JP2002251948A - Thermal overload relay - Google Patents

Thermal overload relay

Info

Publication number
JP2002251948A
JP2002251948A JP2001048626A JP2001048626A JP2002251948A JP 2002251948 A JP2002251948 A JP 2002251948A JP 2001048626 A JP2001048626 A JP 2001048626A JP 2001048626 A JP2001048626 A JP 2001048626A JP 2002251948 A JP2002251948 A JP 2002251948A
Authority
JP
Japan
Prior art keywords
reversing
movable plate
contact
reversing mechanism
overload relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001048626A
Other languages
Japanese (ja)
Other versions
JP4277454B2 (en
Inventor
Kenji Suzuki
健司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001048626A priority Critical patent/JP4277454B2/en
Publication of JP2002251948A publication Critical patent/JP2002251948A/en
Application granted granted Critical
Publication of JP4277454B2 publication Critical patent/JP4277454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve an operation characteristic of a thermal overload relay and to improve an assembly structure so as to miniaturize the relay and to reduce the cost thereof in conjunction with the expansion of an overload detection determination range. SOLUTION: This thermal overload relay comprises a reversing mechanism for opening/closing contacts comprising an assembly composed of main bimetals 2 bent and displaced based on a carried current, a release lever 4 driven by the displacement of a shifter 3 interlocked with the main bimetal, a movable plate 8, a reversing spring 9 and a bearing member 12, and a contact mechanism, and opens and closes b-contacts 10 and 11, and a-contacts 16, 16 by the reverse operation of the reversing mechanism when the bent displacement amount of the main bimetals exceeds a specified value. The release lever is reversely operated by directly pressing it against the surface of the movable plate of the reversing mechanism, a lift-off type contact mechanism using a movable contact spring 16a is employed for the a-contacts, and the generation power- displacement characteristic of the main bimetals is matched with the load displacement characteristic of the release lever, so that the generation energy of the main bimetals is effectively utilized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電磁接触器などに
組合せて使用する熱動形過負荷継電器(サーマルリレ
ー)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal overload relay (thermal relay) used in combination with an electromagnetic contactor or the like.

【0002】[0002]

【従来の技術】頭記の熱動形過負荷継電器は、通電電流
の加熱により湾曲変位する主バイメタル、主バイメタル
と連動するシフタの変位に従動する釈放レバー、釈放レ
バーで駆動される接点開閉用の反転機構、および接点機
構からなり、主バイメタルの湾曲変位量が規定値を超え
た際に反転機構が反転動作して接点を開閉させるように
したものである。
2. Description of the Related Art The thermal overload relay described above is used for a main bimetal that is bent and displaced by heating of an energizing current, a release lever that is driven by a displacement of a shifter that is interlocked with the main bimetal, and a contact opening and closing device that is driven by a release lever. And a contact mechanism, and when the amount of bending displacement of the main bimetal exceeds a specified value, the reversing mechanism performs a reversing operation to open and close the contact.

【0003】ここで、前記の反転機構は、脚部の先端を
支点として軸受部材に揺動可能に支承された略U字形の
可動板と、前記支点を挟んで可動板とその下方に配した
支持アームとの間に張架した反転ばね(線条の引っ張り
コイルばね)とからなる。また、かかる反転機構を主バ
イメタルの湾曲変位により反転動作させるために、従来
では実公平3−9234号公報などに開示されているよ
うに、反転ばねに主バイメタルと連動する釈放レバーの
先端を押し当てて可動板を反転動作させるようにしてい
る。
Here, the reversing mechanism is provided with a substantially U-shaped movable plate which is swingably supported by a bearing member with a tip of a leg as a fulcrum, and a movable plate and the lower portion of the movable plate with the fulcrum interposed therebetween. And a reversing spring (a linear tension coil spring) stretched between the support arm and the support arm. Further, in order to cause the reversing mechanism to perform reversing operation by bending displacement of the main bimetal, conventionally, as disclosed in Japanese Utility Model Publication No. 3-9234, the tip of the release lever interlocking with the main bimetal is pushed by the reversing spring. Then, the movable plate is turned over.

