JP2002249512A - Production process for fine powder, and fine powder - Google Patents

Production process for fine powder, and fine powder

Info

Publication number
JP2002249512A
JP2002249512A JP2001052387A JP2001052387A JP2002249512A JP 2002249512 A JP2002249512 A JP 2002249512A JP 2001052387 A JP2001052387 A JP 2001052387A JP 2001052387 A JP2001052387 A JP 2001052387A JP 2002249512 A JP2002249512 A JP 2002249512A
Authority
JP
Japan
Prior art keywords
dispersion
spray
fine particles
fine
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001052387A
Other languages
Japanese (ja)
Inventor
Takahiro Omura
貴宏 大村
Hiroshi Yamauchi
博史 山内
Yasushi Nakada
泰詩 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2001052387A priority Critical patent/JP2002249512A/en
Publication of JP2002249512A publication Critical patent/JP2002249512A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently produce a fine powder having an average primary particle size of 10 μm or lower from a fine particle dispersion by a spray drying method almost without causing agglomeration. SOLUTION: This fine powder is obtained by spray drying a fine particle dispersion with a spray dryer equipped with a four-stream nozzle. The fine particle dispersion is preferably a dispersion of fine polymer particles obtained by polymerizing a monomer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微粒子粉末の製造
方法及びその製造方法により得られる微粒子粉末に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing fine particle powder and a fine particle powder obtained by the method.

【0002】[0002]

【従来の技術】微粒子の分散液を噴霧乾燥機で噴霧乾燥
することにより、微粒子粉末を製造する方法は知られて
いる。この種の噴霧乾燥法は、濾過、乾燥、粉砕、分級
等の工程を省くことができるという利点がある。
2. Description of the Related Art A method for producing fine particle powder by spray-drying a dispersion liquid of fine particles by a spray dryer is known. This type of spray drying method has an advantage that steps such as filtration, drying, pulverization, and classification can be omitted.

【0003】噴霧乾燥機としては、アトマイザー(噴霧
器)として、加圧ノズル(一流体ノズル)、二流体ノズ
ル、回転円盤式(ディスク式)を備えた噴霧乾燥機が使
用されている。このような噴霧乾燥機のなかで、二流体
ノズルを備えた噴霧乾燥機は、微細な粒子径の微粒子粉
末を得るのに適している。
As an atomizer (sprayer), a spray dryer having a pressurizing nozzle (one-fluid nozzle), a two-fluid nozzle, and a rotating disk type (disk type) is used. Among such spray dryers, a spray dryer equipped with a two-fluid nozzle is suitable for obtaining fine-particle powder having a fine particle diameter.

【0004】しかし、二流体ノズルを備えた噴霧乾燥機
を使用し、噴霧液滴の微細化を目的として、噴霧液に対
する噴霧用の気体流量の比を大きくしても、乾燥機内に
おいて乾燥用気体の逆流が発生し、噴霧液滴や噴霧液滴
と乾燥済の粒子との衝突・合一が起こって、目的とする
粒子径よりもはるかに大きい粗大粒子(凝集粒子)を生
成する例が多く見られる。
However, even if a spray dryer equipped with a two-fluid nozzle is used and the ratio of the gas flow rate for spraying to the spraying liquid is increased for the purpose of making the spray droplets fine, the drying gas in the dryer is not affected. In many cases, the backflow of water occurs, and the spray droplets and the collision between the spray droplets and the dried particles occur and coalesce to produce coarse particles (agglomerated particles) much larger than the target particle diameter. Can be seen.

【0005】粗大粒子(凝集粒子)の生成を防ぐため
に、特開平9−71608号公報には、二流体ノズルを
備えた噴霧乾燥機において、乾燥機の上部コーン部の開
き角度及び上部コーン部の入り口径と乾燥機直胴部の径
との比を調整して、噴霧液滴や乾燥粒子の衝突・合一を
防止する方法が開示されている。
In order to prevent the formation of coarse particles (agglomerated particles), Japanese Patent Application Laid-Open No. 9-71608 discloses a spray dryer equipped with a two-fluid nozzle, in which the opening angle of the upper cone of the dryer and the opening angle of the upper cone are reduced. A method is disclosed in which the ratio between the entrance diameter and the diameter of the straight body of the dryer is adjusted to prevent collision and coalescence of spray droplets and dried particles.

【0006】しかし、この方法によっても、一次粒子の
平均粒子径が10μm以下の微粒子粉末をほとんど凝集
させることなく効率よく製造することは困難である。
However, even with this method, it is difficult to efficiently produce a fine particle powder having an average primary particle diameter of 10 μm or less with little agglomeration.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記の問題
を解決するもので、その目的とするところは、噴霧乾燥
法により、微粒子の分散液から一次粒子の平均粒子径が
10μm以下の微粒子粉末をほとんど凝集させることな
く効率よく製造することができる微粒子粉末の製造方法
及びその製造方法により得られる微粒子粉末、特に一次
粒子の平均粒子径が10μm以下の微粒子粉末を提供す
ることにある。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems. It is an object of the present invention to obtain fine particles having an average primary particle diameter of 10 μm or less from a dispersion of fine particles by a spray drying method. It is an object of the present invention to provide a method for producing a fine particle powder which can be efficiently produced with almost no agglomeration of the powder, and a fine particle powder obtained by the production method, particularly a fine particle powder having an average primary particle diameter of 10 μm or less.

【0008】[0008]

【課題を解決するための手段】上記の目的は、微粒子の
分散液を四流体ノズルを備えた噴霧乾燥機で噴霧乾燥す
ることによって達成することができる。特に微粒子の分
散液としては、モノマーを重合して得られる重合体微粒
子の分散液が好適である。
The above object can be achieved by spray-drying a dispersion of fine particles with a spray dryer equipped with a four-fluid nozzle. In particular, a dispersion of fine polymer particles obtained by polymerizing a monomer is suitable as a dispersion of fine particles.

【0009】ここで、四流体ノズルを備えた噴霧乾燥機
とは、工業調査会発行の「化学装置」2000年6月号
第60〜65頁に記載されているように、二つの気体路
と二つの液体路とを有し、これ等の気体路と液体路との
噴出口から噴出する流体が一点に集まる衝突焦点を形成
するように構成されたノズルを備えた噴霧乾燥機であ
る。
[0009] Here, a spray dryer having a four-fluid nozzle is defined as two gas passages as described in "Chemical Equipment", June 2000, pages 60 to 65, issued by the Industrial Research Council. A spray dryer having two liquid passages and a nozzle configured to form a collision focal point where fluid ejected from the outlets of these gas passages and liquid passages converge at one point.

【0010】上記噴霧乾燥機の四流体ノズルを図により
説明する。図1は噴霧乾燥機の四流体ノズルの一例を示
す断面図であって、この四流体ノズル10は、ノズルエ
ッジが直線状(図に対して垂直方向に直線状になってい
る)に形成されている。そして、11a、11bは二つ
の気体路、12a、12bは二つの液体路を示し、これ
等の気体路11a、11bと液体路12a、12bとの
噴出口から噴出する流体20が一点に集まる衝突焦点2
1を形成させるように構成されている。
The four-fluid nozzle of the spray dryer will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing an example of a four-fluid nozzle of a spray dryer. The four-fluid nozzle 10 has a nozzle edge formed in a straight line (a straight line in a direction perpendicular to the drawing). ing. 11a and 11b denote two gas paths, 12a and 12b denote two liquid paths, and a collision in which the fluid 20 spouted from the outlet of the gas paths 11a and 11b and the liquid paths 12a and 12b collects at one point. Focus 2
1 are formed.

【0011】図1には、衝突焦点21がノズルの外側に
形成される外部混合方式を示したが、衝突焦点21がノ
ズルの内側に形成される内部混合方式であってもよい。
しかし、閉塞が起きにくいことから外部混合方式が好ま
しい。また、図1には、ノズルエッジが直線状に形成さ
れているストレートエッジ型の四流体ノズル10を示し
たが、ノズルエッジが円筒状に形成されているサークル
エッジ型の四流体ノズルも使用できる。
FIG. 1 shows an external mixing system in which the collision focal point 21 is formed outside the nozzle. However, an internal mixing system in which the collision focal point 21 is formed inside the nozzle may be used.
However, the external mixing method is preferable because clogging hardly occurs. FIG. 1 shows a straight-edge four-fluid nozzle 10 in which the nozzle edge is formed in a straight line, but a circle-edge four-fluid nozzle in which the nozzle edge is formed in a cylindrical shape can also be used. .

【0012】ストレートエッジ型の四流体ノズル10の
場合、ノズルエッジは噴霧量により適正な長さ(例えば
2〜30mm)の直線状に形成されており、気体路11
a、11bと液体路12a、12bとは、そのエッジ長
さにあわせて、一定の間隔(例えば0.1〜0.3m
m)に精度を保ったスリット状の出口になっている。
In the case of the straight-edge type four-fluid nozzle 10, the nozzle edge is formed in a straight line having an appropriate length (for example, 2 to 30 mm) depending on the spray amount.
a, 11b and the liquid paths 12a, 12b are spaced at a certain interval (for example, 0.1 to 0.3 m) in accordance with the edge length.
m) is a slit-shaped outlet that maintains accuracy.

