JP2002249321A - Glass melting furnace - Google Patents

Glass melting furnace

Info

Publication number
JP2002249321A
JP2002249321A JP2001040325A JP2001040325A JP2002249321A JP 2002249321 A JP2002249321 A JP 2002249321A JP 2001040325 A JP2001040325 A JP 2001040325A JP 2001040325 A JP2001040325 A JP 2001040325A JP 2002249321 A JP2002249321 A JP 2002249321A
Authority
JP
Japan
Prior art keywords
glass
melting furnace
melting
molten glass
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001040325A
Other languages
Japanese (ja)
Inventor
Itaru Toyoshima
至 豊嶌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2001040325A priority Critical patent/JP2002249321A/en
Publication of JP2002249321A publication Critical patent/JP2002249321A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • C03B5/0275Shaft furnaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a glass melting furnace capable of enhancing treating capability without increasing its facility to a large size. SOLUTION: The glass melting furnace comprises a melting furnace body 2 with a melting space 1 therein, and a main electrode 3 provided at a vertically middle part in the melting space 1 with which a glass material to be fed is heated to a molten glass G. The inner end of the main electrode 3 is protruded to a higher position above the upper face of the molten glass G in the melting space 1, forming a protruding part 13. Thus, the melting space 1 above the upper face of the molten glass G also can be heated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高放射性廃液ガラ
ス固化施設に設置されるガラス溶融炉に関するものであ
る。
TECHNICAL FIELD The present invention relates to a glass melting furnace installed in a highly radioactive liquid waste vitrification facility.

【0002】[0002]

【従来の技術】原子力施設において発生する高放射性廃
液は、高放射性廃液ガラス固化施設のガラス溶融炉にお
いてガラス原料とともに溶融した後、ガラス固化体とし
て処理し、放射性廃棄物保管施設に保管される。
2. Description of the Related Art Highly radioactive liquid waste generated in a nuclear facility is melted together with glass raw materials in a glass melting furnace of a highly radioactive liquid waste vitrification facility, processed as vitrified material, and stored in a radioactive waste storage facility.

【0003】上記ガラス固化施設においては、ガラス溶
融炉の内部でガラス原料を溶融する際に放射性廃液を混
入し、この放射性廃液が混入した溶融ガラスを固化容器
に注入し、溶融ガラスを固化させることにより、ガラス
固化体を形成している。
In the vitrification facility, a radioactive waste liquid is mixed when a glass raw material is melted inside a glass melting furnace, and the molten glass mixed with the radioactive waste liquid is poured into a solidification vessel to solidify the molten glass. Thereby, a vitrified body is formed.

【0004】図2は従来のガラス溶融炉の一例を示す縦
断正面図であって、2は溶融炉本体であり、該溶融炉本
体2は、内部に溶融空間1を形成するように耐蝕性の耐
火レンガ2aにより構成されている。
FIG. 2 is a longitudinal sectional front view showing an example of a conventional glass melting furnace. Reference numeral 2 denotes a melting furnace main body. The melting furnace main body 2 has a corrosion-resistant structure so as to form a melting space 1 therein. It is composed of a refractory brick 2a.

【0005】溶融炉本体2の上下中間部左右側には、主
電極3が対向して設けられてその内端が溶融空間1に露
出しており、又溶融空間1下部の狭くなっている炉底部
4には、底部電極5が設けられてその内端が溶融空間1
に露出している。図2において6は溶融炉本体2の上部
に設けられてガラス、放射性廃液等を供給するための原
料供給口、7は廃ガス取出管、8は補助電極、9は炉底
部4に形成されて溶融されたガラスを取り出すためのガ
ラス取出口、10はガラス取出口9を加熱するためのヒ
ータ、Gは溶融ガラスである。
[0005] Main electrodes 3 are provided on the left and right sides of the upper and lower middle portions of the melting furnace body 2 so that the inner ends thereof are exposed to the melting space 1 and the lower part of the melting space 1 is narrowed. The bottom part 4 is provided with a bottom part electrode 5 whose inner end is the melting space 1.
It is exposed to. In FIG. 2, reference numeral 6 denotes a raw material supply port provided at the upper portion of the melting furnace main body 2 for supplying glass, radioactive waste liquid, etc., 7 denotes a waste gas outlet tube, 8 denotes an auxiliary electrode, and 9 denotes a furnace bottom portion. A glass outlet 10 for taking out the molten glass, a heater 10 for heating the glass outlet 9, and G a molten glass.

【0006】上記ガラス溶融炉では、溶融炉本体2に形
成された溶融空間1にガラス原料及び高放射性廃液を供
給し、対向配置した主電極3,3間の通電(放電)によ
るジュール熱によってガラス原料を溶融する。この時、
溶融ガラスGの通常の温度は略1200℃程度であり、
また溶融空間1の溶融ガラスG上部の空間の温度は略5
00℃程度となっている。溶融ガラスGは、溶融空間1
底部のガラス取出口9から取出されて図示しない固化容
器に供給される。
In the above-mentioned glass melting furnace, a glass material and a highly radioactive waste liquid are supplied to a melting space 1 formed in a melting furnace main body 2, and the glass is heated by Joule heat generated by energization (discharge) between opposed main electrodes 3 and 3. Melt the raw material. At this time,
The normal temperature of the molten glass G is about 1200 ° C.,
The temperature of the space above the molten glass G in the molten space 1 is approximately 5
It is about 00 ° C. The molten glass G has a melting space 1
It is taken out from the glass outlet 9 at the bottom and supplied to a solidification container (not shown).

【0007】上記ガラス溶融炉に供給される高放射性廃
液とガラス原料は、溶融ガラスG上面において、蒸発、
乾燥、仮焼、酸化物への酸化、ガラス化の過程を経て、
溶融ガラスGとなる。
The highly radioactive liquid waste and the glass raw material supplied to the glass melting furnace are evaporated,
Through the process of drying, calcining, oxidation to oxide, vitrification,
It becomes molten glass G.

【0008】この時、溶融ガラスGの上面には低温の仮
焼体11が存在しており、この仮焼体11がガラス化に
至るまでに必要な熱量は、下部の溶融ガラスGからの伝
熱と、上部空間からの輻射により与えられる。
At this time, a low-temperature calcined body 11 is present on the upper surface of the molten glass G, and the amount of heat required for the calcined body 11 to be vitrified is transferred from the lower molten glass G. Provided by heat and radiation from the headspace.

【0009】前記溶融ガラスGの上面が前記仮焼体11
によって完全に覆われることはなく、一部に高温の溶融
ガラスGが露出した部分(ホットトップ部H)が形成さ
れていて、このホットトップ部Hからの輻射のみが上部
からの伝熱に寄与している。
[0009] The upper surface of the molten glass G is
Is not completely covered, and a portion (hot top portion H) where the high-temperature molten glass G is exposed is partially formed, and only radiation from the hot top portion H contributes to heat transfer from the upper portion. are doing.

【0010】[0010]

【発明が解決しようとする課題】ところが、上記仮焼体
11が成長し、溶融ガラスGの上面を覆うことによって
ホットトップ部Hが減少する場合があり、このようにホ
ットトップ部Hが減少すると、高温の溶融ガラスGから
上部空間へ伝達される熱が抑制されてしまい、このため
に、仮焼体11の上部に供給されてくるガラス原料への
熱の伝達が抑えられて、溶融効率が大幅に低下するとい
う問題がある。
However, the calcined body 11 may grow and cover the upper surface of the molten glass G, so that the hot-top portion H may decrease. However, the heat transferred from the high-temperature molten glass G to the upper space is suppressed, so that the transfer of heat to the glass raw material supplied to the upper portion of the calcined body 11 is suppressed, and the melting efficiency is reduced. There is a problem of drastic reduction.

【0011】このため、従来のガラス溶融炉における処
理量、即ちガラスの溶融処理量は、溶融空間1の容積
(特に溶融ガラスGの上面の面積)に略比例するとされ
ていた。従って、処理量を増やすためには、ガラス溶融
炉全体を大型化することが考えられる。
For this reason, the processing amount in the conventional glass melting furnace, that is, the glass processing amount, is considered to be substantially proportional to the volume of the melting space 1 (particularly, the area of the upper surface of the molten glass G). Therefore, in order to increase the throughput, it is conceivable to enlarge the entire glass melting furnace.

【0012】しかし、ガラス溶融炉が大型化すると、そ
れを構築するための耐蝕性の耐火レンガ2aの使用量が
増大し、更にガラス溶融炉を納める建屋、及びクレーン
等のハンドリング装置も大型化するために、建設コスト
が大幅に増加するという問題がある。
However, when the size of the glass melting furnace is increased, the amount of use of the corrosion-resistant refractory bricks 2a for constructing the furnace is increased, and the building in which the glass melting furnace is housed and the handling equipment such as a crane are also increased in size. Therefore, there is a problem that the construction cost is greatly increased.

【0013】本発明は、設備構成を大型化することなく
処理能力を向上させることが可能なガラス溶融炉を提供
することを目的とするものである。
It is an object of the present invention to provide a glass melting furnace capable of improving the processing capacity without increasing the size of the equipment configuration.

【0014】[0014]

【課題を解決するための手段】上記目的を達するため本
発明のガラス溶融炉は、内部に溶融空間が形成された溶
融炉本体と、前記溶融空間の上下中間部に設けられ溶融
空間に供給するガラス原料を加熱して溶融ガラスにする
主電極とを備えたガラス溶融炉において、主電極の内端
部を溶融空間内の溶融ガラス上面よりも上方の高い位置
まで突出させて突出部を形成したことを特徴としてい
る。
In order to achieve the above object, a glass melting furnace according to the present invention has a melting furnace main body having a melting space formed therein, and is provided at an upper and lower intermediate portion of the melting space to supply the melting space. In a glass melting furnace equipped with a main electrode that heats the glass raw material to form a molten glass, a protruding portion was formed by projecting the inner end of the main electrode to a position higher than the upper surface of the molten glass in the melting space. It is characterized by:

【0015】そして本発明のガラス溶融炉は上記の構成
により、溶融ガラス上面に形成される仮焼体よりも上方
の溶融空間も、高温である主電極の突出部によって加熱
され、処理能力が向上する。
[0015] In the glass melting furnace of the present invention, the melting space above the calcined body formed on the upper surface of the molten glass is also heated by the high temperature protruding portion of the main electrode. I do.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は本発明の実施の形態の一例を示す縦
断正面図であって、図2と同一部分には同一符号を付し
てある。
FIG. 1 is a longitudinal sectional front view showing an example of an embodiment of the present invention, and the same parts as those in FIG. 2 are denoted by the same reference numerals.

【0018】図1に示す溶融炉本体2の上下中間部左右
側で対向している主電極3,3は、溶融空間1の周面に
露出している内端部12を、溶融空間1内にある溶融ガ
ラスGの上面よりも上方の高い位置まで突出させて、突
出部13を形成している。上記主電極3,3の溶融ガラ
スGに露出している内端部12は、溶融ガラスGの温度
(略1200℃)と同程度の高温となっており、従って
突出部13も同等の高温となっている。
The main electrodes 3, 3 opposed to each other on the left and right sides of the upper and lower middle portions of the melting furnace main body 2 shown in FIG. The projection 13 is formed by projecting to a position higher than the upper surface of the molten glass G located at the top. The inner end portion 12 of the main electrodes 3 and 3 exposed to the molten glass G has a high temperature substantially equal to the temperature of the molten glass G (about 1200 ° C.). Has become.

【0019】従って、前記したように、溶融空間1内の
溶融ガラスGの上面よりも上方の高い位置まで内端部1
2を突出させた主電極3を備えた溶融炉本体2において
は、ガラス原料を溶融している間に溶融ガラスGの上面
に仮焼体11の層が形成され、その仮焼体11が溶融ガ
ラスG上面の略全面を覆うような状態になっても、溶融
ガラスGの上面よりも上方の高い位置にある主電極3の
高温の突出部13からの輻射熱によって、仮焼体11よ
りも上部の溶融空間1も効果的に加熱され、これにより
溶融能力が増加するようになる。
Therefore, as described above, the inner end portion 1 is raised to a higher position above the upper surface of the molten glass G in the molten space 1.
In the melting furnace main body 2 provided with the main electrode 3 having the projection 2 protruded, a layer of the calcined body 11 is formed on the upper surface of the molten glass G while the glass raw material is being melted. Even if the glass G almost covers the entire upper surface, the radiant heat from the high temperature protruding portion 13 of the main electrode 3 located above the upper surface of the molten glass G causes the upper portion of the calcined body 11 to be higher. Is also effectively heated, thereby increasing the melting capacity.

【0020】従って、設備構成を大型化することなく、
ガラス溶融炉の処理能力を向上させることが可能にな
る。
Therefore, without increasing the size of the equipment configuration,
The processing capacity of the glass melting furnace can be improved.