【0004】次に、前記公報に開示されている熱動形過
負荷継電器を図5(a),(b) に、またその模式図,および
その反転機構の構造をそれぞれ図6,図7に示す。ま
ず、図5(a) において、1は本体ケース、2は主回路電
流が通流するヒートエレメント(図示せず)で加熱され
る主バイメタル(3相回路の1相のみを示している)、
3は主バイメタル2の先端に連繋させたシフタ、4は温
度補償バイメタル5と組み合わせて後記の反転機構に対
向配置した釈放レバー、6は釈放レバー4の上端に連結
した調整リンク、7は調整リンク6の頂部にカム機構を
介して連結した整定電流値調整用の調整ダイヤル、8は
反転機構の揺動式可動板、9は可動板8に付設した反転
ばね(線条の引っ張りコイルばね)、10は補助接点と
しての常閉可動接点(b接点)、11はその固定接点で
ある。
FIGS. 5 (a) and 5 (b) show a thermal overload relay disclosed in the above publication, and FIGS. 6 and 7 show schematic views of the relay and the structure of its reversing mechanism, respectively. Show. First, in FIG. 5A, 1 is a main body case, 2 is a main bimetal heated by a heating element (not shown) through which a main circuit current flows (only one phase of a three-phase circuit is shown),
3 is a shifter connected to the tip of the main bimetal 2, 4 is a release lever arranged in combination with a temperature compensating bimetal 5 and opposed to a reversing mechanism described later, 6 is an adjustment link connected to the upper end of the release lever 4, 7 is an adjustment link 6, an adjusting dial for adjusting the set current value connected to the top of the movable member via a cam mechanism; 8, an oscillating movable plate of an inverting mechanism; 9, an inverting spring attached to the movable plate 8 (filament tension coil spring); Reference numeral 10 denotes a normally closed movable contact (b contact) as an auxiliary contact, and 11 denotes a fixed contact thereof.

【0005】ここで、前記反転機構の可動板8は図7で
示すように逆U字形の金属板からなり、その左右脚部8
aの先端(下端)をナイフエッジとして軸受部材12に
形成したV字溝12aに突き当てて可動板8を揺動可能
に支持している。また、反転ばね9は図5(b) で示すよ
うにばね線条にコイル部9a,フック9bを形成したも
ので、可動板8の上端と可動板の下方に配した支持アー
ム13との間に両端のフック9bを引っ掛けて張架され
ており、この位置で前記した釈放レバー4の先端部4a
がばね線条の中腹に当接している。なお、図6で15は
常開出力接点(a接点)の固定接点、16は可動接点、
17は可動板8の動きに連動して可動接点16を開閉す
るスライダである。
Here, the movable plate 8 of the reversing mechanism is made of an inverted U-shaped metal plate as shown in FIG.
The movable plate 8 is swingably supported by abutting a leading end (lower end) of a on a V-shaped groove 12a formed in the bearing member 12 as a knife edge. The reversing spring 9 is formed by forming a coil 9a and a hook 9b on a spring wire as shown in FIG. 5B, and is provided between the upper end of the movable plate 8 and the support arm 13 disposed below the movable plate. The hooks 9b at both ends are hooked and stretched, and at this position, the distal end 4a of the release lever 4 described above.
Is in contact with the middle of the spring streak. In FIG. 6, 15 is a fixed contact of a normally open output contact (a contact), 16 is a movable contact,
Reference numeral 17 denotes a slider for opening and closing the movable contact 16 in conjunction with the movement of the movable plate 8.

【0006】かかる構成で、定常状態では主バイメタル
2に連結したシフタ3が右側に後退しており、反転機構
の可動板8は反転ばね9のばね力で図示位置に傾動して
いて、常閉接点10/11がON、常開接点15/16
がOFFである。この状態から主バイメタル2のヒート
エレメント(図示せず)に過電流が流れると、ヒートエ
レメントの発熱により主バイメタル2が湾曲変位してシ
フタ3を矢印P方向に押し、温度補償バイメタル5を介
して釈放レバー4を回動させる。これにより、釈放レバ
ー4の先端部4aが反転ばね9の線条を押し、そのばね
線条を「く」字状に撓ませる。この場合に、主回路に過
負荷電流が流れて主バイメタル3の湾曲変位量が規定値
を超える状態になると、釈放レバー4を介して可動板8
が脚部先端を支点に反転動作して常閉接点10/11を
OFF、常開接点15/16をONに切換え、その接点
出力により電磁接触器をトリップ動作させる。なお、前
記接点機構のリセットは、図5(a) に示したリセットロ
ッド14を自動復帰位置,手動復帰位置にセットするこ
とにより行う。
In such a configuration, in a steady state, the shifter 3 connected to the main bimetal 2 is retracted to the right, and the movable plate 8 of the reversing mechanism is tilted to the position shown in FIG. Contact 10/11 is ON, normally open contact 15/16
Is OFF. When an overcurrent flows through a heat element (not shown) of the main bimetal 2 from this state, the heat of the heat element causes the main bimetal 2 to bend and displace, pushing the shifter 3 in the direction of arrow P, and via the temperature compensating bimetal 5. The release lever 4 is rotated. As a result, the distal end portion 4a of the release lever 4 pushes the line of the reversing spring 9 and deflects the spring line into a "-" shape. In this case, when an overload current flows through the main circuit and the amount of bending displacement of the main bimetal 3 exceeds a specified value, the movable plate 8 is released via the release lever 4.
Turns the normally closed contact 10/11 OFF and the normally open contact 15/16 ON by turning the tip of the leg as a fulcrum, and trips the electromagnetic contactor by the contact output. The resetting of the contact mechanism is performed by setting the reset rod 14 shown in FIG. 5A to an automatic return position and a manual return position.

