JP2002247768A - Generated power control device for power consignment system - Google Patents

Generated power control device for power consignment system

Info

Publication number
JP2002247768A
JP2002247768A JP2001046181A JP2001046181A JP2002247768A JP 2002247768 A JP2002247768 A JP 2002247768A JP 2001046181 A JP2001046181 A JP 2001046181A JP 2001046181 A JP2001046181 A JP 2001046181A JP 2002247768 A JP2002247768 A JP 2002247768A
Authority
JP
Japan
Prior art keywords
power
amount
received
section
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001046181A
Other languages
Japanese (ja)
Other versions
JP3753946B2 (en
Inventor
Shigeo Nomiya
成生 野宮
Hitoshi Ito
整 伊藤
Toyokuni Kato
豊邦 加藤
Tomoya Ichino
智也 市野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nishishiba Electric Co Ltd
Original Assignee
Toshiba Corp
Nishishiba Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nishishiba Electric Co Ltd filed Critical Toshiba Corp
Priority to JP2001046181A priority Critical patent/JP3753946B2/en
Publication of JP2002247768A publication Critical patent/JP2002247768A/en
Application granted granted Critical
Publication of JP3753946B2 publication Critical patent/JP3753946B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a generated power control device for a power consignment system satisfying simultaneousity and quantity equality. SOLUTION: There are provided a first compensating means for compensating a difference between the quantity of receiving power and the quantity of transmitting power in a succeeding section based on the quantity of the receiving power and the quantity of the transmitting power at every installation section using a sampling setting means in order to attain consisting between the quantity of the receiving power and the quantity of the transmitting power in a present time section in every predetermined unit time, based on the quantity of the transmitting power transferred in reverse to the power system by private-generation facilities and the quantity of the receiving power received by customers and a second compensating means for compensating a power generation command with a changing coefficient of the receiving power determined with the quantity of the receiving power in the succeeding section and the quantity of the receiving power in the present section. As explained, the value compensated by the first compensating means and the value compensated by the second compensating means are added to an average value averaged by a section width of the quantity of the receiving power in the present section, to obtain a power generation instruction in the succeeding section. Accordingly, the simultaneous supply of the same quantity can be realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特定規模電気事業
者による自家用発電設備からの電力託送システムにおけ
る発電電力制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation control device in a power transfer system from a private power generation facility by a specific-scale electric power company.

【0002】[0002]

【従来の技術】現在、電力小売部分の自由化に伴い電力
系統に連系している自家発電設備の発電電力を電力会社
の送電ネットワークを介して別の場所の需要家に供給す
る電力託送を行うことが可能となった。(現時点におい
ては、特別高圧需要家との制限あり。)この電力託送に
よって需要家に電力を供給する事業を特定規模電機事業
と言い、この事業を行うものを特定規模電気事業者と言
う。特定規模事業者は、契約した需要家が必要とする電
力を発電あるいは調達して供給する義務が生じ、送電電
力量と需要家受電電力量を一致させることが求められて
いる。具体的には30分間毎の電力量が一致していれば
良いとされている。これを同時同量と言う。
2. Description of the Related Art At present, with the liberalization of the electric power retailing section, there is a power transmission system for supplying generated power of a private power generation system connected to a power system to a customer at another place via a power transmission network of a power company. It is now possible to do it. (At present, there is a restriction with special high-voltage customers.) The business of supplying power to customers by this power transfer is called the specific-scale electric business, and the business that performs this business is called the specific-scale electric utility. The specified-size enterprise is obliged to generate or procure the power required by the contracted customer and supply it, and it is required that the amount of transmitted power and the amount of received power of the customer be matched. Specifically, it suffices that the amounts of power every 30 minutes match. This is called the same amount.

【0003】現在の系統連系する自家用発電設備の基本
的な構成は図5に示すように、発電機1、原動機2、調
速機3、発電コントローラ4、自動電圧調整装置(AV
R)5から成り、遮断機6を介して構内系統に接続され
構内負荷8に電力供給し、さらに遮断機9を介して電力
系統と連系されている。また、保護装置として発電機異
常を保護する発電機保護装置10、電力系統との連系保
護のための系統連系保護装置11が設置されている。こ
の系統連系する自家用発電設備において発電機出力の制
御は発電コントローラ4により行われ、発電指令に追従
させるため調速機3を動作させ、発電機出力が制御され
る。ここで発電電力制御は、逆潮流あり連系の場合、自
家用発電設備の稼働率を考慮すると、発電効率の良いポ
イントにおける発電電力一定制御が行われることが考え
られる。
[0003] As shown in FIG. 5, the basic configuration of a current private power generation system connected to a system is a generator 1, a prime mover 2, a governor 3, a power generation controller 4, and an automatic voltage regulator (AV).
R) 5, which is connected to a local system via a circuit breaker 6, supplies power to a local load 8, and is further connected to a power system via a circuit breaker 9. As protection devices, a generator protection device 10 for protecting a generator from abnormalities and a system interconnection protection device 11 for interconnection protection with a power system are provided. The generator output is controlled by the power generation controller 4 in the private power generation equipment connected to the system, and the governor 3 is operated to follow the power generation command, thereby controlling the generator output. Here, in the power generation control, in the case of interconnection with reverse power flow, it is conceivable that the power generation constant control is performed at a point where the power generation efficiency is high in consideration of the operation rate of the private power generation facility.