【0013】二流体ノズルでは、噴霧出口が孔形状の構
造から大きく変化することができなかった。しかし、図
1に示す四流体ノズルは、そのノズルエッジを直線状に
形成し、気体路と液体路とをそれぞれ二つにすること
で、噴霧液の微粒化と大量噴霧の目的を同時に解決する
ことができる。
In the case of the two-fluid nozzle, the spray outlet cannot be changed significantly from the hole-shaped structure. However, the four-fluid nozzle shown in FIG. 1 has a nozzle edge formed in a straight line, and has two gas paths and two liquid paths, thereby simultaneously solving the purpose of atomizing the spray liquid and mass spraying. be able to.

【0014】図1において、ノズルエッジ先端の衝突焦
点21に向かつて、両サイドの気体路11a、11bへ
噴霧用気体を圧入するとともに、両サイドの液体路12
a、12bへ微粒子の分散液を注入する。すると、気体
路11a、11bのスリットから出た高速気体流が、液
体路12a、12bのスリットから湧き出るように出た
微粒子の分散液を、流体流動面で混合しながら薄く引き
延ばす。引き延ばされた微粒子の分散液は、エッジ先端
の衝突焦点21で発生する衝撃波で、より微細化され微
細な液滴20を形成する。
In FIG. 1, spraying gas is injected into gas passages 11a and 11b on both sides toward a collision focal point 21 at the tip of a nozzle edge, and a liquid passage 12 on both sides is pressed.
A dispersion liquid of fine particles is injected into a and 12b. Then, the high-speed gas flow coming out of the slits of the gas passages 11a and 11b thinly stretches the dispersion liquid of the fine particles that comes out of the slits of the liquid passages 12a and 12b while mixing on the fluid flow surface. The dispersion liquid of the elongated fine particles is further miniaturized by a shock wave generated at the collision focal point 21 at the tip of the edge to form a fine droplet 20.

【0015】液体路12a、12bへ注入される微粒子
の分散液は、四流体ノズル10により微細液滴化して溶
媒や分散媒を揮発させ、乾燥、粉粒化させることができ
るものであれば特に制限なく、例えば、ポリ(メタ)ア
クリレート、ポリエステル、ポリスチレン、ポリアミ
ド、ポリウレタン、ポリオレフィン、ポリ塩化ビニル等
の熱可塑性樹脂からなる微粒子の分散液;ポリフェノー
ル、尿素樹脂、メラミン樹脂、シリコン樹脂、エポキシ
樹脂、不飽和ポリエステル樹脂等の熱硬化性樹脂からな
る微粒子の分散液が挙げられる。
The dispersion liquid of fine particles to be injected into the liquid passages 12a and 12b is formed into fine liquid droplets by the four-fluid nozzle 10 so that the solvent and the dispersion medium can be volatilized, dried, and granulated. Without limitation, for example, a dispersion liquid of fine particles composed of a thermoplastic resin such as poly (meth) acrylate, polyester, polystyrene, polyamide, polyurethane, polyolefin, or polyvinyl chloride; polyphenol, urea resin, melamine resin, silicone resin, epoxy resin, A dispersion liquid of fine particles made of a thermosetting resin such as an unsaturated polyester resin may be used.

【0016】また、クレイ、シリカ、炭酸カルシウム、
酸化チタン等の無機充填剤からなる微粒子の分散液;有
機発泡剤、洗剤、顔料、殺虫剤、除草剤、殺菌剤などの
微粒子の分散液、インスタントコーヒー、ココア、麦芽
抽出物、でんぷん、その他の食品類、天然及び合成香
料、化粧品、抗生物質、血清、血漿、各種ビタミン、ペ
ニシリン、ぶどう糖、各種アミノ酸等の医薬品類などの
微粒子の分散液が挙げられる。
Also, clay, silica, calcium carbonate,
Dispersion of fine particles comprising inorganic filler such as titanium oxide; dispersion of fine particles such as organic foaming agent, detergent, pigment, insecticide, herbicide, fungicide, instant coffee, cocoa, malt extract, starch, and other Dispersions of fine particles of pharmaceuticals such as foods, natural and synthetic flavors, cosmetics, antibiotics, serum, plasma, various vitamins, penicillin, glucose, various amino acids and the like can be mentioned.

【0017】これらの中で、モノマーを重合して得られ
る重合体微粒子の分散液を噴霧し、微細で均一な微粒子
粉末を回収するものに好適に使用される。モノマーの重
合法としては、液体の媒体を必要とする重合方法で、例
えば、乳化重合法、懸濁重合法、マイクロサスペンジョ
ン重合法、ソープフリー重合法、分散重合法、シード重
合法、溶液重合法などが挙げられる。重合体微粒子の粉
末は、医学用薬物キャリヤー、液晶表示用スペーサー、
トナー、粉体塗料等に好適に使用される。
Among them, a dispersion of polymer fine particles obtained by polymerizing a monomer is sprayed, and it is suitably used for recovering fine and uniform fine particle powder. As the polymerization method of the monomer, a polymerization method requiring a liquid medium, for example, an emulsion polymerization method, a suspension polymerization method, a microsuspension polymerization method, a soap-free polymerization method, a dispersion polymerization method, a seed polymerization method, a solution polymerization method And the like. Polymer fine particle powder is used for medical drug carriers, liquid crystal display spacers,
It is suitably used for toners, powder coatings and the like.

【0018】気体路11a、11bへ圧入される噴霧用
気体の種類は、適用する微粒子の分散液の性質に合わせ
て選択され、通常は入手のしやすさから空気が用いられ
るが、可燃性物質の噴霧乾燥においては窒素等の不活性
気体を用いるのが安全上好ましい。また、噴霧用気体の
流量及び流速は乾燥温度を考慮した、噴霧乾燥機におけ
る熱バランスから適宜決定される。
The type of the spray gas to be injected into the gas passages 11a and 11b is selected according to the properties of the dispersion liquid of the fine particles to be applied. Usually, air is used because it is easily available. In spray drying, it is preferable to use an inert gas such as nitrogen for safety. The flow rate and flow rate of the gas for spraying are appropriately determined from the heat balance in the spray dryer in consideration of the drying temperature.

【0019】エッジ先端の衝突焦点21で微細化され微
細な液滴20は、噴霧乾燥機の乾燥室内(図示せず)に
おいて乾燥熱風に効率よく接触し、瞬時に乾燥されて微
粒子粉末となり、サイクロン・バグフィルタ等で回収さ
れる。噴霧乾燥機の乾燥室、サイクロン・バグフィルタ
は従来と同様に構成される。
The fine droplets 20, which are finely divided at the collision focal point 21 at the edge of the edge, efficiently contact dry hot air in a drying chamber (not shown) of the spray drier and are instantaneously dried to become fine particle powder, which is cyclone. -Collected by bag filters. The drying chamber and the cyclone bag filter of the spray dryer are configured in the same manner as the conventional one.

【0020】乾燥温度は、分散液中の微粒子の性質に応
じて調節する必要があるが、通常は目標とする乾燥効率
と微粒子の耐熱性及び供給熱源の温度とで条件を設定す
る。一般に、乾燥用の熱風温度として噴霧乾燥機入口で
50〜450℃、乾燥室内温度で40〜200℃を用い
ることが多い。
The drying temperature needs to be adjusted according to the properties of the fine particles in the dispersion. Usually, conditions are set based on the target drying efficiency, heat resistance of the fine particles, and the temperature of the supply heat source. Generally, the hot air temperature for drying is often 50 to 450 ° C. at the inlet of the spray dryer and 40 to 200 ° C. at the drying room temperature.

【0021】乾燥室内温度が25℃以下の場合は、外気
温との関係で温度を安定に維持するのが困難となりやす
く、また、水系の噴霧では乾燥不十分となることがあ
る。また、モノマーを重合して得られる重合体微粒子を
乾燥させる場合、粒子の二次凝集を防止するため、乾燥
粒子の温度を重合体のガラス転移温度以下に制御する必
要があり、乾燥室内の温度を40〜90℃にすることが
好ましい。
When the temperature in the drying chamber is 25 ° C. or lower, it becomes difficult to maintain the temperature stably in relation to the outside air temperature, and the water-based spray sometimes results in insufficient drying. Further, when drying polymer fine particles obtained by polymerizing the monomer, it is necessary to control the temperature of the dried particles to be equal to or lower than the glass transition temperature of the polymer in order to prevent secondary aggregation of the particles, Is preferably set to 40 to 90 ° C.

【0022】また、得られる微粒子粉末の粒子径の制御
は、適用する微粒子の分散液の濃度と、噴霧用気体の総
流量と被噴霧液の流量との比で行うことができ、必要粒
子径等によって適宜決定される。
The particle size of the obtained fine particle powder can be controlled by controlling the concentration of the dispersion liquid of the fine particles to be applied and the ratio of the total flow rate of the spray gas to the flow rate of the liquid to be sprayed. Etc., as appropriate.

【0023】微粒子の分散液の濃度が高い程粒子径が大
きくなる。また、噴霧用気体総流量と被噴霧液流量との
比は、小さくなると噴霧液滴自体が大きくなるため、微
細な乾燥粒子が得にくくなり、大きくなると噴霧液滴の
微細化には有効であるが、噴霧用気体の消費量が増加し
て、圧縮気体の製造設備のための費用や設備運転費用が
大きくなり、経済的に不利である。
The higher the concentration of the dispersion of fine particles, the larger the particle size. In addition, the ratio between the total flow rate of the spray gas and the flow rate of the liquid to be sprayed becomes small, so that the spray droplets themselves become large, so that it is difficult to obtain fine dry particles. However, the consumption of the atomizing gas increases, and the cost for the facility for producing the compressed gas and the facility operation cost increase, which is economically disadvantageous.

【0024】こうして、微粒子の分散液、特にモノマー
を重合して得られる重合体微粒子の分散液から、一次粒
子の平均粒子径が10μm以下の微粒子粉末がほとんど
凝集することなく効率よく得られる。
In this way, from a dispersion of fine particles, particularly a dispersion of polymer fine particles obtained by polymerizing a monomer, a fine particle powder having an average primary particle diameter of 10 μm or less can be efficiently obtained with almost no agglomeration.

【0025】[0025]

【発明の実施の形態】以下、本発明の実施例及び比較例
を示す。 (実施例1) 〈重合体微粒子の分散液の調製〉メチルメタクリレート
200g、トリメチロールプロパントリアクリレート2
gとラウロイルパーオキサイド1gを撹拌混合した。こ
れに、イオン交換水400g、ドデシルベンゼンスルホ
ン酸ナトリウム2gを添加し、ホモジナイザーで撹拌し
て乳化モノマー液を調製した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples and comparative examples of the present invention are shown below. (Example 1) <Preparation of dispersion liquid of polymer fine particles> 200 g of methyl methacrylate, trimethylolpropane triacrylate 2
g and lauroyl peroxide 1 g were mixed with stirring. 400 g of ion-exchanged water and 2 g of sodium dodecylbenzenesulfonate were added thereto, and the mixture was stirred with a homogenizer to prepare an emulsion monomer liquid.

【0026】一方、撹拌機及びジャケットを備えた重合
器にイオン交換水400gを入れ、攪拌を開始した。重
合器内を減圧して器内の脱酸素を行った後、窒素により
圧力を大気圧まで戻して、内部を窒素雰囲気とした後、
これに上記乳化モノマー液を一括に添加した。
On the other hand, 400 g of ion-exchanged water was put into a polymerization vessel equipped with a stirrer and a jacket, and stirring was started. After reducing the pressure inside the polymerization vessel and deoxidizing the inside of the vessel, the pressure was returned to atmospheric pressure with nitrogen, and the inside was set to a nitrogen atmosphere.
The emulsified monomer liquid was added to this at once.

【0027】その後、重合器内を70℃まで昇温して乳
化重合を開始した。重合反応は1時間で完了し、その後
1時間の熟成期間をおいた後、室温まで冷却した。重合
反応の結果、固形分(重合体)濃度約20重量%、平均
粒子径(一次粒子)4.3μmの重合体微粒子を含む分
散液を得た。分散液中の重合体微粒子の平均粒子径は、
堀場製作所社製のレーザー回折粒度分布計LA−910
を用いて測定した。
Thereafter, the temperature inside the polymerization vessel was raised to 70 ° C. to start emulsion polymerization. The polymerization reaction was completed in 1 hour, and after an aging period of 1 hour, the mixture was cooled to room temperature. As a result of the polymerization reaction, a dispersion liquid containing polymer fine particles having a solid content (polymer) concentration of about 20% by weight and an average particle diameter (primary particles) of 4.3 μm was obtained. The average particle size of the polymer fine particles in the dispersion,
Laser diffraction particle size distribution analyzer LA-910 manufactured by HORIBA, Ltd.
It measured using.

【0028】〈重合体微粒子の分散液の噴霧乾燥〉図1
に示すような4流体ノズルを備えた噴霧乾燥機として、
藤崎電機社製のマイクロミストドライヤーMDL−05
0(ノズルエッジ長さ3mm、気体路スリット0.2m
m、液体路スリット0.25mm)を使用して、上記重
合体微粒子を含む分散液の噴霧乾燥を行って、重合体微
粒子の粉末の製造した。乾燥条件は、熱風の入り口温度
120℃、乾燥室内温度65.2℃、分散液のフィード
速度20ml/minであった。
<Spray drying of dispersion liquid of polymer fine particles> FIG.
As a spray dryer with a four-fluid nozzle as shown in
Fujisaki Electric Micro Mist Dryer MDL-05
0 (nozzle edge length 3mm, gas path slit 0.2m
m, the liquid path slit was 0.25 mm), and the dispersion containing the polymer fine particles was spray-dried to produce polymer fine powder. The drying conditions were a hot air inlet temperature of 120 ° C., a drying room temperature of 65.2 ° C., and a dispersion feed rate of 20 ml / min.

【0029】得られた重合体微粒子の粉末について、日
立製作所社製の走査型電子顕微鏡S−4200型を用い
て粒子の形態を観察したところ、重合体微粒子は完全な
一次粒子を呈していた。
Observation of the morphology of the obtained polymer fine particle powder using a scanning electron microscope Model S-4200 manufactured by Hitachi, Ltd. revealed that the polymer fine particles exhibited complete primary particles.

【0030】(実施例2) 〈重合体微粒子の分散液の調製〉スチレン190g、ジ
ビニルベンゼン10gを撹拌混合した。これに、イオン
交換水400g、ドデシルベンゼンスルホン酸ナトリウ
ム2gを添加し、ホモジナイザーで撹拌して乳化モノマ
ー液を調製した。
(Example 2) <Preparation of polymer fine particle dispersion> 190 g of styrene and 10 g of divinylbenzene were stirred and mixed. 400 g of ion-exchanged water and 2 g of sodium dodecylbenzenesulfonate were added thereto, and the mixture was stirred with a homogenizer to prepare an emulsion monomer liquid.

【0031】一方、撹拌機及びジャケットを備えた重合
器にイオン交換水400gを入れ、攪拌を開始した。重
合器内を減圧して容器内の脱酸素を行った後、窒素によ
り圧力を大気圧まで戻して、内部を窒素雰囲気とした
後、重合器内を70℃まで昇温した。
On the other hand, 400 g of ion-exchanged water was put into a polymerization vessel equipped with a stirrer and a jacket, and stirring was started. After depressurizing the inside of the polymerization vessel and deoxidizing the inside of the vessel, the pressure was returned to the atmospheric pressure with nitrogen, and the inside was set to a nitrogen atmosphere. Then, the inside of the polymerization vessel was heated to 70 ° C.

【0032】その後、重合器内に過硫酸アンモニウム
0.2gを添加し、15分撹拌した後、上記乳化モノマ
ー液のうち10重量%を一括に添加し、乳化重合を開始
した。重合開始より20分後に、重合系へ残りの乳化モ
ノマー液の滴下を開始した。2時間で滴下を完了し、そ
の後1時間の熟成期間をおいた後、室温まで冷却した。
重合反応の結果、固形分(重合体)濃度約20重量%、
平均粒子径(一次粒子)0.21μmの重合体粒子を含
む分散液を得た。分散液中の重合体微粒子の平均粒子径
は、堀場製作所社製のレーザー回折粒度分布計LA−9
10を用いて測定した。
Thereafter, 0.2 g of ammonium persulfate was added into the polymerization vessel, and the mixture was stirred for 15 minutes. Then, 10% by weight of the emulsified monomer liquid was added at a time to start emulsion polymerization. Twenty minutes after the start of the polymerization, dropping of the remaining emulsified monomer liquid into the polymerization system was started. Dropping was completed in 2 hours, and after an aging period of 1 hour, the mixture was cooled to room temperature.
As a result of the polymerization reaction, the solid content (polymer) concentration is about 20% by weight,
A dispersion liquid containing polymer particles having an average particle diameter (primary particle) of 0.21 μm was obtained. The average particle size of the polymer fine particles in the dispersion was measured using a laser diffraction particle size distribution analyzer LA-9 manufactured by Horiba, Ltd.
10 was used.

【0033】〈重合体微粒子の分散液の噴霧乾燥〉図1
に示すような4流体ノズルを備えた噴霧乾燥機として、
藤崎電機社製のマイクロミストドライヤーMDL−05
0を使用して、上記重合体微粒子を含む分散液の噴霧乾
燥を行って、重合体微粒子の粉末の製造した。乾燥条件
は、熱風の入り口温度120℃、乾燥室内温度59.5
℃、分散液のフィード速度20ml/minであった。
<Spray drying of dispersion liquid of polymer fine particles> FIG.
As a spray dryer equipped with a four-fluid nozzle as shown in
Fujisaki Electric Micro Mist Dryer MDL-05
Using 0, the dispersion containing the polymer fine particles was spray-dried to produce powder of the polymer fine particles. Drying conditions were as follows: hot air inlet temperature 120 ° C., drying room temperature 59.5.
° C and the dispersion feed rate was 20 ml / min.

【0034】得られた重合体微粒子の粉末について、日
立製作所社製の走査型電子顕微鏡S−4200型を用い
て粒子の形態を観察したところ、重合体微粒子はわずか
に1μm以下の凝集粒子が見られたが、大多数は完全な
一次粒子を呈していた。
Observation of the morphology of the obtained polymer fine particle powder using a scanning electron microscope Model S-4200 manufactured by Hitachi, Ltd. revealed that the polymer fine particles showed agglomerated particles of only 1 μm or less. However, the majority showed complete primary particles.

【0035】(比較例1)二流体ノズルを備えた噴霧乾
燥機として、ホソカワミクロン社製AGM−35SDを
使用し、実施例1で得られた重合体微粒子を含む分散液
の噴霧乾燥を行った。乾燥条件は、熱風の入り口温度8
0℃、乾燥室内温度58.4℃、分散液のフィード速度
100ml/minであった。
(Comparative Example 1) As a spray dryer provided with a two-fluid nozzle, AGM-35SD manufactured by Hosokawa Micron Corporation was used, and the dispersion containing the polymer fine particles obtained in Example 1 was spray-dried. Drying conditions are hot air inlet temperature 8
The temperature was 0 ° C., the drying room temperature was 58.4 ° C., and the feed rate of the dispersion was 100 ml / min.

【0036】得られた重合体微粒子の粉末について、日
立製作所社製の走査型電子顕微鏡S−4200型を用い
て粒子の形態を観察したところ、粒子の凝集が見られ、
10μm以上の凝集粒子が多数観察された。
Observation of the morphology of the obtained polymer fine particle powder using a scanning electron microscope Model S-4200 manufactured by Hitachi, Ltd. revealed that the particles were aggregated.
Many aggregated particles of 10 μm or more were observed.

【0037】(比較例2)二流体ノズルを備えた噴霧乾
燥機として、ホソカワミクロン社製AGM−35SDを
使用し、実施例2で得られた重合体微粒子を含む分散液
の噴霧乾燥を行った。乾燥条件は、熱風の入り口温度8
0℃、乾燥室内温度62.9℃、分散液のフィード速度
120ml/minであった。
(Comparative Example 2) As a spray drier equipped with a two-fluid nozzle, AGM-35SD manufactured by Hosokawa Micron Corporation was used, and the dispersion containing the polymer fine particles obtained in Example 2 was spray-dried. Drying conditions are hot air inlet temperature 8
The temperature was 0 ° C., the drying room temperature was 62.9 ° C., and the feed rate of the dispersion was 120 ml / min.

【0038】得られた重合体微粒子の粉末について、日
立製作所社製の走査型電子顕微鏡S−4200型を用い
て粒子の形態を観察したところ、10μm以上の凝集粒
子が多数観察された。
When the morphology of the obtained fine polymer particles was observed using a scanning electron microscope Model S-4200 manufactured by Hitachi, Ltd., a large number of aggregated particles of 10 μm or more were observed.

【0039】[0039]

【発明の効果】上述のとおり、微粒子の分散液、特にモ
ノマーを重合して得られる重合体微粒子の分散液を、四
流体ノズルを備えた噴霧乾燥機で噴霧乾燥することによ
り、微粒子の分散液から一次粒子の平均粒子径が10μ
m以下の微粒子粉末をほとんど凝集させることなく効率
よく製造することができ、粉砕や分級の工程を省略もし
くは簡素化できる。
As described above, a dispersion of fine particles, particularly a dispersion of polymer fine particles obtained by polymerizing a monomer, is spray-dried by a spray drier equipped with a four-fluid nozzle, whereby a dispersion of fine particles is obtained. Average particle size of primary particles from 10μ
m or less can be efficiently produced with little agglomeration, and the steps of pulverization and classification can be omitted or simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は噴霧乾燥機の四流体ノズルの一例を示す
断面図である。
FIG. 1 is a sectional view showing an example of a four-fluid nozzle of a spray dryer.

【符号の説明】[Explanation of symbols]

10 四流体ノズル 11a、11b 気体路 12a、12b 液体路 20 流体 21 流体の衝突焦点 Reference Signs List 10 Four-fluid nozzle 11a, 11b Gas path 12a, 12b Liquid path 20 Fluid 21 Fluid collision focus

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 微粒子の分散液を四流体ノズルを備えた
噴霧乾燥機で噴霧乾燥することを特徴とする微粒子粉末
の製造方法。
1. A method for producing fine particle powder, wherein a dispersion liquid of fine particles is spray-dried by a spray dryer equipped with a four-fluid nozzle.
【請求項2】 モノマーを重合して得られる重合体微粒
子の分散液を用いることを特徴とする請求項1に記載の
微粒子粉末の製造方法。
2. The method for producing fine particle powder according to claim 1, wherein a dispersion liquid of polymer fine particles obtained by polymerizing a monomer is used.
【請求項3】 噴霧乾燥機の乾燥室内の温度が40〜9
0℃であることを特徴とする請求項1又は2に記載の微
粒子粉末の製造方法。
3. The temperature in the drying chamber of the spray dryer is 40 to 9
The method for producing fine particle powder according to claim 1, wherein the temperature is 0 ° C. 4.
【請求項4】 請求項1〜3のいずれか1項に記載の製
造方法により得られる微粒子粉末。
4. A fine particle powder obtained by the production method according to claim 1.
【請求項5】 微粒子粉末が平均粒径0.1〜10μm
の一次粒子からなる請求項4に記載の微粒子粉末。
5. The fine particle powder has an average particle size of 0.1 to 10 μm.
The fine particle powder according to claim 4, comprising primary particles of the following.
JP2001052387A 2001-02-27 2001-02-27 Production process for fine powder, and fine powder Withdrawn JP2002249512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001052387A JP2002249512A (en) 2001-02-27 2001-02-27 Production process for fine powder, and fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001052387A JP2002249512A (en) 2001-02-27 2001-02-27 Production process for fine powder, and fine powder

Publications (1)

Publication Number Publication Date
JP2002249512A true JP2002249512A (en) 2002-09-06

Family

ID=18913023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001052387A Withdrawn JP2002249512A (en) 2001-02-27 2001-02-27 Production process for fine powder, and fine powder

Country Status (1)

Country Link
JP (1) JP2002249512A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347134A (en) * 2004-06-04 2005-12-15 Sumitomo Metal Mining Co Ltd Manufacturing method of positive electrode active material for lithium ion secondary battery
JP2006068660A (en) * 2004-09-03 2006-03-16 Oogawara Kakoki Kk Method for atomizing liquid and nozzle used for the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228608A (en) * 1994-02-17 1995-08-29 Takeda Chem Ind Ltd Production of polymer fine particle
JPH08281155A (en) * 1995-02-16 1996-10-29 Fujisaki Denki Kk Injection of fine particle of liquid and nozzle
JPH0971608A (en) * 1995-09-06 1997-03-18 Mitsubishi Chem Corp Spray dryer and spray drying method using the same
JP2001286728A (en) * 2000-04-04 2001-10-16 Gifu Prefecture Method for manufacturing photocatalyst coated with film of porous ceramics
JP2002034510A (en) * 2000-07-21 2002-02-05 Takehara Kagaku Kogyo Kk Calcium carbonate powder composition, method for producing the same and method for producing emulsion using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228608A (en) * 1994-02-17 1995-08-29 Takeda Chem Ind Ltd Production of polymer fine particle
JPH08281155A (en) * 1995-02-16 1996-10-29 Fujisaki Denki Kk Injection of fine particle of liquid and nozzle
JPH0971608A (en) * 1995-09-06 1997-03-18 Mitsubishi Chem Corp Spray dryer and spray drying method using the same
JP2001286728A (en) * 2000-04-04 2001-10-16 Gifu Prefecture Method for manufacturing photocatalyst coated with film of porous ceramics
JP2002034510A (en) * 2000-07-21 2002-02-05 Takehara Kagaku Kogyo Kk Calcium carbonate powder composition, method for producing the same and method for producing emulsion using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347134A (en) * 2004-06-04 2005-12-15 Sumitomo Metal Mining Co Ltd Manufacturing method of positive electrode active material for lithium ion secondary battery
JP2006068660A (en) * 2004-09-03 2006-03-16 Oogawara Kakoki Kk Method for atomizing liquid and nozzle used for the same
JP4718811B2 (en) * 2004-09-03 2011-07-06 大川原化工機株式会社 Method for making liquid into fine particles and nozzle used therefor

Similar Documents

Publication Publication Date Title
TWI302567B (en)
Szczap et al. Atomization and spray drying processes
CA2409394C (en) Process for the production of hard metal grade powder
EP0678109B1 (en) Micropowder
IL152756A (en) Biometric identification and authentication method
CN112312984B (en) Low temperature spray drying of carrier-free compositions
WO2007114468A1 (en) Spray dryer, spray dry method, and polymer powder
JP2003514034A (en) Method for producing particles
Selvamuthukumaran et al. Spraying DryingConcept, Application and Its Recent Advances in Food Processing
WO1999052822A1 (en) Method for producing spherical silica particles
JPH085966B2 (en) Method for producing redispersible plastic powder
Ishwarya et al. Spray drying
JP2002249512A (en) Production process for fine powder, and fine powder
US20030037415A1 (en) Process for the production of granules in a circulating fluidized bed,, apparatus for the performance of the process and granules obtained in accordance with the process
CN207811274U (en) A kind of equipment preparing graphene particles
US4093571A (en) Process for making porous metal containing powder coating compositions
JP3554302B2 (en) Method for converting liquid into fine particles and nozzle used for the method
CN108579110A (en) A kind of spray-drying installation and its application process
KR20080043280A (en) A spray dry system utilizing a vacuum chamber
JP3118055B2 (en) Fine particle coating method and apparatus and spray nozzle
TWI567116B (en) Method for manufacturing fine particles
JPH0261407B2 (en)
JPS6142923B2 (en)
JPH0971608A (en) Spray dryer and spray drying method using the same
CN108163848A (en) A kind of graphene particles, preparation method and its equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050831

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050930