JP2002247810A - Membrane magnet - Google Patents

Membrane magnet

Info

Publication number
JP2002247810A
JP2002247810A JP2001043537A JP2001043537A JP2002247810A JP 2002247810 A JP2002247810 A JP 2002247810A JP 2001043537 A JP2001043537 A JP 2001043537A JP 2001043537 A JP2001043537 A JP 2001043537A JP 2002247810 A JP2002247810 A JP 2002247810A
Authority
JP
Japan
Prior art keywords
substrate
film magnet
magnet
film
rotating machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001043537A
Other languages
Japanese (ja)
Inventor
Takeshi Araki
健 荒木
Teruo Nakanishi
輝雄 中西
Toshio Umemura
敏夫 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001043537A priority Critical patent/JP2002247810A/en
Publication of JP2002247810A publication Critical patent/JP2002247810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a membrane magnet capable of restraining strain and stress generated at an interface between a membrane magnet material and a substrate and preventing degradation of magnetic characteristics which was one of conventional problems, and to provide a radial gap type rotating machine therewith. SOLUTION: In this membrane magnet, the membrane magnet material having a structure where Nd2Fe14B crystal phase 1 including a non-morphous phase is surrounded by the non-morphous phase 2, is formed on the substrate 3 having a thermal expansion coefficient of 5×10-6 to 10×10-6/K. This radial gap type rotating machine comprises a rotor constituted of a magnet part using the membrane magnet and a rotating shaft, and a stator constituted of a yoke and a coil.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、とくに小型モー
タ、マイクロ波発振器、マイクロマシン等の小型デバイ
スまたは磁気記録デバイスに好適に用いられる膜磁石
と、これを用いたラジアルギャップ型回転機に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film magnet preferably used for a small device such as a small motor, a microwave oscillator, a micromachine or a magnetic recording device, and a radial gap type rotating machine using the same. .

【0002】[0002]

【従来の技術】近年、デバイスの小型化に伴い微小磁石
の需要が増しており、高出力を得るために、磁石として
は磁力の強いNd−Fe−B系磁石を用いることが不可
欠となっている。微小磁石の製造は現在、同系焼結磁石
を機械加工にすることにより所望の形状とすることが主
流となっている。しかし、年々磁石の微小化は進んでお
り、機械加工の限界が近づいている。このため、将来技
術として、スパッタなどの成膜法により基板上に直接N
d−Fe−B系膜磁石を形成して最終形状を得る手法が
検討されている。
2. Description of the Related Art In recent years, the demand for micro magnets has been increasing with the miniaturization of devices. In order to obtain high output, it is essential to use Nd-Fe-B magnets having strong magnetic force as magnets. I have. At present, the mainstream of the production of micro magnets is to machine a sintered magnet of the same type into a desired shape. However, the miniaturization of magnets is progressing year by year, and the limit of machining is approaching. Therefore, as a future technology, N.sub.2 is directly deposited on a substrate by a film forming method such as sputtering.
A method of forming a d-Fe-B based film magnet to obtain a final shape has been studied.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、成膜法
で得られた膜磁石では、膜磁石材と基板の界面に生じる
歪みにより磁気特性が劣化してしまい、これをモータに
用いた場合にトルクが低下する問題が生じている。した
がって本発明の目的は、膜磁石材と基板の界面に生じる
歪みや応力を低く抑えることができるとともに、従来問
題となっていた磁気特性の劣化を防ぐことのできる膜磁
石、ならびにこれを用いたラジアルギャップ型回転機の
提供にある。
However, in the film magnet obtained by the film forming method, the magnetic characteristics are deteriorated due to the strain generated at the interface between the film magnet material and the substrate. Is reduced. Accordingly, an object of the present invention is to provide a film magnet capable of suppressing distortion and stress generated at an interface between a film magnet material and a substrate and preventing deterioration of magnetic properties, which has conventionally been a problem, and a film magnet using the same. It is in providing a radial gap type rotating machine.