【0004】[0004]

【発明が解決しようとする課題】電力系統へ電力を送り
出す逆潮流ありの系統連系において、発電電力一定制御
を行った場合、逆潮流となる電力(逆送電力)は構内負
荷で消費した残りの電力であり、これは成り行き任せと
なる。この逆送電力を託送することを考える場合、現状
の成り行き任せでは特定規模電気事業者としての同時同
量を満たすことは不可能である。この同時同量を解決す
るためには、発電コントロールを同時同量を満たすため
の制御に変更するか、そのための制御装置の追加設置が
必要となる。
In a system interconnection with a reverse power flow for sending power to a power system, when constant power generation control is performed, the reverse power flow (reverse power) is the remaining power consumed by the local load. Power, which is up to you. When considering the consignment of this reverse transmission power, it is impossible to satisfy the same amount as a specific-scale electric power company at the current time. In order to solve the simultaneous same amount, it is necessary to change the power generation control to a control that satisfies the simultaneous equal amount, or to additionally install a control device for that.

【0005】本発明は、このような事情に基づき、発電
コントローラに組み入れるか、発電コントローラに対し
て上位から指令を与えることで同時同量を満たす電力託
送システム用発電電力制御装置を提供することを目的と
する。
The present invention provides a power generation control device for a power transmission system that satisfies the same amount by incorporating it into a power generation controller or giving a command from a higher order to the power generation controller based on such circumstances. Aim.

【0006】[0006]

【課題を解決するための手段】上記課題を解消するため
に、請求項1に記載の発明は、電力系統に連系する自家
用発電設備がその発電電力を電力系統に逆送し、電力系
統を介して前記自家用発電設備からの発電電力の供給を
受ける需要家からなる電力託送システム用発電電力制御
装置において、前記自家用発電設備設置の電力量計によ
り計量された前記自家用発電設備が電力系統に逆送した
送電電力量と、前記需要家の電力量計により計量された
前記需要家が受電した受電電力量とを基に、所定単位時
間毎の時間区間における前記受電電力量と前記送電電力
量を一致させるため、前記所定単位時間毎の時間区間内
を所定のサンプリングで区切るサンプリング設定手段
と、前記サンプリング設定手段にて設定された区間毎の
前記受電電力量と前記送電電力量に基づき、今回の区間
における受電電力量と送電電力量の差分を次回の区間に
て補うために該差分を次回の区間幅で平均化して次回の
発電電力指令の補正とする第1の補正手段と、前回の区
間における受電電力量と今回の区間における受電電力量
とから決まる受電電力の変化率によって受電電力の変動
に対する発電電力指令の補正とする第2の補正手段とを
設け、今回の区間の受電電力量を区間幅で平均化した値
に前記第1の補正手段による補正値と前記第2の補正手
段による補正値を加算し、次回の区間における発電電力
指令とすることを特徴とする。
In order to solve the above-mentioned problems, an invention according to claim 1 is provided in which a private power generation facility connected to an electric power system transmits the generated electric power back to the electric power system, and In the generated power control device for a power transfer system comprising a customer who receives the power generated from the private power generation facility via the private power generation facility, the private power generation facility measured by the watt hour meter installed in the private power generation facility is connected to the power grid. Based on the transmitted power amount transmitted and the received power amount received by the customer measured by the power meter of the customer, the received power amount and the transmitted power amount in a time section for each predetermined unit time are calculated. In order to match, the sampling setting unit that divides the time section of each predetermined unit time by a predetermined sampling, and the received power amount for each section set by the sampling setting unit On the basis of the transmitted power, the difference between the received power and the transmitted power in the current section is compensated in the next section, and the difference is averaged in the next section width to be used as a correction for the next generated power command. Correction means, and a second correction means for correcting the generated power command with respect to the fluctuation of the received power by the change rate of the received power determined from the received power amount in the previous section and the received power amount in the current section, The correction value by the first correction means and the correction value by the second correction means are added to a value obtained by averaging the received power amount in the current section by the section width, and the generated power command is set in the next section. Features.

【0007】請求項2に記載の発明は、請求項1記載の
電力託送システム用発電電力制御装置において、受電電
力の変動が大きい場合には、次回の区間の幅を短くする
ように前記サンプリング設定手段にて設定することを特
徴とする。
According to a second aspect of the present invention, in the power generation control apparatus for an electric power transmission system according to the first aspect, when the received power fluctuates greatly, the sampling setting is set so as to shorten the width of the next section. It is characterized by setting by means.

