記超硬基体に印加す
るバイアス電圧を−100vに下げ、前記カソード電極
のうちの金属Tiとアノード電極との間にアーク放電を
発生させて、前記超硬基体の表面をTiボンバートし
(この場合超硬基体の表面部には、0.05μm以下の
きわめて薄い厚さでTi薄層や炭化チタン薄層、さらに
装置内への導入ガス雰囲気によっては窒化チタン層や炭
窒化チタン層が形成される場合がある)、ついで装置内
を2.5Paの窒素ガス(反応ガス)の雰囲気とし、一
方前記超硬基体への印加バイアス電圧はそのままの−1
00vとした状態で、前記カソード電極のうちのTi−
Al合金とアノード電極との間に発生させたアーク放電
によって、前記超硬基体のそれぞれの表面に、表2に示
される目標組成(X値)および目標層厚の(Ti,A
l)N層を硬質被覆層の内側層として蒸着し、さらに前
記内側層の表面に、通常の化学蒸着装置を用い、反応ガ
ス組成を、容量%で、 AlCl3:2%、 CO2:3%、 H2S:0.3%、 HCl:1%、 H2:残り、からなる通常の反応ガス組成とし、かつ反
応雰囲気圧力も同じく通常の7KPaとするが、反応雰
囲気温度は通常の反応雰囲気温度である950〜105
0℃に比して相対的に低い850℃(α型結晶構造)お
よび800℃(κ型結晶構造)とした中温化学蒸着条件
で、同じく表2に示される目標層厚のAl23層を硬質
被覆層の外側層として形成することにより、図2(a)
に概略斜視図で、同(b)に概略縦断面図で示される形
状を有する本発明被覆超硬工具としての本発明表面被覆
超硬合金製スローアウエイチップ(以下、本発明被覆超
硬チップと云う)1〜9をそれぞれ製造した。
Next, these chip cemented carbide substrates A to I
Was washed ultrasonically in acetone and dried, and each was charged into a usual arc ion plating apparatus illustrated in FIG. 1, while Ti— having various compositions was used as a cathode electrode (evaporation source). An Al alloy, and a metal Ti for bombardment of the surface of a super-hard substrate were mounted, and the inside of the apparatus was evacuated.
While maintaining a vacuum of 5 Pa, the inside of the apparatus is heated to 50 Pa by a heater.
After heating to 0 ° C., Ar gas was introduced into the apparatus to
In an Ar atmosphere of Pa, in this state, -8
00V bias voltage to apply A
r Gas bombardment cleaning, and further lowering the bias voltage applied to the cemented carbide substrate to −100 V to generate an arc discharge between the metal Ti of the cathode electrode and the anode electrode, thereby reducing the surface of the cemented carbide substrate. (In this case, the surface portion of the cemented carbide substrate has a very thin thickness of 0.05 μm or less, such as a Ti thin layer or a titanium carbide thin layer, and depending on the atmosphere of the gas introduced into the apparatus, a titanium nitride layer or a carbon thin layer. (A titanium nitride layer may be formed in some cases.) Then, the inside of the apparatus is set to an atmosphere of a nitrogen gas (reaction gas) of 2.5 Pa, while the bias voltage applied to the cemented carbide substrate is kept at -1.
00V, the Ti-
The target composition (X value) and the target layer thickness (Ti, A) shown in Table 2 were applied to the respective surfaces of the cemented carbide substrate by the arc discharge generated between the Al alloy and the anode electrode.
The l) N layer was deposited as an inner layer of the hard coating layer, the further surface of the inner layer, using conventional chemical vapor deposition apparatus, the reaction gas composition, in volume%, AlCl 3: 2%, CO 2: 3 %, H 2 S: 0.3%, HCl: 1%, H 2 : balance, and a normal reaction gas composition, and the reaction atmosphere pressure is the same as the normal reaction pressure of 7 KPa. 950 to 105 which is the ambient temperature
The Al 2 O 3 layer having the target layer thickness also shown in Table 2 under the medium temperature chemical vapor deposition conditions of 850 ° C. (α-type crystal structure) and 800 ° C. (κ-type crystal structure) relatively lower than 0 ° C. Is formed as an outer layer of the hard coating layer, thereby obtaining FIG.
In a schematic perspective view, a throw-away tip made of a surface-coated cemented carbide of the present invention as a coated carbide tool of the present invention having a shape shown in a schematic longitudinal sectional view of FIG. 1) to 9).

【0017】また、比較の目的で、表3に示される通り
上記の中温化学蒸着条件でのAl23層の形成を行なわ
ない以外は同一の条件で、硬質被覆層が(Ti,Al)
N層だけからなる比較被覆超硬工具としての比較表面被
覆超硬合金製スローアウエイチップ(以下、比較被覆超
硬チップと云う)1〜9をそれぞれ製造した。
For the purpose of comparison, as shown in Table 3, the hard coating layer was formed under the same conditions except that the Al 2 O 3 layer was not formed under the above-mentioned medium temperature chemical vapor deposition conditions.
Comparative surface coated cemented carbide throwaway tips (hereinafter referred to as comparative coated cemented carbide tips) 1 to 9 as comparative coated cemented carbide tools consisting only of N layers were produced, respectively.

【0018】なお、この結果得られた本発明被覆超硬チ
ップ1〜9および比較被覆超硬チップ1〜9の硬質被覆
層について、その構成層のそれぞれの厚さ断面中央部の
組成をオージェ分光分析装置を用いて測定すると共に、
その厚さを、走査型電子顕微鏡を用いて断面測定したと
ころ、いずれも表2、3に示される目標組成および目標
層厚と実質的に同じ値を示した。
For the hard coating layers of the coated super hard tips 1 to 9 of the present invention and the comparative coated super hard tips 1 to 9 obtained as described above, the composition at the center of the thickness section of each of the constituent layers was determined by Auger spectroscopy. Measure using an analyzer,
When the thickness was measured in cross section using a scanning electron microscope, all the values showed substantially the same values as the target composition and the target layer thickness shown in Tables 2 and 3.

【0019】つぎに、上記本発明被覆超硬チップ1〜9
および比較被覆超硬チップ1〜9をそれぞれ工具鋼製バ
イトの先端部に固定治具にてネジ止めした状態で、本発
明被覆超硬チップ1〜5および比較被覆超硬チップ1〜
5については、 被削材:JIS・SCM440の丸棒、 切削速度:355m/min.、 切り込み:1.2mm、 送り:0.2mm/rev.、 切削時間:5分、の条件での合金鋼の乾式高速連続旋削
加工試験、また本発明被覆超硬チップ6〜9および比較
被覆超硬チップ6〜9については、 被削材:JIS・SNCM439の長さ方向等間隔4本
縦溝入り丸棒、 切削速度:200m/min.、 切り込み:2.0mm、 送り:0.3mm/rev.、 切削時間:10分、の条件での合金鋼の乾式高速断続旋
削加工試験を行い、いずれの旋削加工試験でも切刃部の
逃げ面摩耗幅を測定した。この測定結果を表2、3に示
した。
Next, the coated carbide tips 1 to 9 according to the present invention will be described.
And in the state where each of the comparative coated carbide tips 1 to 9 is screwed to the tip of the tool steel tool with a fixing jig, the coated carbide tips 1 to 5 of the present invention and the comparative coated carbide tips 1 to 9 are prepared.
For No. 5, Work material: JIS SCM440 round bar, Cutting speed: 355 m / min. , Cut: 1.2 mm, feed: 0.2 mm / rev. Cutting time: 5 minutes, dry high-speed continuous turning test of alloy steel, and coated carbide tips 6-9 of the present invention and comparative coated carbide tips 6-9, work material: JIS SNCM439 Round bar with four longitudinal grooves at equal intervals in the longitudinal direction, Cutting speed: 200 m / min. Infeed: 2.0 mm Feed: 0.3 mm / rev. A dry high-speed intermittent turning test of the alloy steel was performed under the conditions of cutting time: 10 minutes, and the flank wear width of the cutting edge portion was measured in each turning test. The measurement results are shown in Tables 2 and 3.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】(実施例2)実施例1で用いたものと同じ
原料粉末を用い、これらの原料粉末を同じく表1に示さ
れる配合組成に配合し、ついで同じく実施例1における
と同一の条件で、混合し、圧粉体にプレス成形し、焼結
して、直径が8mm、13mm、および26mmの3種
の超硬基体形成用丸棒焼結体を形成し、さらに前記の3
種の丸棒焼結体から、研削加工にて、表4に示される組
合せで、切刃部の直径×長さがそれぞれ6mm×13m
m、10mm×22mm、および20mm×45mmの
寸法をもったエンドミル超硬基体A〜Iをそれぞれ製造
した。
(Example 2) Using the same raw material powders as used in Example 1, these raw material powders were similarly blended in the composition shown in Table 1, and then under the same conditions as in Example 1. , Mixed, press-molded into a green compact, and sintered to form three types of round bar sintered bodies having a diameter of 8 mm, 13 mm, and 26 mm for forming a carbide substrate.
The diameter x length of the cutting edge portion is 6 mm x 13 m in each of the combinations shown in Table 4 by grinding from various kinds of round bar sintered bodies.
m, 10 mm x 22 mm, and 20 mm x 45 mm were manufactured respectively.

【0024】ついで、これらのエンドミル超硬基体A〜
Iの表面に、ホーニングを施し、アセトン中で超音波洗
浄し、乾燥した状態で、同じく図1に例示される通常の
アークイオンプレーティング装置に装入し、上記実施例
1におけると同一の条件で、前記超硬基体のそれぞれの
表面に、表4に示される目標組成(X値)および目標層
厚の物理蒸着(Ti,Al)N層を硬質被覆層の内側層
として蒸着し、さらに前記内側層の表面に同じく表4に
示される目標層厚の中温化学蒸着Al23層を硬質被覆
層の外側層として形成することにより、図3(a)に概
略正面図で、同(b)に切刃部の概略横断面図で示され
る形状を有する本発明被覆超硬工具としての本発明表面
被覆超硬合金製エンドミル(以下、本発明被覆超硬エン
ドミルと云う)1〜9をそれぞれ製造した。
Next, these end mill super hard substrates A to
The surface of I was honed, ultrasonically cleaned in acetone, dried and charged in a usual arc ion plating apparatus also illustrated in FIG. 1 under the same conditions as in Example 1 above. Then, a physical vapor deposition (Ti, Al) N layer having a target composition (X value) and a target layer thickness shown in Table 4 is deposited as an inner layer of a hard coating layer on each surface of the superhard substrate. By forming a medium-temperature chemical vapor deposition Al 2 O 3 layer having a target layer thickness also shown in Table 4 as an outer layer of the hard coating layer on the surface of the inner layer, a schematic front view in FIG. ) End mills (hereinafter referred to as coated carbide end mills) 1 to 9 of the surface coated cemented carbide alloy of the present invention as coated carbide tools of the present invention having the shape shown in the schematic cross-sectional view of the cutting edge portion. Manufactured.

【0025】また、比較の目的で、表5に示される通り
上記の中温化学蒸着条件でのAl23層の形成を行なわ
ない以外は同一の条件で、硬質被覆層が物理蒸着(T
i,Al)N層だけからなる比較被覆超硬工具としての
比較表面被覆超硬合金製エンドミル(以下、比較被覆超
硬エンドミルと云う)1〜9をそれぞれ製造した。
For the purpose of comparison, as shown in Table 5, under the same conditions except that the Al 2 O 3 layer was not formed under the above-mentioned medium temperature chemical vapor deposition conditions, the hard coating layer was subjected to physical vapor deposition (T
End mills (hereinafter referred to as comparative coated carbide end mills) 1 to 9 made of comparative surface coated cemented carbide as comparative coated carbide tools consisting only of the (i, Al) N layer were produced, respectively.

【0026】また、この結果得られた本発明被覆超硬エ
ンドミル1〜9および比較被覆超硬エンドミル1〜9の
硬質被覆層について、その構成層のそれぞれの厚さ断面
中央部の組成をオージェ分光分析装置を用いて測定する
と共に、その厚さを、走査型電子顕微鏡を用いて断面測
定したところ、いずれも表4、5に示される目標組成お
よび目標層厚と実質的に同じ値を示した。
With respect to the hard coating layers of the coated carbide end mills 1 to 9 of the present invention and the comparative coated carbide end mills 1 to 9 obtained as a result, the composition at the center of the thickness section of each of the constituent layers was measured by Auger spectroscopy. The thickness was measured using an analyzer, and the thickness was measured in cross section using a scanning electron microscope. As a result, the thickness was substantially the same as the target composition and target layer thickness shown in Tables 4 and 5. .

【0027】つぎに、上記本発明被覆超硬エンドミル1
〜9および比較被覆超硬エンドミル1〜9のうち、本発
明被覆超硬エンドミル1〜3および比較被覆超硬エンド
ミル1〜3ついては、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・S45Cの板材、 切削速度:230m/min.、 溝深さ(切込み):2.5mm、 テーブル送り:3000mm/分、の条件での炭素鋼の
湿式高速溝切削加工試験(水溶性切削油使用)、また本
発明被覆超硬エンドミル4〜6および比較被覆超硬エン
ドミル4〜6については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SCM440の板材、 切削速度:235m/min.、 溝深さ(切込み):3.5mm、 テーブル送り:2000mm/分、の条件での合金鋼の
乾式高速溝切削加工試験、さらに本発明被覆超硬エンド
ミル7〜9、および比較被覆超硬エンドミル7〜9につ
いては、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・FC250の板材、 切削速度:290m/min.、 溝深さ(切込み):5mm、 テーブル送り:3000mm/分、の条件での鋳鉄の湿
式高速溝切削加工試験(水溶性切削油使用)、をそれぞ
れ行い、いずれの溝切削加工試験でも切刃部の外周刃の
逃げ面摩耗幅が使用寿命の目安とされる0.15mmに
至るまでの切削溝長を測定した。この測定結果を表4、
5にそれぞれ示した。
Next, the coated carbide end mill 1 of the present invention will be described.
-9 and the comparative coated carbide end mills 1-9, the coated carbide end mills 1-3 of the present invention and the comparative coated carbide end mills 1-3 are: Work material: plane dimension: 100 mm × 250 mm, thickness: 5
0 mm JIS S45C plate, Cutting speed: 230 m / min. Groove depth (cut): 2.5 mm, Table feed: 3000 mm / min, wet high-speed groove cutting test of carbon steel (using water-soluble cutting oil), and coated carbide end mill of the present invention 4 to 6 For the coated coated carbide end mills 4 to 6, work material: plane dimension: 100 mm x 250 mm, thickness: 5
0 mm JIS SCM440 plate, Cutting speed: 235 m / min. , Groove depth (cut): 3.5 mm, Table feed: 2000 mm / min, dry high-speed grooving test of alloy steel, and coated carbide end mills 7 to 9 of the present invention and comparative coated carbide end mill For 7 to 9, Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS FC250 plate material, Cutting speed: 290 m / min. , Groove depth (cut): 5 mm, Table feed: 3000 mm / min, wet iron high-speed grooving test (using water-soluble cutting oil), and cutting edge in any grooving test The cutting groove length was measured until the flank wear width of the outer peripheral edge of the portion reached 0.15 mm, which was a measure of the service life. Table 4 shows the measurement results.
5 respectively.

【0028】[0028]

【表4】 [Table 4]

【0029】[0029]

【表5】 [Table 5]

【0030】(実施例3)上記の実施例2におけると同
一の条件で、直径が8mm、13mm、および26mm
の3種の超硬基体形成用丸棒焼結体を形成し、さらに前
記の3種の丸棒焼結体から、研削加工にて、表6に示さ
れる組合せで、溝形成部の直径×長さがそれぞれ4mm
×13mm、8mm×22mm、および16mm×45
mmの寸法をもったドリル超硬基体A〜Iをそれぞれ製
造した。
(Embodiment 3) Under the same conditions as in Embodiment 2 above, the diameters were 8 mm, 13 mm, and 26 mm.
The three types of round bar sintered bodies for forming a cemented carbide substrate were formed, and the three types of round bar sintered bodies were further subjected to grinding processing in a combination shown in Table 6 to obtain the diameter of the groove forming portion × Length is 4mm each
× 13mm, 8mm × 22mm, and 16mm × 45
Drill superhard substrates A to I having dimensions of mm were manufactured, respectively.

【0031】ついで、これらのドリル超硬基体A〜Iの
表面に、ホーニングを施し、アセトン中で超音波洗浄
し、乾燥した状態で、同じく図1に例示される通常のア
ークイオンプレーティング装置に装入し、上記実施例1
におけると同一の条件で、前記超硬基体のそれぞれの表
面に、表6に示される目標組成(X値)および目標層厚
の物理蒸着(Ti,Al)N層を硬質被覆層の内側層と
して蒸着し、さらに前記内側層の表面に同じく表6に示
される目標層厚の中温化学蒸着Al23層を硬質被覆層
の外側層として形成することにより、図4(a)に概略
正面図で、同(b)に溝形成部の概略横断面図で示され
る形状を有する本発明被覆超硬工具としての本発明表面
被覆超硬合金製ドリル(以下、本発明被覆超硬ドリルと
云う)1〜9をそれぞれ製造した。
Next, the surface of each of the drill superhard substrates A to I is honed, ultrasonically cleaned in acetone, and dried, and then applied to a normal arc ion plating apparatus also illustrated in FIG. Example 1
Under the same conditions as in the above, a physical vapor deposition (Ti, Al) N layer having a target composition (X value) and a target layer thickness shown in Table 6 was used as an inner layer of the hard coating layer on each surface of the cemented carbide substrate. FIG. 4 (a) is a schematic front view of the hard coating layer formed by vapor deposition and further forming a medium temperature chemical vapor deposition Al 2 O 3 layer having a target layer thickness also shown in Table 6 on the surface of the inner layer as an outer layer of the hard coating layer. (B) A drill made of the surface-coated cemented carbide of the present invention as the coated carbide tool of the present invention having the shape shown in the schematic cross-sectional view of the groove forming portion (hereinafter referred to as the coated carbide drill of the present invention). 1 to 9 were each manufactured.

【0032】また、比較の目的で、表7に示される通り
上記の中温化学蒸着条件でのAl23層の形成を行なわ
ない以外は同一の条件で、硬質被覆層が物理蒸着(T
i,Al)N層だけからなる比較被覆超硬工具としての
比較表面被覆超硬合金製ドリル(以下、比較被覆超硬ド
リルと云う)1〜9をそれぞれ製造した。
For the purpose of comparison, as shown in Table 7, under the same conditions except that the Al 2 O 3 layer was not formed under the above-mentioned medium temperature chemical vapor deposition conditions, the hard coating layer was subjected to physical vapor deposition (T
Drills made of comparative surface-coated cemented carbide (hereinafter referred to as comparative coated cemented carbide drills) 1 to 9 as comparative coated cemented carbide tools consisting only of i, Al) N layers were produced.

【0033】同じく、この結果得られた本発明被覆超硬
ドリル1〜9および比較被覆超硬ドリル1〜9の硬質被
覆層について、その構成層のそれぞれの厚さ断面中央部
の組成をオージェ分光分析装置を用いて測定すると共
に、その厚さを、走査型電子顕微鏡を用いて断面測定し
たところ、いずれも表6、7に示される目標組成および
目標層厚と実質的に同じ値を示した。
Similarly, with respect to the hard coating layers of the coated carbide drills 1 to 9 of the present invention and the comparative coated carbide drills 1 to 9 obtained as a result, the composition of each of the constituent layers at the center of the cross section of the thickness was measured by Auger spectroscopy. The thickness was measured using an analyzer and the thickness thereof was measured in cross section using a scanning electron microscope. As a result, the target composition and the target layer thickness shown in Tables 6 and 7 were all substantially the same. .

【0034】つぎに、上記本発明被覆超硬ドリル1〜9
および比較被覆超硬ドリル1〜9のうち、本発明被覆超
硬ドリル1〜3および比較被覆超硬ドリル1〜3につい
ては、 被削材:平面寸法:100mm×250厚さ:50mm
のJIS・S45Cの板材、 切削速度:250m/min.、 送り:0.2mm/rev、の条件での炭素鋼の湿式高
速穴あけ切削加工試験(水溶性切削油使用)、本発明被
覆超硬ドリル4〜6よび比較被覆超硬ドリル4〜6につ
いては、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SCM440の板材、 切削速度:255m/min.、 送り:0.2mm/rev、の条件での合金鋼の湿式高
速穴あけ切削加工試験(水溶性切削油使用)、本発明被
覆超硬ドリル7〜9および比較被覆超硬ドリル7〜9に
ついては、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・FC250の板材、 切削速度:305m/min.、 送り:0.2mm/rev、の条件での鋳鉄の湿式高速
穴あけ切削加工試験(水溶性切削油使用)、をそれぞれ
行い、いずれの湿式高速穴あけ切削加工試験でも先端切
刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加
工数を測定した。この測定結果を表6、7にそれぞれ示
した。
Next, the coated carbide drills of the present invention 1 to 9
Of the coated carbide drills 1 to 9 of the present invention, the coated carbide drills 1 to 3 and the comparative coated carbide drills 1 to 3 are: Work material: plane dimension: 100 mm × 250 thickness: 50 mm
JIS S45C plate material, Cutting speed: 250 m / min. , Feed: 0.2 mm / rev, wet high-speed drilling test of carbon steel (using water-soluble cutting oil), coated carbide drills 4 to 6 of the present invention and comparative coated carbide drills 4 to 6 , Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS SCM440 plate, Cutting speed: 255 m / min. , Feed: 0.2 mm / rev, wet high-speed drilling test of alloy steel (using water-soluble cutting oil), coated carbide drills 7 to 9 of the present invention and comparative coated carbide drills 7 to 9 , Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS FC250 plate, Cutting speed: 305 m / min. , Feed: 0.2mm / rev, wet high-speed drilling test (using water-soluble cutting oil) of cast iron, and flank wear of the tip cutting surface in any wet high-speed drilling test The number of holes drilled until the width reached 0.3 mm was measured. The measurement results are shown in Tables 6 and 7, respectively.

【0035】[0035]

【表6】 [Table 6]

【0036】[0036]

【表7】 [Table 7]

【0037】[0037]

【発明の効果】表2〜7に示される結果から、本発明被
覆超硬工具は、いずれもすぐれた高温強度および高温硬
さを有することから、鋼の切削加工を高い発熱を伴う高
速で行っても、切刃に偏摩耗の発生なく、すぐれた耐摩
耗性を発揮するのに対して、硬質被覆層が物理蒸着(T
i,Al)N層だけからなる、すなわち中温化学蒸着A
23層の形成のない比較被覆超硬工具においては、高
温硬さ不足が原因で摩耗の進行がきわめて速いことが明
らかである。上述のように、この発明の被覆超硬工具
は、各種の鋼や鋳鉄などの通常の条件での切削加工は勿
論のこと、特に高速切削加工においてもすぐれた耐摩耗
性を発揮し、使用寿命の延命化を可能にするものである
から、切削加工の省力化および省エネ化、さらに低コス
ト化に十分満足に対応できるものである。
According to the results shown in Tables 2 to 7, all of the coated carbide tools of the present invention have excellent high-temperature strength and high-temperature hardness, so that cutting of steel is performed at high speed with high heat generation. However, the cutting edge exhibits excellent wear resistance without uneven wear, whereas the hard coating layer is formed by physical vapor deposition (T
i, Al) N layer only, ie medium temperature chemical vapor deposition A
It is clear that in the comparative coated carbide tool without formation of the l 2 O 3 layer, the progress of wear is extremely fast due to lack of high temperature hardness. As described above, the coated carbide tool of the present invention exhibits excellent wear resistance not only in cutting under various conditions such as various types of steel and cast iron but also in high-speed cutting, and has a long service life. Therefore, it is possible to satisfactorily cope with labor saving and energy saving of the cutting process and further lowering the cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アークイオンプレーティング装置の概略説明図
である。
FIG. 1 is a schematic explanatory view of an arc ion plating apparatus.

【図2】(a)は被覆超硬チップの概略斜視図、(b)
は被覆超硬チップの概略縦断面図である。
FIG. 2A is a schematic perspective view of a coated carbide tip, and FIG.
1 is a schematic longitudinal sectional view of a coated carbide tip.

【図3】(a)は被覆超硬エンドミルの概略正面図、
(b)は同切刃部の概略横断面図である。
FIG. 3A is a schematic front view of a coated carbide end mill,
(B) is a schematic cross-sectional view of the cutting blade portion.

【図4】(a)は被覆超硬ドリルの概略正面図、(b)
は同溝形成部の概略横断面図である。
FIG. 4A is a schematic front view of a coated carbide drill, and FIG.
FIG. 3 is a schematic cross-sectional view of the groove forming portion.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 16/34 C23C 16/34 Fターム(参考) 3C037 CC02 CC04 CC09 3C046 FF03 FF10 FF13 FF16 FF19 FF22 FF25 FF32 FF39 4K029 AA04 BA58 BC02 BD05 EA01 4K030 BA02 BA18 BA38 CA05 LA22──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) C23C 16/34 C23C 16/34 F term (reference) 3C037 CC02 CC04 CC09 3C046 FF03 FF10 FF13 FF16 FF19 FF22 FF25 FF32 FF39 4K029 AA04 BA58 BC02 BD05 EA01 4K030 BA02 BA18 BA38 CA05 LA22

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 Co:4〜12%、 炭化チタン、炭化ニオブ、炭化タンタル、NbとTaの
複合炭化物、およびTiとWの複合炭化物のうちの1種
または2種以上:5〜30%、 炭化タングステン:残り、からなる配合組成を有する圧
粉体の焼結体で構成された炭化タングステン基超硬合金
基体の表面に、 (a)内側層として、0.5〜10μmの平均層厚を有
し、かつ組成式:(Ti1-XAlX)N(ただし、原子比
で、Xは0.2〜0.6を示す)を満足するTiとAl
の物理蒸着複合窒化物層、 (b)外側層として、0.1〜5μmの平均層厚を有す
る中温化学蒸着酸化アルミニウム層、以上(a)および
(b)で構成された硬質被覆層を形成してなる、高速切
削ですぐれた耐摩耗性を発揮する表面被覆超硬合金製切
削工具。
1. A mass% of Co: 4 to 12%, one or more of titanium carbide, niobium carbide, tantalum carbide, a composite carbide of Nb and Ta, and a composite carbide of Ti and W: 5 3030%, tungsten carbide: the remainder, on the surface of a tungsten carbide-based cemented carbide substrate composed of a sintered compact of a compact having a composition of: (a) 0.5 to 10 μm as an inner layer Ti and Al having an average layer thickness and satisfying the composition formula: (Ti 1-x Al x ) N (where X represents 0.2 to 0.6 in atomic ratio)
(B) As the outer layer, a medium temperature chemical vapor deposition aluminum oxide layer having an average layer thickness of 0.1 to 5 μm, and a hard coating layer composed of the above (a) and (b) are formed. A surface coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting.
JP2001054098A 2000-12-22 2001-02-28 Cutting tool made of surface-coated cemented carbide exerting excellent wear resistance in cutting at high speed Pending JP2002254211A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001054098A JP2002254211A (en) 2001-02-28 2001-02-28 Cutting tool made of surface-coated cemented carbide exerting excellent wear resistance in cutting at high speed
DE10115390A DE10115390A1 (en) 2000-12-22 2001-03-29 Coated cutting tool
US09/820,838 US6565957B2 (en) 2000-12-22 2001-03-30 Coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001054098A JP2002254211A (en) 2001-02-28 2001-02-28 Cutting tool made of surface-coated cemented carbide exerting excellent wear resistance in cutting at high speed

Publications (1)

Publication Number Publication Date
JP2002254211A true JP2002254211A (en) 2002-09-10

Family

ID=18914480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001054098A Pending JP2002254211A (en) 2000-12-22 2001-02-28 Cutting tool made of surface-coated cemented carbide exerting excellent wear resistance in cutting at high speed

Country Status (1)

Country Link
JP (1) JP2002254211A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113195139A (en) * 2018-10-11 2021-07-30 株式会社不二越 Hard film coated drill bit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113195139A (en) * 2018-10-11 2021-07-30 株式会社不二越 Hard film coated drill bit

Similar Documents

Publication Publication Date Title
JP3931326B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3844285B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP3659217B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP2011104737A (en) Surface coated cutting tool
JP3693001B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP3695396B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials
JP4367032B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4645820B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP3948013B2 (en) Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer
JP3849135B2 (en) Cutting tool made of surface-coated cemented carbide with a hard coating layer showing good biting properties against the work material under heavy cutting conditions
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2003145317A (en) Cutting tool of surface-coated cemented carbide with abrasion-resistant coat layer having excellent adhesion performance and chipping resistance
JP3948010B2 (en) Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer
JP2002263910A (en) Surface-coated cemented carbide cutter having hard cover layer exhibiting excellent wear resistance in high- speed cutting operation
JP2003136305A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP3632626B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance in high-speed cutting
JP2002254211A (en) Cutting tool made of surface-coated cemented carbide exerting excellent wear resistance in cutting at high speed
JP3475932B2 (en) Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting
JP3580275B2 (en) Surface-coated cemented carbide cutting tool with excellent heat dissipation with a wear-resistant coating layer
JP3508746B2 (en) Surface coated cemented carbide cutting tool that demonstrates excellent wear resistance in high speed cutting
JP3508748B2 (en) Surface-coated cemented carbide cutting tool with excellent heat-resistant plastic deformation with wear-resistant coating layer
JP2002254210A (en) Surface-coated cemented carbide cutting tool having excellent wear resistance in heavy cutting
JP4725770B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance with a hard coating layer in high-speed cutting of highly reactive materials
JP2004074378A (en) Surface coated cemented carbide cutting tool having hard coated layer exhibiting superior abrasion resistance under high speed cutting condition
JP3580271B2 (en) Surface coated cemented carbide cutting tool with excellent chip slipperiness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080107

A521 Written amendment

Effective date: 20080212

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20080605

Free format text: JAPANESE INTERMEDIATE CODE: A02