JP2002241361A - Method for producing diphenyl disulfide derivative - Google Patents

Method for producing diphenyl disulfide derivative

Info

Publication number
JP2002241361A
JP2002241361A JP2001036759A JP2001036759A JP2002241361A JP 2002241361 A JP2002241361 A JP 2002241361A JP 2001036759 A JP2001036759 A JP 2001036759A JP 2001036759 A JP2001036759 A JP 2001036759A JP 2002241361 A JP2002241361 A JP 2002241361A
Authority
JP
Japan
Prior art keywords
derivative
diphenyl disulfide
water
organic solvent
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001036759A
Other languages
Japanese (ja)
Other versions
JP4407062B2 (en
Inventor
Koji Abe
浩司 安部
Motoi Yuguchi
基 湯口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2001036759A priority Critical patent/JP4407062B2/en
Publication of JP2002241361A publication Critical patent/JP2002241361A/en
Application granted granted Critical
Publication of JP4407062B2 publication Critical patent/JP4407062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for extremely safely producing a diphenyl disulfide derivative in high yield and selectivity. SOLUTION: A diphenyl disulfide derivative expressed by general formula (II) (R is a 1-6C alkyl, a 1-6C alkoxy, a halogen atom or hydrogen atom) is produced directly from a benzenesulfonyl chloride derivative expressed by general formula (I) (R is a 1-6C alkyl, a 1-6C alkoxy, a halogen atom or hydrogen atom) by reducing the starting compound in a binary phase system composed of water and an organic solvent in the presence of a mineral acid using 2-3 times mol of metallic zinc based on the benzenesulfonyl chloride derivative.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、農薬、医薬、電子
材料等の合成中間体や原体として有用なジフェニルジス
ルフィド誘導体を、高収率・高選択的に提供できる工業
的な直接製造法に関する。
TECHNICAL FIELD The present invention relates to an industrial direct production method capable of providing a diphenyl disulfide derivative useful as a synthetic intermediate or a raw material for agricultural chemicals, pharmaceuticals, electronic materials, etc. in a high yield and with high selectivity. .

【0002】[0002]

【従来の技術】従来、芳香族チオール類からジフェニル
ジスルフィド誘導体を合成する方法は、過酸化水素を用
いた酸化反応(Organic Synthesis
III,86)を行う手法が一般的に知られており、例
えば4−メトキシベンゼンチオールにも適用できること
が容易に類推できるが、原料である4−メトキシベンゼ
ンチオールは一般的に入手が困難であり、しかも高価で
あり、ジフェニルジスルフィド誘導体を工業的に製造す
る方法としては適していない。
2. Description of the Related Art Conventionally, a method for synthesizing a diphenyl disulfide derivative from an aromatic thiol has been known as an oxidation reaction using hydrogen peroxide (Organic Synthesis).
III, 86) is generally known. For example, it can be easily inferred that the method can be applied to 4-methoxybenzenethiol, but the raw material 4-methoxybenzenethiol is generally difficult to obtain. Moreover, it is expensive and is not suitable as a method for industrially producing a diphenyl disulfide derivative.

【0003】そこで、ベンゼンチオール誘導体の製造法
としては、特開昭57−62252号公報の方法が提案
されているが、当モル量のトリフェニルホスフィンを用
いることや、そのリンを含有する廃液処理の問題があ
り、必ずしも工業的に有利な方法とは言い難い。
Therefore, as a method for producing a benzenethiol derivative, a method disclosed in Japanese Patent Application Laid-Open No. Sho 57-62252 has been proposed. However, the use of an equimolar amount of triphenylphosphine and the treatment of a waste liquid containing phosphorus are also required. However, this method is not always industrially advantageous.

【0004】また、ジフェニルジスルフィド誘導体を合
成する方法としては、例えば4−メトキシベンゼンスル
ホニルクロリドを原料とする方法が知られており、J.
Org.Chem.,1990,55,3728では、
高価なタングステンを原料の4−メトキシベンゼンスル
ホニルクロリドと当量モル使用することにより、61%
の収率でビス(4−メトキシフェニル)ジスルフィドが
得られることが記述されている。また、Chem.Ph
arm.Bull.,1987,35,1770では、
例えば原料の4−メトキシベンゼンスルホニルクロリド
に対して6倍モルという過剰の水素化ホウ素ナトリウム
を使用することにより、34.6%の収率でビス(4−
メトキシフェニル)ジスルフィドが得られることが知ら
れている。しかしながら、いずれの文献も工業的に製造
する方法としては適していない。
As a method for synthesizing a diphenyl disulfide derivative, for example, a method using 4-methoxybenzenesulfonyl chloride as a raw material is known.
Org. Chem. , 1990, 55, 3728,
The use of expensive tungsten in equivalent molar amounts with the raw material 4-methoxybenzenesulfonyl chloride enables a 61%
To give bis (4-methoxyphenyl) disulfide in a yield of In addition, Chem. Ph
arm. Bull. , 1987, 35, 1770,
For example, by using a 6-fold molar excess of sodium borohydride relative to the starting 4-methoxybenzenesulfonyl chloride, the bis (4-
It is known that (methoxyphenyl) disulfide is obtained. However, none of these documents is suitable for industrial production.

【0005】また、ベンゼンスルホニルクロリド誘導体
と金属亜鉛および鉱酸(硫酸)を水中で反応させて、ベ
ンゼンチオール誘導体を合成する方法(Tetrahe
dron,1994,50,4775)が知られてい
る。しかしながら、この方法は、反応時に急激な水素の
発生を伴うため、反応温度の制御が難しく、必ずしも工
業的に有利な方法とはいえない。加えて、反応が不均一
に進行したり、ジフェニルジスルフィド誘導体を直接合
成することができない問題がある。
[0005] Further, a method of synthesizing a benzenethiol derivative by reacting a benzenesulfonyl chloride derivative with zinc metal and a mineral acid (sulfuric acid) in water (Tetrahe)
dron, 1994, 50, 4775). However, since this method involves rapid generation of hydrogen during the reaction, it is difficult to control the reaction temperature and is not necessarily an industrially advantageous method. In addition, there are problems that the reaction proceeds heterogeneously and that diphenyl disulfide derivatives cannot be directly synthesized.