【0008】請求項3に記載の発明は、請求項1記載の
電力託送システム用発電電力制御装置において、電力系
統に連系する自家用発電設備がその発電電力を電力系統
に逆送し、電力系統を介して前記自家用発電設備からの
発電電力の供給を受ける需要家からなる電力託送システ
ム用発電電力制御装置において、前記自家用発電設備設
置の電力量計により計量された前記自家用発電設備が電
力系統に逆送した送電電力量と、前記需要家の電力量計
により計量された前記需要家が受電した受電電力量を基
に、所定単位時間毎の区間時間における前記受電電力量
と前記送電電力量を一致させるために前記所定単位時間
毎の時間区間内を所定のサンプリングで区切るサンプリ
ング設定手段と、前記サンプリング設定手段にて設定さ
れた区間毎の前記受電電力量と前記送電電力量に基づ
き、今回および前回までの区間の前記受電電力量と前記
送電電力量から受電電力量の移動平均値と送電電力量の
移動平均値を取得し、今回の受電電力量の移動平均値お
よび送電電力量の移動平均値の差分を次回の区間にて補
うために該差分を区間幅で平均化して次回の発電電力指
令の補正とする第3の補正手段と、前回の受電電力量の
移動平均値と今回の受電電力量の移動平均値とから決ま
る受電電力の変化率によって受電電力の変動に対する発
電電力指令の補正とする第4の補正手段とを設け、今回
の受電電力量の移動平均値を区間幅で平均化した値に前
記第3の補正手段による補正値と前記第4の補正手段に
よる補正値を加算し、次回の区間における発電電力指令
とすることを特徴とする。
According to a third aspect of the present invention, in the power generation control apparatus for an electric power transmission system according to the first aspect, the private power generation equipment connected to the power system reversely transmits the generated power to the power system. In the power generation control device for a power transfer system comprising a customer who receives the power generated from the private power generation facility via the private power generation facility, the private power generation facility measured by the watt hour meter installed in the private power generation facility is connected to the power system. Based on the amount of power transmitted backward and the amount of power received by the customer measured by the watt hour meter of the customer, the amount of power received and the amount of power transmitted in the section time for each predetermined unit time are calculated. Sampling setting means for dividing the time section of each predetermined unit time by predetermined sampling so as to match each other, and the sampling setting means for each section set by the sampling setting means. Based on the electric power amount and the transmitted electric power amount, the moving average value of the received electric power amount and the moving average value of the transmitted electric power amount are obtained from the received electric power amount and the transmitted electric power amount in the section up to and including the previous time. A third correction means for averaging the difference between the moving average value of the power amount and the moving average value of the transmission power amount in the next section and averaging the difference with the section width to correct the next generation power command; And a fourth correction unit that corrects a generated power command for a change in received power based on a change rate of received power determined from the moving average value of the received power amount and the moving average value of the current received power amount. The correction value by the third correction means and the correction value by the fourth correction means are added to a value obtained by averaging the moving average value of the received power amount by the section width, and the generated power command is made in the next section. Features.

【0009】請求項4に記載の発明は、請求項1または
請求項3記載の電力託送システム用発電電力制御装置に
おいて、所定単位時間は30分であることを特徴とす
る。請求項1ないし請求項4に記載の発明によると、逆
潮流ありで系統連系している自家用発電設備が、電力系
統を介して需要家に対し電力託送を行う場合に、需要家
設置の電力量計と発電所設置の電力量計の計量値を基
に、所定の単位時間での需要家の受電電力量に発電所の
送電電力量を追従させることで同時同量とする電力量制
御を行う電力託送システム用発電電力制御装置を提供で
きる。
According to a fourth aspect of the present invention, in the power generation control apparatus for an electric power transmission system according to the first or third aspect, the predetermined unit time is 30 minutes. According to the first to fourth aspects of the present invention, when a private power generation system that is connected to a system with a reverse power flow transmits power to a customer via a power system, the power installed by the customer is Based on the measured values of the energy meter and the watt hour meter installed at the power plant, the amount of power transmitted to the power plant is made to follow the amount of power received by the customer in a given unit of time, so that the amount of power transmitted is controlled at the same time. It is possible to provide a generated power control device for a power transfer system.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図を
参照して説明する。図1は本発明の第1の実施形態(請
求項1,請求項4対応)の電力託送システム用発電電力
制御装置の構成図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a power generation control device for a power transfer system according to a first embodiment (corresponding to claims 1 and 4) of the present invention.

【0011】本実施形態は図5の従来の発電電力システ
ムに、さらに次の構成を加えたものである。すなわち、
自家用発電設備100から電力系統300へ送電する送
電電力量を検出する電力量計13と、電力系統300か
ら需要家200が受電する受電電力量を検出する電力量
計23と、電力量計13で検出した送電電力量と、電力
量計23で検出した受電電力量に基づき、発電コントロ
ーラ4に対して同時同量を満たすための発電指令を与え
る電力託送用発電電力制御装置12を新たに設置したも
のである。
This embodiment is obtained by further adding the following configuration to the conventional power generation system shown in FIG. That is,
A watt-hour meter 13 that detects the amount of power transmitted from the private power generation facility 100 to the power system 300, a watt-hour meter 23 that detects the amount of power received by the customer 200 from the power system 300, and the watt-hour meter 13. Based on the detected transmitted power amount and the received power amount detected by the watt-hour meter 23, a power transmission / transmission power control device 12 for providing a power generation command to the power generation controller 4 to simultaneously satisfy the same amount is newly installed. Things.

【0012】また、電力系統300を介して託送された
電力は、遮断機22を介して負荷21に供給されること
になる。さらに、電力量計23で検出された需要家の受
電電力量の情報を電力託送用発電電力制御装置12へ伝
達するために、通信手段として、例えば、電話回線等既
設の通信設備を活用することが考えられる。
The electric power transferred via the electric power system 300 is supplied to the load 21 via the circuit breaker 22. Further, in order to transmit the information on the amount of power received by the consumer detected by the watt-hour meter 23 to the power generation control device 12 for power transmission, existing communication equipment such as a telephone line is used as communication means. Can be considered.

【0013】図2は図1の電力託送システム用発電電力
制御装置による発電電力制御を説明するグラフである。
30分間の需要家受電電力量と自家用発電設備送電電力
量を一致させる同時同量を満たすため、図2のように3
0分の時間を例えば5分毎に区切り、このサンプリング
でもって需要家受電電力量と自家発電設備送電電力量を
取得することで自家用発電設備の電力指令を決定し、発
電電力を制御する。図2中のPLは需要家受電電力の推
移を表している。
FIG. 2 is a graph illustrating generated power control by the generated power control device for the power transfer system of FIG.
As shown in FIG. 2, to satisfy the same amount at the same time that the amount of power received by the customer for 30 minutes matches the amount of power transmitted to the private power generation facility,
The time of 0 minute is divided into, for example, every 5 minutes, and the power command of the private power generation facility is determined by acquiring the power received by the customer and the power transmitted by the private power generation facility by sampling, thereby controlling the generated power. PL in FIG. 2 represents the transition of the customer received power.