【0007】[0007]

【発明が解決しようとする課題】ところで、前記構成に
なる従来の熱動形過負荷継電器では、動作特性,および
反転機構の組立性などの面で次記のような問題点があ
る。ここで、図6に示した従来構造による各動作特性を
図8(a) 〜(c) に示す。(a) 図には主バイメタル2の発
生力−変位特性A、可動板8を反転させる際の可動板反
力−変位特性B、および反転ばね9との当接点F(図6
参照)で釈放レバー4に作用する反力−変位特性Cを表
し、(b) 図には接点機構を開閉位置に駆動する可動板8
の発生力−変位特性D、およびa,b接点機構の反力−
変位特性Eを表し、(c) 図は可動板4の反転動作に伴う
負荷−変位特性Fを表している。
However, the conventional thermal overload relay having the above-mentioned structure has the following problems in terms of operation characteristics, assemblability of the reversing mechanism, and the like. Here, FIGS. 8A to 8C show operation characteristics of the conventional structure shown in FIG. 6A shows the generated force-displacement characteristic A of the main bimetal 2, the movable plate reaction force-displacement characteristic B when the movable plate 8 is reversed, and the contact point F with the reversing spring 9 (FIG. 6).
) Represents the reaction force-displacement characteristic C acting on the release lever 4, and (b) shows the movable plate 8 which drives the contact mechanism to the open / close position.
-Displacement characteristic D and reaction force of a and b contact mechanisms-
A displacement characteristic E is shown, and FIG. 7C shows a load-displacement characteristic F accompanying the reversing operation of the movable plate 4.

【0008】すなわち、主バイメタル2の発生力は、温
度上昇により生じた湾曲でシフタ3を押す力であり、反
転機構側から主バイメタルの動きが拘束されている変位
小の間では発生力が大きく、反転機構が動き初めて主バ
イメタルの変位が大きくなるにしたがって蓄積していた
エネルギーが放出されるので発生力は減少する。一方、
反転機構の可動板8を反転駆動するに要するF点のばね
押反力は、反転ばね9で付勢されている可動板8が定常
位置から反転するまでは変位とともに反力が増大し、可
動板がデッドポイントを超える,または図8(a) に示し
た可動板反力Bが図8(b) に示したb接点反力を下回る
(図中のα)の際に逆方向に反転すると急減する。ま
た、接点機構を開閉駆動する際には、反転ばね9でばね
付勢されている可動板8の発生力で接点間に接触圧を加
え、かつ図示例のa接点については、その接触子ばねを
撓ませて接点を閉じるようにしている。
That is, the generated force of the main bimetal 2 is a force that pushes the shifter 3 by the curvature generated by the temperature rise, and the generated force is large during the small displacement where the movement of the main bimetal is restricted from the reversing mechanism side. Since the accumulated energy is released as the displacement of the main bimetal increases for the first time when the reversing mechanism moves, the generated force decreases. on the other hand,
The spring pressing force at the point F required to reversely drive the movable plate 8 of the reversing mechanism increases with the displacement until the movable plate 8 urged by the reversing spring 9 reverses from the steady position. When the plate exceeds the dead point or the movable plate reaction force B shown in FIG. 8A falls below the contact b reaction force shown in FIG. Declines sharply. When the contact mechanism is opened and closed, a contact pressure is applied between the contacts by the force generated by the movable plate 8 which is spring-biased by the reversing spring 9. Is bent to close the contact.

【0009】前記の特性図から判るように、可動板8の
発生力−変位特性Dと接点機構の開閉駆動に要する反力
−変位特性Eは略同じ傾向の特性である。これに対し
て、反転機構の反転動作の前半領域では、主バイメタル
の発生力−変位特性Aと反転ばね9を押す釈放レバー4
の反力−変位特性Cは増減の向きが相反しており、かつ
釈放レバー4に作用する可動板反力は可動板8がデッド
ポイントを超えたところで零になる。このために、主バ
イメタル2の発生力は、反転動作の前半では反転ばね9
を撓ませて可動板8を反転駆動させるに要する大きな発
生力が要求される反面、(a) 図で斜線を付した後半範囲
では主バイメタルの発生力(蓄積エネルギー)は駆動力
として利用されないことになる。
As can be seen from the characteristic diagram, the generated force-displacement characteristic D of the movable plate 8 and the reaction force-displacement characteristic E required for the opening and closing drive of the contact mechanism have substantially the same tendency. On the other hand, in the first half region of the reversing operation of the reversing mechanism, the release lever 4 pressing the reversing spring 9 and the generated force-displacement characteristic A of the main bimetal.
In the reaction force-displacement characteristic C, the directions of increase and decrease are opposite to each other, and the movable plate reaction force acting on the release lever 4 becomes zero when the movable plate 8 exceeds the dead point. For this reason, in the first half of the reversing operation, the generated force of the main bimetal 2 is reduced by the reversing spring 9.
While the large generated force required to invert the movable plate 8 by bending the movable plate 8 is required, the generated force (stored energy) of the main bimetal is not used as the driving force in the latter half range shaded in FIG. become.

【0010】また、図7のように可動板8の先端をナイ
フエッジとして軸受部材12のV字溝12aに支持した
ヒンジ構造では、両部部材間のガタ,擦り合いによる摩
擦が原因で図8(c) で表すように可動板8が往復反転動
作する際の負荷−変位特性Fがヒステリシス特性とな
る。このヒステリシス特性は熱動形過負荷継電器の動作
特性に悪影響を及ぼす。また、主バイメタル2はこのヒ
ステリシス特性を見込んだバイメタル特性を確保するよ
うに板厚,寸法などを設計する必要があることから、そ
の結果として主バイメタルが大形となり、また過電流検
出の設定範囲が狭域となるといった問題が派生する。
Also, in the hinge structure in which the tip of the movable plate 8 is supported by the V-shaped groove 12a of the bearing member 12 as a knife edge as shown in FIG. As shown by (c), the load-displacement characteristic F when the movable plate 8 performs the reciprocating reversal operation becomes the hysteresis characteristic. This hysteresis characteristic adversely affects the operation characteristics of the thermal overload relay. In addition, the main bimetal 2 needs to be designed in thickness, dimensions, and the like so as to secure the bimetal characteristic in consideration of the hysteresis characteristic. As a result, the main bimetal becomes large, and the setting range of the overcurrent detection is increased. Is narrowed.

【0011】さらに、図7に示した従来の反転機構で
は、可動板8に穿孔した小穴に別部品の引っ張りばね9
のフックを引っ掛けており、このために反転機構を組立
ロボットなどで自動組立することが困難で、人手作業に
頼っているのが現状である。本発明は上記の点に鑑みな
されたものであり、その目的は前記課題を解決して動作
特性の改善、並びに反転機構の自動組立が実現可能とな
るように改良した熱動形過負荷継電器を提供することに
ある。
[0011] Further, in the conventional reversing mechanism shown in FIG.
Therefore, it is difficult to automatically assemble the reversing mechanism by an assembling robot or the like, and the present situation is that the reversing mechanism relies on manual work. The present invention has been made in view of the above points, and a purpose of the present invention is to provide a thermal overload relay improved so as to solve the above-described problems and improve the operation characteristics, and to realize automatic assembly of a reversing mechanism. To provide.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明によれば、通電電流の加熱により湾曲変位す
る主バイメタル、主バイメタルと連動するシフタの変位
に従動する釈放レバー、釈放レバーで駆動される接点開
閉用の反転機構、および接点機構からなり、主バイメタ
ルの湾曲変位量が規定値を超えた際に反転機構が反転動
作して接点を開閉させる熱動形過負荷継電器であり、前
記反転機構が脚部の先端を支点として軸受部材に揺動可
能に支承された可動板と、前記支点を挟んで可動板とそ
の下方に配した支持アームとの間に張架した引っ張りば
ねとしての反転ばねからなるものにおいて、前記釈放レ
バーを反転機構の可動板の板面に直接押し当てて反転動
作させるようにし(請求項1)、また前記の接点機構に
は、その可動接触子ばねで接点間の接触圧を得るリフト
オフ式接点機構を採用する(請求項2)ことにより、主
バイメタルの発生力を無駄なく反転機構の反転駆動に有
効に活かして動作特性の向上化が図れるようにする。
According to the present invention, there is provided a main bimetal which is bent and displaced by heating of an electric current, a release lever which is driven by a displacement of a shifter which cooperates with the main bimetal, and a release lever. This is a thermal overload relay that consists of a contact opening / closing reversing mechanism and a contact mechanism. A movable plate supported by the bearing member such that the reversing mechanism swings around a tip of a leg portion as a fulcrum, and a tension spring stretched between the movable plate and the support arm disposed below the movable plate with the fulcrum interposed therebetween. Wherein the release lever is directly pressed against the plate surface of the movable plate of the reversing mechanism to perform the reversing operation (claim 1). By adopting a lift-off type contact mechanism that obtains the contact pressure between the contacts by a spring (claim 2), the operating force can be improved by effectively utilizing the generated force of the main bimetal in the inversion drive of the inversion mechanism without waste. To