【0021】[0021]

【発明の効果】本発明は、主電極内端部の溶融ガラス上
面よりも上方の高い位置まで突出している突出部が、仮
焼体よりも上部の溶融空間を加熱するため、設備構成を
大型化することなく、ガラス溶融炉の処理能力を向上さ
せることができる効果がある。
According to the present invention, the projecting portion projecting to a position higher than the upper surface of the molten glass at the inner end of the main electrode heats the molten space above the calcined body, so that the equipment configuration is large. This has the effect that the processing capacity of the glass melting furnace can be improved without conversion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例を示す縦断正面図で
ある。
FIG. 1 is a vertical sectional front view showing an example of an embodiment of the present invention.

【図2】従来のガラス溶融炉の一例を示す縦断正面図で
ある。
FIG. 2 is a vertical sectional front view showing an example of a conventional glass melting furnace.

【符号の説明】[Explanation of symbols]

1 溶融空間 2 溶融炉本体 3 主電極 12 内端部 13 突出部 G 溶融ガラス DESCRIPTION OF SYMBOLS 1 Melting space 2 Melting furnace main body 3 Main electrode 12 Inner end 13 Projection G molten glass

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内部に溶融空間が形成された溶融炉本体
と、前記溶融空間の上下中間部に設けられ溶融空間に供
給するガラス原料を加熱して溶融ガラスにする主電極と
を備えたガラス溶融炉において、主電極の内端部を溶融
空間内の溶融ガラス上面よりも上方の高い位置まで突出
させて突出部を形成したことを特徴とするガラス溶融
炉。
1. A glass comprising: a melting furnace main body having a melting space formed therein; and a main electrode provided at an upper and lower middle part of the melting space and configured to heat a glass raw material to be supplied to the melting space to form molten glass. A glass melting furnace, characterized in that a protruding portion is formed by projecting an inner end of a main electrode to a position higher than a top surface of molten glass in a melting space in the melting furnace.
JP2001040325A 2001-02-16 2001-02-16 Glass melting furnace Pending JP2002249321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001040325A JP2002249321A (en) 2001-02-16 2001-02-16 Glass melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001040325A JP2002249321A (en) 2001-02-16 2001-02-16 Glass melting furnace

Publications (1)

Publication Number Publication Date
JP2002249321A true JP2002249321A (en) 2002-09-06

Family

ID=18902959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001040325A Pending JP2002249321A (en) 2001-02-16 2001-02-16 Glass melting furnace

Country Status (1)

Country Link
JP (1) JP2002249321A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028482A (en) * 2011-07-28 2013-02-07 Ihi Corp Method for operating glass melting furnace and glass melting furnace
CN114068058A (en) * 2021-11-11 2022-02-18 中广核研究院有限公司 Method for melt processing radioactive waste

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028482A (en) * 2011-07-28 2013-02-07 Ihi Corp Method for operating glass melting furnace and glass melting furnace
CN114068058A (en) * 2021-11-11 2022-02-18 中广核研究院有限公司 Method for melt processing radioactive waste
CN114068058B (en) * 2021-11-11 2024-03-19 中广核研究院有限公司 Method for melting radioactive waste

Similar Documents

Publication Publication Date Title
TW434061B (en) Furnace for melting aluminum block and holding the melt
US6577667B1 (en) Skull pot for melting or refining inorganic substances
JP4850501B2 (en) High purity silicon manufacturing apparatus and manufacturing method
CN101405231B (en) Method for temperature manipulation of a melt
JPH077102B2 (en) Melt furnace for waste treatment and its heating method
JP4563687B2 (en) Melt-solidifying furnace and melt-solidifying method using two heating means
CN106705649A (en) Industrial vacuum smelting furnace
JPS608692A (en) Method and device for liquefying surface layer by utilizing plasma
JP2002249321A (en) Glass melting furnace
CN209507979U (en) A kind of glass furnace supply channel discharge device
JPH0146792B2 (en)
CN105838907A (en) Titanium purification device and use method
JP6654502B2 (en) Glass melting equipment
CN109609975A (en) It is electrolysed the method that aluminium alloy is prepared in situ
KR102158090B1 (en) Cover flux and method for silicon purification
CN103411422A (en) Fusion heat preservation combination furnace
CN208419589U (en) A kind of aluminium melting holding-furnace
CN205603659U (en) Titanium purification device
KR100790788B1 (en) Continuous glass melting furnace
US4320244A (en) Melting furnace for the production of mineral wool insulation
CN214064919U (en) Hazardous waste melting furnace
JP2002328197A (en) Method of preventing deposition of platinum group in glass melting furnace
US20220412656A1 (en) Thermal launder for the transfer of white metal in a smelting furnace
JP2004091246A (en) Method for melting iron-phosphate glass
JPH06329420A (en) Glass melting furnace