【0014】今回のサンプリング区間がtn、前回のサ
ンプリング区間がtb、次回のサンプリング区間がta
とする。Pbは前回のサンプリング区間(tbの区間)
におけるPLの推移から決まる需要家受電電力量の平均
値である。同様に、Prnは、今回のサンプリング区間
における送電電力を表している。tnの区間において需
要家受電電力量と自家用発電設備からの送電電力量には
(Pn−Prn)×tnの差が生じている。同時同量を
実現する上ではこの差分を埋める必要があるので、差分
に相当する電力量を次回の区間に上乗せするために差分
を次回の区間幅(ta)で平均化して電力指令に対する
補正値(第1の補正)とする。つまり、(Pn−Pr
n)×tn/taであるが、tn=taのため(Pn−
Prn)が第1の補正となる。
The current sampling interval is tn, the previous sampling interval is tb, and the next sampling interval is ta.
And Pb is the previous sampling interval (tb interval)
Is the average value of the amount of power received by the customer determined from the transition of PL in the above. Similarly, Prn represents transmission power in the current sampling section. In the section of tn, a difference of (Pn−Prn) × tn occurs between the power received from the customer and the power transmitted from the private power generation equipment. In order to realize the same amount at the same time, it is necessary to fill the difference. Therefore, in order to add the electric energy corresponding to the difference to the next section, the difference is averaged over the next section width (ta), and the correction value for the power command is obtained. (First correction). That is, (Pn-Pr
n) × tn / ta, but since tn = ta, (Pn−
Prn) is the first correction.

【0015】しかし、図2のPLに示すように需要家受
電電力が変動(この図では増加傾向)していると、第1
の補正のように差分を次回の区間で補正しているだけで
は差分が必ず残り、それも大きな差分となる可能性があ
る。これに対して、需要家受電電力量の平均値が前回
(tbの区間)のPbから今回(tnの区間)のPnへ
変動しているように、今回から次回(taの区間)へも
同様の変動が生じると想定して、PbからPnへの変化
率に従った補正を施す。これを第2の補正とする。前回
のPbから今回のPnへの変化率をAとすると、 A=(Pn−Pb)/((tb+tn)/2) と記述することができる。
However, as shown by PL in FIG. 2, if the customer received power fluctuates (increases in this figure), the first
If the difference is corrected only in the next section as in the case of the correction described above, the difference always remains, and it may be a large difference. On the other hand, as in the case where the average value of the amount of electric power received by the customer has changed from Pb of the previous time (section of tb) to Pn of this time (section of tn), the same applies from the current time to the next time (section of ta). , The correction is performed according to the rate of change from Pb to Pn. This is the second correction. If the rate of change from the previous Pb to the current Pn is A, then A = (Pn-Pb) / ((tb + tn) / 2).

【0016】今回から次回の時間にこの変化率をあては
めると、A×((tn+ta)/2)にて補正量が決定
される。tb=tn=taなので、第2補正は、(Pn
−Pb)となる。よって、次回のサンプリング区間(t
a)における電力指令値は、今回の需要家受電電力の平
均値Pnをベースとし、第1の補正値と第2の補正値を
加算することで得られる。図2中のPraが次回のサン
プリング区間(ta)における電力指令値を示してい
る。
When this rate of change is applied from this time to the next time, the correction amount is determined by A × ((tn + ta) / 2). Since tb = tn = ta, the second correction is (Pn
-Pb). Therefore, the next sampling interval (t
The power command value in a) is obtained by adding the first correction value and the second correction value based on the average value Pn of the current customer received power. Pra in FIG. 2 indicates a power command value in the next sampling section (ta).

【0017】このような電力指令の決定は、電力託送用
発電電力制御装置12をマイクロコンピュータ等で構成
することにより実現できるものであり、サンプリングを
決定する手段を設けておけばサンプリングを5分に限定
せず、同時同量の制御精度を上げるためにもっと短いサ
ンプリングに設定することが可能となる。
Such determination of the power command can be realized by configuring the power transmission power generation control device 12 with a microcomputer or the like. If a means for determining the sampling is provided, the sampling can be performed in five minutes. Without limitation, it is possible to set a shorter sampling in order to increase the control accuracy of the same amount at the same time.

【0018】図3は本発明の第2の実施形態(請求項2
対応)の電力託送システムにおける発電電力の制御を説
明するためのグラフである。本実施の形態は、図2の実
施の形態において前回の需要家受電電力量と今回の需要
家受電電力量の差分が大きい場合には需要家受電電力の
急激な変動が予測されるため、サンプリングの時間幅を
短くすることで需要家受電電力の変動に追従しやすくす
るものである。
FIG. 3 shows a second embodiment of the present invention.
10 is a graph for explaining control of generated power in the power transfer system (corresponding). In the present embodiment, if the difference between the previous customer received power amount and the current customer received power amount is large in the embodiment of FIG. In this case, it is possible to easily follow the fluctuation of the power received by the customer by shortening the time width.

【0019】図3における図2と同じ記号の意味は、図
2と同じである。区間tbからtnの間で需要家受電電
力量が大きく変化した場合、図3に示すように例えばサ
ンプリングをtnの5分からtaでは2.5分へと短く
する。tnは今回のサンプリング区間であり、次回のサ
ンプリング区間taをtnより短くし、taにおける電
力指令値Pra2をtaの幅に基づいて決定する。tn
の区間において需要家受電電力量と自家用発電設備から
の送電電力量には(Pn−Prn)×tnの差が生じて
いる。図2の実施の形態と同様に、差分に相当する電力
量を次回の区間に上乗せするために差分を次回の区間幅
(ta)で平均化する第1の補正は、(Pn−Prn)
×tn/taとなり、今の場合、(Pn−Prn)×2
となる。
The meanings of the same symbols in FIG. 3 as in FIG. 2 are the same as those in FIG. In the case where the amount of power received by the customer greatly changes between the sections tb and tn, as shown in FIG. 3, for example, the sampling is shortened from 5 minutes at tn to 2.5 minutes at ta. tn is the current sampling interval. The next sampling interval ta is shorter than tn, and the power command value Pra2 at ta is determined based on the width of ta. tn
In the section, there is a difference of (Pn-Prn) × tn between the power received from the customer and the power transmitted from the private power generation equipment. As in the embodiment of FIG. 2, the first correction for averaging the difference with the next section width (ta) in order to add the electric energy corresponding to the difference to the next section is (Pn-Prn)
× tn / ta, and in this case, (Pn−Prn) × 2
Becomes

【0020】さらに第2の補正は、図2の実施の形態と
同様に、前回のPbから今回のPnへの変化率は、A=
(Pn−Pb)/((tb+tn)/2)であり、補正
量は、A×((tn+ta)/2)=(Pn−Pb)×
(tn+ta)/(tb+tn)にて決定される。今の
場合、tb=tn、ta=tn/2なので、第2の補正
は、(Pn−Pb)×3/4となる。このようにサンプ
リングの時間幅を変え、それに応じた補正量を設定する
ことで、需要家受電電力が急激に変動しても追従しやす
くなる。
Further, in the second correction, similarly to the embodiment of FIG. 2, the rate of change from the previous Pb to the current Pn is A =
(Pn−Pb) / ((tb + tn) / 2), and the correction amount is A × ((tn + ta) / 2) = (Pn−Pb) ×
It is determined by (tn + ta) / (tb + tn). In this case, since tb = tn and ta = tn / 2, the second correction is (Pn−Pb) × 3/4. In this manner, by changing the sampling time width and setting the correction amount according to the time width, it becomes easy to follow up even if the customer received power changes rapidly.

【0021】本実施形態は、図2の実施の形態と同様に
電力託送用発電電力制御装置12をマイクロコンピュー
タ等で構成すれば、前回の需要家受電電力量と今回の需
要家受電電力量の差分に基づいて、サンプリングを決定
する手段におけるサンプリング設定の変更は実現できる
ことである。
In this embodiment, if the power transmission / reception power control device 12 is constituted by a microcomputer or the like in the same manner as in the embodiment of FIG. 2, the previous customer's received power amount and the current customer's received power amount are calculated. The change of the sampling setting in the means for determining the sampling based on the difference can be realized.

【0022】図4は本発明の第3の実施形態(請求項3
及び請求項4対応)の電力託送システムにおける発電電
力の制御を説明するためのグラフである。図2の実施の
形態でも触れたように短いサンプリング区間にすること
が同時同量の制御精度を上げることに寄与できると考え
られる。しかし、需要家受電電力が短時間で上下した場
合は、制御系にとってノイズ的な外乱になりかねない。
目的はあくまで30分間の需要家受電電力量と自家用発
電設備送電電力量を一致させることにあるので、移動平
均を取ることで需要家受電電力の短時間の上下動を相殺
して緩やかに捉えて頻繁に発電指令の急な上げ指令や下
げ指令を出さないようにする。
FIG. 4 shows a third embodiment of the present invention.
And FIG. 4 is a graph for explaining control of generated power in a power transfer system according to claim 4). As mentioned in the embodiment of FIG. 2, it is considered that the short sampling interval can contribute to the improvement of the control accuracy of the same amount. However, if the customer received power fluctuates in a short time, it may cause noise disturbance to the control system.
The purpose is to match the power received by the customer for 30 minutes with the power transmitted by the private power generation equipment. Do not issue frequent power generation commands such as sudden increase or decrease commands.

【0023】図4中の記号で図2中の記号と同じ記号は
同じ意味であり、図4では例えばサンプリングを1分間
として、5区間(5分間)にて移動平均を取得してい
る。Pbhは前回のサンプリング区間(tb)までの需
要家受電電力量の移動平均値である。同様に、Pnhは
今回のサンプリング区間(tn)までの需要家受電電力
量の移動平均値である。Prnhは、今回のサンプリン
グ区間までの送電電力量の移動平均値を表している。t
nのタイミングにおける移動平均値の取得により、需要
家受電電力量の移動平均値と自家用発電設備からの送電
電力量の移動平均値から、需要家受電電力量と自家用発
電設備からの送電電力量には(Pnh−Prnh)×t
nの差が生じている。同時同量を実現する上ではこの差
分を埋める必要があるので、差分に相当する電力量を次
回の区間に上乗せするために差分を次回の区間幅(t
a)で平均化して電力指令に対する補正値(第1の補
正)とする。つまり、(Pnh−Prnh)×tn/t
aであるが、tn=taのため(Pnh−Prnh)が
第1の補正となる。
In the symbols in FIG. 4, the same symbols as those in FIG. 2 have the same meaning. In FIG. 4, for example, sampling is performed for one minute, and a moving average is obtained in five sections (five minutes). Pbh is a moving average of the amount of power received by the customer up to the previous sampling interval (tb). Similarly, Pnh is a moving average of the amount of power received by the customer up to the current sampling interval (tn). Prnh represents a moving average of the transmitted power amount up to the current sampling interval. t
By acquiring the moving average value at the timing of n, the moving average value of the power received from the customer and the moving average value of the power transmitted from the private power generation facility are converted into the power received from the customer and the power transmitted from the private power generation facility. Is (Pnh-Prnh) × t
There is a difference of n. In order to realize the same amount at the same time, it is necessary to fill in the difference. Therefore, in order to add the electric energy corresponding to the difference to the next section, the difference is set to the next section width (t
Averaged in a) to obtain a correction value (first correction) for the power command. That is, (Pnh-Prnh) × tn / t
Although it is a, since tn = ta, (Pnh-Prnh) is the first correction.

