JP2002244718A - Optimum production method for repairing parts - Google Patents

Optimum production method for repairing parts

Info

Publication number
JP2002244718A
JP2002244718A JP2001040528A JP2001040528A JP2002244718A JP 2002244718 A JP2002244718 A JP 2002244718A JP 2001040528 A JP2001040528 A JP 2001040528A JP 2001040528 A JP2001040528 A JP 2001040528A JP 2002244718 A JP2002244718 A JP 2002244718A
Authority
JP
Japan
Prior art keywords
inventory
production
cost
stock
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001040528A
Other languages
Japanese (ja)
Inventor
Masatatsu Noshiro
真達 能代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001040528A priority Critical patent/JP2002244718A/en
Publication of JP2002244718A publication Critical patent/JP2002244718A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • General Factory Administration (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optimum production method for repairing parts capable of determining an optimum production lot number by considering manufacturing setup cost. SOLUTION: In this method, a production lot number L and the stock period T are determined so that stock storage cost N (T)×z based on a demand number of the repairing parts determined by multiplying a total cumulative number N (T) in the stock period T of the repairing parts of an estimated demand number (a) and annual storage cost Z per each part may be equal to the manufacturing setup cost y required for manufacturing of one time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、補修部品の最適生
産方法に関する。
The present invention relates to a method for optimally producing a repair part.

【0002】[0002]

【従来の技術】一般に部品又は製品については全て在庫
で賄おうとすると、膨大な在庫保管費用が発生するの
で、適当な在庫数に保つべく在庫がある限度を下回った
ら所定数製造したり、定期的に出荷された分製造したり
していた。
2. Description of the Related Art Generally, if all parts or products are to be covered by inventory, a huge inventory storage cost will be incurred. Therefore, in order to maintain an appropriate inventory, if the inventory falls below a certain limit, a predetermined number of parts or products must be manufactured. Was manufactured for the amount shipped to.

【0003】しかし量産が終了した製品に使用される補
修部品は、需要数が経時的に減少するので、上記生産方
法では時間を経る程在庫が余り、在庫保管費用が必要以
上に大きくなる。
However, since the number of repair parts used in products whose mass production has been completed decreases over time, the above-mentioned production method requires more inventory as time passes, and inventory storage costs become unnecessarily large.

【0004】そこで補修部品については、注文に応じて
注文数をそのまま生産ロット数として生産する方法と、
需要の減少を考慮して経験的に多めに製造しておく方法
が一般的に行われていた。
[0004] Therefore, for the repair parts, a method of producing the order quantity as the production lot number according to the order,
In general, a method of empirically producing a large amount in consideration of a decrease in demand has been performed.

【0005】[0005]

【発明が解決しようとする課題】しかし注文数をそのま
ま生産ロット数として生産する方法であると、注文数が
小さいので、作業の手間が掛かり、製造段取り費用(金
型運搬費等)がその製造の度毎に必要とされるので、そ
の分費用が嵩むことになる。
However, in the method of producing the number of orders as it is as the number of production lots, since the number of orders is small, the work is troublesome, and the production setup costs (mold transportation costs, etc.) are reduced. Is required every time, so that the cost increases.

【0006】また需要の減少を考慮して経験的に多めに
製造しておく方法であるが、明確な基準がないため、人
によって差があり、多めに製造し過ぎた補修部品はいつ
までも在庫保管費用が掛かってしまう。
[0006] In addition, a method of empirically manufacturing a large number of parts in consideration of a decrease in demand, but there is no clear standard, so there is a difference between people, and repair parts that are overmanufactured are kept in stock forever. It costs money.

【0007】本発明は、斯かる点に鑑みなされたもの
で、その目的とする処は、製造段取り費用を考慮して最
適生産ロット数を決定することができる補修部品の最適
生産方法を供する点にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an optimal production method of a repair part capable of determining an optimal number of production lots in consideration of production setup costs. It is in.

【0008】[0008]

【課題を解決するための手段及び作用効果】上記目的を
達成するために、本発明は、補修部品の需要数に基づく
在庫保管費用が1回の製造に要する製造段取り費用に等
しくなるように生産ロット数とその在庫期間を決定する
補修部品の最適生産方法とした。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides a method for producing a spare part in such a manner that an inventory storage cost based on a demand number of repair parts is equal to a production setup cost required for one production. The optimal production method for repair parts that determines the number of lots and their stock period was determined.

【0009】補修部品の総生産費用は、材料費や加工費
等の製造費用と、金型運搬費,金型メンテナンス費,金
型段取り費、部品運搬費等の製造段取り費用と、部品の
保管費用である在庫保管費用の合計である。
[0009] The total production cost of the repair parts includes production costs such as material costs and processing costs, production setup costs such as mold transportation costs, mold maintenance costs, mold setup costs, component transportation costs, and storage of parts. It is the sum of inventory storage costs, which are costs.

【0010】製造費用は製造回数に関係なく掛かる費用
であるのに対して、製造段取り費用は、製造の度毎に掛
かる一定額の費用であるため、製造回数に比例して増加
する費用である。また在庫保管費用は、在庫数に比例す
る費用であり、したがって製造回数を多くして毎回の在
庫数を小さく抑えることで費用を減少させることができ
る。
[0010] The manufacturing cost is a cost irrespective of the number of manufacturing times, whereas the manufacturing setup cost is a fixed amount of cost for each manufacturing, and therefore increases in proportion to the number of manufacturing times. . In addition, the stock keeping cost is a cost proportional to the number of stocks. Therefore, the cost can be reduced by increasing the number of productions and keeping the number of stocks small each time.

【0011】製造回数に応じて増加する製造段取り費用
と減少する在庫保管費用の合計が最小となるのは、製造
段取り費用と在庫保管費用が等しくなる製造回数のとき
である(図1を参照)。
[0011] The sum of the production setup cost that increases according to the number of production times and the inventory storage cost that decreases is the minimum when the number of production times at which the production setup cost equals the inventory storage cost (see FIG. 1). .

【0012】そこで補修部品の需要数に基づく在庫保管
費用が1回の製造に要する製造段取り費用に等しくなる
ように生産ロット数とその在庫期間を決定することで、
製造回数によらず在庫保管費用の累積と製造段取り費用
の累積は等しく、したがってこれらに製造費用を加算し
た補修部品の総生産費用を最小とすることができる。
Therefore, the number of production lots and the stock period are determined so that the inventory storage cost based on the demand number of the repair parts becomes equal to the production setup cost required for one production.
Regardless of the number of productions, the accumulation of the stock keeping cost and the accumulation of the production setup cost are equal, and therefore, the total production cost of the repair parts obtained by adding the production cost to them can be minimized.

【0013】請求項2記載の発明は、補修部品の年間予
想需要数に基づき在庫のみで賄うとした場合の在庫累積
数の経時変化を表す在庫累積関数を求め、前記在庫累積
関数を在庫期間積分した延べ累積数から在庫期間後の在
庫累積数を在庫期間積分した延べ累積数を減算した予想
需要数の補修部品の延べ累積数を求め、前記予想需要数
の補修部品の延べ累積数に補修部品1個当りの年間保管
費用を乗算して在庫保管費用を求め、前記在庫保管費用
が予想需要数の補修部品の在庫保管費用が1回の製造に
要する製造段取り費用に等しくなる在庫期間を算出し、
前記在庫累積関数に基づき前記在庫期間における在庫の
減少分を最適生産ロット数として決定することを特徴と
する補修部品の最適生産方法である。
According to a second aspect of the present invention, there is provided an inventory accumulation function representing a temporal change of the accumulated number of inventory when only the inventory is required based on the expected annual number of repair parts, and integrating the inventory accumulation function with the inventory period integration. The total cumulative number of repair parts of the expected demand number obtained by subtracting the total cumulative number obtained by integrating the cumulative number of inventory after the inventory period from the total cumulative number of inventory after the inventory period is obtained, The inventory storage cost is calculated by multiplying the annual storage cost per piece to calculate an inventory period in which the inventory storage cost is equal to the production setup cost required for one production of the repair parts of the expected demand. ,
An optimal production method for repair parts, wherein a reduction in inventory during the inventory period is determined as an optimal number of production lots based on the inventory accumulation function.

【0014】補修部品の年間予想需要数から求めた在庫
累積関数に基づき予想需要数の補修部品の在庫保管費用
を求め、その在庫保管費用が1回の製造に要する製造段
取り費用に等しくなる在庫期間を算出し、この在庫期間
における在庫の減少分を最適生産ロット数とすること
で、補修部品の総生産費用を最小とすることができる。
An inventory storage cost of the repair parts of the expected demand is calculated based on the stock accumulation function obtained from the annual expected demand of the repair parts, and an inventory period in which the inventory storage cost is equal to the production setup cost required for one production. Is calculated, and the reduction in inventory during this inventory period is set as the optimal number of production lots, so that the total production cost of the repair parts can be minimized.

【0015】請求項3記載の発明は、請求項2記載の補
修部品の最適生産方法において、前記在庫累積関数が、
1年後に前記年間予想需要数だけ在庫累積数が減少する
指数関数であることを特徴とする。
According to a third aspect of the present invention, in the method for optimum production of repair parts according to the second aspect, the stock accumulation function is:
One year later, it is an exponential function in which the cumulative number of stocks decreases by the expected annual demand.

【0016】需要数が経時的に減少する補修部品の年間
予想需要数に基づき在庫のみで賄うとした場合の在庫累
積関数は、1年後の在庫累積数の減少が年間予想需要数
として指数関数的に減衰するので、現実に則した最適生
産ロット数を導き出すことができる。
[0016] The inventory accumulation function in the case where it is assumed that only the inventory can be covered based on the expected annual number of repair parts in which the number of demands decreases with time, an index function is used in which the decrease in the number of inventory after one year is calculated as the expected annual number of demands. Since it attenuates dynamically, it is possible to derive the optimum number of production lots in accordance with reality.

【0017】請求項4記載の発明は、請求項3記載の補
修部品の最適生産方法において、前記在庫累積変化関数
が、底を0.6とする指数関数であることを特徴とする。
According to a fourth aspect of the present invention, in the repair part optimum production method according to the third aspect, the stock accumulation change function is an exponential function having a base of 0.6.

【0018】在庫累積関数は、概ね底を0.6とする指数
関数がより現実に則している。
As the inventory accumulation function, an exponential function having a base of approximately 0.6 is more realistic.

【0019】請求項5記載の発明は、請求項2記載の補
修部品の最適生産方法において、前記在庫累積関数が、
1年後に前記年間予想需要数だけ在庫累積数が減少する
1次関数として求められることを特徴とする。
According to a fifth aspect of the present invention, in the repair part optimum production method according to the second aspect, the stock accumulation function is:
One year later, it is obtained as a linear function in which the cumulative number of stocks decreases by the annual expected demand number.

【0020】在庫累積関数を1次関数とすることで、演
算を簡略化することができる。
The calculation can be simplified by making the stock accumulation function a linear function.

【0021】[0021]

【発明の実施の形態】補修部品の総生産費用は、前記し
たように材料費や加工費等の製造費用Xと、金型運搬
費,金型メンテナンス費,金型段取り費、部品運搬費等
の製造段取り費用Yと、部品の保管費用である在庫保管
費用Zの合計X+Y+Zである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The total production cost of a repair part is, as described above, a production cost X such as a material cost and a processing cost, a mold transportation cost, a mold maintenance cost, a mold setup cost, a component transportation cost, and the like. Is the total X + Y + Z of the manufacturing setup cost Y and the stock storage cost Z, which is the cost of storing parts.

【0022】そして製造段取り費用Yは、製造の度毎に
掛かる一定額の費用yであるため、製造回数kに比例し
て増加する費用である。または、在庫数に比例する費用
であり、したがって製造回数kを多くして毎回の在庫数
を小さく抑えることで費用を減少させることができる。
The production setup cost Y is a fixed amount of cost y that is required for each production, and therefore increases in proportion to the number of productions k. Alternatively, the cost is proportional to the stock quantity. Therefore, the cost can be reduced by increasing the number of productions k to keep the stock quantity small each time.

【0023】以上の生産回数kによる製造段取り費用Y
と在庫保管費用Zの変化をグラフ化すると図1のように
なる。製造段取り費用Yは製造回数kに対して勾配yで
直線的に増加し、在庫保管費用Zは製造回数kに対して
1/kに比例して指数関数的に減少する。
Manufacturing setup cost Y based on the number of productions k
FIG. 1 shows a graph of the change of the stock keeping cost Z. The production setup cost Y increases linearly with the gradient y with respect to the number of productions k, and the inventory storage cost Z increases with respect to the number of productions k.
It decreases exponentially in proportion to 1 / k.

【0024】この製造段取り費用Yと在庫保管費用Zと
の合計費用Y+Zは、図1に示すように下に凸の曲線と
なり、最低値を有し、その最低値は製造段取り費用Yと
在庫保管費用Zが等しくなる生産回数のときである。製
造費用Xは製造回数に関係なく掛かる費用であるので、
総生産費用X+Y+Zも製造段取り費用Yと在庫保管費
用Zが等しくなる生産回数のときに最低値を示す。
The total cost Y + Z of the production setup cost Y and the inventory storage cost Z is a downwardly convex curve as shown in FIG. 1 and has a minimum value. The minimum value is the production setup cost Y and the inventory storage cost. This is the case of the number of productions at which the cost Z is equal. Since the manufacturing cost X is a cost regardless of the number of manufacturing times,
The total production cost X + Y + Z also shows the lowest value when the number of productions at which the production setup cost Y and the inventory storage cost Z are equal.

【0025】以下本発明に係る一実施の形態について図
2ないし図6に基づき説明する。本実施の形態に係る補
修部品の最適生産方法は、上記総生産費用X+Y+Zを
最低値に抑えることができる製造段取り費用Yと在庫保
管費用Zが等しくなる最適生産ロット数を決定するもの
である。
An embodiment according to the present invention will be described below with reference to FIGS. The optimal production method of the repair part according to the present embodiment is to determine the optimal production lot number at which the production setup cost Y and the inventory storage cost Z, which can suppress the total production cost X + Y + Z to the minimum value, are equal.

【0026】本補修部品は、需要数が経時的に減少する
自動車の部品であり、この補修部品の最適生産ロット数
を算出するまでの手順を図2に示す。まず該補修部品の
年間の需要数を予想した予想需要数aを設定する(ステ
ップ1)。
This repair part is an automobile part whose demand decreases with time, and FIG. 2 shows the procedure for calculating the optimum production lot number of this repair part. First, an expected demand number a for estimating the annual demand number of the repair part is set (step 1).

【0027】ステップ2で該補修部品の1個当りの年間
保管費用zを算定する。1個当りの年間保管費用zは、
保管地域倉庫毎の単位容積当りの費用のマップと該補修
部品の大きさ等から算定される。
In step 2, the annual storage cost z per piece of the repair part is calculated. The annual storage cost z per piece is
It is calculated from the cost map per unit volume for each storage area warehouse and the size of the repair parts.

【0028】ステップ3で1回当りの製造段取り費用y
を算定する。1回当りの製造段取り費用yは、該補修部
品の金型運搬費,金型メンテナンス費,金型段取り費、
部品運搬費等の各マップから算定される。
In step 3, manufacturing setup cost y per operation
Is calculated. The production setup cost y per time includes the mold transportation cost, the mold maintenance cost, the mold setup cost,
It is calculated from each map such as parts transportation cost.

【0029】そしてステップ4において予想需要数aに
基づき在庫のみで賄うとした場合の在庫累積数の経時変
化を表す在庫累積関数F(t)を決定する。在庫累積数
は、一般に指数関数的に減少し、このときの指数関数と
しては年(t)単位の経年変化でみると経験的に底を0.6と
する指数関数0.6が現実に則している。
Then, in step 4, an inventory accumulation function F (t) representing a change over time of the inventory accumulation number when it is assumed that only the inventory can cover the expected demand a is determined. The cumulative number of stocks generally decreases exponentially, and as an exponential function at this time, an exponential function 0.6 t with a base of 0.6 is empirically observed as a function of yearly (t) unit aging. .

【0030】出荷数も在庫累積数と同じく指数関数0.6
に沿って減少する。したがって当初の出荷予想数であ
る予想需要数aが設定されると(ステップ1)、出荷数
の変化はa・0.6となる(図3参照)。
The number of shipments is also an exponential function of 0.6
decreases along t . Therefore the expected demand number a is initially shipped expected number is set (step 1), the change in shipments becomes a · 0.6 t (see FIG. 3).

【0031】ステップ4では、1年後に予想需要数aだ
け減少する在庫累積関数F(t)を求める。すなわちF(t)
=A・0.6と置いてF(0)−F(1)=aからAを求める
と、A=2.5aとなるので、F(t)=A・0.6=2.5a・
0.6と決定される。図3は、横軸に経過年t(年)、
縦軸に部品数n(個)としたグラフであり、n=F(t)
=2.5a・0.6の指数曲線が在庫累積数の変化を示し、
n=a・0.6 の指数曲線が出荷数の変化を示す。
In step 4, the expected demand number a is obtained one year later.
To find the stock accumulation function F (t) that decreases. That is, F (t)
= A 0.6tAnd find A from F (0) -F (1) = a
And A = 2.5a, so that F (t) = A · 0.6t= 2.5a ・
0.6tIs determined. FIG. 3 shows the elapsed year t (year) on the horizontal axis,
The vertical axis is a graph with the number of parts n (pieces), where n = F (t)
= 2.5a ・ 0.6tExponential curve shows the change in cumulative inventory,
n = a · 0.6 tIndicates the change in the number of shipments.

【0032】次にステップ5で予想需要数aの補修部品
の在庫期間Tにおける延べ累積数N(T)を求める。延べ
累積数N(T)は、図3においてT年までの斜線を施した
部分の面積に当る。
Next, in step 5, the total cumulative number N (T) of the repair parts having the expected demand number a in the stock period T is obtained. The total cumulative number N (T) corresponds to the area of the hatched portion up to year T in FIG.

【0033】したがって在庫累積関数F(t)を在庫期間
T年に亘って積分した延べ累積数から在庫期間(T年)
後の在庫累積数F(T)を在庫期間T年に亘って積分した
延べ累積数を減算したものが、予想需要数aの補修部品
の在庫期間Tにおける延べ累積数N(T)である。
Therefore, the inventory period (T years) is calculated from the total cumulative number obtained by integrating the inventory accumulation function F (t) over the inventory period T years.
The total cumulative number N (T) in the inventory period T of the repair part having the expected demand number a is subtracted by subtracting the total cumulative number obtained by integrating the subsequent cumulative number F (T) over the inventory period T years.

【0034】すなわちThat is,

【数1】 である。(Equation 1) It is.

【0035】この延べ累積数N(T)にステップ2で算定
した該補修部品の1個当りの年間保管費用zを乗算する
と予想需要数aの補修部品の在庫期間T年の在庫保管費
用が求められる(ステップ6)。
By multiplying the total cumulative number N (T) by the annual storage cost z per piece of the repair part calculated in step 2, the stock storage cost of the repair part having the expected demand number a for T years is obtained. (Step 6).

【0036】次のステップ7ではこの在庫保管費用N
(T)×zが、ステップ3で算定した1回当りの製造段取
り費用yに等しくなる在庫期間Tを求めている。すなわ
ち N(T)×z=y を解いてTを求める。
In the next step 7, this inventory storage cost N
An inventory period T in which (T) × z is equal to the production setup cost y per operation calculated in step 3 is obtained. That is, T is obtained by solving N (T) × z = y.

【0037】この在庫期間Tが求まれば、この期間に減
少した在庫累積数が生産ロット数Lとなるので、ステッ
プ8において最適生産ロット数LをF(0)−F(T)から算
出している。
When the stock period T is obtained, the accumulated number of stocks reduced during this period becomes the number of production lots L. In step 8, the optimum number of production lots L is calculated from F (0) -F (T). ing.

【0038】このようにして算出された最適生産ロット
数Lは、在庫期間Tの在庫保管費用N(T)×zを1回の
製造に要する製造段取り費用yと等しくするものである
から、2回目以降の生産に際して同じ方法により算出さ
れた最適生産ロット数に従って生産することにより毎回
在庫保管費用と製造段取り費用yが等しく、いずれの回
においてもそれまでの在庫保管費用の合計と製造段取り
費用yとの合計は等しくなり、前記した論理により補修
部品の総生産費用を最小とすることができる。
The optimum production lot number L calculated in this way is to make the inventory storage cost N (T) × z in the inventory period T equal to the production setup cost y required for one production. By performing production according to the optimal production lot number calculated by the same method in the subsequent production, the inventory storage cost and the production setup cost y are equal each time. And the above logic minimizes the total cost of repair parts.

【0039】以下実際の数値を入れた例を示す。ある補
修部品の年間予想需要数(出荷予想数)aが1000個と設
定されたとする(ステップ1)。そして該補修部品の1
個当りの年間保管費用zが4,260円と算定され(ステッ
プ2)、1回当りの製造段取り費用yが104,580円と算
定されたとする(ステップ3)。
The following is an example in which actual numerical values are entered. It is assumed that the annual expected demand number (expected shipping number) a of a certain repair part is set to 1000 (step 1). And one of the repair parts
It is assumed that the annual storage cost z per unit is calculated as 4,260 yen (step 2), and the manufacturing setup cost y per operation is calculated as 104,580 yen (step 3).

【0040】1年後に予想需要数1000個だけ減少する在
庫累積関数F(t)は、ステップ4より F(t)=2.5a・0.6=2.5×1000×0.6=2,500×0.6
となる。この在庫累積関数F(t)は、図4に図示するよ
うに部品数2500個から指数関数的に減少する曲線を示
す。
The only number 1000 expected demand after one year reduced inventory accumulation function F (t) is, F (t) = 2.5a · 0.6 t = 2.5 × 1000 × 0.6 t = 2,500 × 0.6 from step 4
t . The stock accumulation function F (t) shows a curve that decreases exponentially from 2500 parts as shown in FIG.

【0041】予想需要数1000個の補修部品の在庫期間T
における延べ累積数N(T)は、ステップ5により N(T)=2,500×{(0.6−1)/ln0.6−0.6・T} となり、在庫期間T年の在庫保管費用は、N(T)×z=
N(T)×4,260(円)となる(ステップ6)。
Inventory period T of repair parts with the expected number of demand of 1000
Is N (T) = 2,500 × {(0.6 T −1) / ln 0.6−0.6 T · T} in step 5, and the inventory storage cost for the inventory period T is N (T) × z =
N (T) × 4,260 (yen) (step 6).

【0042】よってステップ7ではこの在庫保管費用N
(T)×4,260(円)を1回当りの製造段取り費用104,580
円と等しくおいて、 N(T)×4,260=104,580 より在庫期間Tを求めると、T=0.2029(年)が算出さ
れる。
Therefore, in step 7, this inventory storage cost N
(T) × 4,260 (yen) for the production setup cost of 104,580 yen
When the inventory period T is calculated from N (T) × 4,260 = 104,580 under the condition of a circle, T = 0.2029 (year) is calculated.

【0043】この在庫期間0.2029年経過時の在庫累積数
F(0.2029)=2,253.8(個)であり、当初F(0)=2,500
(個)よりF(0)−F(0.2029) =246.2(個)減少して
おり、この246.2個を四捨五入して246個が最適生産ロッ
ト数Lとなる。すなわち約0.2年分の該補修部品の生産
ロット数を246個とすることで、在庫保管費用と1回の
製造段取り費用とを等しくすることができる。
The cumulative number of stocks after the stock period of 0.2029 years has elapsed is F (0.2029) = 2,253.8 (pieces), and initially F (0) = 2,500.
F (0) -F (0.2029) = 246.2 (pieces) less than (pieces), and this 246.2 pieces are rounded off to obtain 246 pieces as the optimum production lot number L. That is, by setting the number of production lots of the repair parts for about 0.2 years to 246, the stock keeping cost and the cost of one production setup can be made equal.

【0044】次に約0.2029年後の2回目の最適生産ロッ
ト数を求めるには、まず出荷数の変化n=1000×0.6
から予想需要数aを求める。すなわちt=0.2029を代入
して1000×0.60.2029=901.5個を予想需要数aとし、こ
の予想需要数901.5個に基づいて前述と同じ手順で在庫
期間T及び最適生産ロット数Lを求める。
Next, in order to obtain the optimum number of production lots for the second time about 0.2029 years later, first, the change in the number of shipments n = 1000 × 0.6 t
From the estimated demand number a. That is, t = 0.2029 is substituted and 1000 × 0.6 0.2029 = 901.5 pieces are set as the expected demand number a, and the stock period T and the optimum production lot number L are obtained based on the expected demand number 901.5 by the same procedure as described above.

【0045】演算した結果は、在庫期間0.2141年で最適
生産ロット数233.5個となる。以下同様にして3回目、
4回目、…、…の在庫期間と最適生産ロット数を演算し
た結果を図4のグラフ上に示し、図5の表に一部掲載す
る。
As a result of the calculation, the optimal production lot number is 233.5 in a stock period of 0.2141 years. The third time in the same way,
The results of calculating the inventory periods and the optimal number of production lots for the fourth time,..., Are shown on the graph of FIG. 4 and partially shown in the table of FIG.

【0046】図4のグラフにおいてn=F(t) =2.5a
・0.6に沿って斜線が施された略三角形部分の高さが
各回の最適生産ロット数に相当する。経過0年で初回の
最適生産ロット数246個が生産され、0.2029年後2回目
の最適生産ロット数234個が生産され、0.4170年後3回
目の最適生産ロット数221個が生産されというように順
次生産され、出荷され在庫が減少している。図5の表に
示すように毎回の在庫保管費用と製造段取り費用は等し
い。
In the graph of FIG. 4, n = F (t) = 2.5a
-The height of the substantially triangular portion hatched along 0.6 t corresponds to the optimum number of production lots for each time. The first optimal production lot number of 246 is produced in 0 years, the second optimal production lot number of 234 is produced in 0.2029 years, the third optimal production lot number of 221 is produced in 0.4170 years, and so on. Produced and shipped sequentially, inventory is decreasing. As shown in the table of FIG. 5, the inventory storage cost and the production setup cost are equal every time.

【0047】以上のようにある補修部品について1個当
りの年間保管費用z及び1回当りの製造段取り費用yが
定まっていれば最適生産ロット数Lは、年間予想需要数
aにのみ基づいて算出することができるので、上記の例
における年間予想需要数aの代表例に対する最適生産ロ
ット数Lを図6に示す。
As described above, if the annual storage cost z per unit and the manufacturing setup cost y per unit for a certain repair part are determined, the optimum production lot number L is calculated based only on the expected annual demand number a. FIG. 6 shows the optimum production lot number L for the representative example of the expected annual demand number a in the above example.

【0048】ここに示された最適生産ロット数Lは目安
であって、実際には何個単位が保管に便利であるとかの
保管条件など他の要素によって多少増減する。
The optimum number L of production lots shown here is only a guide, and actually varies slightly depending on other factors such as storage conditions such as how many units are convenient for storage.

【0049】以上の実施の形態では在庫累積関数F(t)
を実際に則して2.5a・0.6と指数関数で表し計算した
が、これを図7に示すように1年ごとの1次関数(直
線)で表すこともでき、計算が簡略化される。
In the above embodiment, the stock accumulation function F (t)
The actually conformity was calculated expressed in 2.5a · 0.6 t and exponentially, which can also be represented by a linear function (straight line) per year, as shown in FIG. 7, calculation is simplified .

【0050】年間予想需要数をa個とすると、経過1年
までの在庫累積関数F(t)は、1年経過後に在庫累積数
がa個減少するとしてF(t)=−a・t+cと表せる。
予想需要数aの補修部品の在庫期間Tにおける延べ累積
数N(T)は、図7における斜線で示した三角形の面積で
あり、 N(T)=a・T×T/2=a・T/2 となる。
Assuming that the expected number of demands per year is a, the inventory accumulation function F (t) until one year elapses becomes F (t) = − at · t + c assuming that the inventory accumulation number decreases by a after one year. Can be expressed.
The total cumulative number N (T) of the repair parts with the expected demand number a in the stock period T is the area of the triangle indicated by the oblique line in FIG. 7, and N (T) = a · T × T / 2 = a · T the 2/2.

【0051】したがってこの延べ累積数N(T)に1個当
りの年間保管費用zを乗算して在庫保管費用は、N(T)
×z=a・T・z/2となり、1回当りの製造段取り
費用yと等しくおいてa・T・z/2=yを解いて在
庫期間Tを求めると、 T=(2・y/a・z)1/2 となる。
Therefore, by multiplying the total cumulative number N (T) by the annual storage cost z per piece, the inventory storage cost becomes N (T)
× z = a · T 2 · z / 2 , and the the at equal production setup cost y of per a · T 2 · z / 2 = Solve y seek inventory period T, T = (2 · y / a · z) 1/2 .

【0052】最適生産ロット数Lは前記斜線で示した三
角形の高さa・Tに相当し、よって前記在庫期間Tから
最適生産ロット数Lは、 L=a・(2・y/a・z)1/2=(2・a・y/
z)1/2 となる。
The optimum number L of production lots corresponds to the height a · T of the triangle indicated by the diagonal lines. Therefore, from the stock period T, the number L of optimum production lots is: L = a · (2 · y / a · z) ) 1/2 = (2 · a · y /
z) 1/2 .

【0053】いま前記実施の形態の例と同じように該補
修部品の1個当りの年間保管費用zを4,260円、1回当
りの製造段取り費用yを104,580円とし、予想需要数a
が1000個とすると、最適生産ロット数Lは、上式より22
2個と算出される。
As in the case of the above embodiment, the annual storage cost z per unit of the repair part is 4,260 yen, the production setup cost y per unit is 104,580 yen, and the expected demand number a
Is 1000, the optimal production lot number L is 22
It is calculated as two.

【0054】上の最適生産ロット数Lの式は年間保管費
用4,260円、製造段取り費用104,580円を代入し予想需要
数aのみを変数として残した式に変形すると、 L=7・a1/2 となり、予想需要数aが設定されすると、簡単に最適生
産ロット数Lを求めることができる。
The above formula of the optimum production lot number L is obtained by substituting the annual storage cost of 4,260 yen and the production setup cost of 104,580 yen, and leaving only the expected demand number a as a variable. L = 7 · a 1/2 When the expected demand number a is set, the optimum production lot number L can be easily obtained.

【0055】前記図6の表には、在庫累積関数F(t)を
1次関数とした場合の年間予想需要数aの代表例に対す
る最適生産ロット数Lも参考のため掲載している。以上
のように在庫累積関数F(t)を1次関数とすると、演算
が大幅に軽減される。
The table of FIG. 6 also shows, for reference, the optimum production lot number L for a typical example of the expected annual demand number a when the stock accumulation function F (t) is a linear function. As described above, if the stock accumulation function F (t) is a linear function, the calculation is greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】生産回数kに対する製造段取り費用Yと在庫保
管費用Zとその合計の変化を示したグラフである。
FIG. 1 is a graph showing changes in a production setup cost Y, an inventory storage cost Z, and a total thereof with respect to the number of productions k.

【図2】本発明の一実施の形態に係る最適生産ロット数
を算出する手順を示したフローチャートである。
FIG. 2 is a flowchart showing a procedure for calculating an optimum number of production lots according to one embodiment of the present invention.

【図3】指数関数の在庫累積関数及び出荷数の変化を示
すグラフである。
FIG. 3 is a graph showing changes in an inventory accumulation function of an exponential function and the number of shipments.

【図4】実際の数値を入れた例の在庫累積関数及び出荷
数の変化を示すグラフである。
FIG. 4 is a graph showing a change in the stock accumulation function and the number of shipments in an example in which actual numerical values are entered.

【図5】同例における演算結果を示す表である。FIG. 5 is a table showing calculation results in the same example.

【図6】年間予想需要数aの代表例に対する最適生産ロ
ット数Lを示した表である。
FIG. 6 is a table showing an optimum production lot number L for a representative example of an expected annual demand number a.

【図7】別の実施の形態に係る1次関数の在庫累積関数
及び出荷数の変化を示すグラフである。
FIG. 7 is a graph showing changes in a stock accumulation function of a linear function and the number of shipments according to another embodiment.

【符号の説明】[Explanation of symbols]

X…製造費用、Y…製造段取り費用、Z…在庫保管費
用、k…製造回数、a…予想需要数、y…1回当りの製
造段取り費用、z…1個当りの年間保管費用、F(t)…
在庫累積関数、T…在庫期間、N(T)…延べ累積数、L
…最適生産ロット数。
X: production cost, Y: production setup cost, Z: inventory storage cost, k: number of productions, a: expected demand number, y: production setup cost per operation, z: annual storage cost per unit, F ( t)…
Inventory cumulative function, T: inventory period, N (T): total cumulative number, L
… Optimal production lot number.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 補修部品の需要数に基づく在庫保管費用
が1回の製造に要する製造段取り費用に等しくなるよう
に生産ロット数とその在庫期間を決定することを特徴と
する補修部品の最適生産方法。
1. The optimal production of repair parts, wherein the number of production lots and the stock period are determined so that the stock keeping cost based on the demand number of the repair parts becomes equal to the production setup cost required for one production. Method.
【請求項2】 補修部品の年間予想需要数に基づき在庫
のみで賄うとした場合の在庫累積数の経時変化を表す在
庫累積関数を求め、 前記在庫累積関数を在庫期間積分した延べ累積数から在
庫期間後の在庫累積数を在庫期間積分した延べ累積数を
減算した予想需要数の補修部品の延べ累積数を求め、 前記予想需要数の補修部品の延べ累積数に補修部品1個
当りの年間保管費用を乗算して在庫保管費用を求め、 前記在庫保管費用が予想需要数の補修部品の在庫保管費
用が1回の製造に要する製造段取り費用に等しくなる在
庫期間を算出し、 前記在庫累積関数に基づき前記在庫期間における在庫の
減少分を最適生産ロット数として決定することを特徴と
する補修部品の最適生産方法。
2. An inventory accumulation function representing a change over time in the cumulative number of inventory when only the inventory is to be used based on the expected annual number of repair parts, and calculating the inventory from the total cumulative number obtained by integrating the inventory cumulative function over the inventory period. Obtain the total cumulative number of repair parts of the expected demand number by subtracting the cumulative total number obtained by integrating the cumulative number of stocks after the period for the inventory period, and store the total cumulative number of repair parts of the expected demand number per year for each repair part. Multiplying the cost to obtain an inventory storage cost, calculating an inventory period in which the inventory storage cost is equal to a production setup cost required for one production of the repair parts of the expected number of demands; An optimal production method for repair parts, wherein a reduction in inventory during the inventory period is determined as an optimal number of production lots.
【請求項3】 前記在庫累積関数は、1年後に前記年間
予想需要数だけ在庫累積数が減少する指数関数であるこ
とを特徴とする請求項2記載の補修部品の最適生産方
法。
3. The method according to claim 2, wherein the inventory accumulation function is an exponential function in which the inventory accumulation number decreases by the annual expected demand number one year later.
【請求項4】 前記在庫累積変化関数は、底を0.6とす
る指数関数であることを特徴とする請求項3記載の補修
部品の最適生産方法。
4. The optimum production method of a repair part according to claim 3, wherein the stock accumulation change function is an exponential function with a bottom being 0.6.
【請求項5】 前記在庫累積関数は、1年後に前記年間
予想需要数だけ在庫累積数が減少する1次関数として求
められることを特徴とする請求項2記載の補修部品の最
適生産方法。
5. The method according to claim 2, wherein the stock accumulation function is obtained as a linear function in which the stock accumulation number decreases by the annual expected demand number one year later.
JP2001040528A 2001-02-16 2001-02-16 Optimum production method for repairing parts Pending JP2002244718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001040528A JP2002244718A (en) 2001-02-16 2001-02-16 Optimum production method for repairing parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001040528A JP2002244718A (en) 2001-02-16 2001-02-16 Optimum production method for repairing parts

Publications (1)

Publication Number Publication Date
JP2002244718A true JP2002244718A (en) 2002-08-30

Family

ID=18903118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001040528A Pending JP2002244718A (en) 2001-02-16 2001-02-16 Optimum production method for repairing parts

Country Status (1)

Country Link
JP (1) JP2002244718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009003620A (en) * 2007-06-20 2009-01-08 Bridgestone Corp Method for adjusting instruction lot volume

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009003620A (en) * 2007-06-20 2009-01-08 Bridgestone Corp Method for adjusting instruction lot volume

Similar Documents

Publication Publication Date Title
US8650062B2 (en) Automated replenishment using an economic profit quantity
Paterson et al. Inventory models with lateral transshipments: A review
Moussaoui et al. Drivers of retail on-shelf availability: Systematic review, critical assessment, and reflections on the road ahead
JP5000547B2 (en) Steel frame arrangement planning device, method, program, and computer-readable storage medium
JP2007140785A (en) Inventory management system
CN111352403A (en) Process design method for rolling plates
JPWO2004027532A1 (en) Parts order quantity calculation device
JP4753590B2 (en) Method and system for selecting inventory replenishment model
CN101510277A (en) Method for rolling computation of material requirement in production management process
JP2008140015A (en) Part delivery instruction system, part delivery instruction method, and part delivery instruction program
WO2016079843A1 (en) Production plan adjustment assisting device and production plan adjustment assisting method
JP2002244718A (en) Optimum production method for repairing parts
JP2010003112A (en) Management support device and management support method
Boute et al. Global dual sourcing and order smoothing
JP5089352B2 (en) Sales production planning system, operation method of sales production planning system, and computer program
JP5776797B2 (en) Program, evaluation information generation method, and evaluation information generation system
JP3671809B2 (en) Inventory management support device
Rimawan et al. Analysis of inventory control with Material Requirement Planning (MRP) method on IT180-55gsm F4 Paper Product at PT. IKPP, TBK
JP5442526B2 (en) Schedule creation method, schedule creation program, and schedule creation device
JP2007219965A (en) Shipping plan calculation method
Pfeiffer et al. A simulation approach to evaluate supply chain flexibility
JP6357388B2 (en) Lead time based manufacturing overhead allocation system and program
CN112132504A (en) Multi-stage inventory control method, system, device and readable storage medium
CN113762842A (en) Warehouse scheduling method, server and system
US20160300180A1 (en) Product data analysis