JP2002244298A - Polymer built-up film, resist comprising polymer built-up film, composite polymer built-up film, resist comprising composite polymer built-up film and method for producing composite polymer built-up film - Google Patents

Polymer built-up film, resist comprising polymer built-up film, composite polymer built-up film, resist comprising composite polymer built-up film and method for producing composite polymer built-up film

Info

Publication number
JP2002244298A
JP2002244298A JP2001046502A JP2001046502A JP2002244298A JP 2002244298 A JP2002244298 A JP 2002244298A JP 2001046502 A JP2001046502 A JP 2001046502A JP 2001046502 A JP2001046502 A JP 2001046502A JP 2002244298 A JP2002244298 A JP 2002244298A
Authority
JP
Japan
Prior art keywords
film
copolymer
polymer
polymer built
built
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001046502A
Other languages
Japanese (ja)
Inventor
Tokuji Miyashita
徳治 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP2001046502A priority Critical patent/JP2002244298A/en
Publication of JP2002244298A publication Critical patent/JP2002244298A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polymer built-up film having a high orderly film structure with con trolled molecular orientation, forming a stable coating film and having a smooth film surface and a film thickness adjustable by building-up frequency on a nanometer level and to provide a composite polymer built-up film and a high sensitivity and high resolution resist material comprising the built-up film and a photo-acid generating agent or a polymer built-up film having photo-acid generating function. SOLUTION: The polymer built-up film comprises a copolymer of an N-alkyl substituted acrylamide and tert-butoxycarboxystyrene and a photo-acid generating agent. The composite polymer built-up film comprises a polymer built-up film comprising the above copolymer and a polymer built-up film comprising a copolymer of neopentyl methacrylamide and anthryl methacrylate. A resist material using the polymer built-up film comprising the copolymer of an N-alkyl substituted acrylamide and tert-butoxy carboxystyrene and the photo-acid generating agent and a resist material comprising the composite polymer built-up film comprising the above copolymer and the polymer built-up film comprising the copolymer of neopentyl methacrylamide and anthryl methacrylate are obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はN−アルキル置換ア
クリルアミドとtert−ブトキシカルボキシスチレン
との共重合体と光酸発生剤とからなる高分子累積膜およ
び該共重合体からなる高分子累積膜とネオペンチルメタ
クリルアミドとアンスリルメタクリレート共重合体から
なる高分子累積膜とからなる複合高分子累積膜さらに
は、N−アルキル置換アクリルアミドとtert−ブト
キシカルボキシスチレンとの共重合体と光酸発生剤から
なる高分子累積膜を用いたレジスト材料および該共重合
体からなる高分子累積膜とネオペンチルメタクリルアミ
ドとアンスリルメタクリレート共重合体からなる高分子
累積膜からなる複合高分子累積膜からなるレジスト材料
およびその複合高分子累積膜の製造方法に関する。
[0001] The present invention relates to a polymer cumulative film comprising a copolymer of N-alkyl-substituted acrylamide and tert-butoxycarboxystyrene and a photoacid generator, and a polymer cumulative film comprising the copolymer. A composite polymer cumulative film comprising a neopentyl methacrylamide and a polymer cumulative film comprising an anthryl methacrylate copolymer, and further comprising a copolymer of an N-alkyl-substituted acrylamide and tert-butoxycarboxystyrene and a photoacid generator. Resist material using a polymer cumulative film composed of a polymer and a composite polymer cumulative film composed of a polymer cumulative film composed of a copolymer of neopentyl methacrylamide and anthryl methacrylate and a polymer cumulative film composed of a copolymer of neopentyl methacrylamide and anthryl methacrylate And a method for producing the composite polymer cumulative film.

【0002】[0002]

【従来の技術】従来、ステアリン酸等に代表される高級
脂肪酸等の両親媒性の化合物が水面上で分子一つの厚さ
を有する単分子膜を形成することは知られており、その
単分子膜を固体基板に移し取ることにより形成される分
子累積膜はラングミュア−ブロジェット膜(LB膜)と
呼ばれ、分子レベルの膜厚の制御や分子を規則的に並べ
た有機超薄膜の製造法として注目されている。
2. Description of the Related Art It has been known that an amphiphilic compound such as a higher fatty acid such as stearic acid forms a monomolecular film having a thickness of one molecule on a water surface. The molecular accumulation film formed by transferring the film to a solid substrate is called a Langmuir-Blodgett film (LB film), a method of controlling the film thickness at the molecular level and producing an organic ultrathin film in which molecules are regularly arranged. It is attracting attention.

【0003】また、集積回路素子の分野では集積回路の
高密度化に伴い、レジストパターンのより微細化が要求
されている。LB膜は均一で分子配向を制御した高秩序
の膜構造を有し、分子レベルで膜厚の制御が可能である
ため、前述の高微細化が必要なレジスト材料への可能性
が注目されている。
Further, in the field of integrated circuit elements, with the densification of integrated circuits, finer resist patterns are required. The LB film has a uniform and highly ordered film structure with controlled molecular orientation, and the film thickness can be controlled at the molecular level. I have.

【0004】このようなLB膜をレジスト材料に応用し
た例としては、特開昭62−260140号公報に開示
のように、低分子量化合物を用いてLB膜を形成し、そ
こに光もしくは電子線を照射させて該低分子量化合物を
重合させる方法がある。これはネガ型のレジストとなる
例であるが、光照射の場合の感度が十分でないことと、
現像液に有機溶剤を用いなければならないため、実用化
が困難であるといった問題点がある。
As an example in which such an LB film is applied to a resist material, as disclosed in Japanese Patent Application Laid-Open No. 62-260140, an LB film is formed using a low molecular weight compound, and a light or electron beam is formed thereon. To polymerize the low molecular weight compound. This is an example of a negative resist, but the sensitivity in the case of light irradiation is not enough,
Since an organic solvent must be used for the developer, there is a problem that practical use is difficult.

【0005】また、ポジ型のレジストとして高分子LB
膜を用いた例が、特開2000−143831に開示さ
れている。ここでは予め重合して高分子化としたものを
水面上に展開し、基板に移し取ることよりLB膜として
いるがこの場合も感度が低く実用レベルではない。
Also, polymer LB is used as a positive resist.
An example using a film is disclosed in JP-A-2000-143831. Here, an LB film is formed by preliminarily polymerizing a polymer to be spread on a water surface and transferring it to a substrate. However, also in this case, the sensitivity is low and not at a practical level.

【0006】[0006]

【発明が解決しようとする課題】本発明者は上記の従来
技術の問題点を解決した新規な高分子累積膜およびそれ
を用いた高感度なレジスト材料を開発すべく研究した。
その結果、N−アルキル置換アクリルアミドとtert
−ブトキシカルボキシスチレンとの共重合体と光酸発生
剤とからなる高分子累積膜および該共重合体からなる高
分子累積膜とネオペンチルメタクリルアミドとアンスリ
ルメタクリレート共重合体からなる高分子累積膜からな
る複合高分子累積膜、さらには、N−アルキル置換アク
リルアミドとtert−ブトキシカルボキシスチレンと
の共重合体と光酸発生剤からなる高分子累積膜を用いた
レジスト材料および該共重合体からなる高分子累積膜と
ネオペンチルメタクリルアミドとアンスリルメタクリレ
ート共重合体からなる高分子累積膜からなる複合高分子
累積膜からなるレジスト材料が従来技術の欠点を解決で
きることを見いだし、この知見に基づいて本発明を完成
した。本発明の目的は、分子配向が制御された高秩序な
膜構造を有し、安定な皮膜を形成し、膜面も平滑で、膜
厚も累積回数で調整可能なナノメーターレベルで制御で
きる高分子累積膜、複合高分子累積膜および該累積膜と
光酸発生剤もしくは光酸発生機能を持つ高分子累積膜か
らなり、高感度で高解像度のレジスト材料を提供するこ
とである。
SUMMARY OF THE INVENTION The present inventor has studied to develop a novel polymer cumulative film which has solved the above-mentioned problems of the prior art and a highly sensitive resist material using the same.
As a result, N-alkyl substituted acrylamide and tert
-Accumulated polymer film comprising a copolymer of butoxycarboxystyrene and a photoacid generator, and a polymer accumulated film comprising the copolymer and a polymer accumulated film comprising a neopentyl methacrylamide and anthryl methacrylate copolymer And a resist material using a polymer cumulative film comprising a copolymer of N-alkyl-substituted acrylamide and tert-butoxycarboxystyrene and a photoacid generator, and the copolymer. We have found that a resist material consisting of a polymer cumulative film and a composite polymer cumulative film consisting of a polymer cumulative film consisting of neopentyl methacrylamide and anthryl methacrylate copolymer can solve the drawbacks of the conventional technology. Completed the invention. An object of the present invention is to provide a highly ordered film structure in which the molecular orientation is controlled, to form a stable film, the film surface is smooth, and the film thickness can be controlled at the nanometer level which can be adjusted by the number of times of accumulation. It is an object of the present invention to provide a high-sensitivity, high-resolution resist material comprising a molecular accumulation film, a composite polymer accumulation film, and the accumulation film and a photoacid generator or a polymer accumulation film having a photoacid generation function.