【0024】しかし、図2のPLに示すように需要家受
電電力が変動(この図では増加傾向)していると第1の
補正のように差分を次回の区間で補正しているだけでは
差分が必ず残り、それも大きな差分となる可能性があ
る。これに対して、需要家受電電力量の移動平均値が前
回のPbhから今回のPnhへ変動しているように、今
回から次回(taまでの移動平均)へも同様の変動が生
じると想定して、PbhからPnhへの変化率に従った
補正を施す。これを第2の補正とする。前回のPbhか
ら今回のPnhへの変化率をA2とすると、 A2=(Pnh−Pbh)/((tb+tn)/2) と記述することができる。
However, if the customer received power fluctuates (increases in this figure) as shown by PL in FIG. 2, the difference is corrected only by correcting the difference in the next section as in the first correction. Will always remain, which can also be a large difference. On the other hand, it is assumed that the same fluctuation occurs from this time to the next time (moving average until ta), as in the case where the moving average value of the electric power received by the consumer changes from the previous Pbh to the current Pnh. Then, correction is performed according to the rate of change from Pbh to Pnh. This is the second correction. If the rate of change from the previous Pbh to the current Pnh is A2, then A2 = (Pnh-Pbh) / ((tb + tn) / 2).

【0025】今回から次回の時間にこの変化率をあては
めると、A×((tn+ta)/2)にて補正量が決定
される。tb=tn=taなので、第2の補正は、(P
nh−Pbh)となる。よって、次回のサンプリング区
間(ta)における電力指令値は、今回までの需要家受
電電力の移動平均Pnhをベースとし、第1の補正値と
第2の補正値を加算することで得られる。図4中のPr
a3が次回のサンプリング区間(ta)における電力指
令値を示している。このようにサンプリング区間を短く
設定した場合においては、移動平均を取ることで需要家
受電電力の短時間の上下動を相殺して緩やかに捉えて頻
繁に発電指令の急な上げ指令や下げ指令を出さないよう
にして電力追従が可能となる。
When this change rate is applied from the current time to the next time, the correction amount is determined by A × ((tn + ta) / 2). Since tb = tn = ta, the second correction is (P
nh-Pbh). Therefore, the power command value in the next sampling section (ta) is obtained by adding the first correction value and the second correction value based on the moving average Pnh of the customer received power up to this time. Pr in FIG.
a3 indicates a power command value in the next sampling section (ta). When the sampling interval is set short in this way, taking a moving average cancels out the short-term up and down movements of the customer's received power, and captures it gently to frequently raise a sudden increase or decrease in the power generation command. It is possible to follow the power by not outputting the power.

【0026】[0026]

【発明の効果】以上説明したように、本発明によると、
逆潮流ありで系統連系している自家用発電設備が、電力
系統を介して需要家に対し電力託送を行う場合に、需要
家設置の電力量計と発電所設置の電力量計の計量値を基
に、所定の単位時間での需要家の受電電力量に発電所の
送電電力量を追従させることで同時同量とする電力量制
御を行う電力託送システム用発電電力制御装置を提供す
ることができる。
As described above, according to the present invention,
When a private power generation system that is connected to the grid with reverse power flow transfers power to consumers via the power grid, the measured values of the watt hour meter installed at the customer and the watt hour meter installed at the power plant are used. Based on the above, it is possible to provide a generated power control device for a power transmission and transmission system that performs power amount control to simultaneously make the same amount by making the transmitted power amount of the power plant follow the received power amount of the customer in a predetermined unit time. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態である電力託送システ
ム用発電電力装置の構成図。
FIG. 1 is a configuration diagram of a power generation device for a power transfer system according to a first embodiment of the present invention.

【図2】図1の第1の実施形態の動作を説明するための
グラフ。
FIG. 2 is a graph for explaining the operation of the first embodiment of FIG. 1;

【図3】本発明の第2の実施形態の動作を説明するため
のグラフ。
FIG. 3 is a graph for explaining the operation of the second embodiment of the present invention.

【図4】本発明の第3の実施形態の動作を説明するため
のグラフ。
FIG. 4 is a graph for explaining the operation of the third embodiment of the present invention.

【図5】従来の発電電力制御装置による逆潮流運転を行
う自家用発電設備の構成図。
FIG. 5 is a configuration diagram of a private power generation facility that performs reverse power flow operation by a conventional generated power control device.

【符号の説明】[Explanation of symbols]

1…発電機、2…原動機、3…調速機、4…発電コント
ローラ、5…AVR、6,7,9,22…遮断機、8,
21…負荷、10…発電機保護装置,11…系統連系保
護装置、12…電力託送用発電電力制御装置、13,2
3…電力量計、100…自家用発電設備、200…需要
家、300…電力系統。
DESCRIPTION OF SYMBOLS 1 ... Generator, 2 ... Prime mover, 3 ... Governor, 4 ... Generator controller, 5 ... AVR, 6, 7, 9, 22 ... Breaker, 8,
Reference numeral 21: load, 10: generator protection device, 11: grid connection protection device, 12: power generation control device for power transmission, 13, 2
3: Electricity meter, 100: Private power generation equipment, 200: Consumer, 300: Electric power system.

フロントページの続き (72)発明者 伊藤 整 兵庫県姫路市網干区浜田1000番地 西芝電 機株式会社内 (72)発明者 加藤 豊邦 兵庫県姫路市網干区浜田1000番地 西芝電 機株式会社内 (72)発明者 市野 智也 兵庫県姫路市網干区浜田1000番地 西芝電 機株式会社内 Fターム(参考) 5G066 HA15 HB02 5H590 AA11 AA15 AB11 CA21 CC29 CE01 DD64 EB02 EB14 FA06 GA02 HA02 HB04 JB10 Continuing on the front page (72) Inventor: Sei Ito 1000, Hamada, Aboshi-ku, Himeji-shi, Hyogo Nishiba Electric Machinery Co., Ltd. ) Inventor Tomoya Ichino 1000 Hamada, Aboshi-ku, Himeji-shi, Hyogo F-term inside Nishiba Electric Machinery Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電力系統に連系する自家用発電設備がそ
の発電電力を電力系統に逆送し、電力系統を介して前記
自家用発電設備からの発電電力の供給を受ける需要家か
らなる電力託送システム用発電電力制御装置において、
前記自家用発電設備設置の電力量計により計量された前
記自家用発電設備が電力系統に逆送した送電電力量と、
前記需要家の電力量計により計量された前記需要家が受
電した受電電力量とを基に、所定単位時間毎の時間区間
における前記受電電力量と前記送電電力量を一致させる
ため、前記所定単位時間毎の時間区間内を所定のサンプ
リングで区切るサンプリング設定手段と、前記サンプリ
ング設定手段にて設定された区間毎の前記受電電力量と
前記送電電力量に基づき、今回の区間における受電電力
量と送電電力量の差分を次回の区間にて補うために該差
分を次回の区間幅で平均化して次回の発電電力指令の補
正とする第1の補正手段と、前回の区間における受電電
力量と今回の区間における受電電力量とから決まる受電
電力の変化率によって受電電力の変動に対する発電電力
指令の補正とする第2の補正手段とを設け、今回の区間
の受電電力量を区間幅で平均化した値に前記第1の補正
手段による補正値と前記第2の補正手段による補正値を
加算し、次回の区間における発電電力指令とすることを
特徴とする電力託送システム用発電電力制御装置。
1. An electric power transmission system comprising a customer connected to an electric power system, a private power generation facility sends the generated electric power back to the electric power system, and receives a supply of the generated electric power from the private electric power generation facility via the electric power system. Power generation control device for
The amount of transmitted power that the private power generation facility was back-fed to the power system, measured by the watt hour meter of the private power generation facility installation,
On the basis of the received power amount received by the customer measured by the power meter of the customer, based on the received power amount and the transmitted power amount in a time section for each predetermined unit time, the predetermined unit Sampling setting means for dividing the time section of each time by predetermined sampling, and the received power amount and transmission power in the current section based on the received power amount and the transmitted power amount for each section set by the sampling setting means. First correction means for averaging the difference with the next section width to compensate for the difference in electric power amount in the next section and correcting the next generated power command; Second correction means for correcting a generated power command for a change in received power based on a change rate of received power determined from the received power amount in the section, and A power generation command for a power transfer system, wherein a correction value by the first correction means and a correction value by the second correction means are added to a value averaged by a width to generate a power generation command in a next section. Control device.
【請求項2】 受電電力の変動が大きい場合には、次回
の区間の幅を短くするように前記サンプリング設定手段
にて設定することを特徴とする請求項1記載の電力託送
システム用発電電力制御装置。
2. The generated power control for a power transfer system according to claim 1, wherein when the received power fluctuates greatly, the sampling setting means sets the width of the next section to be short. apparatus.
【請求項3】 電力系統に連系する自家用発電設備がそ
の発電電力を電力系統に逆送し、電力系統を介して前記
自家用発電設備からの発電電力の供給を受ける需要家か
らなる電力託送システム用発電電力制御装置において、
前記自家用発電設備設置の電力量計により計量された前
記自家用発電設備が電力系統に逆送した送電電力量と、
前記需要家の電力量計により計量された前記需要家が受
電した受電電力量を基に、所定単位時間毎の区間時間に
おける前記受電電力量と前記送電電力量を一致させるた
めに前記所定単位時間毎の時間区間内を所定のサンプリ
ングで区切るサンプリング設定手段と、前記サンプリン
グ設定手段にて設定された区間毎の前記受電電力量と前
記送電電力量に基づき、今回および前回までの区間の前
記受電電力量と前記送電電力量から受電電力量の移動平
均値と送電電力量の移動平均値を取得し、今回の受電電
力量の移動平均値および送電電力量の移動平均値の差分
を次回の区間にて補うために該差分を区間幅で平均化し
て次回の発電電力指令の補正とする第3の補正手段と、
前回の受電電力量の移動平均値と今回の受電電力量の移
動平均値とから決まる受電電力の変化率によって受電電
力の変動に対する発電電力指令の補正とする第4の補正
手段とを設け、今回の受電電力量の移動平均値を区間幅
で平均化した値に前記第3の補正手段による補正値と前
記第4の補正手段による補正値を加算し、次回の区間に
おける発電電力指令とすることを特徴とする電力託送シ
ステム用発電電力制御装置。
3. An electric power transmission system comprising a customer connected to a power system, a private power generation facility that transmits the generated power back to the power system, and receives a supply of the generated power from the private power generation facility via the power system. Power generation control device for
The amount of transmitted power that the private power generation facility was back-fed to the power system, measured by the watt hour meter of the private power generation facility installation,
Based on the amount of power received by the consumer measured by the watt hour meter of the customer, the predetermined unit time for matching the received power and the transmitted power in the section time for each predetermined unit time Sampling setting means for dividing a time interval within each time interval by predetermined sampling; and the power receiving power of the current and previous sections based on the received power amount and the transmitted power amount for each interval set by the sampling setting means. The moving average value of the received power amount and the moving average value of the transmitted power amount are obtained from the power amount and the transmitted power amount, and the difference between the moving average value of the received power amount and the moving average value of the transmitted power amount in the next section is obtained. Third correction means for averaging the difference with the section width to compensate for the next generated power command to compensate for the difference,
A fourth correction means for correcting a generated power command for a change in received power based on a change rate of received power determined by a moving average value of the previous received power amount and a moving average value of the current received power amount; Adding a correction value by the third correction means and a correction value by the fourth correction means to a value obtained by averaging the moving average value of the received power amount by the section width to generate a power generation command in the next section. A power generation control device for a power transfer system, comprising:
【請求項4】 所定単位時間は30分であることを特徴
とする請求項1または請求項3記載の電力託送システム
用発電電力制御装置。
4. The power generation control device for a power transmission system according to claim 1, wherein the predetermined unit time is 30 minutes.
JP2001046181A 2001-02-22 2001-02-22 Power generation control device for power consignment system Expired - Fee Related JP3753946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001046181A JP3753946B2 (en) 2001-02-22 2001-02-22 Power generation control device for power consignment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001046181A JP3753946B2 (en) 2001-02-22 2001-02-22 Power generation control device for power consignment system