【0004】[0004]

【課題を解決するための手段】請求項1の発明は、非結
晶質相を内包したNd2Fe14B型結晶相が非結晶質相
に囲まれた組織を有する膜磁石材が、5×10-6〜10
×10-6/Kの熱膨張係数を有する基板上に形成されて
いることを特徴とする膜磁石である。請求項2の発明
は、基板が強磁性であることを特徴とする請求項1に記
載の膜磁石である。請求項3の発明は、基板がスピネル
フェライトであることを特徴とする請求項2に記載の膜
磁石である。請求項4の発明は、基板がYIG系酸化物
であることを特徴とする請求項2に記載の膜磁石であ
る。請求項5の発明は、磁石部および回転軸から構成さ
れる回転子と、ヨークおよびコイルから構成される固定
子とを備えるラジアルギャップ型回転機において、前記
磁石部が、請求項1ないし4のいずれか1項に記載の膜
磁石を備えることを特徴とするラジアルギャップ型回転
機である。
According to a first aspect of the present invention, there is provided a film magnet material having a structure in which an Nd 2 Fe 14 B type crystal phase including an amorphous phase is surrounded by an amorphous phase. 10 -6 to 10
A film magnet formed on a substrate having a coefficient of thermal expansion of × 10 -6 / K. The invention according to claim 2 is the film magnet according to claim 1, wherein the substrate is ferromagnetic. The invention according to claim 3 is the film magnet according to claim 2, wherein the substrate is spinel ferrite. The invention according to claim 4 is the film magnet according to claim 2, wherein the substrate is a YIG-based oxide. According to a fifth aspect of the present invention, there is provided a radial gap type rotating machine including a rotor configured by a magnet unit and a rotating shaft, and a stator configured by a yoke and a coil, wherein the magnet unit is configured by one of the first to fourth aspects. A radial gap type rotating machine comprising the film magnet according to any one of the preceding claims.

【0005】[0005]

【作用】本発明では、上記のような微細構造を有する膜
磁石材の熱膨張係数が、基板のそれとほぼ同等であるの
で、膜磁石材と基板の界面で生じる歪みや膜磁石内部へ
の応力が低く抑えられる。
According to the present invention, since the coefficient of thermal expansion of the film magnet material having the above-mentioned fine structure is almost equal to that of the substrate, the strain generated at the interface between the film magnet material and the substrate and the stress applied to the inside of the film magnet are increased. Can be kept low.

【0006】[0006]

【発明の実施の形態】実施の形態1.図1は、本発明の
膜磁石の一例を示す図である。基板3上に膜磁石材が設
けられ、この膜磁石材は、厚さ約5μmであり、非結晶
質相を内包したNd2Fe14B型結晶相1が非結晶質相
2に囲まれた組織を有している。このような組織は、例
えばスパッタ法により形成することができ、その際ター
ゲット:17at%Nd−75at%Fe−8at%B合金、Arガス圧:
4Pa、基板温度:510℃、成膜時間:300分の条件で形成
可能である。表1は、各種基板を用いた場合の膜磁石の
飽和磁化について示している。本発明の場合、膜磁石の
熱膨張係数(7.5×10-6/K)に近い熱膨張係数を
有する基板を用いているため、磁石と基板の界面で生じ
る歪みや膜磁石内部への応力を低く抑えることができ、
従来のSiやSiO2を基板として用いた場合に比べて
高い飽和磁化を実現することができる。なお、WCのよ
うに4×10-6/K程度の熱膨張係数を持つものや、L
iNbO3のように12×10-6/K程度の熱膨張係数
を持つ基板の場合、飽和磁化が比較的大きく低下するた
め、基板の熱膨張係数としては、5×10-6〜10×1
-6/Kの範囲が好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a diagram showing an example of the film magnet of the present invention. A film magnet material is provided on a substrate 3. The film magnet material has a thickness of about 5 μm, and an Nd 2 Fe 14 B-type crystal phase 1 containing an amorphous phase is surrounded by an amorphous phase 2. Have an organization. Such a structure can be formed by, for example, a sputtering method. At this time, a target: 17 at% Nd-75 at% Fe-8 at% B alloy, Ar gas pressure:
It can be formed under the conditions of 4 Pa, substrate temperature: 510 ° C., and film formation time: 300 minutes. Table 1 shows the saturation magnetization of the film magnet when various substrates are used. In the case of the present invention, since a substrate having a coefficient of thermal expansion close to the coefficient of thermal expansion (7.5 × 10 −6 / K) of the film magnet is used, the strain generated at the interface between the magnet and the substrate and the inside of the film magnet may be reduced. Stress can be kept low,
Higher saturation magnetization can be realized as compared with the case where conventional Si or SiO 2 is used as a substrate. Note that a material having a thermal expansion coefficient of about 4 × 10 −6 / K, such as WC,
In the case of a substrate having a thermal expansion coefficient of about 12 × 10 −6 / K, such as iNbO 3 , the saturation magnetization is relatively reduced, and the thermal expansion coefficient of the substrate is 5 × 10 −6 to 10 × 1.
The range of 0 -6 / K is preferred.

【0007】[0007]

【表1】 [Table 1]

【0008】実施の形態2.表2は、別の例として、各
種基板を用いた場合の膜磁石の表面磁束密度について示
している。本発明では基板としてφ30×厚さ5mmの
強磁性の各種フェライトあるいはYIGを使用し、その
上にφ5mmで膜厚100μm程度の、実施の形態1と
同様の膜磁石材を形成しているが、膜磁石材と基板との
熱膨張係数の整合性がよいため、膜磁石材にひび割れは
生じない。一方、基板としてSiやSiO2等を用いる
と、膜磁石材の熱膨張係数との差が大きいため、膜磁石
材にひび割れが発生してしまう。本発明では、使用して
いる各種フェライトあるいはYIG等の強磁性基板の熱
膨張係数と膜磁石材のそれとの整合性がよいため、ひび
割れなどの製品不良の問題がなく、かつ、膜磁石材から
発生した磁力を有効に活用できるために、Si基板やS
iO2基板等に比べて高い表面磁束密度を実現できる。
Embodiment 2 Table 2 shows, as another example, the surface magnetic flux density of the film magnet when various substrates are used. In the present invention, various types of ferromagnetic ferrite or YIG having a diameter of 30 mm and a thickness of 5 mm are used as a substrate, and a film magnet material similar to that of the first embodiment having a thickness of about 5 μm and a thickness of about 100 μm is formed thereon. Since the coefficient of thermal expansion between the film magnet material and the substrate is good, no crack is generated in the film magnet material. On the other hand, if Si, SiO 2 or the like is used as the substrate, the difference between the coefficient of thermal expansion of the film magnet material is large, so that the film magnet material is cracked. In the present invention, since the coefficient of thermal expansion of the ferromagnetic substrate such as various ferrites or YIG used is well matched with that of the film magnet material, there is no problem of product defects such as cracks and the like. In order to make effective use of the generated magnetic force, Si substrate and S
A higher surface magnetic flux density can be realized as compared with an iO 2 substrate or the like.

【0009】[0009]

【表2】 [Table 2]

【0010】実施の形態3.図2は、本発明の膜磁石を
使用したラジアルギャップ型回転機の一例を説明するた
めの図である。なお、図2(b)は、図2(a)のA−
A断面図である。回転軸4の周囲にフェライト製のリン
グ状基板5が嵌合され、その外周に膜磁石材6が形成さ
れている。その外側にはギャップ7を隔ててヨーク8お
よびコイル9からなる固定子が配置されている。コイル
に3相電流を通電すると、電磁力の働きによって回転子
が回転するが、本発明の回転機は従来に比べて磁石の磁
力が強いため、高出力を実現できる。
Embodiment 3 FIG. 2 is a view for explaining an example of a radial gap type rotating machine using the film magnet of the present invention. FIG. 2B is a cross-sectional view of FIG.
It is A sectional drawing. A ring-shaped substrate 5 made of ferrite is fitted around the rotation shaft 4, and a film magnet material 6 is formed around the periphery thereof. A stator including a yoke 8 and a coil 9 is arranged outside the gap 7 with a gap 7 therebetween. When a three-phase current is applied to the coil, the rotor rotates due to the action of the electromagnetic force. However, the rotating machine of the present invention can achieve high output because the magnet has a stronger magnetic force than in the related art.

【0011】[0011]

【発明の効果】請求項1の発明によれば、非結晶質相を
内包したNd2Fe14B型結晶相が非結晶質相に囲まれ
た組織を有する膜磁石材が、5×10-6〜10×10-6
/Kの熱膨張係数を有する基板上に形成されていること
を特徴とする膜磁石であるので、膜磁石材と基板の界面
に生じる歪みや応力を低く抑えることができるととも
に、従来問題となっていた磁気特性の劣化も防ぐことが
できる。
According to the invention of claim 1 according to the present invention, the non-crystalline phase Nd 2 Fe 14 B type containing therein a crystalline phase film magnet material having a tissue which is surrounded by the amorphous phase, 5 × 10 - 6 to 10 × 10 -6
/ K, which is characterized by being formed on a substrate having a thermal expansion coefficient of / K, so that the distortion and stress generated at the interface between the film magnet material and the substrate can be suppressed to a low level, and a conventional problem arises. The deterioration of the magnetic characteristics which has been performed can be prevented.

【0012】請求項2の発明は、基板が強磁性であるこ
とを特徴とする請求項1に記載の膜磁石であるので、膜
磁石材から発生した磁力を有効に活用できる。
According to a second aspect of the present invention, since the substrate is ferromagnetic, the magnetic force generated from the film magnet material can be effectively utilized.

【0013】請求項3の発明は、基板がスピネルフェラ
イトであることを特徴とする請求項2に記載の膜磁石で
あるので、ひび割れなどの製品不良の問題がなく、か
つ、膜磁石材から発生した磁力を有効に活用できるため
に、Si基板やSiO2基板等に比べて高い表面磁束密
度を実現できる。
According to a third aspect of the present invention, there is provided the film magnet according to the second aspect, wherein the substrate is made of spinel ferrite. Therefore, there is no problem of a product defect such as a crack, and the substrate magnet is generated from the film magnet material. Since the generated magnetic force can be effectively used, a higher surface magnetic flux density can be realized as compared with a Si substrate, a SiO 2 substrate or the like.

【0014】請求項4の発明は、基板がYIG系酸化物
であることを特徴とする請求項2に記載の膜磁石である
ので、ひび割れなどの製品不良の問題がなく、かつ、膜
磁石材から発生した磁力を有効に活用できるために、S
i基板やSiO2基板等に比べて高い表面磁束密度を実
現できる。
According to a fourth aspect of the present invention, there is provided the film magnet according to the second aspect, wherein the substrate is a YIG-based oxide. In order to make effective use of the magnetic force generated from
Higher surface magnetic flux density can be realized as compared with an i-substrate or a SiO 2 substrate.

【0015】請求項5の発明は、磁石部および回転軸か
ら構成される回転子と、ヨークおよびコイルから構成さ
れる固定子とを備えるラジアルギャップ型回転機におい
て、前記磁石部が、請求項1ないし4のいずれか1項に
記載の膜磁石を備えることを特徴とするラジアルギャッ
プ型回転機であるので、高出力を実現できる。
According to a fifth aspect of the present invention, there is provided a radial gap type rotating machine including a rotor composed of a magnet part and a rotating shaft, and a stator composed of a yoke and a coil, wherein the magnet part has a first aspect. Since the radial gap type rotating machine is provided with the film magnet according to any one of the above items 4 to 4, high output can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の膜磁石の一例を示す図である。FIG. 1 is a diagram showing an example of a film magnet of the present invention.

【図2】 本発明の膜磁石を使用したラジアルギャップ
型回転機の一例を説明するための図である。
FIG. 2 is a diagram for explaining an example of a radial gap type rotating machine using the film magnet of the present invention.

【符号の説明】[Explanation of symbols]

1 Nd2Fe14B型結晶相、2 非結晶質相、3 基
板、4 回転軸、5リング状基板、6 膜磁石材、7
ギャップ、8 ヨーク、9 コイル。
1 Nd 2 Fe 14 B type crystal phase, 2 amorphous phase, 3 substrate, 4 rotation axis, 5 ring-shaped substrate, 6 film magnet material, 7
Gap, 8 yokes, 9 coils.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02K 21/14 H02K 21/14 G M (72)発明者 梅村 敏夫 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 5E062 CC03 CD01 CD06 CG07 5H002 AA07 AC00 5H621 BB06 BB10 HH01 5H622 AA03 CB04 DD02 PP03 PP09 QA01 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme court ゛ (Reference) H02K 21/14 H02K 21/14 GM (72) Inventor Toshio Umemura 2-3-2 Marunouchi, Chiyoda-ku, Tokyo No. Mitsubishi Electric Corporation F-term (reference) 5E062 CC03 CD01 CD06 CG07 5H002 AA07 AC00 5H621 BB06 BB10 HH01 5H622 AA03 CB04 DD02 PP03 PP09 QA01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 非結晶質相を内包したNd2Fe14B型
結晶相が非結晶質相に囲まれた組織を有する膜磁石材
が、5×10-6〜10×10-6/Kの熱膨張係数を有す
る基板上に形成されていることを特徴とする膜磁石。
1. A film magnet material having a structure in which an Nd 2 Fe 14 B-type crystal phase including an amorphous phase is surrounded by an amorphous phase, is formed of 5 × 10 −6 to 10 × 10 −6 / K. A film magnet formed on a substrate having a thermal expansion coefficient of:
【請求項2】 基板が強磁性であることを特徴とする請
求項1に記載の膜磁石。
2. The film magnet according to claim 1, wherein the substrate is ferromagnetic.
【請求項3】 基板がスピネルフェライトであることを
特徴とする請求項2に記載の膜磁石。
3. The film magnet according to claim 2, wherein the substrate is spinel ferrite.
【請求項4】 基板がYIG系酸化物であることを特徴
とする請求項2に記載の膜磁石。
4. The film magnet according to claim 2, wherein the substrate is a YIG-based oxide.
【請求項5】 磁石部および回転軸から構成される回転
子と、ヨークおよびコイルから構成される固定子とを備
えるラジアルギャップ型回転機において、前記磁石部
が、請求項1ないし4のいずれか1項に記載の膜磁石を
備えることを特徴とするラジアルギャップ型回転機。
5. A radial gap type rotating machine including a rotor composed of a magnet part and a rotating shaft, and a stator composed of a yoke and a coil, wherein the magnet part is any one of claims 1 to 4. A radial gap type rotating machine comprising the film magnet according to claim 1.
JP2001043537A 2001-02-20 2001-02-20 Membrane magnet Pending JP2002247810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001043537A JP2002247810A (en) 2001-02-20 2001-02-20 Membrane magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001043537A JP2002247810A (en) 2001-02-20 2001-02-20 Membrane magnet

Publications (1)

Publication Number Publication Date
JP2002247810A true JP2002247810A (en) 2002-08-30

Family

ID=18905682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001043537A Pending JP2002247810A (en) 2001-02-20 2001-02-20 Membrane magnet

Country Status (1)

Country Link
JP (1) JP2002247810A (en)

Similar Documents

Publication Publication Date Title
JP5440079B2 (en) Rotor for axial gap type permanent magnet type rotating machine and axial gap type permanent magnet type rotating machine
JP5327433B2 (en) Method for manufacturing rotor magnet of micro rotating electric machine
JP2001176723A (en) Ring magnet and loudspeaker
JPWO2007077809A1 (en) Rare earth magnet and manufacturing method thereof
JP4803398B2 (en) Multilayer permanent magnet
US6941637B2 (en) Method of manufacturing a motor comprising a rare earth thick film magnet
EP0561463B1 (en) Electrical machine and method of manufacturing the electrical machine
JP2002247810A (en) Membrane magnet
JPH0963844A (en) Multilayered magnetic film and thin film magnetic element employing it
JP3273691B2 (en) Noise filter tape, noise filter tape manufacturing method, and noise filter tape manufacturing apparatus
JP4218762B2 (en) Magnetic field heat treatment equipment
JP3953498B2 (en) Cylindrical or disk-shaped sintered rare earth magnets for micro products
JPH04219912A (en) Formation of rare-earth thin film magnet
WO2024116245A1 (en) Magnetization device for rotor, rotor, motor, and method for manufacturing rotor
JPH0586460A (en) Target for sputtering and its manufacture
JP2001093715A (en) Permanent magnet material and method for manufacturing thereof
JPH0665662A (en) Soft magnetic alloy
JP2002015915A (en) Magnetizing yoke of small dc motor magnet
JPH09131006A (en) Magnet rotor for rotating electric machine
JP2006165361A (en) Rare-earth group magnet thin plate and thin motor
JPH06151226A (en) Film magnet forming method
JPH06124822A (en) R-tm-b group anisotropic ring magnet and its manufacture
JP2002252106A (en) Rare-earth magnet and its manufacturing method
JP2003299266A (en) Small winding core for high performance rotating machine
JP4304930B2 (en) Magnetization method of rare earth magnet and rare earth magnet