JP2002246623A - Dye-sensitized solar cell and method of manufacturing it - Google Patents

Dye-sensitized solar cell and method of manufacturing it

Info

Publication number
JP2002246623A
JP2002246623A JP2001044002A JP2001044002A JP2002246623A JP 2002246623 A JP2002246623 A JP 2002246623A JP 2001044002 A JP2001044002 A JP 2001044002A JP 2001044002 A JP2001044002 A JP 2001044002A JP 2002246623 A JP2002246623 A JP 2002246623A
Authority
JP
Japan
Prior art keywords
copper
dye
solar cell
thiocyanate
porous semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001044002A
Other languages
Japanese (ja)
Inventor
Ryosuke Yamanaka
良亮 山中
Reigen Kan
礼元 韓
Hideki Minoura
秀樹 箕浦
Tsukasa Yoshida
司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2001044002A priority Critical patent/JP2002246623A/en
Publication of JP2002246623A publication Critical patent/JP2002246623A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a full-solid dye-sensitized solar cell, which uses a copper thiocyanate layer as a carrier transport layer and is high in the long-term reliability, and to provide a method of manufacturing the solar cell, which raises the forming rate of the copper thiocyanate layer. SOLUTION: A dye-sensitized solar cell has a porous semiconductor layer with a dye adsorbed and a carrier transport layer constituted of a copper thiocyanate layer between a transparent conducting film formed on the surface of a transparent substrate and a conductive substrate and a method of manufacturing the solar cell is characterized in that the substrate formed with the porous semiconductor layer is dipped into the mixed solution of a copper salt selected from among a copper perchlorate, a copper chloride, a copper bronide, a copper nitrate, a copper sulfate, a copper acetate and a copper formic with a thiocyanate selected from between an alkali metallic salt thiocyanate and an ammonium thiocyanate and the copper thiocyanate layer, which is used as the carrier transport layer, is formed on the porous semiconductor layer by an electrochemical reaction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、色素増感型太陽電
池およびその作製方法に関する。さらに詳しくは、本発
明は、キャリア輸送層としてp型酸化物半導体である、
チオシアン酸銅を用いた色素増感型太陽電池および電気
化学反応(還元法)を用いた色素増感型太陽電池の作製
方法に関する。
The present invention relates to a dye-sensitized solar cell and a method for producing the same. More specifically, the present invention is a p-type oxide semiconductor as the carrier transport layer,
The present invention relates to a dye-sensitized solar cell using copper thiocyanate and a method for manufacturing a dye-sensitized solar cell using an electrochemical reaction (reduction method).

【0002】[0002]

【従来の技術】色素増感型太陽電池(以下、「太陽電
池」と称する)は、有機系太陽電池の中で高変換効率を
示すため、広く注目されている。太陽電池は、半導体電
極と対極との間に狭持されたキャリア輸送層から構成さ
れ、半導体電極に光が照射されると、この電極側で電子
が励起され、励起された電子が電気回路を通って対極に
移動し、対極に移動した電子がキャリア輸送層中をイオ
ンとして移動して半導体電極に戻り、このようなサイク
ルが繰り返されることにより電気エネルギーが取り出さ
れるものである。
2. Description of the Related Art Dye-sensitized solar cells (hereinafter referred to as "solar cells") have received widespread attention because of their high conversion efficiency among organic solar cells. A solar cell is composed of a carrier transport layer sandwiched between a semiconductor electrode and a counter electrode.When light is applied to the semiconductor electrode, electrons are excited on the electrode side, and the excited electrons form an electric circuit. Then, the electrons move to the counter electrode, and the electrons that have moved to the counter electrode move as ions in the carrier transport layer and return to the semiconductor electrode, and electric energy is extracted by repeating such a cycle.

【0003】このような太陽電池の光電変換材料として
用いられる半導体電極としては、可視光領域に吸収をも
つ分光増感色素を表面に吸着させた多孔性半導体が用い
られている。そのような太陽電池としては、例えば、遷
移金属錯体からなる分光増感色素を半導体表面に吸着さ
せた金属酸化物半導体を用いた太陽電池が挙げられる
(特許第2664194号)。
As a semiconductor electrode used as a photoelectric conversion material of such a solar cell, a porous semiconductor having a surface to which a spectral sensitizing dye having absorption in a visible light region is adsorbed is used. As such a solar cell, for example, a solar cell using a metal oxide semiconductor in which a spectral sensitizing dye composed of a transition metal complex is adsorbed on a semiconductor surface is described (Japanese Patent No. 2664194).

【0004】図3は、従来の太陽電池の層構成を示す要
部の概略断面図である。この太陽電池は次のような手順
により作製される。まず、透明支持体21の表面に形成
した透明導電体22上に、酸化チタンなどの多孔性半導
体層(半導体電極)23を形成し、その多孔性半導体層
23に色素を吸着させる。多孔性半導体層23の具体的
な作製方法としては、例えば、透明導電体22上に半導
体粒子を含有する懸濁液を塗布し、乾燥および高温焼成
する方法などが挙げられる。他方、対極25に白金26
などの触媒をコーティングし、多孔性半導体層23と白
金26を対面するように透明支持体21と対極25を重
ね合わせ、その間にキャリア輸送層として電解液24を
注入し、透明支持体21と対極25の側面をエポキシ樹
脂27などで封止する。
FIG. 3 is a schematic sectional view of a main part showing a layer structure of a conventional solar cell. This solar cell is manufactured by the following procedure. First, a porous semiconductor layer (semiconductor electrode) 23 such as titanium oxide is formed on a transparent conductor 22 formed on the surface of a transparent support 21, and a dye is adsorbed on the porous semiconductor layer 23. As a specific method of forming the porous semiconductor layer 23, for example, a method of applying a suspension containing semiconductor particles on the transparent conductor 22, drying and firing at a high temperature, and the like can be mentioned. On the other hand, platinum 26
The transparent support 21 and the counter electrode 25 are overlapped so that the porous semiconductor layer 23 and the platinum 26 face each other, and an electrolytic solution 24 is injected as a carrier transport layer between the transparent support 21 and the platinum 26 so that the transparent support 21 and the platinum 25 is sealed with an epoxy resin 27 or the like.

【0005】また、特開平8−236165号公報およ
び特開平9−27352号公報には、電解液の液漏れを
防止するために、一般式(1):
Japanese Patent Application Laid-Open Nos. 8-236165 and 9-27352 disclose a general formula (1) for preventing electrolyte leakage.

【0006】[0006]

【化1】 Embedded image

【0007】(式中、R1およびR2は同一または異なっ
て、水素原子またはメチル基であり、R3は水素原子あ
るいは低級アルキル基であり、nは1以上の整数、mは
0以上の整数であり、m/nは0〜5の範囲である)で
表されるモノマーから形成された構成単位を含む高分子
化合物で、キャリア輸送層として電解液層を固体化した
太陽電池が記載されている。
Wherein R 1 and R 2 are the same or different and each represents a hydrogen atom or a methyl group; R 3 represents a hydrogen atom or a lower alkyl group; n is an integer of 1 or more; Is an integer, and m / n is in the range of 0 to 5). A solar cell is described, which is a polymer compound containing a structural unit formed from a monomer represented by the following formula: ing.