Publications (2)

Publication Number Publication Date
JP2002247768A true JP2002247768A (en) 2002-08-30
JP3753946B2 JP3753946B2 (en) 2006-03-08

Family

ID=18907854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001046181A Expired - Fee Related JP3753946B2 (en) 2001-02-22 2001-02-22 Power generation control device for power consignment system

Country Status (1)

Country Link
JP (1) JP3753946B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262457A (en) * 2001-02-27 2002-09-13 Sanyo Electric Co Ltd Electric power dealing method and dealing system
JP2004312904A (en) * 2003-04-09 2004-11-04 Toshiba Corp Power control apparatus for consignment
JP2005184934A (en) * 2003-12-17 2005-07-07 Yanmar Co Ltd Receiving power constant controller in high variation load
JP2013027196A (en) * 2011-07-22 2013-02-04 Mitsubishi Electric Corp Receiving demand supervisory control method and private power generation plant
JP2021141769A (en) * 2020-03-06 2021-09-16 日新電機株式会社 Power monitoring control device, power monitoring control method, and control program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327152A (en) * 1993-05-14 1994-11-25 Hitachi Ltd Controller for power interchange facility
JPH10322905A (en) * 1997-05-22 1998-12-04 Mitsubishi Electric Corp Contract power excess prevention device for railway substation
JP2002084660A (en) * 2000-09-07 2002-03-22 Osaka Gas Co Ltd Control method for generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327152A (en) * 1993-05-14 1994-11-25 Hitachi Ltd Controller for power interchange facility
JPH10322905A (en) * 1997-05-22 1998-12-04 Mitsubishi Electric Corp Contract power excess prevention device for railway substation
JP2002084660A (en) * 2000-09-07 2002-03-22 Osaka Gas Co Ltd Control method for generator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262457A (en) * 2001-02-27 2002-09-13 Sanyo Electric Co Ltd Electric power dealing method and dealing system
JP2004312904A (en) * 2003-04-09 2004-11-04 Toshiba Corp Power control apparatus for consignment
JP2005184934A (en) * 2003-12-17 2005-07-07 Yanmar Co Ltd Receiving power constant controller in high variation load
JP2013027196A (en) * 2011-07-22 2013-02-04 Mitsubishi Electric Corp Receiving demand supervisory control method and private power generation plant
JP2021141769A (en) * 2020-03-06 2021-09-16 日新電機株式会社 Power monitoring control device, power monitoring control method, and control program
JP7184060B2 (en) 2020-03-06 2022-12-06 日新電機株式会社 POWER MONITORING AND CONTROLLER, POWER MONITORING AND CONTROL METHOD, AND CONTROL PROGRAM

Also Published As

Publication number Publication date
JP3753946B2 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
EP2518854B1 (en) Electric power supply system
US8427131B2 (en) Voltage regulation at a remote location using measurements from a remote metering device
US20050125104A1 (en) Electrical power distribution control systems and processes
EP3360225B1 (en) Solar power conversion system and method
US20150333517A1 (en) Self forming microgrids
US9997921B2 (en) Solar power conversion system and method
US9217764B2 (en) Measurement and modulation in real time of the electrical consumption of a plurality of electrical appliances
Markushevich The benefits and challenges of the integrated volt/var optimization in the smart grid environment
EP2503503A1 (en) Systems and methods for generating a utility bill
CN114728599A (en) Electrical device for energy control
JP5820240B2 (en) Power system control system and power system control method
JP2002247768A (en) Generated power control device for power consignment system
EP2503504A1 (en) Systems and methods for generating a bill
JP2004040956A (en) Power supply management method
Asano et al. Secondary var controllers: A new approach to increase solar hosting capacity in distribution grids
WO2014167830A1 (en) Power control system
US20240097442A1 (en) Control method, computer program product, control system & use
JP3806029B2 (en) Power generation control device for power consignment
EP2503499A1 (en) Systems and methods for generating a bill
CN113541124A (en) Voltage current distribution type compromise control system for direct-current micro-grid
JP4031412B2 (en) Power generation control device and program for power consignment
JP2002262457A (en) Electric power dealing method and dealing system
WO2021060142A1 (en) Electrical power management system and electrical power management method
JP4148668B2 (en) Power generation system
JP4261084B2 (en) Power generation control device for power consignment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3753946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees