JP2002237249A - Thermal overload relay - Google Patents

Thermal overload relay

Info

Publication number
JP2002237249A
JP2002237249A JP2001035091A JP2001035091A JP2002237249A JP 2002237249 A JP2002237249 A JP 2002237249A JP 2001035091 A JP2001035091 A JP 2001035091A JP 2001035091 A JP2001035091 A JP 2001035091A JP 2002237249 A JP2002237249 A JP 2002237249A
Authority
JP
Japan
Prior art keywords
release lever
coil spring
reversing
tension coil
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001035091A
Other languages
Japanese (ja)
Inventor
Yukio Furuhata
幸生 古畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001035091A priority Critical patent/JP2002237249A/en
Publication of JP2002237249A publication Critical patent/JP2002237249A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stabilize a reverse action by fixing the abutting point of a helical tension spring against a release lever, in a thermal overload relay to switch a contact by reversing a reverse plate by pushing the helical tension spring by the release lever. SOLUTION: The coil part 12b of the helical tension spring 12 to reverse the reverse plate 11 by being pushed by the release lever 7 is formed like an abacus bead shaped counter having a swelled part in the middle, and the release lever 7 is made to abut on the swelled part. If a control dial 16 is rotated, an adjusting link 14 rotates, and the position of the release lever 7 rotatably supported by the adjusting link 14 moves in order to adjust an operating current. However, since the abutting point of the helical tension spring 12 against the release lever 7 is fixed, lateral rigidity of the helical tension spring 12 is kept constant, in order to make sure of a snap-action when reversing the reversing plate 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、バイメタルの温
度上昇による湾曲特性を利用した熱動形過負荷継電器に
関し、特にバイメタルの変位を受けて動作する反転機構
の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal overload relay utilizing a bending characteristic caused by a rise in temperature of a bimetal, and more particularly to an improvement of a reversing mechanism which operates by receiving a displacement of the bimetal.

【0002】[0002]

【従来の技術】図6は従来の熱動形過負荷継電器の操作
部の内部を示した正面図である。図6において、熱動形
過負荷継電器は、通電電流による発熱でバイメタル1を
湾曲変位させる加熱部と、バイメタル1の変位量が規定
値を超えると、反転機構2を反転動作させて、接点3及
び4を切り換える操作部5とからなっている。その構成
・動作について説明すると以下の通りである。バイメタ
ル1は湾曲すると、その上端が図6の右方向に変位す
る。この動きはシフタ6を介して釈放レバー7に伝えら
れ、釈放レバー7は軸8を支点に反時計方向に回動す
る。一方、ケース9に固定された支持枠10の一端のV
溝10aに、反転板11が一端を支点に反転するように
突き当てられ、その他端と支持枠10の他端との間に引
張りコイルばね12が架けられている。反転板11に
は、可動板13が固着されている。
2. Description of the Related Art FIG. 6 is a front view showing the inside of an operation section of a conventional thermal overload relay. In FIG. 6, the thermal overload relay includes a heating section that bends and displaces the bimetal 1 due to heat generated by an energizing current, and when the amount of displacement of the bimetal 1 exceeds a specified value, inverts the inverting mechanism 2 so that the contact 3 And an operation unit 5 for switching between. The configuration and operation will be described below. When the bimetal 1 is curved, its upper end is displaced rightward in FIG. This movement is transmitted to the release lever 7 via the shifter 6, and the release lever 7 rotates counterclockwise about the shaft 8 as a fulcrum. On the other hand, V at one end of the support frame 10 fixed to the case 9
A reversing plate 11 is abutted against the groove 10 a so that one end of the reversing plate 11 is turned around, and a tension coil spring 12 is hung between the other end and the other end of the support frame 10. A movable plate 13 is fixed to the reversing plate 11.

【0003】図6の初期状態では引張りコイルばね12
からのばね力は、反転板11を一端を支点に時計方向に
回動させるように作用し、反転板11は図示状態で停止
している。バイメタル1の湾曲変位により釈放レバー7
が反時計方向に回動すると、この釈放レバー7は半円突
起7aで引張りコイルばね12の直線部12aを押し、
引張りコイルばね12を反時計方向に回動させる。それ
に伴ない、反転板11も反時計方向に回動する。その場
合、バイメタル1の変位量が規定値を超え、それに応じ
て釈放レバー7の回動量が増えると、反転板11に対す
る引張りコイルばね12の作用が時計方向から反時計方
向に変わる死点を乗り越える。この死点越えが生じる
と、反転板11は反時計方向に急速に反転する。
[0003] In the initial state of FIG.
Acts to rotate the reversing plate 11 clockwise about one end, and the reversing plate 11 is stopped in the illustrated state. Release lever 7 due to bending displacement of bimetal 1
When the release lever 7 rotates counterclockwise, the release lever 7 pushes the linear portion 12a of the tension coil spring 12 with the semicircular projection 7a,
The tension coil spring 12 is rotated counterclockwise. Along with this, the reversing plate 11 also rotates counterclockwise. In this case, when the amount of displacement of the bimetal 1 exceeds the specified value and the amount of rotation of the release lever 7 increases accordingly, the action of the tension coil spring 12 on the reversing plate 11 overcomes the dead point where the action changes from clockwise to counterclockwise. . When the dead center is exceeded, the reversing plate 11 rapidly reverses counterclockwise.

【0004】一方、釈放レバー7の近傍でケース9に片
持ち支持された固定接点ばねの先端に、常閉接点3の固
定接点3aが取り付けられ、図6の初期状態で固定接点
3aと接触するように、反転板11に可動接点3bが取
り付けられている。また、ケース9の上面近傍で片持ち
支持された固定接点ばねの先端に常開接点4の固定接点
4aが取り付けられ、固定接点ばねと略平行に片持ち支
持された可動接点ばねの先端に、固定接点4aと対向す
るように可動接点4bが取り付けられている。そこで、
反転板11が上述のように反転すると、常閉接点3は開
離し、また常閉接点4は可動接点ばねが可動板13の棒
状突部13aで押されて閉成する(トリップ)。上記し
た釈放レバー7、反転板11、引張りコイルばね12等
は反転機構2を構成する。
On the other hand, the fixed contact 3a of the normally closed contact 3 is attached to the tip of a fixed contact spring cantilevered by the case 9 near the release lever 7, and comes into contact with the fixed contact 3a in the initial state of FIG. As described above, the movable contact 3b is attached to the reversing plate 11. The fixed contact 4a of the normally open contact 4 is attached to the tip of a fixed contact spring that is cantilevered near the upper surface of the case 9, and the tip of the movable contact spring that is cantilevered substantially in parallel with the fixed contact spring is The movable contact 4b is attached so as to face the fixed contact 4a. Therefore,
When the reversing plate 11 is reversed as described above, the normally closed contact 3 is opened, and the normally closed contact 4 is closed by the movable contact spring being pushed by the rod-shaped projection 13a of the movable plate 13 (trip). The release lever 7, the reversing plate 11, the tension coil spring 12, and the like constitute the reversing mechanism 2.

【0005】ここで、釈放レバー7は軸8により、調整
リンク14に回動自在に連結されている。また、調整リ
ンク14は板ばね15により、一端がケース9のV溝9
aに突き当てられ、他端がケース9に回転可能に保持さ
れた調整ダイヤル16のカム面に押圧されている。そこ
で、調整ダイヤル16を左に回すと、カム面の回転半径
が小さくなって、調整リンク14が破線位置まで右方向
に移動する。これに伴ない、調整リンク14に連結され
た釈放レバー7が破線位置まで変位する。その結果、シ
フタ6と釈放レバー7との間のギャップが増え、動作電
流値(反転機構2が反転動作する電流値)が増える。調
整ダイヤル16を右に回すと、逆に動作電流値が減る。
Here, the release lever 7 is rotatably connected to the adjustment link 14 by a shaft 8. One end of the adjustment link 14 is formed by a leaf spring 15,
a, and the other end is pressed against the cam surface of the adjustment dial 16 rotatably held by the case 9. Therefore, when the adjustment dial 16 is turned counterclockwise, the radius of rotation of the cam surface decreases, and the adjustment link 14 moves rightward to the position indicated by the broken line. Along with this, the release lever 7 connected to the adjustment link 14 is displaced to the position indicated by the broken line. As a result, the gap between the shifter 6 and the release lever 7 increases, and the operating current value (current value at which the reversing mechanism 2 performs the reversing operation) increases. Turning the adjustment dial 16 clockwise decreases the operating current value.

【0006】[0006]

【発明が解決しようとする課題】上に述べた反転機構2
は、釈放レバー7が引張りコイルばね12を押すと、反
転板11が徐々に回動するのではなく、死点越えの直前
までは引張りコイルばね12のみが湾曲変形し、死点越
えの時期が到来すると反転板11が一気に反転する、い
わゆるスナップ動作をするように構成されている。一
方、動作電流値の調整により、釈放レバー7が実線位置
から破線位置に移動すると、釈放レバー7の引張りコイ
ルばね12に対する当接点(突起7aの位置)もCだけ
移動する。ところが、当接点7aが図示のように引張り
コイルばね12のコイル部12a側から遠くなると、引
張りコイルばね12の見掛け上の横剛性が強くなり、そ
の結果として釈放レバー7が引張りコイルばね12を押
した際に、反転板11は一気に反転できず徐々に回動し
ながら反転するようになり、スナップ動作が不確実にな
るという問題があった。そこで、この発明の課題は、釈
放レバーの位置に関わらず、反転機構の安定したスナッ
プ動作が得られるようにすることにある。
The above-mentioned reversing mechanism 2
When the release lever 7 pushes the tension coil spring 12, the reversing plate 11 does not gradually rotate, but only the tension coil spring 12 bends and deforms until just before the dead center is exceeded. Upon arrival, the reversing plate 11 is configured to perform a so-called snap operation in which the reversing plate 11 is reversed at a stroke. On the other hand, when the release lever 7 moves from the solid line position to the broken line position due to the adjustment of the operating current value, the contact point of the release lever 7 with the tension coil spring 12 (the position of the projection 7a) also moves by C. However, when the contact point 7a moves away from the coil portion 12a of the tension coil spring 12 as shown in the drawing, the apparent lateral rigidity of the tension coil spring 12 increases, and as a result, the release lever 7 pushes the tension coil spring 12. In such a case, the reversing plate 11 cannot be reversed at a stretch, but is gradually rotated while being reversed, so that there is a problem that the snap operation becomes uncertain. Therefore, an object of the present invention is to provide a stable snap operation of the reversing mechanism regardless of the position of the release lever.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、この発明は、通電電流による発熱でバイメタルを湾
曲変位させる加熱部と、前記バイメタルの変位量が規定
値を超えると、反転機構を動作させて接点を切り換える
操作部とからなり、前記反転機構は動作電流の調整ダイ
ヤルと連動する調整リンクに回動自在に連結された釈放
レバーと、一端を支点に反転する反転板と、この反転板
の他端に作用する引張りコイルばねとを備え、前記釈放
レバーが前記バイメタルの変位を受けて回動し、前記引
張りコイルばねを横からして押して、この引張りコイル
ばねの前記反転板に対する作用が逆転すると、前記反転
板が反転して前記接点が切り換わる熱動形過負荷継電器
において、前記引張りコイルばねのコイル部を中腹が膨
出する算盤玉状に巻回し、この膨出部を前記釈放レバー
で押すようにするものである(請求項1)。この請求項
1によれば、釈放レバーは位置が変わっても常に引張り
コイルばねの膨出部に当接するため、動作電流値の調整
により引張りコイルばねの横剛性が変化することがな
い。釈放レバーの引張りコイルばねとの当接部に、引張
りコイルばねの膨出部を受ける案内溝を形成すれば、釈
放レバーと引張りコイルばねとの当接が安定する(請求
項2)。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a heating unit for bending and displacing a bimetal by the heat generated by a supplied current, and a reversing mechanism when the displacement of the bimetal exceeds a specified value. An operation unit for operating and switching a contact, wherein the reversing mechanism is a release lever rotatably connected to an adjustment link interlocked with an operation current adjustment dial, a reversing plate for reversing one end about a fulcrum, A tension coil spring acting on the other end of the plate, wherein the release lever pivots in response to the displacement of the bimetal, and pushes the tension coil spring from the side, thereby acting on the reversing plate of the tension coil spring. When the reversal is performed, in the thermal overload relay in which the reversing plate is reversed and the contacts are switched, the coil portion of the tension coil spring is formed into an abacus ball shape in which the middle part bulges. Turn, is intended to push the bulged portion in the release lever (claim 1). According to the first aspect, since the release lever always contacts the bulging portion of the tension coil spring even when the position changes, the lateral rigidity of the tension coil spring does not change by adjusting the operating current value. If a guide groove for receiving the bulging portion of the tension coil spring is formed in the contact portion of the release lever with the tension coil spring, the contact between the release lever and the tension coil spring is stabilized (claim 2).

【0008】[0008]

【発明の実施の形態】図1は、この発明の実施の形態を
示す熱動形過負荷継電器の操作部の内部を示す正面図、
図2は図1における引張りコイルばねの斜視図、図3は
同じく釈放レバーの斜視図である。まず、図2におい
て、引張りコイルばね12は、コイル部12bが図示の
通り、中腹が膨出する算盤玉状に巻回されている。この
引張りコイルばね12は、図1に示すように従来と同様
に、両端直線部先端のフック部を介して、反転板11と
支持枠10との間に架けられ、その膨出部12c(図
2)に図3に示した釈放レバー7の当接板7bが当接し
ている。このような熱動形過負荷継電器において、動作
電流値の調整により釈放レバー7が実線位置から破線位
置に移動しても、当接板7bは常に膨出部12cに当接
する。従って、引張りコイルばね12の横剛性も不変で
あり、トリップ時には安定したスナップ動作により反転
機構2の反転動作が行なわれる。
FIG. 1 is a front view showing the inside of an operation section of a thermal overload relay according to an embodiment of the present invention.
FIG. 2 is a perspective view of the tension coil spring in FIG. 1, and FIG. 3 is a perspective view of the release lever similarly. First, in FIG. 2, the tension coil spring 12 has a coil portion 12b wound in the form of an abacus ball with a bulging middle as shown. As shown in FIG. 1, the tension coil spring 12 is hung between the reversing plate 11 and the support frame 10 via the hooks at the ends of the straight portions at both ends, as shown in FIG. In 2), the contact plate 7b of the release lever 7 shown in FIG. 3 is in contact. In such a thermal overload relay, even if the release lever 7 moves from the solid line position to the broken line position by adjusting the operating current value, the contact plate 7b always comes into contact with the bulging portion 12c. Therefore, the lateral rigidity of the tension coil spring 12 is also unchanged, and the reversing operation of the reversing mechanism 2 is performed by a stable snap operation at the time of trip.

【0009】図4は釈放レバー7の当接板7bに円弧溝
7cを引張りコイルばね12の長手方向に沿って形成し
た実施の形態を示す釈放レバー7の要部斜視図、図5は
同じくV溝7dを形成した要部斜視図である。当接板7
に円弧溝7cあるいはV溝7dを形成し、これに膨出部
12cを受けさせることにより、釈放レバー7の変位時
に膨出部12cは溝7c,7dに案内されて当接板7b
上を滑り、釈放レバー7と引張りコイルばね12との当
接が一層安定する。
FIG. 4 is a perspective view of a main part of the release lever 7 showing an embodiment in which an arc groove 7c is formed in the contact plate 7b of the release lever 7 along the longitudinal direction of the tension coil spring 12, and FIG. It is a principal part perspective view in which the groove 7d was formed. Contact plate 7
An arcuate groove 7c or a V-shaped groove 7d is formed in the groove, and the bulge 12c is received by the groove 7c.
Sliding upward, the contact between the release lever 7 and the tension coil spring 12 is further stabilized.

【0010】[0010]

【発明の効果】以上の通り、この発明によれば、反転機
構の引張りコイルばねを中腹が膨出する算盤玉状に巻回
し、この膨出部を釈放レバーで押すようにすることによ
り、動作電流値に関わらず常に安定した反転動作を行な
わせ、安定した接点切り換え信号を得ることができる。
また、この発明は、引張りコイルばねのコイル部形状を
変えるだけなので、安価かつ容易に実施可能である。
As described above, according to the present invention, the tension coil spring of the reversing mechanism is wound in the form of an abacus ball with a bulging middle part, and the bulging part is pushed by the release lever, whereby the operation is achieved. A stable inversion operation is always performed regardless of the current value, and a stable contact switching signal can be obtained.
Further, the present invention can be implemented at low cost and easily because only the shape of the coil portion of the tension coil spring is changed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態を示す熱動形過負荷継電
器の操作部の正面図である。
FIG. 1 is a front view of an operation unit of a thermal overload relay according to an embodiment of the present invention.

【図2】図1における引張りコイルばねの斜視図であ
る。
FIG. 2 is a perspective view of a tension coil spring in FIG.

【図3】図1における釈放レバーの斜視図である。FIG. 3 is a perspective view of a release lever in FIG. 1;

【図4】図3の釈放レバーの異なる実施の形態を示す要
部斜視図である。
FIG. 4 is a main part perspective view showing a different embodiment of the release lever of FIG. 3;

【図5】図3の釈放レバーの更に異なる実施の形態を示
す要部斜視図である。
FIG. 5 is a main part perspective view showing still another embodiment of the release lever of FIG. 3;

【図6】従来例を示す熱動形過負荷継電器の操作部の正
面図である。
FIG. 6 is a front view of an operation unit of a thermal overload relay showing a conventional example.

【符号の説明】[Explanation of symbols]

1 バイメタル 2 反転機構 3 接点 4 接点 5 操作部 6 シフタ 7 釈放レバー 7b 当接板 7c 円弧溝 7d V溝 9 ケース 11 反転板 12 引張りコイルばね 12b コイル部 12c 膨出部 14 調整リンク 16 調整ダイヤル DESCRIPTION OF SYMBOLS 1 Bimetal 2 Inversion mechanism 3 Contact 4 Contact 5 Operation part 6 Shifter 7 Release lever 7b Contact plate 7c Arc groove 7d V groove 9 Case 11 Inversion plate 12 Tension coil spring 12b Coil part 12c Swelling part 14 Adjustment link 16 Adjustment dial

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】通電電流による発熱でバイメタルを湾曲変
位させる加熱部と、前記バイメタルの変位量が規定値を
超えると、反転機構を動作させて接点を切り換える操作
部とからなり、前記反転機構は動作電流の調整ダイヤル
と連動する調整リンクに回動自在に連結された釈放レバ
ーと、一端を支点に反転する反転板と、この反転板の他
端に作用する引張りコイルばねとを備え、前記釈放レバ
ーが前記バイメタルの変位を受けて回動し、前記引張り
コイルばねを横から押して、この引張りコイルばねの前
記反転板に対する作用が逆転すると、前記反転板が反転
して前記接点が切り換わる熱動形過負荷継電器におい
て、 前記引張りコイルばねのコイル部を中腹が膨出する算盤
玉状に巻回し、この膨出部を前記釈放レバーで押すよう
にしたことを特徴とする熱動形過負荷継電器。
1. A heating unit for bending and displacing a bimetal due to heat generated by an energizing current, and an operation unit for switching a contact by operating a reversing mechanism when the amount of displacement of the bimetal exceeds a specified value. A release lever rotatably connected to an adjustment link interlocked with an operating current adjustment dial, a reversing plate for reversing one end with a fulcrum, and a tension coil spring acting on the other end of the reversing plate; When the lever rotates in response to the displacement of the bimetal and pushes the tension coil spring from the side, and the action of the tension coil spring on the reversing plate is reversed, the reversing plate is reversed and the thermal contact is switched. In the overload relay of the type, the coil portion of the tension coil spring is wound in the form of an abacus ball with a bulging middle, and the bulging portion is pushed by the release lever. Thermal overload relay.
【請求項2】前記釈放レバーの前記引張りコイルばねと
の当接部に、前記膨出部を受ける案内溝を形成したこと
を特徴とする請求項1記載の熱動形過負荷継電器。
2. A thermal overload relay according to claim 1, wherein a guide groove for receiving said bulging portion is formed in a contact portion of said release lever with said tension coil spring.
JP2001035091A 2001-02-13 2001-02-13 Thermal overload relay Pending JP2002237249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001035091A JP2002237249A (en) 2001-02-13 2001-02-13 Thermal overload relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001035091A JP2002237249A (en) 2001-02-13 2001-02-13 Thermal overload relay

Publications (1)

Publication Number Publication Date
JP2002237249A true JP2002237249A (en) 2002-08-23

Family

ID=18898587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001035091A Pending JP2002237249A (en) 2001-02-13 2001-02-13 Thermal overload relay

Country Status (1)

Country Link
JP (1) JP2002237249A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958204A (en) * 2009-07-15 2011-01-26 大陆株式会社 Thermal overload relay
CN102971821A (en) * 2010-06-30 2013-03-13 伊顿公司 Overload relay switch without springs
CN106128878A (en) * 2016-08-18 2016-11-16 北源科技有限公司 Intelligent breaker
US9837234B2 (en) 2016-02-22 2017-12-05 Lsis Co., Ltd. Instant trip mechanism for molded case circuit breaker

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958204A (en) * 2009-07-15 2011-01-26 大陆株式会社 Thermal overload relay
CN102971821A (en) * 2010-06-30 2013-03-13 伊顿公司 Overload relay switch without springs
US9837234B2 (en) 2016-02-22 2017-12-05 Lsis Co., Ltd. Instant trip mechanism for molded case circuit breaker
CN106128878A (en) * 2016-08-18 2016-11-16 北源科技有限公司 Intelligent breaker
CN106128878B (en) * 2016-08-18 2017-05-24 北源科技有限公司 Intelligent circuit breaker

Similar Documents

Publication Publication Date Title
KR100536982B1 (en) Thermal overload relay
JPH0347242Y2 (en)
KR920005629B1 (en) Reversal spring mechanism for thermal overload relay
KR20090087799A (en) Thermally operated overload relay
JP3298428B2 (en) Inverted spring contact switching mechanism and thermal overload relay
JP4706772B2 (en) Thermal overload relay
JP2002237249A (en) Thermal overload relay
WO2003083887A1 (en) Thermal overcurrent relay
JP5152102B2 (en) Thermal overload relay
US8138879B2 (en) Thermal overload relay
JP2009231057A (en) Thermal overload relay
JP5003426B2 (en) Thermal overload relay
US4670728A (en) Thermal type overload relay
JP5099235B2 (en) Thermal overload relay
JP4978681B2 (en) Thermal overload relay
JP3985418B2 (en) Circuit breaker overload and phase loss trip device
KR200392659Y1 (en) Thermal Overload Relay with Reversing mechanism for Deformation Prevention Thereof
KR200241479Y1 (en) dialing device in thermal-relay
KR200218834Y1 (en) construction of shifter and lever in thermal overload relay for protecting phase deficiency motor
KR200208215Y1 (en) Reverse mechanism of thermal overload relay
JP2533953Y2 (en) Operating current adjustment mechanism of thermal overload relay
KR20090122101A (en) Thermal overload relay
KR200386835Y1 (en) A Adjusting Link of Thermal Overload Relay
KR200345665Y1 (en) Thermal over load relay
JP2002251948A (en) Thermal overload relay