【0008】具体的には、一般式(1)で表されるモノ
マーをエチレングリコールに溶解したモノマー溶液に、
酸化還元種であるヨウ素化合物(ヨウ化リチウムなど)
を溶解し、多孔性半導体層に含浸させた後、紫外線もし
くは熱により重合させて高分子化合物を作成し、別の酸
化還元種であるヨウ素を昇華させることによりドープを
行う。
Specifically, a monomer solution obtained by dissolving a monomer represented by the general formula (1) in ethylene glycol is
Iodine compounds that are redox species (such as lithium iodide)
Is dissolved and impregnated in the porous semiconductor layer, and then polymerized by ultraviolet light or heat to form a polymer compound, and doping is performed by sublimating iodine, another redox species.

【0009】しかし、上記の公報に記載の高分子化合物
を用いた太陽電池は、高分子化合物中にゲル状の電解液
を保持したものである。そのため、太陽電池を作製する
にあたり、ゲル状の電解液を保護するために、透明支持
体21と対極25の周囲に気密性を重視した封止を行う
必要がある。
However, the solar cell using the polymer compound described in the above-mentioned publication is one in which a gel electrolyte is held in the polymer compound. Therefore, in manufacturing a solar cell, it is necessary to seal the transparent support 21 and the counter electrode 25 with an emphasis on hermeticity in order to protect the gel electrolyte.

【0010】他方、キャリア輸送層にp型酸化物半導体
であるチオシアン酸銅を用いた太陽電池も報告されてい
る(J.Appl.Phys.80(8),15 Oc
tober 1996,p.4749−4754参
照)。具体的には、ソーダガラス上に約1μmのSnO
2を蒸着した導電性ガラス基板上に、スプレー熱分解法
により酸化チタン薄膜を形成し、その後、0.1M−C
uBF4・3.5H2Oと0.025M−KSCNの混合
エタノール溶液に基板を浸漬し、電解電位−400〜−
200mV(vs.SCE)を印加する電気化学反応
(電析または電着)により、酸化チタン薄膜上にチオシ
アン酸銅層を形成する。しかし、上記の文献に記載の方
法では、チオシアン酸銅層を形成するのに4日間かか
り、生産性などの観点で問題がある。
On the other hand, a solar cell using a p-type oxide semiconductor, copper thiocyanate, as a carrier transport layer has also been reported (J. Appl. Phys. 80 (8), 15 Oct).
tober 1996, p. 4749-4754). Specifically, about 1 μm of SnO
A titanium oxide thin film is formed by a spray pyrolysis method on a conductive glass substrate on which
The substrate was immersed in a mixed ethanol solution of uBF 4 .3.5H 2 O and 0.025 M-KSCN, and the electrolytic potential was −400 to −−.
A copper thiocyanate layer is formed on the titanium oxide thin film by an electrochemical reaction (electrodeposition or electrodeposition) applying 200 mV (vs. SCE). However, in the method described in the above document, it takes four days to form the copper thiocyanate layer, and there is a problem in terms of productivity and the like.

【0011】[0011]

【発明が解決しようとする課題】本発明は、チオシアン
酸銅をキャリア輸送層に使用した、長期信頼性の高い完
全固体型の太陽電池およびチオシアン酸銅の作製速度を
向上させた太陽電池の作製方法を提供することを課題と
する。
SUMMARY OF THE INVENTION The present invention provides a completely solid-state solar cell using copper thiocyanate for the carrier transport layer and a solar cell with an improved production rate of copper thiocyanate. It is an object to provide a method.

【0012】[0012]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を行った結果、特定の銅塩とチ
オシアン酸塩との混合溶液を用いた電気化学反応によ
り、チオシアン酸銅からなるキャリア輸送層を効率よく
形成できることを見出し、本発明を完成するに到った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, the thiocyanate was electrochemically reacted using a mixed solution of a specific copper salt and thiocyanate. The inventors have found that a carrier transport layer made of copper oxide can be efficiently formed, and have completed the present invention.

【0013】かくして、本発明によれば、透明基板の表
面に形成された透明導電膜と導電性基板との間に、色素
が吸着された多孔性半導体層と、チオシアン酸銅により
構成されたキャリア輸送層とを有する太陽電池の作製方
法において、多孔性半導体層を形成した基板を、過塩素
酸銅、塩化銅、臭化銅、硝酸銅、硫酸銅、酢酸銅および
ギ酸銅から選択される銅塩と、チオシアン酸のアルカリ
金属塩およびチオシアン酸アンモニウムから選択される
チオシアン酸塩との混合溶液に浸漬し、電気化学反応に
よりキャリア輸送層となるチオシアン酸銅を多孔性半導
体層上に形成することを特徴とする太陽電池の作製方法
が提供される。また、本発明によれば、上記の作製方法
で得られた太陽電池が提供される。
Thus, according to the present invention, a porous semiconductor layer in which a dye is adsorbed and a carrier composed of copper thiocyanate are provided between the conductive film and the transparent conductive film formed on the surface of the transparent substrate. In the method for manufacturing a solar cell having a transport layer, the substrate on which the porous semiconductor layer is formed is formed of copper perchlorate, copper chloride, copper bromide, copper nitrate, copper sulfate, copper acetate, and copper formate selected from copper formate. Immersion in a mixed solution of a salt and a thiocyanate selected from an alkali metal salt of thiocyanic acid and ammonium thiocyanate, and forming copper thiocyanate to be a carrier transport layer on the porous semiconductor layer by an electrochemical reaction. A method for manufacturing a solar cell is provided. Further, according to the present invention, there is provided a solar cell obtained by the above manufacturing method.

【0014】[0014]

【発明の実施の形態】一般に、チオシアン酸銅は、硫酸
銅ゾル液とチオシアン酸カリウムゾル液をSO2の存在
下で化学反応させることにより作製される。得られたチ
オシアン酸銅を多孔性半導体中に混入して太陽電池を作
製するには、チオシアン酸銅を溶媒に分散させ、これを
加熱した多孔性半導体層上に滴下し、溶媒を蒸発させる
ことにより作製できる。しかし、このような方法で、微
粒子の焼結体である多孔性半導体層の内部にまでチオシ
アン酸銅を注入するのは非常に困難であり、この注入が
不充分であると、太陽電池の性能の低下を招く。
DETAILED DESCRIPTION OF THE INVENTION In general, copper thiocyanate is produced by chemically reacting a copper sulfate sol solution and a potassium thiocyanate sol solution in the presence of SO 2 . To prepare a solar cell by mixing the obtained copper thiocyanate into a porous semiconductor, copper thiocyanate is dispersed in a solvent, and the copper thiocyanate is dropped on a heated porous semiconductor layer to evaporate the solvent. Can be produced. However, it is very difficult to inject copper thiocyanate into the inside of the porous semiconductor layer, which is a sintered body of fine particles, by such a method. Causes a decrease in

【0015】本発明の太陽電池の作製方法は、多孔性半
導体層を形成した基板を、特定の銅塩とチオシアン酸塩
との混合溶液に浸漬し、電気化学反応によりキャリア輸
送層となるチオシアン酸銅を多孔性半導体層上に直接形
成することを特徴とする。
In the method of manufacturing a solar cell according to the present invention, a substrate having a porous semiconductor layer formed thereon is immersed in a mixed solution of a specific copper salt and thiocyanate, and thiocyanic acid serving as a carrier transport layer is formed by an electrochemical reaction. It is characterized in that copper is formed directly on the porous semiconductor layer.

【0016】銅塩としては、過塩素酸銅、塩化銅、臭化
銅、硝酸銅、硫酸銅などの無機塩、および酢酸銅、ギ酸
銅などの有機酸塩などが挙げられ、なかでも過塩素酸銅
が特に好ましい。チオシアン酸塩としては、チオシアン
酸リチウム、チオシアン酸ナトリウム、チオシアン酸ア
ンモニウムなどが挙げられ、なかでもチオシアン酸リチ
ウムが特に好ましい。
Examples of the copper salt include inorganic salts such as copper perchlorate, copper chloride, copper bromide, copper nitrate, and copper sulfate, and organic acid salts such as copper acetate and copper formate. Copper acid is particularly preferred. Examples of the thiocyanate include lithium thiocyanate, sodium thiocyanate, and ammonium thiocyanate. Of these, lithium thiocyanate is particularly preferred.

【0017】銅塩とチオシアン酸塩との混合溶液の溶媒
としては、エタノールなどのアルコール類、アセトンな
どのケトン類、ジエチルエーテル、テトラヒドロフラン
などのエーテル類、アセトニトリルなどのシアン化合物
類、水などが挙げられる。これらの溶剤は2種以上を混
合して用いることもできる。
Examples of the solvent for the mixed solution of a copper salt and a thiocyanate include alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether and tetrahydrofuran, cyanides such as acetonitrile, and water. Can be These solvents can be used as a mixture of two or more kinds.

【0018】銅塩とチオシアン酸塩との混合溶液は、所
定濃度になるようにそれぞれの溶液を混合することによ
り調製できる。銅塩の濃度は、0.001モル/リット
ル以上(上限は飽和濃度)が好ましく、0.025〜
0.1モル/リットルが特に好ましい。また、チオシア
ン酸塩の濃度は、0.001モル/リットル以上(上限
は飽和濃度)が好ましく、0.025〜0.1モル/リ
ットルが特に好ましい。
A mixed solution of a copper salt and a thiocyanate can be prepared by mixing the respective solutions to a predetermined concentration. The concentration of the copper salt is preferably 0.001 mol / L or more (the upper limit is the saturation concentration), and
0.1 mol / l is particularly preferred. The concentration of the thiocyanate is preferably 0.001 mol / l or more (the upper limit is the saturation concentration), and particularly preferably 0.025 to 0.1 mol / l.

【0019】次に、電気化学反応について説明する。銅
塩とチオシアン酸塩との混合溶液に、多孔性半導体層が
形成された基板、対極および参照電極を浸漬し、電解電
位を印加することによりCu(II)のCu(I)への還
元に伴って、多孔性半導体層上にチオシアン酸銅が付着
する。
Next, the electrochemical reaction will be described. The substrate on which the porous semiconductor layer is formed, the counter electrode, and the reference electrode are immersed in a mixed solution of a copper salt and a thiocyanate, and the electrolytic potential is applied to reduce Cu (II) to Cu (I). Accordingly, copper thiocyanate adheres to the porous semiconductor layer.

【0020】電気化学反応は、電解電位+0.1〜+
0.4V(vs.SCE)の範囲で行うのが好ましい。
電解電位が上記の範囲よりも高い場合には、反応が起こ
らず、また低い場合には、銅の析出が起こるので好まし
くない。
The electrochemical reaction is carried out at an electrolytic potential of +0.1 to +
It is preferable to carry out in the range of 0.4 V (vs. SCE).
When the electrolytic potential is higher than the above range, no reaction occurs, and when the electrolytic potential is low, copper is deposited, which is not preferable.

【0021】また、電気化学反応は、反応温度10〜4
0℃の範囲で行うのが好ましい。反応温度が上記の範囲
よりも高温の場合には、チオシアン酸銅の成長(結晶
化)速度が速くなり、基板への付着性が悪くなるので好
ましくない。また、反応温度が上記の範囲よりも低温の
場合には、チオシアン酸銅の成長速度が遅くなり、生産
性が悪くなるので好ましくない。
The electrochemical reaction is carried out at a reaction temperature of 10-4.
It is preferable to carry out in the range of 0 ° C. When the reaction temperature is higher than the above range, the growth (crystallization) rate of copper thiocyanate is increased, and the adhesion to the substrate is deteriorated. On the other hand, when the reaction temperature is lower than the above range, the growth rate of copper thiocyanate becomes slow, and the productivity is unfavorably deteriorated.

【0022】電気化学反応の方式は、2極式および3極
式のいずれであってもよい。3極式の場合に用いる参照
電極としては、SCE(飽和甘コウ電極)、NHE(標
準水素電極)、RHE(水素圧における可逆水素電
極)、NCE(標準甘コウ電極)などが挙げられる。
The type of the electrochemical reaction may be either a bipolar type or a tripolar type. Examples of the reference electrode used in the case of the three-electrode type include SCE (saturated sweet electrode), NHE (standard hydrogen electrode), RHE (reversible hydrogen electrode at hydrogen pressure), NCE (standard sweet electrode).

【0023】電気化学反応でチオシアン酸銅を形成する
際には、混合溶液中に副生成物が生成する。例えば、塩
化銅とチオシアン酸リチウムとの混合溶液を用いた場合
には、塩化リチウムが生成する。このような副生成物
が、チオシアン酸銅の表面、チオシアン酸銅と多孔性半
導体層との間に残存することがあるので、電気化学反応
の後、溶剤で洗浄するのが好ましい。この溶剤として
は、副生成物に対して溶解性の高いものが好ましく、例
えば、エタノールなどが挙げられる。
When copper thiocyanate is formed by an electrochemical reaction, a by-product is generated in the mixed solution. For example, when a mixed solution of copper chloride and lithium thiocyanate is used, lithium chloride is generated. Since such a by-product may remain on the surface of copper thiocyanate or between copper thiocyanate and the porous semiconductor layer, it is preferable to wash the substrate with a solvent after the electrochemical reaction. As the solvent, a solvent having high solubility for by-products is preferable, and for example, ethanol and the like can be mentioned.

【0024】本発明の作製方法によれば、前述の文献に
記載の方法に比べて、高速に(具体的には、1/96程
度の時間で)チオシアン酸銅からなるキャリア輸送層を
形成することができる。
According to the manufacturing method of the present invention, a carrier transport layer made of copper thiocyanate is formed at a higher speed (specifically, in a time period of about 1/96) than the method described in the above-mentioned document. be able to.

【0025】多孔性半導体は、粒子状、膜状など種々の
形態のものを用いることができるが、基板上に形成され
た膜状の多孔性半導体(多孔性半導体層)が好ましい。
多孔性半導体層を形成する場合の基板としては、例え
ば、ガラス基板、プラスチック基板などが挙げられ、中
でも透明性の高い基板(透明基板)が特に好ましい。こ
の基板上には、公知の方法でSnO2などの透明導電膜
が形成される。
As the porous semiconductor, various forms such as particles and films can be used, but a film-shaped porous semiconductor (porous semiconductor layer) formed on a substrate is preferable.
Examples of the substrate for forming the porous semiconductor layer include a glass substrate and a plastic substrate, among which a highly transparent substrate (transparent substrate) is particularly preferable. On this substrate, a transparent conductive film such as SnO 2 is formed by a known method.

【0026】多孔性半導体層を基板上に形成する方法と
しては、公知の種々の方法を使用することができる。具
体的には、基板上に半導体粒子を含有する懸濁液を塗
布し、乾燥・焼成する方法、電気化学反応により半導
体膜を形成する方法、基板上に所望の原料ガスを用い
たCVD法またはMOCVD法などにより半導体膜を形
成する方法、および原料固体を用いたPVD法、蒸着
法、スパッタリング法またはゾル−ゲル法などにより半
導体膜を形成する方法などが挙げられる。
As a method for forming the porous semiconductor layer on the substrate, various known methods can be used. Specifically, a method of applying a suspension containing semiconductor particles on a substrate, drying and firing, a method of forming a semiconductor film by an electrochemical reaction, a CVD method using a desired source gas on the substrate, or A method of forming a semiconductor film by an MOCVD method or the like, a method of forming a semiconductor film by a PVD method using a raw material solid, an evaporation method, a sputtering method, a sol-gel method, or the like can be given.

【0027】多孔性半導体層の膜厚は、特に限定される
ものではないが、透過性、変換効率などの観点より、
0.5〜20μm程度が好ましい。また、変換効率を向
上させるためには、多孔性半導体層に後述する色素をよ
り多く吸着させることが必要である。このために、多孔
性半導体層は比表面積の大きなものが好ましく、具体的
には、10〜200m2/g程度が好ましい。
The thickness of the porous semiconductor layer is not particularly limited, but may be selected from the viewpoints of permeability, conversion efficiency, and the like.
It is preferably about 0.5 to 20 μm. Further, in order to improve the conversion efficiency, it is necessary to adsorb a larger amount of a dye described later on the porous semiconductor layer. For this reason, the porous semiconductor layer preferably has a large specific surface area, specifically, about 10 to 200 m 2 / g.

【0028】多孔性半導体層を構成する材料としては、
酸化チタン、酸化亜鉛、酸化タングステン、チタン酸バ
リウム、チタン酸ストロンチウム、硫化カドミウムなど
の公知の半導体が挙げられる。これらの材料は2種以上
を混合して用いることもできる。これらの中でも、変換
効率、安定性、安全性の点から酸化亜鉛および酸化チタ
ンが特に好ましい。酸化チタンとしては、アナターゼ型
酸化チタン、ルチル型酸化チタン、無定形酸化チタン、
メタチタン酸、オルソチタン酸などの種々の酸化チタ
ン、含酸化チタン複合体などが挙げられるが、これらは
いずれであってもよい。
As a material constituting the porous semiconductor layer,
Known semiconductors such as titanium oxide, zinc oxide, tungsten oxide, barium titanate, strontium titanate, and cadmium sulfide are exemplified. These materials can be used as a mixture of two or more kinds. Among them, zinc oxide and titanium oxide are particularly preferable in terms of conversion efficiency, stability, and safety. As titanium oxide, anatase type titanium oxide, rutile type titanium oxide, amorphous titanium oxide,
Examples include various titanium oxides such as metatitanic acid and orthotitanic acid, and titanium oxide-containing composites, and any of these may be used.

【0029】前述の多孔性半導体層の形成方法におけ
る乾燥・焼成は、使用する基板や半導体粒子の種類によ
り、温度、時間、雰囲気の条件などを適宜調整して行わ
れる。例えば、大気下または不活性ガス雰囲気下、50
〜800℃程度の範囲内で、10秒〜12時間程度行う
ことができる。この乾燥および焼成は、単一の温度で1
回または温度を変化させて2回以上行うことができる。
Drying and baking in the above-described method for forming a porous semiconductor layer are carried out by appropriately adjusting the temperature, time, atmosphere conditions, and the like, depending on the type of substrate and semiconductor particles used. For example, 50 in the atmosphere or in an inert gas atmosphere.
It can be performed for about 10 seconds to 12 hours within the range of about 800 ° C. The drying and firing are performed at a single temperature for 1
It can be carried out twice or more times or by changing the temperature.

【0030】半導体粒子としては、市販されているもの
のうち適当な平均粒径、例えば1〜500nm程度の単
一または化合物半導体の粒子などが挙げられる。また、
この半導体粒子を懸濁するために使用される溶媒は、エ
チレングリコールモノメチルエテール、ジエチレングリ
コールモノメチルエーテルなどのグライム系溶媒、イソ
プロピルアルコールなどのアルコール系溶媒、イソプロ
ピルアルコール/トルエンなどの混合溶媒、水などが挙
げられる。
As the semiconductor particles, commercially available particles of a single or compound semiconductor having an appropriate average particle size, for example, about 1 to 500 nm, may be mentioned. Also,
Solvents used for suspending the semiconductor particles include glyme solvents such as ethylene glycol monomethyl ether and diethylene glycol monomethyl ether, alcohol solvents such as isopropyl alcohol, mixed solvents such as isopropyl alcohol / toluene, and water. No.

【0031】次に、多孔性半導体上に光増感剤として機
能する色素(以下、「色素」と称する)を吸着させる。
その方法としては、例えば基板上に形成された多孔性半
導体膜を、色素を溶解した溶液に浸漬する方法が挙げら
れる。
Next, a dye functioning as a photosensitizer (hereinafter, referred to as "dye") is adsorbed on the porous semiconductor.
As the method, for example, there is a method of immersing a porous semiconductor film formed on a substrate in a solution in which a dye is dissolved.

【0032】用いられる色素は、種々の可視光領域およ
び赤外光領域に吸収を持つものであって、半導体層に強
固に吸着させるために、色素分子中にカルボキシル基、
アルコキシ基、ヒドロキシル基、ヒドロキシアルキル
基、スルホン酸基、エステル基、メルカプト基、ホスホ
ニル基などのインターロック基を有するものが好まし
い。
The dye used has an absorption in various visible light regions and infrared light regions, and a carboxyl group or a carboxyl group is contained in the dye molecule in order to strongly adsorb the semiconductor layer.
Those having an interlock group such as an alkoxy group, a hydroxyl group, a hydroxyalkyl group, a sulfonic acid group, an ester group, a mercapto group and a phosphonyl group are preferred.

【0033】インターロック基は、励起状態の色素と半
導体の導電帯との間の電子移動を容易にする電気的結合
を提供するものである。このようなインターロック基を
有する色素としては、例えば、ルテニウムビピリジン系
色素、アゾ系色素、キノン系色素、キノンイミン系色
素、キナクリドン系色素、スクアリリウム系色素、シア
ニン系色素、メロシアニン系色素、トリフェニルメタン
系色素、キサンテン系色素、ポルフィリン系色素、フタ
ロシアニン系色素、ペリレン系色素、インジゴ系色素、
ナフタロシアニン系色素などが挙げられる。
The interlocking group provides an electrical bond that facilitates electron transfer between the dye in the excited state and the conduction band of the semiconductor. As the dye having such an interlock group, for example, ruthenium bipyridine dye, azo dye, quinone dye, quinone imine dye, quinacridone dye, squarylium dye, cyanine dye, merocyanine dye, triphenylmethane Dyes, xanthene dyes, porphyrin dyes, phthalocyanine dyes, perylene dyes, indigo dyes,
And naphthalocyanine dyes.

【0034】色素を溶解する溶剤は、色素を溶解するも
のであれば特に限定されず、例えば、エタノールなどの
アルコール類、アセトンなどのケトン類、ジエチルエー
テル、テトラヒドロフランなどのエーテル類、アセトニ
トリルなどの窒素化合物類、クロロホルムなどのハロゲ
ン化脂肪族炭化水素、ヘキサンなどの脂肪族炭化水素、
ベンゼン、トルエンなどの芳香族炭化水素、酢酸エチル
などのエステル類、水などが挙げられる。これらの溶剤
は2種以上を混合して用いることもできる。
The solvent for dissolving the dye is not particularly limited as long as it can dissolve the dye, and examples thereof include alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether and tetrahydrofuran, and nitrogen such as acetonitrile. Compounds, halogenated aliphatic hydrocarbons such as chloroform, aliphatic hydrocarbons such as hexane,
Examples include aromatic hydrocarbons such as benzene and toluene, esters such as ethyl acetate, and water. These solvents can be used as a mixture of two or more kinds.

【0035】溶液中の色素濃度は、使用する色素および
溶剤の種類により適宜調整することができるが、吸着機
能を向上させるためにはできるだけ高濃度である方が好
ましい。色素濃度は、例えば5×10-5モル/リットル
以上であればよい。
The concentration of the dye in the solution can be appropriately adjusted depending on the type of the dye and the solvent to be used. However, in order to improve the adsorption function, it is preferable that the concentration is as high as possible. The dye concentration may be, for example, 5 × 10 −5 mol / liter or more.

【0036】色素を溶解した溶液を半導体に浸漬すると
きの条件、例えば、溶液温度、雰囲気温度および圧力は
特に限定されるものではなく、例えば室温程度で、かつ
大気圧下が挙げられる。浸漬時間は、使用する色素、溶
剤の種類、溶液の濃度などにより適宜調整することがで
きる。なお、浸漬を効果的に行うには、使用する溶剤の
沸点以下の加熱下で行えばよい。これにより、多孔性半
導体上に色素が吸着され易くなるので好ましい。
The conditions for immersing the solution in which the dye is dissolved in the semiconductor, such as the solution temperature, the ambient temperature and the pressure, are not particularly limited, and include, for example, about room temperature and atmospheric pressure. The immersion time can be appropriately adjusted depending on the type of the dye to be used, the type of solvent, the concentration of the solution, and the like. In order to effectively perform the immersion, the immersion may be performed under heating at or below the boiling point of the solvent used. This is preferable because the dye is easily adsorbed on the porous semiconductor.

【0037】次に、多孔性半導体層の形成方法につい
て説明する。この方法では、例えば、硝酸塩を電気化学
的に還元することにより、基板上に多孔質半導体膜を形
成する。具体的には、硝酸塩溶液に基板を浸漬し、電気
化学反応により金属酸化物の多孔性半導体層を形成す
る。用いる硝酸塩により形成される金属酸化物が決定さ
れるが、金属酸化物としては酸化亜鉛が好ましい。ま
た、この方法では、硝酸塩と色素との混合溶液を用いる
ことにより、多孔性半導体層の形成と多孔性半導体層へ
の色素の担持(吸着)を同時に行うことができる。
Next, a method for forming the porous semiconductor layer will be described. In this method, for example, a porous semiconductor film is formed on a substrate by electrochemically reducing nitrate. Specifically, the substrate is immersed in a nitrate solution, and a porous semiconductor layer of a metal oxide is formed by an electrochemical reaction. The metal oxide formed by the nitrate used is determined, and zinc oxide is preferred as the metal oxide. Further, in this method, by using a mixed solution of nitrate and a dye, formation of the porous semiconductor layer and loading (adsorption) of the dye on the porous semiconductor layer can be performed simultaneously.

【0038】色素としては、前述の色素が挙げられ、イ
ンターロック基を有する構造のものが好ましい。これら
の中でも、キサンテン系色素、トリフェニルメタン系色
素、シアニン系色素、フタロシアニン系色素、ポリフィ
リン色素、ポリピリジン金属錯体色素などが好ましい。
Examples of the dye include those described above, and those having a structure having an interlock group are preferable. Among these, xanthene dyes, triphenylmethane dyes, cyanine dyes, phthalocyanine dyes, porphyrin dyes, and polypyridine metal complex dyes are preferred.

【0039】硝酸塩溶液が硝酸亜鉛水溶液である場合、
その濃度は、0.01〜1モル/リットル程度が好まし
く、0.1〜0.5モル/リットルが特に好ましい。ま
た、色素の濃度としては、1×10-6〜1×10-4モル
/リットルが好ましく、3×10-5〜6×10-5モル/
リットルが特に好ましい。また、硝酸塩の溶媒は、水と
有機溶剤の混合溶剤であってもよい。
When the nitrate solution is an aqueous zinc nitrate solution,
The concentration is preferably about 0.01 to 1 mol / l, particularly preferably 0.1 to 0.5 mol / l. The concentration of the dye is preferably from 1 × 10 −6 to 1 × 10 −4 mol / liter, and from 3 × 10 −5 to 6 × 10 −5 mol / liter.
Liters are particularly preferred. The nitrate solvent may be a mixed solvent of water and an organic solvent.

【0040】次に、硝酸亜鉛を用いた電気化学反応につ
いて説明する。硝酸亜鉛水溶液と色素の混合溶液に、透
明導電膜が形成された基板、対極および参照電極を浸漬
し、電解電位を印加することにより、下記の反応式によ
り透明導電膜上に酸化亜鉛が形成される。 NO3 -+H2O+2e-→NO2 -+2OH- Zn2++2OH-→Zn(OH)2 Zn(OH)2→ZnO+H2
Next, an electrochemical reaction using zinc nitrate will be described. By immersing the substrate on which the transparent conductive film is formed, the counter electrode, and the reference electrode in a mixed solution of a zinc nitrate aqueous solution and a dye, and applying an electrolytic potential, zinc oxide is formed on the transparent conductive film by the following reaction formula. You. NO 3 + H 2 O + 2e → NO 2 + 2OH Zn 2+ + 2OH → Zn (OH) 2 Zn (OH) 2 → ZnO + H 2 O

【0041】電気化学反応は、電解電位−0.7〜−
1.3V(vs.SCE)の範囲で行われるのが好まし
い。電解電位が上記の範囲よりも高い場合には、反応が
起こらず、また低い場合には、亜鉛メッキが起こるので
好ましくない。
The electrochemical reaction is carried out at an electrolytic potential of -0.7 to-
It is preferably performed in the range of 1.3 V (vs. SCE). When the electrolytic potential is higher than the above range, no reaction occurs, and when the electrolytic potential is low, zinc plating occurs, which is not preferable.

【0042】また、電気化学反応は、反応温度0〜10
0℃の範囲で行われるのが好ましい。反応温度が上記の
範囲よりも高温の場合には、成長速度が速くなり基板と
の付着性が悪くなるので好ましくない。また、反応温度
が上記の範囲よりも低温の場合には、反応が起こらない
ので好ましくない。
The electrochemical reaction is carried out at a reaction temperature of 0-10.
It is preferably carried out in the range of 0 ° C. If the reaction temperature is higher than the above range, the growth rate is increased and the adhesion to the substrate is deteriorated, which is not preferable. On the other hand, when the reaction temperature is lower than the above range, the reaction does not occur, which is not preferable.

【0043】電気化学反応の方式は、チオシアン酸銅の
形成と同様に、2極式および3極式のいずれであっても
よく、3極式の場合に用いる参照電極としては、チオシ
アン酸銅の形成において例示したものが挙げられる。ま
た、用いる対極としては、亜鉛金属が好ましい。
The method of the electrochemical reaction may be any of a bipolar type and a tripolar type similarly to the formation of copper thiocyanate. In the case of the tripolar type, the reference electrode used is copper thiocyanate. What was illustrated in formation is mentioned. The counter electrode used is preferably zinc metal.

【0044】上記の反応式に示すとおり、酸化亜鉛の形
成は硝酸イオンの亜硝酸イオンへの還元に伴う塩基生成
によるものである。この生成過程において、溶液中に色
素が混在する場合、酸化亜鉛の表面のOH基と色素の官
能基(スルホン酸基含有のフタロシアニン系色素)の化
学吸着により、酸化亜鉛が成長すると共に色素分子の修
飾を受ける。ここで、色素の吸着は、酸化亜鉛の(00
2)面に対して優先的に起こる。この結果、酸化亜鉛は
(002)面の成長が抑制され、(100)方向に成長
する。このようにして、色素を担持した酸化亜鉛の多孔
性半導体層の作製が可能となる。(Chem.Mate
r.1999,11,2657−2667参照)
As shown in the above reaction formula, the formation of zinc oxide is due to the formation of a base accompanying the reduction of nitrate ions to nitrite ions. In the formation process, when a dye is mixed in the solution, the zinc oxide grows due to the chemical adsorption of the OH group on the surface of the zinc oxide and the functional group of the dye (a phthalocyanine dye containing a sulfonic acid group) and the dye molecule Get qualified. Here, the adsorption of the dye is determined by the zinc oxide (00
2) It occurs preferentially to the surface. As a result, the zinc oxide is suppressed from growing on the (002) plane and grows in the (100) direction. In this manner, a zinc oxide porous semiconductor layer carrying a dye can be produced. (Chem. Mate
r. 1999, 11, 2657-2667)

【0045】[0045]

【実施例】本発明を実施例によりさらに具体的に説明す
るが、これらの実施例により本発明が限定されるもので
はない。
EXAMPLES The present invention will be described more specifically with reference to examples, but the present invention is not limited by these examples.

【0046】(実施例1)本発明の実施例1を図1に基
づいて説明する。図1(a)〜(c)および図2(d)
〜(f)は、本発明の太陽電池の作製工程を示す概略断
面図である。1はガラス基板、2は透明導電膜、3は
(硝酸亜鉛+エオシンY色素)溶液、4はエオシンY色
素、5は容器、6は亜鉛対極、7はSCE(飽和甘コウ
電極)、8はポテンシオスタット、9は酸化亜鉛、10
は(過塩素酸銅+チオシアン酸リチウム)溶液、11は
白金対極、12はチオシアン銅、13は容器を示す。
(a)〜(f)は作製手順を追って示す。
(Embodiment 1) Embodiment 1 of the present invention will be described with reference to FIG. 1 (a) to 1 (c) and 2 (d)
(F) to (f) are schematic cross-sectional views illustrating steps for manufacturing a solar cell of the present invention. 1 is a glass substrate, 2 is a transparent conductive film, 3 is a solution of (zinc nitrate + eosin Y dye), 4 is an eosin Y dye, 5 is a container, 6 is a zinc counter electrode, 7 is an SCE (saturated sweet kou electrode), 8 is Potentiostat, 9 is zinc oxide, 10
Denotes a (copper perchlorate + lithium thiocyanate) solution, 11 denotes a platinum counter electrode, 12 denotes copper thiocyanate, and 13 denotes a container.
(A) to (f) show the manufacturing procedure in order.

【0047】10mm×10mmのガラス基板1上にS
nO2透明導電膜2を形成した(図1(a))。次い
で、SnO2透明導電膜2にリード線を取り付け、ポテ
ンシオスタット8の作用極に接続し、その対極には亜鉛
対極6からのリード線を接続し、参照電極としてSCE
(飽和甘コウ電極)7をリファレンスに接続した。これ
らをガラス製の非導電性容器5に設置した。この容器5
に、0.1モル/リットルの硝酸亜鉛水溶液にエオシン
Y色素4を5.5×10-6モル/リットルで分散させた
水溶液3を入れた(図1(b))。
S is placed on a glass substrate 1 of 10 mm × 10 mm.
An nO 2 transparent conductive film 2 was formed (FIG. 1A). Next, a lead wire is attached to the SnO 2 transparent conductive film 2, connected to the working electrode of the potentiostat 8, a lead wire from the zinc counter electrode 6 is connected to its counter electrode, and SCE is used as a reference electrode.
(Saturated sweetfish electrode) 7 was connected to the reference. These were placed in a non-conductive container 5 made of glass. This container 5
Then, an aqueous solution 3 in which the eosin Y dye 4 was dispersed at a concentration of 5.5 × 10 −6 mol / l in a 0.1 mol / l zinc nitrate aqueous solution was added (FIG. 1B).

【0048】容器5内を70℃に設定し、安定化電源
(図示しない)により電解電位−0.7V(vs.SC
E)を60分間印加した。この電解反応により、SnO
2透明導電膜2上に、エオシンY色素4を担持した酸化
亜鉛6の多孔性半導体層が形成された(図1(c))。
次いで、これを約150℃に設定した乾燥器に30分間
放置して、多孔性半導体層を乾燥させた(図2
(d))。
The inside of the container 5 was set at 70 ° C., and an electrolytic potential of −0.7 V (vs. SC) was supplied by a stabilized power supply (not shown).
E) was applied for 60 minutes. By this electrolytic reaction, SnO
(2) A porous semiconductor layer of zinc oxide 6 supporting eosin Y dye 4 was formed on transparent conductive film 2 (FIG. 1 (c)).
Next, the porous semiconductor layer was dried in a dryer set at about 150 ° C. for 30 minutes (FIG. 2).
(D)).

【0049】次いで、SnO2透明導電膜2にリード線
を取り付け、ポテンシオスタット8の作用極に接続し、
その対極には白金対極11からのリード線を接続し、参
照電極としてSCE(飽和甘コウ電極)7をリファレン
スに接続した。これらをガラス製の非導電性容器13に
設置した。この容器13に、5×10-2モル/リットル
の過塩素酸銅水溶液にチオシアン酸リチウムを5×10
-2モル/リットルで溶解させた水溶液を入れた(図2
(e))。
Next, a lead wire is attached to the SnO 2 transparent conductive film 2 and connected to the working electrode of the potentiostat 8.
A lead wire from a platinum counter electrode 11 was connected to the counter electrode, and an SCE (saturated sugar beet electrode) 7 was connected to the reference as a reference electrode. These were placed in a non-conductive container 13 made of glass. In this container 13, 5 × 10 −2 mol / liter of aqueous solution of copper perchlorate was charged with 5 × 10 2 lithium thiocyanate.
An aqueous solution dissolved at -2 mol / l was introduced (Fig. 2
(E)).

【0050】容器13内を25℃に設定し、安定化電源
(図示しない)により電解電位+0.25V(vs.S
CE)を60分間印加した。この電解反応により、エオ
シンY色素4を担持した酸化亜鉛6の多孔性半導体層上
に、キャリア輸送層としてチオシアン酸銅12が形成さ
れた(図2(f))。次いで、これをエタノール溶剤で
洗浄し、60℃で15分間乾燥させた。
The inside of the container 13 was set at 25 ° C., and an electric potential of +0.25 V (vs. S.) was supplied by a stabilizing power supply (not shown).
CE) was applied for 60 minutes. By this electrolytic reaction, copper thiocyanate 12 was formed as a carrier transport layer on the porous semiconductor layer of zinc oxide 6 carrying eosin Y dye 4 (FIG. 2 (f)). Then, it was washed with an ethanol solvent and dried at 60 ° C. for 15 minutes.

【0051】その後、対向電極として、チオシアン酸銅
12上にスパッタリング法により金を約500nm程度
の膜厚で成膜して、太陽電池を完成した。得られた太陽
電池を測定条件:AM−1.5で評価したところ、短絡
電流値8.8mA/cm2、開放電圧値0.54V、フ
ィルファクター0.55、変換効率2.42%であっ
た。
Thereafter, as a counter electrode, gold was formed in a thickness of about 500 nm on the copper thiocyanate 12 by a sputtering method to complete a solar cell. When the obtained solar cell was evaluated under the measurement conditions: AM-1.5, the short-circuit current value was 8.8 mA / cm 2 , the open-circuit voltage value was 0.54 V, the fill factor was 0.55, and the conversion efficiency was 2.42%. Was.

【0052】(実施例2)実施例2では、基板上に半導
体粒子を含有する懸濁液を塗布し、乾燥および焼成する
方法により多孔性半導体層を形成する以外は、実施例1
と同様にして、太陽電池を作製した。
(Example 2) In Example 2, except that a porous semiconductor layer was formed by a method of applying a suspension containing semiconductor particles on a substrate, and drying and firing the suspension.
In the same manner as in the above, a solar cell was produced.

【0053】多孔性半導体層となる酸化チタン膜の形成
用塗液を次のように調製した。市販の酸化チタン粒子
(テイカ株式会社社製、商品名:AMT−600、アナ
ターゼ型結晶、平均粒径30nm、比表面積50m2
g)4.0gとジエチレングリコールモノメチルエーテ
ル20mlとをガラスビーズを使用して、ペイントシェ
イカーで6時間分散させ、酸化チタン膜の形成用塗液
(懸濁液)を得た。
A coating liquid for forming a titanium oxide film to be a porous semiconductor layer was prepared as follows. Commercially available titanium oxide particles (manufactured by Teika Co., Ltd., trade name: AMT-600, anatase type crystal, average particle diameter 30 nm, specific surface area 50 m 2 /
g) 4.0 g and 20 ml of diethylene glycol monomethyl ether were dispersed using a glass bead with a paint shaker for 6 hours to obtain a coating liquid (suspension) for forming a titanium oxide film.

【0054】得られた酸化チタン膜の形成用塗液を、ド
クターブレードを用いて膜厚10μm程度、面積10m
m×10mm程度になるように、ガラス基板上に形成さ
れたSnO2透明導電膜上に塗布した。これを100℃
で30分間予備乾燥した後、460℃、酸素雰囲気で4
0分間焼成し、膜厚8μm程度の酸化チタン膜を得た。
Using a doctor blade, the obtained coating liquid for forming a titanium oxide film was applied to a thickness of about 10 μm and an area of 10 m.
It was applied on a SnO 2 transparent conductive film formed on a glass substrate so as to have a size of about mx 10 mm. 100 ℃
Pre-drying for 30 minutes at 460 ° C in an oxygen atmosphere
By baking for 0 minutes, a titanium oxide film having a thickness of about 8 μm was obtained.

【0055】次に、ルテニウム色素(Solaroni
x社製、商品名:Ruthenium535)を濃度4
×10-4モル/リットルで無水エタノールに溶解して、
吸着用色素溶液を調製した。得られた吸着用色素溶液
に、透明導電膜と酸化チタン膜を具備したガラス基板を
約4時間浸漬し、酸化チタン膜に色素を浸透、吸着させ
た。その後、ガラス基板を無水エタノールで数回洗浄
し、約60℃で約20分間乾燥させた。
Next, a ruthenium dye (Solaroni)
x, trade name: Ruthenium 535) at a concentration of 4
Dissolve in absolute ethanol at × 10 -4 mol / l,
A dye solution for adsorption was prepared. A glass substrate provided with a transparent conductive film and a titanium oxide film was immersed in the obtained dye solution for adsorption for about 4 hours to allow the dye to permeate and adsorb to the titanium oxide film. Thereafter, the glass substrate was washed several times with anhydrous ethanol and dried at about 60 ° C. for about 20 minutes.

【0056】次に、実施例1と同様にして、多孔性半導
体層にチオシアン酸銅からなるキャリア輸送層を形成
し、対向電極を成膜し、太陽電池を完成した。実施例1
と同様にして、得られた太陽電池を測定条件:AM−
1.5で評価したところ、短絡電流値9.1mA/cm
2、開放電圧値0.55V、フィルファクター0.6、
変換効率3.0%であった。
Next, a carrier transport layer made of copper thiocyanate was formed on the porous semiconductor layer in the same manner as in Example 1, and a counter electrode was formed to complete a solar cell. Example 1
In the same manner as described above, the obtained solar cell was measured under the following conditions:
When evaluated at 1.5, the short-circuit current value was 9.1 mA / cm.
2 , open circuit voltage value 0.55V, fill factor 0.6,
The conversion efficiency was 3.0%.

【0057】[0057]

【発明の効果】透明基板の表面に形成された透明導電膜
と導電性基板との間に、色素が吸着された多孔性半導体
層とキャリア輸送層とを有する本発明の太陽電池は、キ
ャリア輸送層が全固体型のチオシアン酸銅により構成さ
れる。したがって、従来の液体およびゲルなどの凝固体
により構成されたキャリア輸送層を有する太陽電池と比
較して、長期信頼性が高くなる。また、本発明の太陽電
池の作製方法では、すべての工程に電気化学反応を用い
ることができるため、温度の耐久性が低いフレキシブル
プラスチック基板などの利用が可能となり、様々な形状
に適合できる太陽電池を得ることができる。
According to the present invention, the solar cell of the present invention having a porous semiconductor layer in which a dye is adsorbed and a carrier transport layer between a transparent conductive film formed on the surface of the transparent substrate and the conductive substrate. The layer is composed of all-solid copper thiocyanate. Therefore, the long-term reliability is higher than that of a conventional solar cell having a carrier transport layer composed of a solidified body such as a liquid and a gel. Further, in the method for manufacturing a solar cell of the present invention, an electrochemical reaction can be used in all steps, so that a flexible plastic substrate having low temperature durability can be used, and the solar cell can be adapted to various shapes. Can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の太陽電池の作製工程を示す概略断面図
である((a)〜(c))。
FIG. 1 is a schematic cross-sectional view showing a manufacturing process of a solar cell of the present invention ((a) to (c)).

【図2】本発明の太陽電池の作製工程を示す概略断面図
である((d)〜(f))。
FIG. 2 is a schematic cross-sectional view illustrating a manufacturing process of the solar cell of the present invention ((d) to (f)).

【図3】従来の色素増感型太陽電池の層構成を示す要部
の概略断面図である。
FIG. 3 is a schematic sectional view of a main part showing a layer configuration of a conventional dye-sensitized solar cell.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 透明導電膜 3 (硝酸亜鉛+エオシンY色素)溶液 4 エオシンY色素 5、13 容器 6 亜鉛対極 7 SCE(飽和甘コウ電極) 8 ポテンシオスタット 9 酸化亜鉛 10 (過塩素酸銅+チオシアン酸リチウム)溶液 11 白金対極 12 チオシアン酸銅 21 透明支持体 22 透明導電体 23 多孔性半導体層 24 電解液 25 対極 26 白金 27 エポキシ樹脂(エポキシ封止剤) Reference Signs List 1 glass substrate 2 transparent conductive film 3 (zinc nitrate + eosin Y dye) solution 4 eosin Y dye 5, 13 container 6 zinc counter electrode 7 SCE (saturated sweet kou electrode) 8 potentiostat 9 zinc oxide 10 (copper perchlorate + Lithium thiocyanate) solution 11 Platinum counter electrode 12 Copper thiocyanate 21 Transparent support 22 Transparent conductor 23 Porous semiconductor layer 24 Electrolyte 25 Counter electrode 26 Platinum 27 Epoxy resin (epoxy sealant)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 司 岐阜県岐阜市南鏡島4−29−1 ライオン ズガーデン南鏡島501 Fターム(参考) 5F051 AA14 AA20 FA03 FA06 GA03 5H032 AA06 AS16 EE16 EE17 HH06 HH08  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Tsukasa Yoshida 4-29-1, Minami-Kamishima, Gifu-shi, Gifu 501F Lions Garden Minami-Kamijima 501F Term (Reference) 5F051 AA14 AA20 FA03 FA06 GA03 5H032 AA06 AS16 EE16 EE17 HH06 HH08

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 透明基板の表面に形成された透明導電膜
と導電性基板との間に、色素が吸着された多孔性半導体
層と、チオシアン酸銅により構成されたキャリア輸送層
とを有する色素増感型太陽電池の作製方法において、多
孔性半導体層を形成した基板を、過塩素酸銅、塩化銅、
臭化銅、硝酸銅、硫酸銅、酢酸銅およびギ酸銅から選択
される銅塩と、チオシアン酸のアルカリ金属塩およびチ
オシアン酸アンモニウムから選択されるチオシアン酸塩
との混合溶液に浸漬し、電気化学反応によりキャリア輸
送層となるチオシアン酸銅を多孔性半導体層上に形成す
ることを特徴とする色素増感型太陽電池の作製方法。
1. A dye having a porous semiconductor layer in which a dye is adsorbed and a carrier transport layer made of copper thiocyanate between a transparent conductive film formed on a surface of a transparent substrate and a conductive substrate. In a method for manufacturing a sensitized solar cell, a substrate on which a porous semiconductor layer is formed is formed by using copper perchlorate, copper chloride,
Immersed in a mixed solution of a copper salt selected from copper bromide, copper nitrate, copper sulfate, copper acetate and copper formate, and a thiocyanate selected from an alkali metal salt of thiocyanic acid and ammonium thiocyanate; A method for producing a dye-sensitized solar cell, comprising forming copper thiocyanate to be a carrier transport layer on a porous semiconductor layer by a reaction.
【請求項2】 銅塩が過塩素酸銅であり、かつチオシア
ン酸塩がチオシアン酸リチウムである請求項1に記載の
色素増感型太陽電池の作製方法。
2. The method for producing a dye-sensitized solar cell according to claim 1, wherein the copper salt is copper perchlorate, and the thiocyanate is lithium thiocyanate.
【請求項3】 電気化学反応が、電解電位+0.1〜+
0.4V(vs.SCE)の範囲で行われる請求項1ま
たは2に記載の色素増感型太陽電池の作製方法。
3. The method according to claim 1, wherein the electrochemical reaction is carried out at an electrolytic potential of +0.1 to +
The method for producing a dye-sensitized solar cell according to claim 1, wherein the method is performed in a range of 0.4 V (vs. SCE).
【請求項4】 電気化学反応が、反応温度10〜40℃
の範囲で行われる請求項1〜3のいずれか1つに記載の
色素増感型太陽電池の作製方法。
4. An electrochemical reaction at a reaction temperature of 10 to 40 ° C.
The method for producing a dye-sensitized solar cell according to any one of claims 1 to 3, which is performed in the range of:
【請求項5】 透明導電膜を形成した基板を、硝酸亜鉛
と色素との混合溶液に浸漬し、電気化学反応により色素
が吸着された多孔性半導体層となる酸化亜鉛を基板上に
形成することを特徴とする請求項1〜4のいずれか1つ
に記載の色素増感型太陽電池の作製方法。
5. A method in which a substrate on which a transparent conductive film is formed is immersed in a mixed solution of zinc nitrate and a dye, and zinc oxide which becomes a porous semiconductor layer having the dye adsorbed by an electrochemical reaction is formed on the substrate. The method for producing a dye-sensitized solar cell according to claim 1, wherein:
【請求項6】 多孔性半導体層が、酸化チタンにより構
成されている請求項1〜5のいずれか1つに記載の色素
増感型太陽電池の作製方法。
6. The method for producing a dye-sensitized solar cell according to claim 1, wherein the porous semiconductor layer is made of titanium oxide.
【請求項7】 請求項1〜6のいずれか1つに記載の作
製方法で得られた色素増感型太陽電池。
7. A dye-sensitized solar cell obtained by the production method according to claim 1.
JP2001044002A 2001-02-20 2001-02-20 Dye-sensitized solar cell and method of manufacturing it Pending JP2002246623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001044002A JP2002246623A (en) 2001-02-20 2001-02-20 Dye-sensitized solar cell and method of manufacturing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001044002A JP2002246623A (en) 2001-02-20 2001-02-20 Dye-sensitized solar cell and method of manufacturing it

Publications (1)

Publication Number Publication Date
JP2002246623A true JP2002246623A (en) 2002-08-30

Family

ID=18906070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001044002A Pending JP2002246623A (en) 2001-02-20 2001-02-20 Dye-sensitized solar cell and method of manufacturing it

Country Status (1)

Country Link
JP (1) JP2002246623A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP2012222351A (en) * 2011-04-01 2012-11-12 Aisin Seiki Co Ltd Solid photovoltaic device having absorber layer based on tin antimony sulfide
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
CN115180636A (en) * 2022-07-22 2022-10-14 河北北方学院 Method for improving visible light absorption range of CuSCN

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP2012222351A (en) * 2011-04-01 2012-11-12 Aisin Seiki Co Ltd Solid photovoltaic device having absorber layer based on tin antimony sulfide
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
CN115180636A (en) * 2022-07-22 2022-10-14 河北北方学院 Method for improving visible light absorption range of CuSCN

Similar Documents

Publication Publication Date Title
US20080115826A1 (en) Photoelectric conversion element, method of manufacturing the same and solar cell
JP2008186752A (en) Photoelectric conversion element and solar cell
JP4574897B2 (en) Dye-sensitized solar cell and method for producing the same
JP2003297443A (en) Photoelectric conversion oxide semiconductor electrode and dye-sensitized solar battery
JP4278167B2 (en) Method for producing photoelectric conversion electrode
CN101276847A (en) Electrode, manufacturing method of the electrode, and dye-sensitized solar cell
EP2256764A2 (en) Dye-sensitized solar cell and organic solvent-free electrolyte for dye-sensitized solar cell
JP2002246624A (en) Dye-sensitized solar cell and method of manufacturing it
JP2001345124A (en) Chemically modified semiconductor electrode, method of manufacturing it, and photocell using it
JP2002246623A (en) Dye-sensitized solar cell and method of manufacturing it
JP2002184476A (en) Method of manufacturing porous photoelectric conversion semiconductor layer and solar battery
JP4812953B2 (en) Method for producing dye-sensitized solar cell photoelectrode and method for producing dye-sensitized solar cell
JP2002184477A (en) Optical semiconductor electrode, its method of manufacture, and photoelectric conversion element using the same
JP2000294814A (en) Photochemically sensitized optical semiconductor and photochemically sensitized solar battery using the same
JP2000331720A (en) Coloring matter sensitizing type solar battery and manufacture thereof
US20050150544A1 (en) Dye-sensitized solar cell
JP3453597B2 (en) Semiconductor composite thin film electrode and solar cell using the same
JP4537693B2 (en) Dye-sensitized solar cell
JP5332114B2 (en) Photoelectric conversion element and solar cell
JP4455868B2 (en) Dye-sensitized solar cell
JP2008234902A (en) Photoelectric conversion element and solar cell
JP2010168511A (en) New compound, photoelectric transducer, and solar cell
JP4804050B2 (en) Photoelectric conversion element
JP2000323189A (en) Pigment-sensitized type solar cell
JP2003109677A (en) Dye-sensitized photosemiconductor electrode and dye- sensitized photoelectric conversion element