【0013】また、本発明によれば、反転機構の可動板
と軸受部材との間のガタ,摩擦抵抗を排除するために、
反転機構の可動板とその軸受部材を弾性ヒンジ部を介し
て一体に連ねて構成し(請求項3)、さらに、反転機構
の自動組立化を実現するために、反転機構の引っ張りば
ねを板ばねとして可動板と一体に連ねて構成する(請求
項4)ものとし、その反転機構をPET樹脂などの成形
品、またはこれに板ばねを組み合わせた複合形成品とし
て、前記の可動板,軸受部材および引っ張りばねを一体
に成形するようにする(請求項5)。
According to the present invention, in order to eliminate backlash and frictional resistance between the movable plate of the reversing mechanism and the bearing member,
The movable plate of the reversing mechanism and its bearing member are integrally connected via an elastic hinge portion (Claim 3). Further, in order to realize automatic assembly of the reversing mechanism, a tension spring of the reversing mechanism is provided by a leaf spring. The reversing mechanism is formed as a molded product such as PET resin or a composite formed product combining a leaf spring with the movable plate, the bearing member and the movable member. The extension spring is formed integrally (claim 5).

【0014】[0014]

【発明の実施の形態】以下本発明の実施の形態を図1〜
図4の実施例で説明する。なお、図1において、図6と
対応する部材には同じ符号を付してその詳細な説明は省
略する。すなわち、図1の実施例においては、釈放レバ
ー4にスライド式のレバー4aを連繋し、このレバー4
aを可動板8の板面に直接押し当てて反転機構を反転動
作させるようにしており、この点において図6に示した
従来構造とは異なる。また、前記レバー4aに連動して
開閉する常開のa接点16には、接触子ばね16aの撓
み力で固定接点15との間で所要の接触圧を加え、接点
をオフする際には接触子ばね16aを撓ませて後退させ
るようにしたリフトオフ式の接点を採用している。これ
により、図示の定常状態(a接点OFF)ではレバー4
aに対して前記接触子ばね16aの撓みばね力が加わる
ことになる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS.
This will be described with reference to the embodiment of FIG. In FIG. 1, members corresponding to those in FIG. 6 are denoted by the same reference numerals, and detailed description thereof will be omitted. That is, in the embodiment shown in FIG. 1, a slide-type lever 4a is linked to the release lever 4, and this release lever 4
a is directly pressed against the plate surface of the movable plate 8 to cause the reversing mechanism to perform a reversing operation, and this point is different from the conventional structure shown in FIG. A required contact pressure is applied to the normally open a contact 16 which opens and closes in conjunction with the lever 4a with the fixed contact 15 by the bending force of the contact spring 16a. A lift-off type contact is used in which the child spring 16a is bent and retracted. Thus, in the illustrated steady state (a contact OFF), the lever 4
The bending spring force of the contact spring 16a is applied to a.

【0015】かかる構成で、主バイメタル2が過電流に
より湾曲変位すると、シフタ3,釈放レバー4を介して
レバー4aが図示位置から右側に移動し、反転機構の可
動板8を直接押して反転動作させる。これにより常閉の
b接点がOFFとなり、常開のa接点がONに切り換わ
る。なお、動作後のリセットは従来と同様にリセット操
作ロッド14により手動もしくは自動で行う。
In this configuration, when the main bimetal 2 is bent and displaced due to an overcurrent, the lever 4a moves rightward from the position shown in the drawing via the shifter 3 and the release lever 4, and the movable plate 8 of the reversing mechanism is directly pushed to perform the reversing operation. . As a result, the normally closed contact b is turned off, and the normally open contact a is turned on. The reset after the operation is performed manually or automatically by the reset operation rod 14 as in the conventional case.

【0016】次に、実施例の構成による動作特性を図2
に示す。すなわち、主バイメタル2の発生力−変位特性
Aに対して、釈放レバー4に加わる反力−変位特性G
(a接点の負荷−変位特性Hと、反転機構の可動板8の
負荷−変位特性Iとの合特性:G=H+I)は図示のよ
うにバイメタルの発生力−変位特性Aと同じ傾向の特性
となる。なお、図中でP1 は自動セット時の操作ロッド
位置、P2 は手動セット時の操作ロッド位置を表してい
る。
Next, the operating characteristics of the configuration of the embodiment are shown in FIG.
Shown in That is, the reaction force-displacement characteristic G applied to the release lever 4 with respect to the generated force-displacement characteristic A of the main bimetal 2
(The combined characteristic of the load-displacement characteristic H of the contact a and the load-displacement characteristic I of the movable plate 8 of the reversing mechanism: G = H + I) is a characteristic having the same tendency as the generated force-displacement characteristic A of the bimetal as shown in the figure. Becomes In the drawing, P1 represents the position of the operating rod during automatic setting, and P2 represents the position of the operating rod during manual setting.

【0017】この動作特性から判るように、従来方式と
比べて主バイメタル2の発生エネルギーを殆ど無駄なく
有効に活かして反転機構,接点機構を駆動でき、これに
より主バイメタル2に要求される機械的発生エネルギー
が少なくて済むので、従来問題となっていた過電流検出
の設定範囲を大幅に拡大でき、またこれに併せて主バイ
メタルの小型化が図れる。
As can be seen from the operation characteristics, the reversing mechanism and the contact mechanism can be driven by effectively utilizing the energy generated by the main bimetal 2 with little waste as compared with the conventional system. Since less energy is required, the setting range of overcurrent detection, which has been a problem in the past, can be greatly expanded, and the size of the main bimetal can be reduced accordingly.

【0018】次に、本発明の請求項3〜5に対応する実
施例を図3,図4で説明する。まず、図3(a) の実施例
では、反転機構の可動板8と軸受部材12との間が肉薄
な弾性ヒンジ部18を介して一体に連なるように一体成
形された構成になる。この構成によれば、図7に示した
ナイフエッジとV字溝を組み合わせたピボット式のヒン
ジ構造と比べてガタや反転動作に伴う擦り合いが無くな
り、その結果可動板8が反転動作する際の負荷−変位特
性Fは図3(b) で示すようようにヒステリシスが無くな
り、図8(c) で示した従来の特性と比べて動作特性を大
幅に改善できる。
Next, a third embodiment of the present invention will be described with reference to FIGS. First, in the embodiment shown in FIG. 3A, the movable plate 8 of the reversing mechanism and the bearing member 12 are integrally formed so as to be integrally connected via a thin elastic hinge portion 18. According to this configuration, as compared with the pivot type hinge structure in which the knife edge and the V-shaped groove are combined as shown in FIG. The load-displacement characteristic F has no hysteresis as shown in FIG. 3 (b), and the operating characteristic can be greatly improved as compared with the conventional characteristic shown in FIG. 8 (c).

【0019】ここで、前記した弾性ヒンジ部18を形成
するには、可動板8,軸受部材12の材料としてCu−
Zn−Al合金もしくはNi−Ti合金などの弾性限界
の大きな金属材料,あるいはPET樹脂などが採用でき
る。なお、発明者等はPET樹脂で作製した反転機構に
ついてその耐久試験を行ったところ、6000回にも及
ぶ回数の反転動作テストにも十分耐えることが確認され
ている。
Here, in order to form the above-mentioned elastic hinge portion 18, Cu-based material is used as the material of the movable plate 8 and the bearing member 12.
A metal material having a large elastic limit, such as a Zn-Al alloy or a Ni-Ti alloy, or a PET resin can be used. In addition, the inventors conducted a durability test on the reversing mechanism made of PET resin, and it was confirmed that the reversing mechanism can sufficiently withstand the reversal operation test as many as 6000 times.

【0020】また、図4に示す実施例は、図3で述べた
ように可動板8,軸受部材12および弾性ヒンジ部18
を樹脂製として一体化した構成に加え、さらにばね線条
で作られた反転ばね9に代えて、樹脂製の反転ばね19
が可動板8と連なって一体に成形されている。ここで、
樹脂製の反転ばね19は複数の菱形セグメント板(穴明
き)19aが数珠状に連なり、弾性ヒンジ部18と同様
に反転機構をモールド成形する際に同時成形される。な
お、菱形セグメント板19aは同一面状に連ねるほか、
ジグザク状に屈曲させてもよく、反転機構の組立位置で
セグメント19に引張力を加えた状態で先端のセグメン
トを支持アーム13に係止することにより、図7に示し
た反転機構と線条コイルばねと同様な機能を果たす。
In the embodiment shown in FIG. 4, the movable plate 8, the bearing member 12, and the elastic hinge portion 18 are provided as described with reference to FIG.
Is integrated with a resin, and the reversing spring 19 made of a resin is replaced by a reversing spring 19 made of a resin.
Are formed integrally with the movable plate 8. here,
The reversing spring 19 made of resin has a plurality of rhombus-shaped segment plates (perforated) 19a connected in a bead shape, and is formed simultaneously with the resilient hinge 18 when the reversing mechanism is molded. In addition, the rhombic segment plates 19a are continuous on the same plane,
The segment 19 may be bent in a zigzag manner, and the segment at the tip is locked to the support arm 13 in a state where a tensile force is applied to the segment 19 at the assembly position of the reversing mechanism. It performs the same function as a spring.

【0021】しかも、この実施例によれば、可動板8と
反転ばね19とが一体に形成されているので、図7に示
した従来構造のように組立工程で可動板8に穿孔した小
穴にばね線条で作られた反転ばね9のフック9bを引っ
掛ける作業が必要なく、これにより人手作業に頼ること
なく自動機による自動組立が可能となる。
Further, according to this embodiment, since the movable plate 8 and the reversing spring 19 are formed integrally, the small holes formed in the movable plate 8 in the assembling process as in the conventional structure shown in FIG. The work of hooking the hook 9b of the reversing spring 9 made of the spring wire is not required, thereby enabling automatic assembly by an automatic machine without relying on manual work.

【0022】[0022]

【発明の効果】以上述べたように、本発明の構成によれ
ば、熱動形過負荷継電器の動作特性を改善し、その過電
流検出の設定範囲を従来のものと比べて大幅に拡大でき
るとともに、主バイメタルに要求される機械的な発生エ
ネルギーも小さくて済む。また、反転機構に関して本発
明の請求項3〜5の構造を併用することにより、熱動形
過負荷継電器の小型,低コスト化が図れるほか、反転機
構の自動組立も可能になるなど、動作特性および製作面
で優れた効果を発揮する熱動形過負荷継電器を提供する
ことができる。
As described above, according to the configuration of the present invention, the operating characteristics of the thermal overload relay can be improved, and the setting range of the overcurrent detection can be greatly expanded as compared with the conventional one. At the same time, the mechanical energy required for the main bimetal is small. In addition, by using the structure of claims 3 to 5 of the present invention together with the reversing mechanism, it is possible to reduce the size and cost of the thermal overload relay and to enable automatic assembly of the reversing mechanism. Further, it is possible to provide a thermal overload relay exhibiting excellent effects in terms of manufacturing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る熱動形過負荷継電器を模
式的に表した構成図
FIG. 1 is a configuration diagram schematically showing a thermal overload relay according to an embodiment of the present invention.

【図2】図1の構成による熱動形過負荷継電器の動作特
性図
FIG. 2 is an operation characteristic diagram of the thermal overload relay having the configuration of FIG. 1;

【図3】本発明の請求項3に対応する反転機構を示し、
(a) は反転機構の構成斜視図、(b) は可動板の負荷−変
位特性図
FIG. 3 shows a reversing mechanism according to claim 3 of the present invention,
(a) is a configuration perspective view of the reversing mechanism, and (b) is a load-displacement characteristic diagram of the movable plate.

【図4】本発明の請求項4に対応する反転機構の構成斜
視図
FIG. 4 is a perspective view showing the configuration of a reversing mechanism according to a fourth embodiment of the present invention;

【図5】従来における熱動形過負荷継電器の構成図であ
り、(a) はその製品の組立構造図、(b) は(a) 図におけ
る釈放レバーと反転ばねの拡大斜視図
FIG. 5 is a configuration diagram of a conventional thermal overload relay, in which (a) is an assembly structure diagram of the product, and (b) is an enlarged perspective view of a release lever and a reversing spring in (a).

【図6】図5の構造を模式的に表した図FIG. 6 is a diagram schematically showing the structure of FIG. 5;

【図7】図6における反転機構の構成斜視図FIG. 7 is a perspective view showing the configuration of a reversing mechanism in FIG. 6;

【図8】図6の構成による熱動形過負荷継電器の動作特
性図であり、(a) 〜(c) はそれぞれ異なる動作特性図
8A and 8B are operating characteristic diagrams of the thermal overload relay having the configuration shown in FIG. 6, wherein FIGS.

【符号の説明】[Explanation of symbols]

2 主バイメタル 3 シフタ 4,4a 釈放レバー 8 反転機構の可動板 9 反転ばね 10,11 常閉接点 12 軸受部材 13 支持アーム 15,16 常開接点 16a 接触子ばね 18 弾性ヒンジ部 19 樹脂製反転ばね Reference Signs List 2 Main bimetal 3 Shifter 4, 4a Release lever 8 Movable plate of reversing mechanism 9 Reversing spring 10, 11 Normally closed contact 12 Bearing member 13 Support arm 15, 16 Normally open contact 16a Contact spring 18 Elastic hinge 19 Resin reversing spring

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】通電電流の加熱により湾曲変位する主バイ
メタル、主バイメタルと連動するシフタの変位に従動す
る釈放レバー、釈放レバーで駆動される接点開閉用の反
転機構、および接点機構からなり、主バイメタルの湾曲
変位量が規定値を超えた際に反転機構が反転動作して接
点を開閉させる熱動形過負荷継電器であり、前記反転機
構が脚部の先端を支点として軸受部材に揺動可能に支承
された可動板と、前記支点を挟んで可動板とその下方の
支持アームとの間に張架した反転ばねからなるものにお
いて、前記釈放レバーを反転機構の可動板の板面に直接
押し当てて反転動作させるようにしたことを特徴とする
熱動形過負荷継電器。
1. A main bimetal which is bent and displaced by heating of an electric current, a release lever which is driven by a displacement of a shifter interlocked with the main bimetal, a reversing mechanism for opening and closing a contact driven by the release lever, and a contact mechanism. A thermal overload relay in which a reversing mechanism inverts and opens and closes contacts when the amount of bending displacement of the bimetal exceeds a specified value, and the reversing mechanism can swing on a bearing member with the tip of a leg as a fulcrum. The release lever is directly pressed against the plate surface of the movable plate of the reversing mechanism. A thermal overload relay characterized in that it is adapted to perform a reversing operation.
【請求項2】請求項1記載の熱動形過負荷継電器におい
て、接点機構に、可動接触子ばねで接点間の接触圧を得
るリフトオフ式接点機構を用いたことを特徴とする熱動
形過負荷継電器。
2. A thermal overload relay according to claim 1, wherein a lift-off type contact mechanism for obtaining a contact pressure between the contacts by a movable contact spring is used as the contact mechanism. Load relay.
【請求項3】請求項1記載の熱動形過負荷継電器におい
て、反転機構の可動板と軸受部材との間を、弾性ヒンジ
部を介して一体に連ねて構成したことを特徴とする熱動
形過負荷継電器。
3. The thermal overload relay according to claim 1, wherein the movable plate of the reversing mechanism and the bearing member are integrally connected via an elastic hinge portion. Type overload relay.
【請求項4】請求項1記載の熱動形過負荷継電器におい
て、反転機構の反転ばねを板ばねとして可動板と一体に
連ねて構成したことを特徴とする熱動形過負荷継電器。
4. The thermal overload relay according to claim 1, wherein the reversing spring of the reversing mechanism is integrally connected to the movable plate as a leaf spring.
【請求項5】請求項3,4に記載の熱動形過負荷継電器
において、反転機構を樹脂成形品として、その可動板,
軸受部材および反転ばねを一体に成形したことを特徴と
する熱動形過負荷継電器。
5. The thermal overload relay according to claim 3, wherein the reversing mechanism is a resin molded product, and the movable plate,
A thermal overload relay, wherein a bearing member and a reversing spring are integrally formed.
JP2001048626A 2001-02-23 2001-02-23 Thermal overload relay Expired - Fee Related JP4277454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001048626A JP4277454B2 (en) 2001-02-23 2001-02-23 Thermal overload relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001048626A JP4277454B2 (en) 2001-02-23 2001-02-23 Thermal overload relay

Publications (2)

Publication Number Publication Date
JP2002251948A true JP2002251948A (en) 2002-09-06
JP4277454B2 JP4277454B2 (en) 2009-06-10

Family

ID=18909861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001048626A Expired - Fee Related JP4277454B2 (en) 2001-02-23 2001-02-23 Thermal overload relay

Country Status (1)

Country Link
JP (1) JP4277454B2 (en)

Also Published As

Publication number Publication date
JP4277454B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
JP3899754B2 (en) Thermal overload relay
US4808961A (en) Thermally-sensible overcurrent protective relay including contact toggle mechanism
JPH0347242Y2 (en)
JP3298428B2 (en) Inverted spring contact switching mechanism and thermal overload relay
CA1069568A (en) Ambient temperature compensated bimetal thermal actuator
JP2002251948A (en) Thermal overload relay
JPWO2003083887A1 (en) Thermal overcurrent relay
JP5152102B2 (en) Thermal overload relay
JP3985418B2 (en) Circuit breaker overload and phase loss trip device
JP2002237249A (en) Thermal overload relay
JP2000113793A (en) Thermal overload relay
US4434414A (en) Snap-acting thermal relay
JP2003536223A (en) Switchgear provided with actuator member made of shape memory alloy
JPS61230228A (en) Thermal type overload relay
JPH054678Y2 (en)
KR200208216Y1 (en) Combined structure of thermal overload relay terminal block
JP2533953Y2 (en) Operating current adjustment mechanism of thermal overload relay
JPS6328852Y2 (en)
JP2545884B2 (en) Circuit breaker
JP2008300326A (en) Thermal overload relay
KR200208215Y1 (en) Reverse mechanism of thermal overload relay
JP2009129869A (en) Thermal type overload relay
JP2534149Y2 (en) Thermal overload relay
JPS6339880Y2 (en)
JP2005044554A (en) Thermal overload relay

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees