JP2002243644A - Inductively coupled plasma emission spectrochemical analyzer - Google Patents

Inductively coupled plasma emission spectrochemical analyzer

Info

Publication number
JP2002243644A
JP2002243644A JP2001039079A JP2001039079A JP2002243644A JP 2002243644 A JP2002243644 A JP 2002243644A JP 2001039079 A JP2001039079 A JP 2001039079A JP 2001039079 A JP2001039079 A JP 2001039079A JP 2002243644 A JP2002243644 A JP 2002243644A
Authority
JP
Japan
Prior art keywords
plasma
optical system
coupled plasma
incident optical
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001039079A
Other languages
Japanese (ja)
Other versions
JP4459462B2 (en
Inventor
Yasuyuki Takagi
康行 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2001039079A priority Critical patent/JP4459462B2/en
Publication of JP2002243644A publication Critical patent/JP2002243644A/en
Application granted granted Critical
Publication of JP4459462B2 publication Critical patent/JP4459462B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inductively coupled plasma emission spectrochemical analyzer having a photometric height adjusting means that has a simple structure, is low cost, and is superior in operability. SOLUTION: An optical emission system is constituted only of one lens, and at the same time, the photometric height of the system is adjusted by vertically turning the system around a fulcrum, provided in the vicinity of an incident slit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、入射光学系を有す
る誘導結合プラズマ発光分光分析装置に係わり、詳しく
は、プラズマの像を分光器の入口である入射スリット上
に形成させる入射光学系の測光高さ調整の機構に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inductively coupled plasma emission spectrometer having an incident optical system. It relates to a mechanism for height adjustment.

【0002】[0002]

【従来の技術】誘導結合プラズマ発光分光分析装置とは
以下のようなものである。測りたい試料を高周波誘導プ
ラズマに導入する。このプラズマの光は入射光学系を介
して分光器内に導かれる。分光器は入射してきた光を各
波長のスペクトル光に分光し、特定のスペクトル光を取
り出す。分光器で取り出されたスペクトル光は光検出器
に導かれて検出され、これによって試料に含まれる元素
の定性・定量分析を行う。
2. Description of the Related Art An inductively coupled plasma emission spectrometer is as follows. The sample to be measured is introduced into the high frequency induction plasma. The light of this plasma is guided into the spectroscope via the incident optical system. The spectroscope splits the incident light into spectral light of each wavelength and extracts a specific spectral light. The spectral light extracted by the spectrometer is guided to a photodetector and detected, whereby qualitative / quantitative analysis of elements contained in the sample is performed.

【0003】入射光学系はプラズマの像を分光器の入口
である入射スリット上に形成させる。像を形成させる
際、プラズマのどの部分を、入射スリット上に形成させ
るかは、分析の感度や安定性に影響を与える。これは、
プラズマ中の光の分布特性による。
[0003] The incident optical system forms an image of the plasma on the entrance slit, which is the entrance of the spectroscope. When forming an image, which portion of the plasma is formed on the entrance slit affects the sensitivity and stability of the analysis. this is,
It depends on the distribution characteristics of light in the plasma.

【0004】プラズマは、ドーナツ構造をしている。プ
ラズマの中心付近には試料中の分析元素に起因する分析
に使用される光が、中心から外れた部分には分析の妨害
となるバックグラウンド成分の光が、多く分布してい
る。
[0004] The plasma has a donut structure. Near the center of the plasma, light used for analysis caused by an analysis element in the sample is distributed, and in a portion off the center, light of a background component that hinders analysis is distributed.

【0005】このため、感度よく分析しようとする場合
には、プラズマのどの部分を観察するかが重要である。
[0005] For this reason, when analyzing with high sensitivity, it is important to determine which part of the plasma to observe.

【0006】プラズマを軸方向から観察する場合には、
中央を観察すればよい。
When observing the plasma from the axial direction,
Observe the center.

【0007】プラズマを径方向から観察する場合には、
左右方向(プラズマの径方向)に関しては、ほぼ中央が
よい。しかしながら、上下方向(プラズマの軸方向)に
関しては、試料の属性や測定する元素、測定条件などに
より、微妙に違うため、調整が要請される。
When observing the plasma from the radial direction,
In the left-right direction (radial direction of the plasma), the center is preferably approximately. However, the vertical direction (the axial direction of the plasma) is slightly different depending on the attributes of the sample, the elements to be measured, the measurement conditions, and the like, and thus adjustment is required.

【0008】上下方向の位置のことを測光高さと呼ぶ。
測光高さは調節機構が設けられるのが一般的である。従
来の測光高さの調整機構には以下のようなものがある。 1.プラズマそのものの位置を上下させるもの。 2.プラズマと分光器の位置はそのままで、プラズマと
分光器の間に設けられる入射光学系に反射光学系を用
い、反射面の傾きを変えることで、測光高さを調節する
もの。 3.入射光学系内のレンズのみを上下に平行移動させて
測光高さを調整させるもの。
The vertical position is called a photometric height.
Generally, an adjustment mechanism is provided for the photometric height. The following are conventional mechanisms for adjusting the photometric height. 1. What raises and lowers the position of the plasma itself. 2. This system adjusts the photometric height by changing the inclination of the reflecting surface by using a reflecting optical system as the incident optical system provided between the plasma and the spectroscope while keeping the position of the plasma and the spectroscope as they are. 3. Adjusts the photometric height by moving only the lens in the incident optical system up and down in parallel.

【0009】[0009]

【発明が解決しようとする課題】しかしこれらの測光高
さ調節機構には、次のような課題があった。
However, these photometric height adjusting mechanisms have the following problems.

【0010】1.プラズマそのものの位置を上下させる
もの。プラズマの発生装置全体は、大きいので、上下機
構が大きく高価で、保守も大変になる。
[0010] 1. What raises and lowers the position of the plasma itself. Since the entire plasma generator is large, the up-and-down mechanism is large and expensive, and maintenance is also difficult.

【0011】2.プラズマと分光器の位置はそのまま
で、プラズマと分光器の間に設けられる入射光学系に反
射光学系を用い、反射面の傾きを変えることで、測光高
さを調節するもの。最低でも二つの反射面が必要にな
り、高価になる。また、プラズマからの強い光により反
射面が劣化し、耐久性に問題の生じることがある。
2. This system adjusts the photometric height by changing the inclination of the reflecting surface by using a reflecting optical system as the incident optical system provided between the plasma and the spectroscope while keeping the position of the plasma and the spectroscope as they are. At least two reflective surfaces are required, which is expensive. In addition, the reflection surface may be deteriorated by strong light from the plasma, which may cause a problem in durability.

【0012】3.入射光学系内のレンズのみを上下に平
行移動させて測光高さを調整させるもの。
3. Adjusts the photometric height by moving only the lens in the incident optical system up and down in parallel.

【0013】これは上記の2つに比べて次のようなメリ
ットがある。
This has the following advantages over the above two.

【0014】1.プラズマを上下させず、レンズを上下
させるだけなので、移動機構が簡単になる。
1. Since the lens is moved up and down without moving the plasma up and down, the moving mechanism is simplified.

【0015】2.反射面を用いないので、安価で、反射
面の劣化が生じない。一方、入射光学系内はガスでパー
ジされている。レンズを含む駆動部分は入射光学系との
境界部の気密を保たねばならない。このため、この方法
は以下の問題点があった。 ・ ・平行移動と気密構造とレンズ洗浄のための着脱機
構の実現のための構造が複雑で高価である。 ・ ・また、操作性に劣る。 ・ ・気密を保ちながら平行移動をするため、境界面の
シール部品の損耗が激しい。
2. Since the reflection surface is not used, the cost is low and the reflection surface does not deteriorate. On the other hand, the inside of the incident optical system is purged with gas. The drive section including the lens must maintain the airtightness at the boundary with the incident optical system. For this reason, this method has the following problems. -The structure for realizing the parallel movement, airtight structure, and mounting / removing mechanism for lens cleaning is complicated and expensive.・ Also, the operability is poor.・ ・ Since the parallel movement is performed while maintaining airtightness, the seal parts on the boundary surface are severely worn.

【0016】[0016]

【課題を解決するための手段】レンズ一枚で入射光学系
を構成するとともに、入射光学系を入射スリット位置の
近傍を支点に上下に回転させることにより、測光高さを
調整する。
An incident optical system is constituted by a single lens, and the height of the photometry is adjusted by rotating the incident optical system up and down around a position near an entrance slit as a fulcrum.

【0017】[0017]

【作用】測光高さを変化させる原理は、レンズを平行移
動させる機構のそれと同じである。入射光学系自体を上
下に回転移動させることにより、入射光学系内にあるレ
ンズの主光線が変化し、プラズマの測光位置を変化させ
る。入射スリットからレンズまでの距離は回転角度に比
べて十分大きいので、本発明の回転移動は、平行移動に
近似することが出来る。レンズは、光束の大きさに、移
動量を加えた大きさのものを用いる。本発明のメリット
は以下の点である。
The principle of changing the photometric height is the same as that of the mechanism for moving the lens in parallel. By rotating the incident optical system itself up and down, the principal ray of the lens in the incident optical system changes, and the photometric position of the plasma changes. Since the distance from the entrance slit to the lens is sufficiently large compared to the rotation angle, the rotational movement of the present invention can be approximated to a parallel movement. The lens used has a size obtained by adding the amount of movement to the size of the light beam. The advantages of the present invention are as follows.

【0018】1.プラズマを上下させず、入射光学系自
体を回転させるだけなので、移動機構が簡単になる。
1. Since the incident optical system itself is simply rotated without raising and lowering the plasma, the moving mechanism is simplified.

【0019】2.反射面を用いないので、安価で、反射
面の劣化が生じない。
2. Since the reflection surface is not used, the cost is low and the reflection surface does not deteriorate.

【0020】3.入射光学系自体を移動させる為、レン
ズ部は固定のままで良く、シール部品の損耗によるガス
漏れがない。
3. Since the incident optical system itself is moved, the lens unit may be fixed, and there is no gas leakage due to wear of the sealing parts.

【0021】4.気密構造とレンズ洗浄のための着脱機
構を別々に構成できるので、操作性良く構成できる。
4. Since the airtight structure and the attachment / detachment mechanism for cleaning the lens can be configured separately, operability can be improved.

【0022】一方、中心光束がレンズ中心から外れるこ
とにより、収差が増大し、プラズマの像が歪む。しか
し、プラズマの像は、入射スリットに比べ十分に大きい
ので、強度や感度の低下などの、分析への影響は無視で
きる程度に小さい。
On the other hand, when the center light beam deviates from the center of the lens, the aberration increases and the image of the plasma is distorted. However, since the image of the plasma is sufficiently large as compared with the entrance slit, the influence on the analysis such as a decrease in intensity or sensitivity is negligibly small.

【0023】[0023]

【実施例】以下、実施例に基づき詳細を説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, details will be described based on embodiments.

【0024】図1は本発明の実施例である。FIG. 1 shows an embodiment of the present invention.

【0025】プラズマ1.と分光器6.は固定されてい
る。その間のレンズ3.を含む入射光学系2.のみが、回転
機構4.により、上下に回転移動する。上下に回転移動す
ることにより、レンズ3.の主光線が変化し、プラズマ1.
の測光位置を変化させる。レンズ3.は、おおむね50−
100mm程度の大きさであり、簡単な移動機構で済
む。
Plasma 1. And spectrometer6. Is fixed. Only the incident optical system 2. including the lens 3. in the meantime is rotated up and down by the rotating mechanism 4. By rotating up and down, the principal ray of the lens 3 changes, and the plasma 1.
Change the photometric position of Lens 3. is approximately 50-
It has a size of about 100 mm and requires only a simple moving mechanism.

【0026】図2、図3は本発明の実施例である。FIGS. 2 and 3 show an embodiment of the present invention.

【0027】基本的な動作原理は図1と同じである。回
転機構4の位置を変えて入射光学系を移動させることも
可能である。
The basic operation principle is the same as in FIG. It is also possible to change the position of the rotation mechanism 4 to move the incident optical system.

【0028】図4は本発明の請求項2の実施例である。FIG. 4 shows a second embodiment of the present invention.

【0029】入射光学系2の分光器6.側の端部に回転軸
7.を設ける。回転軸7.は入射光学系2.を上下方向に回転
移動させられる位置に取付ける。回転軸7.を支点として
入射光学系を上下に回転移動させる為に直動式駆動機構
8.を用いる。直動式駆動機構8.は回転軸7.の設置位置よ
りも下方に設け、入射光学系2.の分光器6.に対する面に
対して垂直に設置する。直動式駆動機構8.の駆動部が前
後に動くことにより、入射光学系2.との接触面を押す。
押された入射光学系2.はテコの原理により回転軸7.を支
点として上下方向に回転移動する。図5は、従来の実施
例である。
A rotating shaft is provided at the end of the incident optical system 2 on the side of the spectroscope 6.
Step 7 is provided. The rotating shaft 7. is mounted at a position where the incident optical system 2. can be rotated vertically. A direct-acting drive mechanism to rotate the incident optical system up and down with the rotation axis 7.
Use 8. The direct-acting drive mechanism 8. is provided below the position where the rotary shaft 7. is installed, and is installed perpendicularly to the surface of the incident optical system 2. with respect to the spectroscope 6. When the drive unit of the direct drive mechanism 8. moves back and forth, it pushes the contact surface with the incident optical system 2.
The pressed incident optical system 2. is rotated up and down on the rotation axis 7. as a fulcrum according to the principle of leverage. FIG. 5 shows a conventional example.

【0030】入射光学系2.と分光器6.を固定して、上下
移動機構9.によって、プラズマ1.を上下させたものであ
る。プラズマ1.の図示しない発生装置は、およそ20K
g有り、30cmの立方体程度の大きさがある。この発
生装置を上下させる機構9.は大きく複雑で、高価で故障
しやすいものとなる。
The incident optical system 2 and the spectroscope 6 are fixed, and the plasma 1. is moved up and down by a vertical movement mechanism 9. The generator (not shown) for plasma 1. is approximately 20K
g, 30 cm cubic. The mechanism 9. for raising and lowering the generator is large, complex, expensive and prone to failure.

【0031】図6は、従来の実施例である。FIG. 6 shows a conventional embodiment.

【0032】プラズマ1.と分光器6.を固定して、入
射光学系2を凹面鏡10.と平面鏡12.と凹面鏡回転機構1
1.で構成し、凹面鏡回転機構11.により、凹面鏡10.の
傾きを変化させたものである。平面鏡12.では、反射面
の劣化が生じるため、耐久性に問題を生じやすい。
Plasma 1. And spectrometer6. And fix the incident optical system 2 to the concave mirror. And plane mirror12. And concave mirror rotation mechanism 1
10. Concave mirror 10. By concave mirror rotation mechanism 11. Concave mirror 10. Is changed. In the plane mirror 12., the reflection surface is deteriorated, so that a problem easily occurs in durability.

【0033】図7は従来の実施例である。FIG. 7 shows a conventional embodiment.

【0034】プラズマ1.と分光器6.は固定されてい
る。その間のレンズ3.のみが、平行移動機構13.により
上下に平行移動する。上下することにより、レンズ2.
の主光線が変化し、プラズマ1.の測光位置を変化させ
る。測光高さを変える原理は本発明と同じである。しか
し平行移動機構13.はレンズを含む駆動部14.と入射光
学系との境界部の気密を保ちながら平行移動をしなけれ
ばならなく、耐久性の問題がある。
Plasma 1. And spectrometer6. Is fixed. 2. Lens between them Only the parallel movement moves up and down by the parallel movement mechanism 13. By moving up and down, the lens 2.
Of the plasma changes. Change the photometric position of The principle of changing the photometric height is the same as in the present invention. However, the translation mechanism 13. Must move in parallel while maintaining the airtightness of the boundary between the drive unit 14. including the lens and the incident optical system, and there is a problem of durability.

【0035】[0035]

【発明の効果】簡単な移動機構を用いるとともに、反射
面を使用せずに済む。この結果、より簡単で、故障が少
ない、測光高さの調節機構を得ることができる。
According to the present invention, it is possible to use a simple moving mechanism and not use a reflecting surface. As a result, it is possible to obtain a simpler and less troublesome adjusting mechanism of the photometric height.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例FIG. 1 shows an embodiment of the present invention.

【図2】本発明の実施例FIG. 2 shows an embodiment of the present invention.

【図3】本発明の実施例FIG. 3 shows an embodiment of the present invention.

【図4】請求項2の実施例FIG. 4 shows an embodiment according to claim 2;

【図5】従来の実施例FIG. 5 is a conventional example.

【図6】従来の実施例FIG. 6 shows a conventional example.

【図7】従来の実施例FIG. 7 shows a conventional example.

【符号の説明】[Explanation of symbols]

1. .プラズマ 2. .入射光学系 3. .レンズ 4. .回転機構 5. .入射スリット 6. .分光器 7. .回転軸 8. .振幅駆動機構 9. .上下移動機構 10. .凹面鏡 11. .凹面鏡回転機構 12. .平面鏡 13. .平行移動機構 14. .駆動部 1. Plasma 2. Incident optical system 3. Lens 4. Rotating mechanism 5. Incident slit 6. Spectroscope 7. Rotating axis 8. Amplitude drive mechanism 9. Vertical movement mechanism 10. Concave mirror 11.Concave mirror rotation mechanism 12.Plane mirror 13.Parallel movement mechanism 14.Drive unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 誘導結合プラズマと、 分光器と、 前記分光器に構成される入射スリットと、 前記誘導結合プラズマからの光を前記入射スリット上に
結像するレンズと、 前記レンズの移動機構と、 から構成される誘導結合プラズマ発光分光分析装置にお
いて、 前記移動機構が前記入射スリット近傍を回転中心とする
回転機構であることを特徴とする誘導結合プラズマ発光
分光分析装置。
An inductively-coupled plasma; a spectroscope; an entrance slit formed in the spectroscope; a lens for imaging light from the inductively-coupled plasma onto the entrance slit; An inductively coupled plasma emission spectroscopy analyzer comprising: an inductively coupled plasma emission spectroscopy analyzer, wherein the moving mechanism is a rotation mechanism having a rotation center near the entrance slit.
【請求項2】 前記入射光学系の回転機構が、 回転軸と直動式駆動機構とから構成されることを特徴と
する請求項1に記載の誘導結合プラズマ発光分光分析装
置。
2. The inductively coupled plasma emission spectrometer according to claim 1, wherein the rotation mechanism of the incident optical system includes a rotation shaft and a direct drive mechanism.
JP2001039079A 2001-02-15 2001-02-15 Inductively coupled plasma spectrometer Expired - Lifetime JP4459462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001039079A JP4459462B2 (en) 2001-02-15 2001-02-15 Inductively coupled plasma spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001039079A JP4459462B2 (en) 2001-02-15 2001-02-15 Inductively coupled plasma spectrometer

Publications (2)

Publication Number Publication Date
JP2002243644A true JP2002243644A (en) 2002-08-28
JP4459462B2 JP4459462B2 (en) 2010-04-28

Family

ID=18901944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001039079A Expired - Lifetime JP4459462B2 (en) 2001-02-15 2001-02-15 Inductively coupled plasma spectrometer

Country Status (1)

Country Link
JP (1) JP4459462B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102235977A (en) * 2010-03-29 2011-11-09 精工电子纳米科技有限公司 ICP analysis device and analysis method thereof
JP2011227054A (en) * 2010-03-29 2011-11-10 Sii Nanotechnology Inc Icp analyzer and analysis method using the same
DE112014007079B4 (en) * 2014-12-15 2021-01-14 Spectro Analytical Instruments Gmbh Optical emission spectrometry instrument with a hinged spectrochemical source

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102235977A (en) * 2010-03-29 2011-11-09 精工电子纳米科技有限公司 ICP analysis device and analysis method thereof
JP2011227054A (en) * 2010-03-29 2011-11-10 Sii Nanotechnology Inc Icp analyzer and analysis method using the same
DE112014007079B4 (en) * 2014-12-15 2021-01-14 Spectro Analytical Instruments Gmbh Optical emission spectrometry instrument with a hinged spectrochemical source

Also Published As

Publication number Publication date
JP4459462B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
US5581350A (en) Method and system for calibrating an ellipsometer
US5486701A (en) Method and apparatus for measuring reflectance in two wavelength bands to enable determination of thin film thickness
US6778273B2 (en) Polarimetric scatterometer for critical dimension measurements of periodic structures
EP1782043B1 (en) Self-calibrating optical reflectance probe system
JP3228479B2 (en) Dual spectrometer color sensor
US20040100632A1 (en) Focused beam spectroscopic ellipsometry method and system
US20040070760A1 (en) Compact spectroscopic ellipsometer
JP2007041529A (en) Method for manufacturing projection optical system and projection optical system
KR20020075433A (en) Systems, apparatuses and methods for diamond color measurement and analysis
KR20190126443A (en) Advanced Optical Sensors, Systems, and Methods for Etch Processing Monitoring
JP4327993B2 (en) Probe aperture manufacturing apparatus and near-field optical microscope using the same
EP1035408A1 (en) Apparatus for measuring characteristics of optical angle
KR20210027487A (en) Normal incidence in situ process monitor sensor
US5231462A (en) Optical spectrophotometer with wavelength modulation
US20170082490A1 (en) High Dynamic Range Infrared Imaging Spectroscopy
JP2002243644A (en) Inductively coupled plasma emission spectrochemical analyzer
EP0502752B1 (en) Spectroscopic apparatus
JP2001021810A (en) Interference microscope
JP2003322611A (en) Measuring chamber equipped with optical window
WO2021149052A1 (en) A calibration device and method for hyperspectral mems tunable filter
US7177025B2 (en) Measuring specular reflectance of a sample
JP2002168694A (en) Spectrometer
TWM631373U (en) Spectrometer
JP2006292487A (en) Device and method for inspection of unevenness
JPH11166896A (en) Inductively coupled plasma emission spectrophotometer

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100210

R150 Certificate of patent or registration of utility model

Ref document number: 4459462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term