【0007】[0007]

【課題を解決するための手段】本発明は以下に示され
る。 (1)下記式(1)で示され,数平均分子量が1,00
0〜100,000である共重合体と光酸発生剤とから
なる高分子累積膜。
The present invention is described below. (1) represented by the following formula (1) and having a number average molecular weight of 1,000
A polymer film comprising a copolymer having a molecular weight of 0 to 100,000 and a photoacid generator.

【化3】 (1)(式中R、Rは同一でも異なっても良く水素
もしくはメチル基を表し、Rはtert−ブトキシカ
ルボニル基、トリメチルシリル基もしくはテトラヒドロ
ピラニル基を表し、Xは0.4〜0.95,nは10〜1
4を表す。)
Embedded image (1) (wherein R 1 and R 2 may be the same or different and represent hydrogen or a methyl group, R 3 represents a tert-butoxycarbonyl group, a trimethylsilyl group or a tetrahydropyranyl group, and X represents 0.4 to 0.95, n is 10-1
4 is represented. )

【0008】(2)前記第1項に記載の高分子累積膜か
らなるレジスト材料、
(2) A resist material comprising the polymer cumulative film according to the above (1),

【0009】(3)前記第1項に記載の式(1)で示さ
れ,数平均分子量が1,000〜100,000である
共重合体からなる高分子累積膜と下記式(2)で示さ
れ、数平均分子量が1,000〜100,000である
共重合体からなる高分子累積膜とを重ねることにより得
られる複合高分子累積膜。
(3) A polymer cumulative film comprising a copolymer represented by the formula (1) described in the above item 1 and having a number average molecular weight of 1,000 to 100,000, and a compound represented by the following formula (2): A composite polymer cumulative film obtained by laminating a polymer cumulative film comprising a copolymer having a number average molecular weight of 1,000 to 100,000 as shown.

【化4】 (2) (式中Yは0.5〜0.9を表す)Embedded image (2) (where Y represents 0.5 to 0.9)

【0010】(4)前記第3項に記載の複合高分子累積
膜からなるレジスト材料。
(4) A resist material comprising the composite polymer cumulative film according to the above (3).

【0011】(5)前記第1項記載の式(1)で示さ
れ,数平均分子量が1,000〜100,000である
共重合体からなる高分子累積膜と前記第3項記載の式
(2)で示され、数平均分子量が1,000〜100,
000である共重合体からなる高分子累積膜とを重ねる
ことを特徴とする複合高分子累積膜の製造方法。
(5) A polymer cumulative film comprising a copolymer represented by the formula (1) described in the above item 1 and having a number average molecular weight of 1,000 to 100,000; (2) having a number average molecular weight of 1,000 to 100,
A method for producing a composite polymer cumulative film, which comprises superposing a polymer cumulative film comprising a copolymer having a molecular weight of 000.

【0012】[0012]

【発明の実施の形態】本発明において、式(1)で表さ
れる共重合体は、N−置換アクリルアミドとtert−
ブトキシカルボキシスチレンとの共重合により得られ、
、Rは同一でも異なってもよく、水素もしくはメ
チル基を表し、Rはtert−ブトキシカルボニル
基、トリメチルシリル基もしくはテトラヒドロピラニル
基を示し、nは10〜14の数を表し、Xは0.6〜
0.95を表す。nは10より小さくても、また、14
より大きくても、得られるLB膜の強度が弱くなるため
実用的でない。また、Xが0.6より小さいと同様にL
B膜の強度が弱くなる。さらにXが0.95より大きい
とレジストとしての感度が低下する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a copolymer represented by the formula (1) is an N-substituted acrylamide and a tert-
Obtained by copolymerization with butoxycarboxystyrene,
R 1 and R 2 may be the same or different and each represents hydrogen or a methyl group; R 3 represents a tert-butoxycarbonyl group, a trimethylsilyl group or a tetrahydropyranyl group; n represents a number of 10 to 14; Is 0.6 ~
Represents 0.95. n may be smaller than 10 or 14
If it is larger, it is not practical because the strength of the obtained LB film is weakened. Similarly, if X is smaller than 0.6, L
The strength of the B film decreases. Further, when X is larger than 0.95, the sensitivity as a resist decreases.

【0013】式(1)で示される共重合体は公知の方法
で製造することができ、特に限定されるものではない。
例えば、N−置換アクリルアミドと置換スチレンとを
2,2−アゾビスイソブチルニトリルなどのラジカル重
合開始剤と共に有機溶媒に溶解し、脱気後、50〜70
℃で、15〜30時間重合を行う。反応終了後、アセト
ニトリルなどで再沈殿させて精製することにより得られ
る。
The copolymer represented by the formula (1) can be produced by a known method, and is not particularly limited.
For example, N-substituted acrylamide and substituted styrene are dissolved in an organic solvent together with a radical polymerization initiator such as 2,2-azobisisobutylnitrile.
The polymerization is carried out at 150C for 15 to 30 hours. After completion of the reaction, it is obtained by reprecipitation with acetonitrile or the like and purification.

【0014】該式(1)で表される共重合体の数平均分
子量は1,000〜100,000である。数平均分子
量が100,000を越えると高分子膜の凝集が起こる
ため分子配向の制御された高秩序な膜構造が得られなく
なり、一方、1,000未満であると高分子LB膜は凝
集状態にならず膜膨張となる。
The number average molecular weight of the copolymer represented by the formula (1) is 1,000 to 100,000. When the number average molecular weight exceeds 100,000, aggregation of the polymer film occurs, so that a highly ordered film structure with controlled molecular orientation cannot be obtained. On the other hand, when the number average molecular weight is less than 1,000, the polymer LB film is in an aggregated state. Instead, the membrane expands.

【0015】式(2)で表される共重合体はN−ネオペ
ンチルメタクリレートと9−アンスリルメタクリレート
との共重合体である。Yは0.5〜0.9を表す。Yが
0.5より小さい場合はLB膜の強度が弱くなり。0.
9より大きいとレジストとしての感度が低下する。
The copolymer represented by the formula (2) is a copolymer of N-neopentyl methacrylate and 9-anthryl methacrylate. Y represents 0.5 to 0.9. When Y is smaller than 0.5, the strength of the LB film becomes weak. 0.
If it is larger than 9, the sensitivity as a resist decreases.

【0016】該式(2)で表される共重合体は公知の方
法で製造することができ、特に限定されるものではな
い。例えば、N−ネオペンチルメタクリレートと9−ア
ンスリルメタクリレートとを2,2−アゾビスイソブチ
ルニトリルなどのラジカル重合開始剤と共に有機溶媒に
溶解し、脱気後、50〜70℃で、15〜30時間重合
を行う。反応終了後、アセトニトリルなどで再沈殿させ
て精製すればよい。
The copolymer represented by the formula (2) can be produced by a known method and is not particularly limited. For example, N-neopentyl methacrylate and 9-anthryl methacrylate are dissolved in an organic solvent together with a radical polymerization initiator such as 2,2-azobisisobutylnitrile, and after degassing, at 50 to 70 ° C. for 15 to 30 hours. Perform polymerization. After completion of the reaction, purification may be performed by reprecipitation with acetonitrile or the like.

【0017】該式(2)で表される共重合体の数平均分
子量は1,000〜100,000である。数平均分子
量が100,000を越えると高分子膜の凝集が起こる
ため分子配向の制御された高秩序な膜構造が得られなく
なり、一方、1,000未満であると高分子LB膜は凝
集状態にならず膜膨張となる。
The number average molecular weight of the copolymer represented by the formula (2) is 1,000 to 100,000. When the number average molecular weight exceeds 100,000, aggregation of the polymer film occurs, so that a highly ordered film structure with controlled molecular orientation cannot be obtained. On the other hand, when the number average molecular weight is less than 1,000, the polymer LB film is in an aggregated state. Instead, the membrane expands.

【0018】本発明の高分子累積膜は次のようにして作
成することができる。式(1)もしくは(2)で表され
る共重合体を有機溶剤に溶解し、この溶液を水面上に必
要量滴下し、水面上に高分子単分子膜を形成し、有機溶
媒を完全に蒸発させる。次いで、この高分子単分子膜を
テフロン(登録商標)バーを用いて一定速度で圧縮する
ことにより、崩壊圧の高い分子が密に充填した単分子膜
を得る。次いで、累積圧を所定の値に保ちながら、高分
子膜を突き刺すように基板を所定の速度で昇降させ高分
子単分子膜を一層ずつ基板上に累積することにより高分
子累積膜を得る。
The polymer cumulative film of the present invention can be prepared as follows. The copolymer represented by the formula (1) or (2) is dissolved in an organic solvent, and a required amount of this solution is dropped on a water surface to form a polymer monomolecular film on the water surface, and the organic solvent is completely removed. Allow to evaporate. Next, the polymer monomolecular film is compressed at a constant speed using a Teflon (registered trademark) bar to obtain a monomolecular film densely packed with molecules having a high collapse pressure. Next, while maintaining the accumulated pressure at a predetermined value, the substrate is moved up and down at a predetermined speed so as to pierce the polymer film, and the polymer monomolecular films are accumulated one by one on the substrate to obtain a polymer accumulated film.

【0019】単分子膜が形成されているか否かは、膜面
積より算出される一分子あたりの占有面積と表面圧を測
定することにより判断できる。累積するときの膜の表面
圧は表面厚(π)−面積(A)曲線よりその膜が固体凝
縮膜を形成している範囲の表面圧であればよい。ただ
し、その圧が高すぎると膜構成分子が重なり合い、一方
圧が低すぎると安定に累積できない。良好な累積膜を形
成するにためには表面圧10〜40mN/m付近を用い
るのが好ましい。
Whether or not a monomolecular film is formed can be determined by measuring the occupied area per molecule and the surface pressure calculated from the film area. The surface pressure of the film at the time of accumulation may be any surface pressure within a range where the film forms a solid condensed film from the surface thickness (π) -area (A) curve. However, if the pressure is too high, the molecules constituting the membrane overlap, while if the pressure is too low, stable accumulation cannot be achieved. In order to form a good cumulative film, it is preferable to use a surface pressure of about 10 to 40 mN / m.

【0020】式(1)および(2)で表される共重合体
を溶解する有機溶剤としては、該共重合体を溶解しかつ
水面上に膜を形成後に膜表面に残らず完全に蒸発する溶
剤がよい。そのような溶剤の例としてクロロホルム等の
ハロゲン化炭化水素、トルエン等の芳香族化合物、ヘキ
サン等の脂肪族炭化水素、酢酸エチル等のエステル類が
あるが、膜作成時の溶媒蒸発速度の観点からクロロホル
ム等のハロゲン化炭化水素が好適である。
As the organic solvent for dissolving the copolymer represented by the formulas (1) and (2), the copolymer is dissolved, and after the film is formed on the water surface, it completely evaporates without remaining on the film surface. Solvents are good. Examples of such solvents include halogenated hydrocarbons such as chloroform, aromatic compounds such as toluene, aliphatic hydrocarbons such as hexane, and esters such as ethyl acetate, from the viewpoint of the solvent evaporation rate during film formation. Halogenated hydrocarbons such as chloroform are preferred.

【0021】上記溶剤に溶解させる共重合体の濃度は高
すぎると高分子凝集体を形成し良好な膜が得られなくな
り、一方濃度が低すぎると、溶剤が多くなりすぎて水槽
が汚染され良質な膜が得られない。0.0001〜0.
005モル/リットルの濃度が好ましい。
If the concentration of the copolymer dissolved in the above-mentioned solvent is too high, polymer aggregates are formed and a good film cannot be obtained. On the other hand, if the concentration is too low, the amount of the solvent becomes too large and the water tank becomes contaminated, resulting in high quality. Film cannot be obtained. 0.0001-0.
A concentration of 005 mol / l is preferred.

【0022】本発明で用いる光酸発生剤は多くの公知化
合物およびそれらの混合物を使用することができる。例
えば、アンモニウム塩、ジアゾニウム塩、ユードニウム
塩、スルフォニウム塩、セレニウム塩、アルソニウム塩
などの各種オニウム塩化合物、フェニルトリハロメチル
スルホン化合物、ハロメチルトリアジン化合物、ハロメ
チルオキサジアゾール化合物、トリ(2,3−ジブロ
モ)イソシアヌレートなどの有機ハロゲン化合物、1,
2−ナフトキノンジアジド−(2)−4−スルホン酸の
エステルもしくはアミド化合物、ニトロベンジルアルコ
ールのスルホン酸エステル化合物、オキシムのスルホン
酸化合物、N−ヒドロキシアミドもしくはイミドのスル
ホン酸エステル化合物、β−ケトスルホン系化合物、ベ
ンゾインのスルホン酸化合物などのスルホン酸発生剤お
よびこれらの混合物などを示すことができる。
As the photoacid generator used in the present invention, many known compounds and mixtures thereof can be used. For example, various onium salt compounds such as ammonium salts, diazonium salts, eudonium salts, sulfonium salts, selenium salts, arsonium salts, phenyltrihalomethylsulfone compounds, halomethyltriazine compounds, halomethyloxadiazole compounds, tri (2,3- Organic halogen compounds such as dibromo) isocyanurate;
2-naphthoquinonediazide- (2) -4-sulfonic acid ester or amide compound, nitrobenzyl alcohol sulfonic acid ester compound, oxime sulfonic acid compound, N-hydroxyamide or imide sulfonic acid ester compound, β-ketosulfone Compounds, sulfonic acid generators such as benzoin sulfonic acid compounds, and mixtures thereof can be mentioned.

【0023】式(2)で示される化合物の内、9−アン
スリルメチルメタクリレート部は光酸発生剤として働
く。すなわち、DeepUVなどの光を照射すると、ア
ンスリルメチル基が脱離し、これが系内の水分と反応し
てプロトンが発生する。このプロトンの発生は、例えば
光照射した9−アンスリルメチルメタクリレートを含む
キャスト膜または累積膜をメロシアニン色素を含む溶液
に浸積し、メロシアニン色素の吸収スペクトルを測定し
て確認することができる。また、アンスリルメチル基の
脱離は、光照射した累積膜の吸収スペクトルを直接測定
し、250nm付近のアンスリルメチル基に起因する吸
収が消去することによって確認される。
Among the compounds represented by the formula (2), the 9-anthrylmethyl methacrylate moiety functions as a photoacid generator. That is, when light such as DeepUV is irradiated, an anthrylmethyl group is eliminated, and this reacts with water in the system to generate a proton. The generation of this proton can be confirmed by, for example, immersing a cast film or a cumulative film containing 9-anthrylmethyl methacrylate irradiated with light in a solution containing a merocyanine dye, and measuring the absorption spectrum of the merocyanine dye. The desorption of the anthrylmethyl group is confirmed by directly measuring the absorption spectrum of the light-irradiated cumulative film and eliminating the absorption due to the anthrylmethyl group near 250 nm.

【0024】高分子単分子膜を累積する基板は、たとえ
ばシリコン板、ガリウムヒ素板、石英板、ガラス板、セ
ラミック板、フッ化カルシウム板のような無機基板、ポ
リアミド、ポリスルホン、ポリエステル、ポリカーボネ
ート、フッ素樹脂、ポリイミド、ポリエーテルスルホ
ン、アセタール樹脂、ポリフェニレンサルファイド、ポ
リフェニレンオキシドなどの有機基板などを挙げること
ができる。
Substrates on which polymer monomolecular films are accumulated include inorganic substrates such as silicon plate, gallium arsenide plate, quartz plate, glass plate, ceramic plate, calcium fluoride plate, polyamide, polysulfone, polyester, polycarbonate, fluorine Organic substrates such as resin, polyimide, polyether sulfone, acetal resin, polyphenylene sulfide, and polyphenylene oxide can be given.

【0025】該基板はそのままでも高分子単分子膜の累
積に使用できるが、必要に応じて基板表面を疎水処理す
ることもできる。疎水処理は、例えばジメチルジクロロ
シラン、ヘキサメチルジシラザン、などのシランカップ
リング剤で処理する方法を用いればよい。
The substrate can be used as it is for accumulating a polymer monomolecular film, but if necessary, the substrate surface can be subjected to a hydrophobic treatment. For the hydrophobic treatment, a method of treating with a silane coupling agent such as dimethyldichlorosilane or hexamethyldisilazane may be used.

【0026】累積は基板を上下させることにより基板の
両側に単分子膜を累積することにより行う。この操作を
繰り返すことにより、累積膜の厚さを所望の厚さにする
ことができる。その厚さは1〜1,000層、好ましく
は10〜200層である。
The accumulation is performed by accumulating monomolecular films on both sides of the substrate by moving the substrate up and down. By repeating this operation, the thickness of the accumulated film can be set to a desired thickness. Its thickness is from 1 to 1,000 layers, preferably from 10 to 200 layers.

【0027】本発明の複合高分子累積膜は式(1)およ
び式(2)で表される高分子累積膜より構成される。そ
の構成は式(1)で表される高分子累積膜を1〜500
層累積した後、その上に式(2)で表される高分子累積
膜を1〜500層累積した二層構造でも良い。この際式
(2)で表される高分子累積膜が下で、その上に式
(1)で表される高分子累積膜を累積しても良い。ま
た、式(1)で表される高分子累積膜を1〜100層累
積し、その上に式(2)で表される高分子累積膜を1〜
100層、さらにその上に式(1)で表される高分子累
積膜を1〜100層、更にその上に式(2)で表される
高分子累積膜を1〜100層累積するように多層構造に
することもできる。
The composite polymer cumulative film of the present invention is composed of the polymer cumulative films represented by the formulas (1) and (2). The structure is such that the polymer cumulative film represented by the formula (1) is 1 to 500.
After the layers are accumulated, a two-layer structure in which 1 to 500 layers of the polymer accumulation film represented by the formula (2) are accumulated thereon may be used. At this time, the polymer cumulative film represented by the formula (2) may be accumulated below the polymer cumulative film represented by the formula (2). Further, 1 to 100 layers of the polymer cumulative film represented by the formula (1) are accumulated, and the polymer cumulative film represented by the formula (2)
100 layers, 1 to 100 layers of the polymer cumulative film represented by the formula (1), and 1 to 100 layers of the polymer cumulative film represented by the formula (2) thereon. It can also be a multilayer structure.

【0028】レジストとしての応用の場合、所定の基板
上に上記構造の累積膜を累積したものに、光、電子線、
X線などのエネルギー線をマスクを通して照射する事に
より、照射部の高分子累積膜中に化学反応がおこり、照
射しなかったところとの違いを利用し、パターンを描か
せる。本発明の共重合体は紫外線領域にUV吸収がある
ことから光源として紫外線、遠紫外線を用いることがで
きる。具体的には高圧水銀灯やキセノンランプを用いる
ことができる。電子線照射の場合は直接描画によりマス
クを用いずに任意のパターンを描くこともできる。
In the case of application as a resist, light, electron beam,
By irradiating energy rays such as X-rays through a mask, a chemical reaction occurs in the polymer accumulation film of the irradiated portion, and a pattern is drawn by utilizing a difference from a non-irradiated portion. Since the copolymer of the present invention has UV absorption in the ultraviolet region, ultraviolet light and far ultraviolet light can be used as a light source. Specifically, a high-pressure mercury lamp or a xenon lamp can be used. In the case of electron beam irradiation, an arbitrary pattern can be drawn by direct drawing without using a mask.

【0029】ついで、露光を行った累積膜を有機溶剤、
またはアルカリ水溶液などの現像液に浸積し現像する。
現像液としては、アセトン、メチルエチルケトン、メチ
ルイソブチルケトンなどのケトン類の有機化合物、また
は、テトラメチルアンモニウムヒドロキシド、KOH、
NaOH、炭酸ナトリウムの水溶液が好ましいく、特に
テトラメチルアンモニウムヒドロキシド、KOHの水溶
液が好ましい。現像することにより、露光部は洗い流さ
れ、未露光部は残存してポジ型のパターンが得られる。
現像液に用いられる水溶液の濃度は0.01〜10wt
%が好ましく、温度は15℃〜50℃好ましくは20℃
〜35℃である。
Next, the exposed cumulative film is treated with an organic solvent,
Alternatively, it is immersed in a developing solution such as an aqueous alkali solution and developed.
As the developer, an organic compound of ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, or tetramethyl ammonium hydroxide, KOH,
An aqueous solution of NaOH and sodium carbonate is preferred, and an aqueous solution of tetramethylammonium hydroxide and KOH is particularly preferred. By developing, the exposed portion is washed away, and the unexposed portion remains to obtain a positive pattern.
The concentration of the aqueous solution used for the developer is 0.01 to 10 wt.
%, Preferably at a temperature of 15 ° C to 50 ° C, preferably 20 ° C.
~ 35 ° C.

【0030】エッチング液を作用させることにより、パ
ターンがない部分をエッチングにより浸食させ、エッチ
ングすることができる。エッチング液はそのエッチング
する基板により異なるが、例えば金に対してはヨウ素/
ヨウ化アンモニウム/エタノール/水の混合液を用い、
シリコン酸化膜の場合はフッ化水素/過酸化水素の混合
液を用いる。該発明の累積膜は上記混合液中での密着性
に優れており、エッチング液に浸食されない。
By applying an etching solution, a portion having no pattern can be etched and etched. The etching solution depends on the substrate to be etched. For example, for gold, iodine /
Using a mixture of ammonium iodide / ethanol / water,
In the case of a silicon oxide film, a mixed solution of hydrogen fluoride / hydrogen peroxide is used. The cumulative film of the present invention has excellent adhesion in the above-mentioned mixed solution, and is not eroded by the etching solution.

【0031】本発明の高分子累積膜および複合高分子累
積膜は、レジスト以外にも電解効果型トランジスタ、液
晶表示素子、光変調素子、光電管素子、非線形光学素
子、フォロクロミック素子、二次元磁性体、表面コーテ
ィング、磁気ヘッド等の保護膜などの分野に応用可能で
ある。
The polymer cumulative film and the composite polymer cumulative film of the present invention can be used in addition to a resist, as well as a field-effect transistor, a liquid crystal display device, a light modulation device, a photoelectric tube device, a nonlinear optical device, a chromochromic device, and a two-dimensional magnetic material. It can be applied to fields such as surface coating, protective films for magnetic heads and the like.

【0032】[0032]

【実施例】以下に実施例により本発明を更に詳細に説明
する。
The present invention will be described in more detail with reference to the following examples.

【0033】合成例1 N−ドデシルアクリルアミドと4−tert−トキシル
カルボキシスチレンとからなる共重合体(式1で表され
る共重合体)の合成:N−ドデシルアクリルアミド
1.0g(4.44mol) と4−tert−ブトキ
シカルボキシスチレン0.978g(4.44mol)
とをトルエン20mlに溶解し、反応開始剤として2,
2’−アゾビスイソブチロニトリル(モノマーの1/1
00mol)を用い、60℃で24時間ラジカル共重合
を行った。重合停止後、減圧下でトルエンを留去して濃
縮後、再沈殿溶剤としてアセトニトリルを用いて精製を
繰り返し行い共重合体を得た。収量は0.55gであっ
た。この共重合体におけるN−ドデシルアクリルアミド
と4−tert−ブトキシカルボキシスチレンのモル比
H−NMRスペクトル測定の結果0.47:0.5
3であった。
Synthesis Example 1 Synthesis of a copolymer (copolymer represented by formula 1) consisting of N-dodecylacrylamide and 4-tert-toxylcarboxystyrene: N-dodecylacrylamide
1.0 g (4.44 mol) and 0.978 g (4.44 mol) of 4-tert-butoxycarboxystyrene
Is dissolved in 20 ml of toluene, and 2,2 is used as a reaction initiator.
2'-azobisisobutyronitrile (1/1 of the monomer)
(00 mol) was subjected to radical copolymerization at 60 ° C. for 24 hours. After terminating the polymerization, toluene was distilled off under reduced pressure, and after concentration, purification was repeated using acetonitrile as a reprecipitation solvent to obtain a copolymer. The yield was 0.55 g. The molar ratio of N-dodecylacrylamide and 4-tert-butoxycarboxystyrene in this copolymer was 0.47: 0.5 as a result of 1 H-NMR spectrum measurement.
It was 3.

【0034】合成例2〜6 N−ドデシルアクリルアミド(D)と4−tert−ブ
トキシカルボキシスチレン(B)の仕込み比を替えるこ
とにより、組成が異なるポリマーを合成例1に準拠して
合成した。結果は下表に示す。
Synthesis Examples 2 to 6 Polymers having different compositions were synthesized according to Synthesis Example 1 by changing the charging ratio of N-dodecylacrylamide (D) and 4-tert-butoxycarboxystyrene (B). The results are shown in the table below.

【0035】実施例1 N−ドデシルアクリルアミドと4−tert−ブトキシ
カルボキシスチレンよりなる共重合体の高分子累積膜の
調製:測定にはUSI製のFilm Balance
Controller FSD−110を使用し、15
℃に保持した水槽上に合成例1で合成した本共重合体の
クロロホルム溶液を必要量展開し、テフロンバリアーを
用いて一定速度(14cm/min)で圧縮した。膜
面積より算出される一分子当たりの占有面積Aと表面圧
pを測定した。その関係を図1に示す。いずれも崩壊圧
の高い、分子が密に充填した一分子の膜(単分子膜)が
形成されていることが判明した。次に膜の表面圧が20
mN/mになるようにテフロンバリアーで圧縮しなが
ら、4−tert−ブトキシカルボキシスチレンの導入
率53%の高分子単分子膜について疎水処理したシリコ
ンウエハーを10mm/minの速度で上下して累積比
を測定したところ上昇下降時ともおよそ0.95の累積
比が得られた。この様な条件を保ちつつ上昇、下降を繰
り返すことで基板の両面に片面40層の高分子累積膜を
作製した。
Example 1 Preparation of a polymer cumulative film of a copolymer consisting of N-dodecylacrylamide and 4-tert-butoxycarboxystyrene: For measurement, use a USI Film Balance.
Using Controller FSD-110, 15
℃ chloroform solution of the copolymer synthesized in a water tank on the Synthesis Example 1 was held to expand required amount, and compressed at a constant rate (14cm 2 / min) using a Teflon barrier. The occupied area A per molecule calculated from the film area and the surface pressure p were measured. FIG. 1 shows the relationship. In each case, it was found that a monomolecular film (monomolecular film) having a high collapse pressure and densely packed with molecules was formed. Next, when the surface pressure of the membrane is 20
While compressing with a Teflon barrier so as to obtain mN / m, a silicon wafer which has been subjected to a hydrophobic treatment on a polymer monomolecular film having an introduction rate of 4-tert-butoxycarboxystyrene of 53% is moved up and down at a rate of 10 mm / min. As a result, a cumulative ratio of about 0.95 was obtained both at the time of ascending and descending. By repeating ascent and descent while maintaining such conditions, a 40-layer polymer accumulation film on one side was produced on both surfaces of the substrate.

【0036】実施例2〜6 合成例2〜6で合成した組成の異なる共重合体を実施例
1に記載の方法で同様に膜面積より算出される一分子当
たりの占有面積Aと表面圧pを測定した。その関係を図
1に示す。さらに実施例1に記載の方法に準拠して高分
子累積膜を作成した。
Examples 2 to 6 Copolymers having different compositions synthesized in Synthesis Examples 2 to 6 were similarly occupied by the method described in Example 1 and occupied area per molecule A and surface pressure p calculated from the film area. Was measured. FIG. 1 shows the relationship. Further, a polymer cumulative film was prepared according to the method described in Example 1.

【0037】実施例7 上記実施例1のシリコンウエハー上の高分子累積膜(4
0層)にDeep UVランプを用い、フォトマスクを
通して40分間密着露光した。次にフォトマスクを取り
外し10wt%の水酸化テトラメチルアンモニウム水溶
液で20秒間その表面を現像した。シリコンウエハー上
に微細パターンが転写されており0.75μmのライン
が解像していた。
Example 7 The polymer cumulative film (4) on the silicon wafer of Example 1 was used.
(0 layer) was subjected to close contact exposure for 40 minutes through a photomask using a Deep UV lamp. Next, the photomask was removed and its surface was developed with a 10 wt% aqueous solution of tetramethylammonium hydroxide for 20 seconds. The fine pattern was transferred onto the silicon wafer, and a 0.75 μm line was resolved.

【0038】実施例8 N−ドデシルアクリルアミドと4−tert−ブトキシ
カルボキシスチレンよりなる共重合体とトリ(2,3−
ジブロモプロピル)イソシアヌエートの混合累積膜の調
製:測定には(株)USI製のFilm Balanc
e ControllerFSD−110を使用し、1
5℃に保持した水槽上に、上記実施例1に準拠して合成
したN−ドデシルアクリルアミドと4−tert−ブト
キシカルボキシスチレンよりなる共重合体と光酸発生剤
トリ(2,3−ジブロモプロピル)イソシアヌエートと
の混合クロロホルム溶液を必要量展開し、テフロンバリ
アーを用いて一定速度(14 cm2/min)で圧縮した。膜面積
より算出される一分子当たりの占有面積Aと表面圧pを測
定した。いずれも崩壊圧の高い、分子が密に充填した単
分子膜が形成されていることが判明した 。次に膜の表
面圧が20mN/mになるようにテフロンバリアーで圧
縮しながら、疎水処理したシリコンウエハーを10mm/min
の速度で上下して累積比を測定したところ上昇下降時と
もおよそ0.90の累積比が得られた。この様な条件を保ち
つつ上昇、下降を繰り返すことで基板の両面に片面40層
の累積膜を作製した。
Example 8 A copolymer consisting of N-dodecylacrylamide and 4-tert-butoxycarboxystyrene and tri (2,3-
Preparation of mixed cumulative film of dibromopropyl) isocyanuate: For measurement, Film Balanc manufactured by USI Co., Ltd.
e Using Controller FSD-110,
On a water tank maintained at 5 ° C., a copolymer composed of N-dodecylacrylamide and 4-tert-butoxycarboxystyrene synthesized according to Example 1 above, and a photoacid generator tri (2,3-dibromopropyl) A required amount of a mixed chloroform solution with isocyanate was developed and compressed at a constant speed (14 cm 2 / min) using a Teflon barrier. The occupied area A per molecule and the surface pressure p calculated from the membrane area were measured. In each case, it was found that a monomolecular film having a high collapse pressure and densely packed with molecules was formed. Next, while compressing the film with a Teflon barrier so that the surface pressure of the film becomes 20 mN / m, the silicon wafer subjected to the hydrophobic treatment is compressed to 10 mm / min.
When the cumulative ratio was measured by moving up and down at a speed of, a cumulative ratio of approximately 0.90 was obtained both at the time of ascending and descending. By repeatedly ascending and descending while maintaining such conditions, a cumulative film of 40 layers on one side was produced on both sides of the substrate.

【0039】実施例9 上記実施例8に準拠して、疎水処理を行ったシリコンウ
エハー上に20層の累積膜を作製した。次いでdeep UVラ
ンプを用いて、その累積膜にフォトマスクを通して40分
間密着露光した。次にフォトマスクを取り外し10wt%
水酸化テトラメチルアンモニウム水溶液で20秒間その表
面を現像した。シリコンウエハー上に微細パターンが転
写されており1.0μmのラインが解像していた。
Example 9 According to Example 8, a 20-layer cumulative film was formed on a silicon wafer subjected to a hydrophobic treatment. Then, using a deep UV lamp, the accumulated film was contact-exposed for 40 minutes through a photomask. Next, remove the photomask and 10wt%
The surface was developed with an aqueous solution of tetramethylammonium hydroxide for 20 seconds. A fine pattern was transferred onto the silicon wafer, and a 1.0 μm line was resolved.

【0040】実施例10 上記実施例8に準拠して、ガラス基板上に蒸着された金
膜上に20層の累積膜を作製した。次にdeep UVを用い
て、その累積膜にフォトマスクを通して40分間密着露光
した。次にフォトマスクを取り外し3%水酸化テトラメチ
ルアンモニウム水溶液で20秒その表面を現像した。金膜
上に微細パターンが転写されたものをエッチング溶液
(ヨウ素/ヨウ化アンモニウム/エタノール/水)で30秒
間エッチングし、それをクロロホルムでリンスすること
によりエッチングパターンが得られた。
Example 10 According to Example 8, a 20-layer cumulative film was formed on a gold film deposited on a glass substrate. Next, the accumulated film was contact-exposed for 40 minutes through a photomask using deep UV. Next, the photomask was removed, and the surface was developed with a 3% aqueous solution of tetramethylammonium hydroxide for 20 seconds. The transferred fine pattern on the gold film was etched for 30 seconds with an etching solution (iodine / ammonium iodide / ethanol / water) and rinsed with chloroform to obtain an etching pattern.

【0041】合成例7 N−ネオペンチルメタクリレートと9−アンスリルメチ
ルメタクリレートからなる共重合体(式2で表される共
重合体)の合成:N−ネオペンチルメタクリレート0.46
5g(3.0mmol) と9−アンスリルメチルメタクリレート0.
95g(0.34mmol)をトルエン12mlに溶解し、反応開始剤と
して2, 2'-アゾビスイソブチロニトリル(モノマーに対
して1/100mol)を用い、60℃で48時間ラジカル共重合を
行った。重合停止後、減圧下でトルエンを留去して濃縮
後、再沈殿溶剤としてアセトニトリルを用いて精製を繰
り返し行い共重合体を得た。収量は0.25gであった。こ
の共重合体におけるN−ネオペンチルアクリルアミドと
9−アンスリルメチルメタクリレートのモル比はUV吸収
スペクトル測定の結果0.90:0.10であった。
Synthesis Example 7 Synthesis of a copolymer composed of N-neopentyl methacrylate and 9-anthrylmethyl methacrylate (copolymer represented by formula 2): N-neopentyl methacrylate 0.46
5 g (3.0 mmol) and 9-anthrylmethyl methacrylate 0.
95 g (0.34 mmol) was dissolved in 12 ml of toluene, and radical copolymerization was performed at 60 ° C. for 48 hours using 2, 2′-azobisisobutyronitrile (1/100 mol based on the monomer) as a reaction initiator. . After terminating the polymerization, toluene was distilled off under reduced pressure, and after concentration, purification was repeated using acetonitrile as a reprecipitation solvent to obtain a copolymer. The yield was 0.25 g. The molar ratio of N-neopentylacrylamide to 9-anthrylmethyl methacrylate in this copolymer was 0.90: 0.10 as a result of UV absorption spectrum measurement.

【0042】実施例11 N−ネオペンチルメタクリレートと9−アンスリルメチ
ルメタクリレートからなる共重合体の累積膜の調製:測
定には(株)USI製のFilm Balance Controller FSD-110
を使用し、15℃に保持した水槽上に本共重合体のクロロ
ホルム溶液を必要量展開し、テフロンバリアーを用いて
一定速度(14 cm2/min)で圧縮した。膜面積より算出され
る一分子当たりの占有面積Aと表面圧pを測定した。いず
れも、崩壊圧の高い、分子が密に充填した単分子膜が形
成しているのが判明した。次に単分子膜の表面圧が20
mN/mになるようにテフロンバリアーで圧縮しながら、疎
水処理した石英基板を10mm/minの速度で上下して累積比
を測定したところ上昇下降時ともおよそ0.95の累積比が
得られた。この様な条件を保ちつつ上昇、下降を繰り返
すことで基板の両面に120層の累積膜を作製した。
Example 11 Preparation of a cumulative film of a copolymer comprising N-neopentyl methacrylate and 9-anthrylmethyl methacrylate: For measurement, use a Film Balance Controller FSD-110 manufactured by USI Corporation.
A chloroform solution of the copolymer was developed in a required amount on a water tank maintained at 15 ° C., and compressed at a constant speed (14 cm 2 / min) using a Teflon barrier. The occupied area A per molecule and the surface pressure p calculated from the membrane area were measured. In each case, it was found that a monomolecular film having a high collapse pressure and densely packed with molecules was formed. Next, when the surface pressure of the monolayer is 20
The cumulative ratio was measured by raising and lowering the hydrophobically treated quartz substrate at a rate of 10 mm / min while compressing with a Teflon barrier to mN / m. By repeating ascent and descent while maintaining such conditions, 120 layers of cumulative films were formed on both surfaces of the substrate.

【0043】実施例12 上記実施例11の石英基板上の累積膜にdeep UVランプ
を用い、10分、30分、90分と図2に示すように時間を変
えて露光を行った。次に露光した累積膜を水、あるいは
1wt%の水酸化テトラメチルアンモニウム水溶液に10秒
間浸漬したところ、露光した部分が溶解することが明ら
かとなった。このことより、光照射により酸が発生して
いることがわかる。
Example 12 The accumulated film on the quartz substrate of Example 11 was exposed using a deep UV lamp for 10 minutes, 30 minutes, and 90 minutes, changing the time as shown in FIG. Next, the exposed film is exposed to water or
When immersed in a 1 wt% aqueous solution of tetramethylammonium hydroxide for 10 seconds, it was revealed that the exposed portion was dissolved. From this, it can be seen that acid was generated by light irradiation.

【0044】実施例13 N−ネオペンチルメタクリレートと9−アンスリルメチ
ルメタクリレートからなる共重合体のクロロホルム溶液
を必要量石英基板上に滴下し、熱処理により溶媒を除去
しキャスト膜を2枚作製した。一枚のキャスト膜にはdee
p UVランプを30分間照射した。それぞれの膜を必要量の
メロシアニン色素を含むジクロロメタン溶液に溶解し、
UV吸収スペクトルを測定したところ、照射したキャスト
膜では酸が生成されていることが明らかとなった。
Example 13 A required amount of a chloroform solution of a copolymer composed of N-neopentyl methacrylate and 9-anthrylmethyl methacrylate was dropped on a quartz substrate, and the solvent was removed by heat treatment to prepare two cast films. Dee for one cast film
Irradiated with pUV lamp for 30 minutes. Dissolve each membrane in dichloromethane solution containing the required amount of merocyanine dye,
When the UV absorption spectrum was measured, it was clarified that acid was generated in the irradiated cast film.

【0045】実施例14 N−ドデシルアクリルアミドとtert−ブチル−4−ビニ
ルフェニルカーボネートよりなる共重合体(甲)とN−
ネオペンチルメタクリレートと9−アンスリルメチルメ
タクリレートからなる共重合体(乙)の複合高分子累積
膜(ヘテロ積層累積膜)の調製:疎水処理した石英基板
上にまず甲の累積膜を40層累積し、その上に乙の累積膜
を20層累積し、さらに該乙の累積膜の上に甲の累積膜を
20層、最後に甲の累積膜の上にさらに乙の累積膜を20層
累積した。そのUV吸収スペクトルを測定したところ、吸
収強度と累積層数の間に直線関係が得られたためヘテロ
積層型の累積膜が形成されていることが分かった。
Example 14 A copolymer composed of N-dodecylacrylamide and tert-butyl-4-vinylphenyl carbonate (A) and N-
Preparation of Composite Polymer Cumulative Film (Hetero-Laminated Cumulative Film) of Copolymer of Neopentyl Methacrylate and 9-Anthrylmethyl Methacrylate (Compound B): First, accumulate 40 layers of the instep cumulative film on a hydrophobically treated quartz substrate. , And accumulate 20 layers of the second party's cumulative membrane on top of that
Twenty layers were added, and finally 20 layers of the second layer were accumulated on the upper layer of the instep. When the UV absorption spectrum was measured, it was found that a linear relationship was obtained between the absorption intensity and the cumulative number of layers, so that a hetero-stacked type cumulative film was formed.

【0046】実施例15 上記実施例1および実施例11にそれぞれ準拠して、疎
水処理したシリコンウエハー上に異なるヘテロ積層型
の、三種類のヘテロ積層LB膜を作製した。一つは、シリ
コンウエハー上に4層の乙のLB膜を累積し、その上に甲
の LB膜を56層累積した。これを壱とする。別に甲を26
層累積し、乙を4層、再び甲を26層累積した。これを弐
とする。また別に乙を4層、その上に甲を56層累積し
た。これを参とする。
Example 15 Three types of hetero-laminated LB films of different hetero-lamination type were produced on a hydrophobically treated silicon wafer in accordance with the above-described Examples 1 and 11, respectively. One is to accumulate four layers of LB films on a silicon wafer and 56 layers of instep LB films on them. This is called Ichi. Separately 26
The number of layers was accumulated, and the number of layers was 4 and the layer A was accumulated again. This is called 2. Separately, 4 layers of B and 56 layers of A were added. Let's refer to this.

【0047】実施例16 上記実施例14で作製した累積膜に対し、deep UV光を
所定時間照射後、90℃で30秒間熱処理を施し、1wt%水
酸化テトラメチルアンモニウム水溶液に20秒間浸したと
ころ、未露光部分が残るのに対し、露光部分が溶解し
た。このようにして得られたそれぞれの照射時間に対す
る累積膜の膜厚の変化を触針段差計で測定したところ、
上記実施例14の場合、乙が最も感度が高いことが明ら
かとなった。
Example 16 The cumulative film produced in Example 14 was irradiated with deep UV light for a predetermined time, then subjected to a heat treatment at 90 ° C. for 30 seconds, and immersed in a 1 wt% aqueous solution of tetramethylammonium hydroxide for 20 seconds. While the unexposed portions remained, the exposed portions dissolved. The change in the cumulative film thickness for each irradiation time obtained in this way was measured with a stylus profilometer.
In the case of the above Example 14, it was clear that the second party had the highest sensitivity.

【0048】実施例17 上記実施例14と条件を同じくして、疎水処理したシリ
コンウエハー上に甲のLB膜を40層累積し、その上に乙の
LB膜を4層累積した。この累積膜にdeep UVランプで45分
間露光し、90℃で30分間熱処理後、1wt%の水酸化テト
ラメチルアンモニウム水溶液中で30秒間現像した。シリ
コンウエハー上に微細パターンが転写されており0.75μ
mのラインの解像度が得られた。
Example 17 Under the same conditions as in Example 14, 40 LB films of the instep were accumulated on a hydrophobically treated silicon wafer, and the
Four LB films were accumulated. The accumulated film was exposed to a deep UV lamp for 45 minutes, heat-treated at 90 ° C. for 30 minutes, and developed in a 1 wt% aqueous solution of tetramethylammonium hydroxide for 30 seconds. 0.75μ with fine pattern transferred on silicon wafer
A resolution of m lines was obtained.

【0049】[0049]

【発明の効果】本発明の高分子累積膜は分子配向が制御
された高秩序な膜構造をとることができるので、安定な
皮膜を得ることができる。また、膜面も平滑であり、膜
厚も累積回数で調整可能でナノメーターレベルで制御で
きる。本発明のレジストは上記のような累積膜ならびに
光酸発生剤、もしくは光酸発生機能を持つ高分子累積膜
からなり、高感度で高解像度であることが特徴である。
また、膜に欠陥がないため、エッチング工程においても
極めて安定である。
The polymer cumulative film of the present invention can have a highly ordered film structure in which the molecular orientation is controlled, so that a stable film can be obtained. In addition, the film surface is smooth, and the film thickness can be adjusted by the number of times of accumulation and can be controlled at the nanometer level. The resist of the present invention comprises the above-described cumulative film and a photoacid generator or a polymer cumulative film having a photoacid generating function, and is characterized by high sensitivity and high resolution.
Further, since there is no defect in the film, the film is extremely stable even in the etching step.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1はN−ドデシルアクリルアミドとtert−ブ
チル−4−ビニルフェニルカーボネートよりなる共重合
体の一分子あたりの占有面積と表面圧の関係を示した
図。
FIG. 1 is a view showing the relationship between the occupied area per molecule of a copolymer comprising N-dodecylacrylamide and tert-butyl-4-vinylphenyl carbonate and the surface pressure.

【図2】図2はN−ネオペンチルメタクリレ−トと9−
アンスリルメチルメタクリレ−トとからなるLB膜の光
照射および現像によるUV曲線の変化を示した図。
FIG. 2 shows N-neopentyl methacrylate and 9-neopentyl methacrylate.
The figure which showed the change of the UV curve by light irradiation and development of the LB film which consists of anthryl methyl methacrylate.

【図3】図3は高分子累積膜および複合高分子累積膜の
感度曲線を示した図。
FIG. 3 is a diagram showing sensitivity curves of a polymer cumulative film and a composite polymer cumulative film.

【符号の説明】[Explanation of symbols]

図1中の数字はN−ドデシルアクリルアミドとtert−ブ
チル−4−ビニルフェニルカーボネートよりなる共重合
体中のtert−ブチル−4−ビニルフェニルカーボネート
の導入率を表す。図2中p(nPMA/AMMA)はN−ネオペンチ
ルメタクリレートと9−アンスリルメチルメタクリレー
トからなる共重合体に対する、0、10、30、90 minは露
光時間を、またH2Oは所定時間照射後純水で現像したこ
とを、1wt%TMAHは所定時間照射後1wt%水酸化テト
ラメチルアンモニウム水溶液に浸したことを示す。図3
中、Aは実施例15の壱を、Bは実施例15の弐を、Cは実施
例15の参を表す。p(DDA/tBVPC53)はN−ドデシルアクリ
ルアミド(以下DDAと略す)とtert−ブチル−4−ビニ
ルフェニルカーボネート(以下tBVPCと略す)よりなる
共重合体(tBVPCの導入率53%)、p(DDA/tBVPC53)/PAGは
実施例4の混合LB膜のことを表す。
The numbers in FIG. 1 represent the introduction ratio of tert-butyl-4-vinylphenyl carbonate in the copolymer consisting of N-dodecylacrylamide and tert-butyl-4-vinylphenyl carbonate. In FIG. 2, p (nPMA / AMMA) is an exposure time for a copolymer consisting of N-neopentyl methacrylate and 9-anthrylmethyl methacrylate, 0, 10, 30, and 90 minutes are exposure times, and H 2 O is an irradiation for a predetermined time. Post-development with pure water indicates that 1 wt% TMAH was immersed in a 1 wt% aqueous solution of tetramethylammonium hydroxide after irradiation for a predetermined time. Figure 3
Among them, A represents one in Example 15, B represents second in Example 15, and C represents reference to Example 15. p (DDA / tBVPC53) is a copolymer (tBVPC introduction rate: 53%) composed of N-dodecylacrylamide (hereinafter abbreviated as DDA) and tert-butyl-4-vinylphenyl carbonate (hereinafter abbreviated as tBVPC), p (DDA / tBVPC53) / PAG represents the mixed LB film of Example 4.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08K 5/00 C08K 5/00 C08L 25/18 C08L 25/18 33/10 33/10 33/24 33/24 43/04 43/04 G03F 7/095 G03F 7/095 H01L 21/027 H01L 21/30 502R Fターム(参考) 2H025 AA00 AA01 AA02 AB16 AC01 AD03 BE00 BG00 DA11 EA07 FA03 FA17 4J002 BC121 BG051 BG121 BQ001 EB116 EN136 EQ016 EU186 EU196 EU206 EV216 EV246 EV296 FD206 GP03 4J100 AB07Q AL08Q AM17P BA02Q BA22Q BA76Q BC48Q BC53Q CA04 DA01 JA38 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08K 5/00 C08K 5/00 C08L 25/18 C08L 25/18 33/10 33/10 33/24 33 / 24 43/04 43/04 G03F 7/095 G03F 7/095 H01L 21/027 H01L 21/30 502R F term (reference) 2H025 AA00 AA01 AA02 AB16 AC01 AD03 BE00 BG00 DA11 EA07 FA03 FA17 4J002 BC121 BG051 BG121 BQ001 EB116 EN136 EU186 EU196 EU206 EV216 EV246 EV296 FD206 GP03 4J100 AB07Q AL08Q AM17P BA02Q BA22Q BA76Q BC48Q BC53Q CA04 DA01 JA38

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】下記式(1)で示され,数平均分子量が
1,000〜100,000である共重合体と光酸発生
剤とからなる高分子累積膜。 【化1】 (1) (式中R、Rは同一でも異なっても良く水素もしく
はメチル基を表し、Rはtert−ブトキシカルボニ
ル基、トリメチルシリル基もしくはテトラヒドロピラニ
ル基を表し、Xは0.4〜0.95,nは10〜14を表
す。)
1. A polymer cumulative film comprising a copolymer represented by the following formula (1) and having a number average molecular weight of 1,000 to 100,000 and a photoacid generator. Embedded image (1) (In the formula, R 1 and R 2 may be the same or different and each represents hydrogen or a methyl group, R 3 represents a tert-butoxycarbonyl group, a trimethylsilyl group or a tetrahydropyranyl group, and X represents 0.4 to 0.95, n represents 10 to 14.)
【請求項2】請求項1に記載の高分子累積膜からなるレ
ジスト材料。
2. A resist material comprising the polymer cumulative film according to claim 1.
【請求項3】請求項1に記載の式(1)で示され,数平
均分子量が1,000〜100,000である共重合体
からなる高分子累積膜と下記式(2)で示され、数平均
分子量が1,000〜100,000である共重合体か
らなる高分子累積膜とを重ねることにより得られる複合
高分子累積膜。 【化2】 (2) (式中、Yは0.5〜0.9を表す)
3. A polymer cumulative film comprising a copolymer represented by the formula (1) according to claim 1 and having a number average molecular weight of 1,000 to 100,000, and a polymer cumulative film represented by the following formula (2): And a composite polymer cumulative film obtained by stacking a polymer cumulative film made of a copolymer having a number average molecular weight of 1,000 to 100,000. Embedded image (2) (where Y represents 0.5 to 0.9)
【請求項4】請求項3に記載の複合高分子累積膜からな
るレジスト材料。
4. A resist material comprising the composite polymer cumulative film according to claim 3.
【請求項5】請求項1記載の式(1)で示され,数平均
分子量が1,000〜100,000である共重合体か
らなる高分子累積膜と請求項3記載の式(2)で示さ
れ、数平均分子量が1,000〜100,000である
共重合体からなる高分子累積膜とを重ねることを特徴と
する複合高分子累積膜の製造方法。
5. A polymer cumulative film comprising a copolymer represented by the formula (1) according to claim 1 and having a number average molecular weight of 1,000 to 100,000, and a formula (2) according to claim 3 And a method for producing a composite polymer cumulative film, comprising superimposing a polymer cumulative film comprising a copolymer having a number average molecular weight of 1,000 to 100,000.
JP2001046502A 2001-02-22 2001-02-22 Polymer built-up film, resist comprising polymer built-up film, composite polymer built-up film, resist comprising composite polymer built-up film and method for producing composite polymer built-up film Pending JP2002244298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001046502A JP2002244298A (en) 2001-02-22 2001-02-22 Polymer built-up film, resist comprising polymer built-up film, composite polymer built-up film, resist comprising composite polymer built-up film and method for producing composite polymer built-up film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001046502A JP2002244298A (en) 2001-02-22 2001-02-22 Polymer built-up film, resist comprising polymer built-up film, composite polymer built-up film, resist comprising composite polymer built-up film and method for producing composite polymer built-up film

Publications (1)

Publication Number Publication Date
JP2002244298A true JP2002244298A (en) 2002-08-30

Family

ID=18908113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001046502A Pending JP2002244298A (en) 2001-02-22 2001-02-22 Polymer built-up film, resist comprising polymer built-up film, composite polymer built-up film, resist comprising composite polymer built-up film and method for producing composite polymer built-up film

Country Status (1)

Country Link
JP (1) JP2002244298A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102964515A (en) * 2011-08-31 2013-03-13 台湾永光化学工业股份有限公司 Resin for interlayer insulating film and protective film, and photosensitive resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102964515A (en) * 2011-08-31 2013-03-13 台湾永光化学工业股份有限公司 Resin for interlayer insulating film and protective film, and photosensitive resin composition
CN102964515B (en) * 2011-08-31 2015-08-19 台湾永光化学工业股份有限公司 Resin for interlayer insulating film and protective film, and photosensitive resin composition

Similar Documents

Publication Publication Date Title
US10739680B2 (en) Cross-linkable fluorinated photopolymer
KR100301354B1 (en) Resist Composition and Resist Pattern Formation Method
TWI282797B (en) Photoresist polymer and photoresist composition containing the same
JP3875519B2 (en) Photoresist composition, method for forming photoresist pattern, and method for manufacturing semiconductor device
JP4012600B2 (en) Acid-sensitive polymer, resist composition, resist pattern forming method, and semiconductor device manufacturing method
KR100274119B1 (en) Polymer for preparing radiation-sensitive resist and resist composition containing same
JPH09110938A (en) Terpolymer containing organosilicone side chain and its use for forming relief structure
JP3748596B2 (en) Resist material and resist pattern forming method
KR20000047909A (en) Itaconic anhydride polymers and photoresist compositions comprising same
JP4865073B2 (en) Negative resist composition, method of forming resist pattern, and method of manufacturing semiconductor device
JP5105667B2 (en) Negative resist composition, method of forming resist pattern, and method of manufacturing semiconductor device
JP3554532B2 (en) Chemically amplified resist composition containing norbornane-based low molecular compound additive
JP4102010B2 (en) Composition for organic antireflection film and method for producing the same
US6146793A (en) Radiation sensitive terpolymer, photoresist compositions thereof and 193 nm bilayer systems
JP4002057B2 (en) Composition for organic antireflection film and organic antireflection film pattern forming method
JP4527827B2 (en) Photoresist crosslinking agent, photoresist composition, photoresist pattern forming method, and semiconductor device
JP3587770B2 (en) Copolymer for photoresist and method for producing the same, photoresist composition, method for forming photoresist pattern, and semiconductor device
JP4144957B2 (en) Resist composition and method for forming resist pattern
JP2001228613A (en) Chemical amplification type resist composition containing low molecular compound additive
US6737217B2 (en) Photoresist monomers containing fluorine-substituted benzylcarboxylate and photoresist polymers comprising the same
JP2004021258A (en) Negative resist composition consisting of epoxy ring-containing base polymer and silicon-containing crosslinking agent and pattern forming method of semiconductor element utilizing the same
JP2003105035A (en) Photoresist monomer, photoresist polymer, manufacturing method of photoresist polymer, photoresist composition, photoresist pattern-forming method, and semiconductor element
JP2002244298A (en) Polymer built-up film, resist comprising polymer built-up film, composite polymer built-up film, resist comprising composite polymer built-up film and method for producing composite polymer built-up film
TWI307451B (en) Photoresist composition
JP4127937B2 (en) Resist composition and method for forming resist pattern