【0006】[0006]

【発明が解決しようとする課題】本発明は、前記のよう
なベンゼンスルホニルクロリド誘導体からジフェニルジ
スルフィド誘導体の製造法に関する課題を解決し、高収
率・高選択的、さらには工業的に優れたジフェニルジス
ルフィド誘導体の直接製造法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems relating to the method for producing a diphenyl disulfide derivative from a benzenesulfonyl chloride derivative, and provides a high yield, high selectivity and industrially excellent diphenyl. An object of the present invention is to provide a method for directly producing a disulfide derivative.

【0007】[0007]

【課題を解決するための手段】本発明は、下記一般式
(I)、
The present invention provides a compound represented by the following general formula (I):

【0008】[0008]

【化3】 Embedded image

【0009】(式中、Rは、炭素数1〜6のアルキル
基、炭素数1〜6のアルコキシル基、ハロゲン原子また
は水素原子を示す。)で表されるベンゼンスルホニルク
ロリド誘導体から、下記一般式(II)、
(Wherein, R represents an alkyl group having 1 to 6 carbon atoms, an alkoxyl group having 1 to 6 carbon atoms, a halogen atom or a hydrogen atom), and a benzenesulfonyl chloride derivative represented by the following general formula: (II),

【0010】[0010]

【化4】 Embedded image

【0011】(式中、Rは、炭素数1〜6のアルキル
基、炭素数1〜6のアルコキシル基、ハロゲン原子また
は水素原子を示す。)で示されるジフェニルジスルフィ
ド誘導体を製造する方法において、鉱酸存在下、前記ベ
ンゼンスルホニルクロリド誘導体に対して2〜4倍モル
の金属亜鉛を使用し、水と有機溶媒の2相液中で還元す
ることを特徴とするジフェニルジスルフィド誘導体の直
接製造法に関する。
(Wherein R represents an alkyl group having 1 to 6 carbon atoms, an alkoxyl group having 1 to 6 carbon atoms, a halogen atom or a hydrogen atom). The present invention relates to a direct method for producing a diphenyl disulfide derivative, which comprises reducing in a two-phase solution of water and an organic solvent using 2 to 4 times the molar amount of zinc metal with respect to the benzenesulfonyl chloride derivative in the presence of an acid.

【0012】[0012]

【発明の実施の形態】本発明の一般式(1)および一般
式(II)における置換基Rとしては、メチル基、エチ
ル基、n−プロピル基、iso−プロピル基、n−ブチ
ル基、sec−ブチル基、tert−ブチル基、n−ペ
ンチル基、iso−ペンチル基、tert−ペンチル
基、n−ヘキシル基などの炭素数1〜6の直鎖のアルキ
ル基や分枝したアルキル基が挙げられる。また、置換基
Rとして、メトキシ基、エトキシ基、n−プロポキシ
基、iso−プロポキシ基、n−ブトキシ基、sec−
ブトキシ基、tert−ブトキシ基、n−ペンチルオキ
シ基、iso−ペンチルオキシ基、tert−ペンチル
オキシ基、n−ヘキシルオキシ基などの炭素数1〜6の
直鎖のアルコキシル基や分枝したアルコキシル基が挙げ
られる。さらに、置換基Rとして、フッ素原子、塩素原
子、臭素原子、ヨウ素原子などのハロゲン原子や水素原
子が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION In the general formulas (1) and (II) of the present invention, the substituent R is methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec. A straight-chain alkyl group having 1 to 6 carbon atoms or a branched alkyl group such as -butyl group, tert-butyl group, n-pentyl group, iso-pentyl group, tert-pentyl group, and n-hexyl group. . Further, as the substituent R, a methoxy group, an ethoxy group, an n-propoxy group, an iso-propoxy group, an n-butoxy group, a sec-
A linear alkoxyl group having 1 to 6 carbon atoms such as a butoxy group, a tert-butoxy group, an n-pentyloxy group, an iso-pentyloxy group, a tert-pentyloxy group, and an n-hexyloxy group, or a branched alkoxyl group Is mentioned. Further, examples of the substituent R include a halogen atom and a hydrogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.

【0013】本発明で使用される金属亜鉛はベンゼンス
ルホニルクロリド誘導体に対して2〜4倍モルとするの
がよい。2〜4倍モルの場合、ジフェニルジスルフィド
誘導体が直接、高選択的に合成される。2倍モルより過
度に少ないと、原料のベンゼンスルホニルクロリド誘導
体や反応中間体であるS−フェニル ベンゼンチオスル
ホネート誘導体が残ってしまい、目的とするジフェニル
ジスルフィド誘導体を高収率・高選択的に合成すること
ができない。4倍モルより過度に多いと、ジフェニルジ
スルフィド誘導体の副生成物であるベンゼンチオール誘
導体のみが高選択的に合成され、直接、ジフェニルジス
ルフィド誘導体が合成できない。
The metal zinc used in the present invention is preferably used in an amount of 2 to 4 moles per mole of the benzenesulfonyl chloride derivative. In the case of 2 to 4 moles, the diphenyl disulfide derivative is directly and selectively synthesized. If the amount is excessively less than 2 times, the starting benzenesulfonyl chloride derivative and the reaction intermediate S-phenylbenzenethiosulfonate derivative remain, and the desired diphenyl disulfide derivative is synthesized with high yield and high selectivity. Can not do. If the molar ratio is excessively higher than 4 times, only the benzenethiol derivative which is a by-product of the diphenyl disulfide derivative is synthesized with high selectivity, and the diphenyl disulfide derivative cannot be synthesized directly.

【0014】本発明で使用される鉱酸の具体例として、
リン酸、硝酸、硫酸、塩酸などが挙げられるが、中でも
硫酸が好ましい。鉱酸の量は、前記金属亜鉛に対して、
通常1〜3倍モルが好ましい。この範囲より過度に少な
いと、原料のベンゼンスルホニルクロリド誘導体や反応
中間体であるS−フェニル ベンゼンチオスルホネート
誘導体が残ってしまい、目的とするジフェニルジスルフ
ィド誘導体を高収率・高選択的に合成することができな
い。一方、過度に多いと、目的とするジフェニルジスル
フィド誘導体は合成できるものの、廃液処理のことを考
えると多くする意味が無い。
As specific examples of the mineral acid used in the present invention,
Examples thereof include phosphoric acid, nitric acid, sulfuric acid, and hydrochloric acid, and among them, sulfuric acid is preferable. The amount of the mineral acid is:
Usually, 1 to 3 moles are preferable. If the amount is excessively less than this range, the starting benzenesulfonyl chloride derivative and the reaction intermediate S-phenylbenzenethiosulfonate derivative remain, and the desired diphenyl disulfide derivative is synthesized with high yield and high selectivity. Can not. On the other hand, if the amount is excessively large, the intended diphenyl disulfide derivative can be synthesized, but there is no point in increasing the amount in consideration of waste liquid treatment.

【0015】本発明で使用される具体的な有機溶媒とし
ては、前記反応に不活性な有機溶媒であれば、特に限定
されるものではなく、ベンゼンスルホニルクロリド誘導
体が溶解される有機溶媒であれば適宜使用することがで
きる。その一例として、ジエチルエーテル、ジメトキシ
エタン、ジエトキシエタン、n−ヘキサン、n−ヘプタ
ン、ベンゼン、トルエン、(o,m,p−)キシレンが
挙げられる。これら有機溶媒は単独で用いても良いし、
混合して用いても差し支えない。
The specific organic solvent used in the present invention is not particularly limited as long as it is an organic solvent inert to the above reaction. Any organic solvent in which a benzenesulfonyl chloride derivative is dissolved can be used. It can be used as appropriate. Examples thereof include diethyl ether, dimethoxyethane, diethoxyethane, n-hexane, n-heptane, benzene, toluene and (o, m, p-) xylene. These organic solvents may be used alone,
Mixing may be used.

【0016】本発明で使用される溶媒は水と有機溶媒の
混合溶媒であり、水と有機溶媒の容積比率(水/有機溶
媒)は、1/5〜5/1が好ましく、水と有機溶媒との
総重量は、原料のベンゼンスルホニルクロリド誘導体に
対して、0.05〜20重量倍、好ましくは0.2〜1
5重量倍が使用される。この範囲より過度に含有する有
機溶媒の絶対量が少ないと、副生成物である有機物の析
出が顕著になり、還元反応が途中で停止し、未反応の金
属亜鉛が多量に残る状態になる。反応を完結させるため
に反応液を昇温することができるが、この際に未反応亜
鉛が30℃付近で激しく鉱酸(硫酸)と反応し、水素の
発生を伴った発熱反応が急激になる。このために反応の
制御が不可能になる問題があり、目的とするジフェニル
ジスルフィド誘導体を選択的に合成することができな
い。一方、過度に水の絶対量が少ないと、目的とするジ
フェニルジスルフィド誘導体は生成するものの、反応中
に発生した塩が析出してしまうので、攪拌効率や廃液処
理が悪くなる。よって、水の絶対量は、反応中に発生す
る塩を全て溶解させる量より多いことが好ましい。
The solvent used in the present invention is a mixed solvent of water and an organic solvent, and the volume ratio of water to the organic solvent (water / organic solvent) is preferably 1/5 to 5/1, and water and the organic solvent are preferably used. Is 0.05 to 20 times the weight of the starting benzenesulfonyl chloride derivative, preferably 0.2 to 1 time.
Five weight times are used. If the absolute amount of the organic solvent excessively contained is smaller than this range, the precipitation of organic substances as by-products becomes remarkable, the reduction reaction stops halfway, and a large amount of unreacted metallic zinc remains. The reaction solution can be heated to complete the reaction. At this time, unreacted zinc reacts violently with mineral acid (sulfuric acid) at around 30 ° C., causing an exothermic reaction accompanied by generation of hydrogen. . For this reason, there is a problem that control of the reaction becomes impossible, and it is not possible to selectively synthesize a target diphenyl disulfide derivative. On the other hand, if the absolute amount of water is excessively small, the desired diphenyl disulfide derivative will be formed, but the salt generated during the reaction will be precipitated, resulting in poor stirring efficiency and waste liquid treatment. Therefore, the absolute amount of water is preferably larger than the amount that dissolves all the salts generated during the reaction.

【0017】本発明の温度範囲は、金属亜鉛の添加開始
から添加後1〜2時間までは−10〜20℃の間が好ま
しく、さらに、好ましくは−5〜12℃である。また、
金属亜鉛を添加後1〜2時間から反応終了までは30〜
110℃が好ましく、さらに好ましくは70〜90℃で
ある。
The temperature range of the present invention is preferably from -10 to 20 ° C, more preferably from -5 to 12 ° C, from the start of the addition of zinc metal to 1 to 2 hours after the addition. Also,
30 minutes from 1-2 hours after the addition of zinc metal to the end of the reaction
110 ° C is preferred, and more preferably 70 to 90 ° C.

【0018】反応混合物から目的のジフェニルジスルフ
ィド誘導体を取り出す方法としては、反応混合物を冷却
後、有機層を分取し、水酸化アルカリ水溶液で塩基性と
した後、有機層側にジフェニルジスルフィド誘導体、水
層側に微量のベンゼンチオール誘導体をそれぞれ分離で
きる。有機層側は有機溶媒を留去することで、簡単にジ
フェニルジスルフィド誘導体を取り出すことができる。
また水層側は再度酸性にしてトルエン等の有機溶媒で抽
出した後、有機溶媒を留去することで微量のベンゼンチ
オール誘導体を取り出すことができる。さらにこれらの
操作に蒸留あるいは再結晶などの手段を組み合せて、よ
り高純度のジフェニルジスルフィド誘導体を得ることが
できる。
As a method for extracting the desired diphenyl disulfide derivative from the reaction mixture, the reaction mixture is cooled, the organic layer is separated, made basic with an aqueous alkali hydroxide solution, and the diphenyl disulfide derivative, water A small amount of benzenethiol derivative can be separated on the layer side. On the organic layer side, the diphenyl disulfide derivative can be easily taken out by distilling off the organic solvent.
The aqueous layer side is made acidic again and extracted with an organic solvent such as toluene, and then a small amount of a benzenethiol derivative can be taken out by distilling off the organic solvent. Further, by combining these operations with means such as distillation or recrystallization, a higher-purity diphenyl disulfide derivative can be obtained.

【0019】また、ジフェニルジスルフィド誘導体を選
択的に得る場合に、上記還元反応後、精製操作すること
なくそのまま酸化反応することもできる。すなわち、上
記還元反応の終了後、反応混合液から有機層を分取した
のち、微量の副生成物であるベンゼンチオール誘導体を
単離・分離することなく混合物の状態のままで、水酸化
アルカリ水溶液と過酸化水素による酸化反応を行ない、
選択的にジフェニルジスルフィド誘導体のみを得ること
ができる。この場合、過酸化水素は10〜35%の水溶
液を用いることができ、副生成物のベンゼンチオール誘
導体に対して、2.0倍モル以下とするのがよい。
When a diphenyl disulfide derivative is selectively obtained, an oxidation reaction can be carried out without purification after the above-mentioned reduction reaction. That is, after the completion of the above reduction reaction, the organic layer is separated from the reaction mixture, and the benzenethiol derivative, which is a small amount of by-product, is isolated and separated without being separated from the reaction mixture. And oxidation reaction with hydrogen peroxide
Only a diphenyl disulfide derivative can be selectively obtained. In this case, an aqueous solution of 10% to 35% of hydrogen peroxide can be used, and it is preferable that the molar amount be 2.0 times or less the benzenethiol derivative as a by-product.

【0020】[0020]

【実施例】次に、実施例を挙げて本発明をさらに詳しく
説明するが、本発明は、その趣旨を超えない限り以下の
実施例に限定されるものではない。
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist.

【0021】実施例1 氷(100g)に濃硫酸(95%,28.1g,272
mmol)を4度に分けて加え、氷浴中(内温10℃以
下)で攪拌しながら、4−メトキシベンゼンスルホニル
クロリド(15.0g,72mmol)のトルエン(7
0ml)溶液を加えた。激しく攪拌下に亜鉛粉末(1
1.8g,181mmol)を少量ずつ30分かけて加
え、さらに内温10℃以下のまま、1.5時間攪拌し
た。徐々に加温し、1時間かけて加熱還流させ、さらに
攪拌を続けると反応液は透明になり、還流開始から3時
間攪拌した。反応混合液を40℃まで冷却後、有機層を
分取し、2規定苛性ソーダ水溶液と振とうし、ビス(4
−メトキシフェニル)ジスルフィドを有機層に、4−メ
トキシベンゼンチオールを水相に抽出した。水相を2規
定塩酸で酸性とした後、4−メトキシベンゼンチオール
をトルエンで有機層に抽出した。先のビス(4−メトキ
シフェニル)ジスルフィドの溶液と4−メトキシベンゼ
ンチオールの溶液をそれぞれ硫酸ナトリウムで乾燥後、
溶媒を減圧留去し、ビス(4−メトキシフェニル)ジス
ルフィド8.53g、収率85.2%と4−メトキシベ
ンゼンチオール0.68g、収率6.7%を得た。
Example 1 Concentrated sulfuric acid (95%, 28.1 g, 272) was added to ice (100 g).
mmol) was added in four portions, and 4-methoxybenzenesulfonyl chloride (15.0 g, 72 mmol) in toluene (7 mmol) was added while stirring in an ice bath (inner temperature 10 ° C. or less).
0 ml) solution was added. Add zinc powder (1
(1.8 g, 181 mmol) was added little by little over 30 minutes, and the mixture was stirred for 1.5 hours while maintaining the internal temperature at 10 ° C or lower. The mixture was gradually heated, heated to reflux for 1 hour, and further stirred. The reaction solution became transparent and stirred for 3 hours from the start of reflux. After cooling the reaction mixture to 40 ° C., the organic layer was separated, shaken with a 2N aqueous solution of caustic soda, and bis (4
(-Methoxyphenyl) disulfide was extracted into the organic layer and 4-methoxybenzenethiol was extracted into the aqueous phase. After the aqueous phase was acidified with 2N hydrochloric acid, 4-methoxybenzenethiol was extracted into the organic layer with toluene. The solution of bis (4-methoxyphenyl) disulfide and the solution of 4-methoxybenzenethiol are dried over sodium sulfate, respectively,
The solvent was distilled off under reduced pressure to obtain 8.53 g of bis (4-methoxyphenyl) disulfide, a yield of 85.2%, and 0.68 g of 4-methoxybenzenethiol, a yield of 6.7%.

【0022】比較例1 氷(250g)に濃硫酸(95%,77.3g,750
mmol)を4度に分けて加え、氷浴中(内温10℃以
下)で攪拌しながら、4−メトキシベンゼンスルホニル
クロリド(20.7g,100mmol)を加えた。激
しく攪拌下に亜鉛粉末(32.5g,500mmol)
を少量ずつ30分かけて加え、さらに内温10℃以下の
まま、1時間攪拌した。徐々に加温すると約25℃付近
で激しく反応し発熱を伴いながら水素を発生した。加熱
還流させ、さらに攪拌を続けると反応液は透明になり、
還流開始から6時間攪拌した。反応混合液を40℃まで
冷却後、トルエンで抽出し、硫酸ナトリウムで乾燥後、
溶媒を減圧留去後、液体クロマトグラフィー分析によ
り、収率はビス(4−メトキシフェニル)ジスルフィド
2.0%、4−メトキシベンゼンチオールが80.3%
であった。
Comparative Example 1 Concentrated sulfuric acid (95%, 77.3 g, 750) was added to ice (250 g).
mmol) was added in four portions, and 4-methoxybenzenesulfonyl chloride (20.7 g, 100 mmol) was added while stirring in an ice bath (inner temperature 10 ° C. or lower). Zinc powder (32.5 g, 500 mmol) under vigorous stirring
Was added little by little over 30 minutes, and the mixture was further stirred for 1 hour while maintaining the internal temperature at 10 ° C or lower. When heated gradually, it reacted violently at about 25 ° C. and generated hydrogen while generating heat. Heat the mixture to reflux and continue stirring.
The mixture was stirred for 6 hours from the start of reflux. After cooling the reaction mixture to 40 ° C., it was extracted with toluene and dried over sodium sulfate.
After distilling off the solvent under reduced pressure, liquid chromatography analysis revealed that the yield was 2.0% for bis (4-methoxyphenyl) disulfide and 80.3% for 4-methoxybenzenethiol.
Met.

【0023】比較例2 氷(100g)に濃硫酸(95%,28.1g,272
mmol)を4度に分けて加え、氷浴中(内温10℃以
下)で攪拌しながら、4−メトキシベンゼンスルホニル
クロリド(15.0g,72mmol)を加えた。激し
く攪拌下に亜鉛粉末(11.8g,181mmol)を
少量ずつ30分かけて加え、さらに内温10℃以下のま
ま、1.5時間攪拌した。徐々に加温すると約25℃付
近で激しく反応し発熱を伴いながら水素を発生した。加
熱還流させ、さらに攪拌を続けると反応液は透明にな
り、還流開始から5時間攪拌した。反応混合液を40℃
まで冷却後、トルエンで抽出し、硫酸ナトリウムで乾燥
後、溶媒を減圧留去、油状混合物15gを得た。液体ク
ロマトグラフィー分析により、収率はビス(4−メトキ
シフェニル)ジスルフィド9.9%、4−メトキシベン
ゼンチオールが18.4%とS−(4−メトキシフェニ
ル) 4−メトキシベンゼンチオスルホネートが63.
0%であった。
Comparative Example 2 Concentrated sulfuric acid (95%, 28.1 g, 272) was added to ice (100 g).
mmol) was added in four portions, and 4-methoxybenzenesulfonyl chloride (15.0 g, 72 mmol) was added while stirring in an ice bath (inner temperature 10 ° C. or lower). Under vigorous stirring, zinc powder (11.8 g, 181 mmol) was added little by little over 30 minutes, and the mixture was further stirred for 1.5 hours while maintaining the internal temperature at 10 ° C or lower. When heated gradually, it reacted violently at about 25 ° C. and generated hydrogen while generating heat. When the mixture was heated to reflux and further stirred, the reaction solution became transparent and stirred for 5 hours from the start of reflux. Reaction mixture at 40 ° C
After cooling to room temperature, the mixture was extracted with toluene and dried over sodium sulfate, and then the solvent was distilled off under reduced pressure to obtain 15 g of an oily mixture. According to liquid chromatography analysis, the yield was 9.9% for bis (4-methoxyphenyl) disulfide, 18.4% for 4-methoxybenzenethiol, and 63% for S- (4-methoxyphenyl) 4-methoxybenzenethiosulfonate.
It was 0%.

【0024】比較例3 氷(250g)に濃硫酸(95%,77.4g,750
mmol)を4度に分けて加え、氷浴中(内温10℃以
下)で攪拌しながら、4−メトキシベンゼンスルホニル
クロリド(20.7g,100mmol)のトルエン
(100ml)溶液を加えた。激しく攪拌下に亜鉛粉末
(32.5g,500mmol)を少量ずつ30分かけ
て加え、さらに内温10℃以下のまま、1時間攪拌し
た。徐々に加温し、1時間かけて加熱還流させ、さらに
攪拌を続けると反応液は透明になり、還流開始から3時
間攪拌した。反応混合液を40℃まで冷却後、有機層を
分離し、硫酸ナトリウムで乾燥後、溶媒を減圧留去後、
液体クロマトグラフィー分析により、収率はビス(4−
メトキシフェニル)ジスルフィドが0.7%、4−メト
キシベンゼンチオールが91.4%であった。
Comparative Example 3 Concentrated sulfuric acid (95%, 77.4 g, 750) was added to ice (250 g).
mmol) was added in four portions, and a solution of 4-methoxybenzenesulfonyl chloride (20.7 g, 100 mmol) in toluene (100 ml) was added while stirring in an ice bath (inner temperature 10 ° C. or lower). Under vigorous stirring, zinc powder (32.5 g, 500 mmol) was added little by little over 30 minutes, and the mixture was further stirred for 1 hour while keeping the internal temperature at 10 ° C or lower. The mixture was gradually heated, heated to reflux for 1 hour, and further stirred. The reaction solution became transparent and stirred for 3 hours from the start of reflux. After cooling the reaction mixture to 40 ° C., the organic layer was separated, dried over sodium sulfate, and the solvent was distilled off under reduced pressure.
By liquid chromatography analysis, the yield was bis (4-
(Methoxyphenyl) disulfide was 0.7%, and 4-methoxybenzenethiol was 91.4%.

【0025】比較例4 氷(85g)に濃硫酸(95%,23.2g,225m
mol)を4度に分けて加え、氷浴中(内温10℃以
下)で攪拌しながら、4−メトキシベンゼンスルホニル
クロリド(20.7g,100mmol)のトルエン
(100ml)溶液を加えた。激しく攪拌下に亜鉛粉末
(9.8g,150mmol)を少量ずつ30分かけて
加え、さらに内温10℃以下のまま、1.5時間攪拌し
た。徐々に加温すると約25℃付近で激しく反応し発熱
を伴いながら水素を発生した。加熱還流させ、さらに攪
拌を続けると反応液は透明になり、還流開始から5時間
攪拌した。反応混合液を40℃まで冷却後、トルエンで
抽出し、硫酸ナトリウムで乾燥後、溶媒を減圧留去、油
状混合物15gを得た。液体クロマトグラフィー分析に
より、収率はビス(4−メトキシフェニル)ジスルフィ
ドが47.0%、4−メトキシベンゼンチオールが2.
2%とS−(4−メトキシフェニル) 4−メトキシベ
ンゼンチオスルホネートが32.0%であった。
Comparative Example 4 Concentrated sulfuric acid (95%, 23.2 g, 225 m) was added to ice (85 g).
mol) was added in four portions, and a solution of 4-methoxybenzenesulfonyl chloride (20.7 g, 100 mmol) in toluene (100 ml) was added while stirring in an ice bath (inner temperature 10 ° C or lower). Under vigorous stirring, zinc powder (9.8 g, 150 mmol) was added little by little over 30 minutes, and the mixture was further stirred for 1.5 hours while maintaining the internal temperature at 10 ° C or lower. When heated gradually, it reacted violently at about 25 ° C. and generated hydrogen while generating heat. When the mixture was heated to reflux and further stirred, the reaction solution became transparent and stirred for 5 hours from the start of reflux. The reaction mixture was cooled to 40 ° C., extracted with toluene, dried over sodium sulfate, and the solvent was distilled off under reduced pressure to obtain 15 g of an oily mixture. According to liquid chromatography analysis, the yield was 47.0% for bis (4-methoxyphenyl) disulfide and 2.70% for 4-methoxybenzenethiol.
2% and 32.0% of S- (4-methoxyphenyl) 4-methoxybenzenethiosulfonate.

【0026】実施例2 氷(150g)に濃塩酸(36%,76g,760mm
ol)を4度に分けて加え、氷浴中(内温10℃以下)
で攪拌しながら、4−メトキシベンゼンスルホニルクロ
リド(20.7g,100mmol)のトルエン(10
0ml)溶液を加えた。激しく攪拌下に亜鉛粉末(2
2.8g,350mmol)を少量ずつ30分かけて加
え、さらに内温10℃以下のまま、1.5時間攪拌し
た。徐々に加温し、1時間かけて加熱還流させ、さらに
攪拌を続けると反応液は透明になり、還流開始から3時
間攪拌した。40℃まで冷却後、有機層を分取し、硫酸
ナトリウムで乾燥後、溶媒を減圧留去し、ビス(4−メ
トキシフェニル)ジスルフィドと4−メトキシベンゼン
チオールの混合物として15gを得た。液体クロマトグ
ラフィー分析により、収率はビス(4−メトキシフェニ
ル)ジスルフィドが82.3%、4−メトキシベンゼン
チオールが8.3%であった。
Example 2 Concentrated hydrochloric acid (36%, 76 g, 760 mm) was added to ice (150 g).
ol) in 4 portions and add in an ice bath (internal temperature 10 ° C or less)
While stirring with 4-methoxybenzenesulfonyl chloride (20.7 g, 100 mmol) in toluene (10
0 ml) solution was added. Zinc powder (2
(2.8 g, 350 mmol) was added little by little over 30 minutes, and the mixture was stirred for 1.5 hours while maintaining the internal temperature at 10 ° C or lower. The mixture was gradually heated, heated to reflux for 1 hour, and further stirred. The reaction solution became transparent and stirred for 3 hours from the start of reflux. After cooling to 40 ° C., the organic layer was separated, dried over sodium sulfate, and the solvent was distilled off under reduced pressure to obtain 15 g of a mixture of bis (4-methoxyphenyl) disulfide and 4-methoxybenzenethiol. According to liquid chromatography analysis, the yield was 82.3% for bis (4-methoxyphenyl) disulfide and 8.3% for 4-methoxybenzenethiol.

【0027】実施例3 氷(100g)に濃硫酸(95%,43.0g,417
mmol)を4度に分けて加え、氷浴中(内温10℃以
下)で攪拌しながら、4−メトキシベンゼンスルホニル
クロリド(25.0g,121mmol)のジメトキシ
エタン(100ml)溶液を加えた。激しく攪拌下に亜
鉛粉末(22.6g,348mmol)を少量ずつ30
分かけて加え、さらに内温10℃以下のまま、1.5時
間攪拌した。徐々に加温し、1時間かけて加熱還流さ
せ、さらに攪拌を続けると反応液は透明になり、還流開
始から3時間攪拌した。40℃まで冷却後、有機層を分
取し、硫酸ナトリウムで乾燥後、溶媒を減圧留去し、ビ
ス(4−メトキシフェニル)ジスルフィドと4−メトキ
シベンゼンチオールの混合物として18gを得た。液体
クロマトグラフィー分析により、収率はビス(4−メト
キシフェニル)ジスルフィドが85.6%、4−メトキ
シベンゼンチオールが3.7%であった。実施例1〜3
および比較例1〜4の製造条件および収率を以下の表1
に示す。
Example 3 Concentrated sulfuric acid (95%, 43.0 g, 417) was added to ice (100 g).
mmol) was added in four portions, and a solution of 4-methoxybenzenesulfonyl chloride (25.0 g, 121 mmol) in dimethoxyethane (100 ml) was added while stirring in an ice bath (inner temperature 10 ° C. or lower). Under vigorous stirring, add zinc powder (22.6 g, 348 mmol) in small portions 30
The mixture was added over minutes, and the mixture was further stirred for 1.5 hours while maintaining the internal temperature at 10 ° C. or lower. The mixture was gradually heated, heated to reflux for 1 hour, and further stirred. The reaction solution became transparent and stirred for 3 hours from the start of reflux. After cooling to 40 ° C., the organic layer was separated, dried over sodium sulfate, and the solvent was distilled off under reduced pressure to obtain 18 g of a mixture of bis (4-methoxyphenyl) disulfide and 4-methoxybenzenethiol. According to liquid chromatography analysis, the yield was 85.6% for bis (4-methoxyphenyl) disulfide and 3.7% for 4-methoxybenzenethiol. Examples 1-3
Table 1 shows the production conditions and yields of Comparative Examples 1 to 4.
Shown in

【0028】[0028]

【表1】 [Table 1]

【0029】実施例4 実施例1の反応の後、2規定苛性ソーダ水溶液(7m
l,14mmol)を加え、65℃で攪拌し、30%過
酸化水素水(0.30ml,2.7mmol)を内温が
65〜70℃を保つように滴下した。反応混合液を室温
まで冷却後、有機層を分取し、硫酸ナトリウムで乾燥
後、溶媒を減圧留去し、ビス(4−メトキシフェニル)
ジスルフィド9.18g、4−メトキシベンゼンスルホ
ニルクロリドから収率91.7%を得た。
Example 4 After the reaction of Example 1, a 2N aqueous solution of caustic soda (7 m
, 14 mmol), and the mixture was stirred at 65 ° C, and 30% aqueous hydrogen peroxide (0.30 ml, 2.7 mmol) was added dropwise so that the internal temperature was maintained at 65 to 70 ° C. After cooling the reaction mixture to room temperature, the organic layer was separated, dried over sodium sulfate, and the solvent was distilled off under reduced pressure to obtain bis (4-methoxyphenyl).
A yield of 91.7% was obtained from 9.18 g of disulfide and 4-methoxybenzenesulfonyl chloride.

【0030】実施例5 実施例1の反応の後、2規定苛性ソーダ水溶液(7m
l,14mmol)を加え、65℃で攪拌し、30%過
酸化水素水(0.22ml,1.94mmol)を内温
が65〜70℃を保つように滴下した。反応混合液を室
温まで冷却後、有機層を分取し、硫酸ナトリウムで乾燥
後、溶媒を減圧留去し、ビス(4−メトキシフェニル)
ジスルフィド8.92g、4−メトキシベンゼンスルホ
ニルクロリドから収率89.1%を得た。
Example 5 After the reaction of Example 1, a 2N aqueous solution of caustic soda (7 m
1, 14 mmol), and the mixture was stirred at 65 ° C, and 30% aqueous hydrogen peroxide (0.22 ml, 1.94 mmol) was added dropwise so that the internal temperature was maintained at 65 to 70 ° C. After cooling the reaction mixture to room temperature, the organic layer was separated, dried over sodium sulfate, and the solvent was distilled off under reduced pressure to obtain bis (4-methoxyphenyl).
A yield of 89.1% was obtained from 8.92 g of disulfide and 4-methoxybenzenesulfonyl chloride.

【0031】比較例5 実施例1の反応の後、2規定苛性ソーダ水溶液(7m
l,14mmol)を加え、65℃で攪拌し、30%過
酸化水素水(5.50ml,48.6mmol)を内温
が65〜70℃を保つように滴下した。反応混合液を室
温まで冷却後、有機層を分取し、硫酸ナトリウムで乾燥
後、溶媒を減圧留去し、ビス(4−メトキシフェニル)
ジスルフィド6.33g、4−メトキシベンゼンスルホ
ニルクロリドから収率63.2%を得た。実施例4〜5
および比較例5の製造条件と収率を以下の表2に示す。
Comparative Example 5 After the reaction of Example 1, a 2N aqueous solution of caustic soda (7 m
1, 14 mmol), and the mixture was stirred at 65 ° C, and 30% aqueous hydrogen peroxide (5.50 ml, 48.6 mmol) was added dropwise so that the internal temperature was maintained at 65 to 70 ° C. After cooling the reaction mixture to room temperature, the organic layer was separated, dried over sodium sulfate, and the solvent was distilled off under reduced pressure to obtain bis (4-methoxyphenyl).
A yield of 63.2% was obtained from 6.33 g of disulfide and 4-methoxybenzenesulfonyl chloride. Examples 4 and 5
Table 2 below shows the production conditions and the yields of Comparative Example 5.

【0032】[0032]

【表2】 [Table 2]

【0033】実施例6 原料の4−メトキシベンゼンスルホニルクロリドに代え
て、ベンゼンスルホニルクロリド(12.7g,72m
mol)を用いた以外は実施例1と同様な方法により反
応を行った。液体クロマトグラフィー分析により収率
は、ジフェニルジスルフィド73.4%、チオフェノー
ル10.1%であった。
Example 6 In place of 4-methoxybenzenesulfonyl chloride as a raw material, benzenesulfonyl chloride (12.7 g, 72 m
mol)), and the reaction was conducted in the same manner as in Example 1. According to liquid chromatography analysis, the yields were 73.4% of diphenyl disulfide and 10.1% of thiophenol.

【0034】実施例7 原料の4−メトキシベンゼンスルホニルクロリドに代え
て、4−イソプロポキシベンゼンスルホニルクロリド
(17.0g,72mmol)を用いた以外は実施例1
と同様な方法により反応を行った。液体クロマトグラフ
ィー分析により収率は、ビス(4−イソプロポキシフェ
ニル)ジスルフィド88.4%、4−イソプロポキシベ
ンゼンチオール3.6%であった。
Example 7 Example 1 was repeated except that 4-isopropoxybenzenesulfonyl chloride (17.0 g, 72 mmol) was used in place of 4-methoxybenzenesulfonyl chloride as a raw material.
The reaction was carried out in the same manner as described above. According to liquid chromatography analysis, the yields were 88.4% of bis (4-isopropoxyphenyl) disulfide and 3.6% of 4-isopropoxybenzenethiol.

【0035】実施例8 原料の4−メトキシベンゼンスルホニルクロリドに代え
て、4−トルエンスルホニルクロリド(13.8g,7
2mmol)を用いた以外は実施例1と同様な方法によ
り反応を行った。液体クロマトグラフィー分析により収
率は、ジ(4−トリル)ジスルフィド74.3%、4−
メチルチオフェノール11.5%であった。
Example 8 In place of 4-methoxybenzenesulfonyl chloride as a raw material, 4-toluenesulfonyl chloride (13.8 g, 7
The reaction was carried out in the same manner as in Example 1 except that 2 mmol) was used. According to liquid chromatography analysis, the yield was 74.3% for di (4-tolyl) disulfide,
Methylthiophenol was 11.5%.

【0036】実施例9 原料の4−メトキシベンゼンスルホニルクロリドに代え
て、4−tert−ブチルベンゼンスルホニルクロリド
(16.8g,72mmol)を用いた以外は実施例1
と同様な方法により反応を行った。液体クロマトグラフ
ィー分析により収率は、ビス(4−tert−ブチルフ
ェニル)ジスルフィド86.0%、4−tert−ブチ
ルベンゼンチオール6.8%であった。
Example 9 Example 1 was repeated, except that 4-tert-butylbenzenesulfonyl chloride (16.8 g, 72 mmol) was used in place of the raw material 4-methoxybenzenesulfonyl chloride.
The reaction was carried out in the same manner as described above. Liquid chromatography analysis showed that the yields were 86.0% of bis (4-tert-butylphenyl) disulfide and 6.8% of 4-tert-butylbenzenethiol.

【0037】実施例10 原料の4−メトキシベンゼンスルホニルクロリドに代え
て、4−クロロベンゼンスルホニルクロリド(15.2
g,72mmol)を用いた以外は実施例1と同様な方
法により反応を行った。液体クロマトグラフィー分析に
より収率は、ビス(4−クロロフェニル)ジスルフィド
82.9%、4−クロロチオフェノール8.8%であっ
た。
Example 10 In place of 4-methoxybenzenesulfonyl chloride as a raw material, 4-chlorobenzenesulfonyl chloride (15.2) was used.
g, 72 mmol), and the reaction was carried out in the same manner as in Example 1. Liquid chromatography analysis showed that the yields were 82.9% of bis (4-chlorophenyl) disulfide and 8.8% of 4-chlorothiophenol.

【0038】[0038]

【発明の効果】本発明による、水と有機溶媒の2相液中
で反応させることにより、従来法に比べて急激な水素の
発生、反応熱暴走がなく、段階的に反応を進行させて、
高収率・高選択的および高安全性を確立することができ
た。また、金属亜鉛の使用量を減らすことにより、ジフ
ェニルジスルフィド誘導体を選択的に製造できる上に、
廃液処理の負荷軽減ができた。
According to the present invention, by causing a reaction in a two-phase liquid of water and an organic solvent, there is no rapid generation of hydrogen and no reaction thermal runaway as compared with the conventional method.
High yield, high selectivity and high safety could be established. In addition, by reducing the amount of metal zinc used, it is possible to selectively produce diphenyl disulfide derivatives,
The load of waste liquid treatment was reduced.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(I)、 【化1】 (式中、Rは、炭素数1〜6のアルキル基、炭素数1〜
6のアルコキシル基、ハロゲン原子または水素原子を示
す。)で表されるベンゼンスルホニルクロリド誘導体か
ら、下記一般式(II)、 【化2】 (式中、Rは、炭素数1〜6のアルキル基、炭素数1〜
6のアルコキシル基、ハロゲン原子または水素原子を示
す。)で示されるジフェニルジスルフィド誘導体を製造
する方法において、鉱酸存在下、前記ベンゼンスルホニ
ルクロリド誘導体に対して2〜4倍モルの金属亜鉛を使
用し、水と有機溶媒の2相液中で還元することを特徴と
するジフェニルジスルフィド誘導体の直接製造法。
1. A compound represented by the following general formula (I): (Where R is an alkyl group having 1 to 6 carbon atoms, 1 to 6 carbon atoms)
6 represents an alkoxyl group, a halogen atom or a hydrogen atom. From the benzenesulfonyl chloride derivative represented by the following general formula (II): (Where R is an alkyl group having 1 to 6 carbon atoms, 1 to 6 carbon atoms)
6 represents an alkoxyl group, a halogen atom or a hydrogen atom. In the method for producing a diphenyl disulfide derivative represented by the formula (2), a metal zinc is used in an amount of 2 to 4 times the molar amount of the benzenesulfonyl chloride derivative in the presence of a mineral acid, and reduction is carried out in a two-phase liquid of water and an organic solvent. A method for directly producing a diphenyl disulfide derivative.
【請求項2】 前記鉱酸の量が前記金属亜鉛に対して
1〜3倍モルであることを特徴とする請求項1記載のジ
フェニルジスルフィド誘導体の直接製造法。
2. The method for directly producing a diphenyl disulfide derivative according to claim 1, wherein the amount of said mineral acid is 1 to 3 times mol with respect to said metallic zinc.
【請求項3】 前記水と有機溶媒との容積比率(水/
有機溶媒)が1/5〜5/1であり、かつ、前記水と有
機溶媒との総重量の前記ベンゼンスルホニルクロリド誘
導体に対する重量比率が0.05〜20であることを特
徴とする請求項1記載のジフェニルジスルフィド誘導体
の直接製造法。
3. A volume ratio of the water and the organic solvent (water / water).
The organic solvent) is 1/5 to 5/1, and the weight ratio of the total weight of the water and the organic solvent to the benzenesulfonyl chloride derivative is 0.05 to 20. A method for producing a diphenyl disulfide derivative according to the above.
【請求項4】 前記還元により得られる反応混合液か
らジフェニルジスルフィド誘導体と副生成物であるベン
ゼンチオール誘導体とを含む有機層を分取し、前記ベン
ゼンチオール誘導体に対して2.0倍モル以下の過酸化
水素を加えて、前記ベンゼンチオール誘導体を酸化して
ジフェニルジスルフィド誘導体とすることを特徴とする
請求項1〜3記載のジフェニルジスルフィド誘導体の直
接製造法。
4. An organic layer containing a diphenyl disulfide derivative and a benzenethiol derivative as a by-product is fractionated from the reaction mixture obtained by the reduction, and the organic layer is 2.0 moles or less of the benzenethiol derivative. 4. The method for directly producing a diphenyl disulfide derivative according to claim 1, wherein the benzene thiol derivative is oxidized to diphenyl disulfide derivative by adding hydrogen peroxide.
JP2001036759A 2001-02-14 2001-02-14 Method for producing diphenyl disulfide derivative Expired - Fee Related JP4407062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001036759A JP4407062B2 (en) 2001-02-14 2001-02-14 Method for producing diphenyl disulfide derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001036759A JP4407062B2 (en) 2001-02-14 2001-02-14 Method for producing diphenyl disulfide derivative

Publications (2)

Publication Number Publication Date
JP2002241361A true JP2002241361A (en) 2002-08-28
JP4407062B2 JP4407062B2 (en) 2010-02-03

Family

ID=18899990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001036759A Expired - Fee Related JP4407062B2 (en) 2001-02-14 2001-02-14 Method for producing diphenyl disulfide derivative

Country Status (1)

Country Link
JP (1) JP4407062B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040758A (en) * 2007-08-06 2009-02-26 Toyo Kasei Kogyo Co Ltd Method for producing 2-(4-vinylarylsulfanyl)tetrahydropyran compound and aromatic hydrocarbon solution of the same
JP2011153094A (en) * 2010-01-27 2011-08-11 Ube Industries Ltd Method for producing diaryl disulfide compound
JP2012505921A (en) * 2008-10-16 2012-03-08 イカリア,インコーポレイテッド Compositions and methods for treating or preventing hypoxic or ischemic injury
JP2013502386A (en) * 2009-08-20 2013-01-24 バイエル・クロップサイエンス・アーゲー 3- [1- (3-haloalkyl) -triazolyl] -phenyl-sulfide derivatives for use as acaricides and insecticides
JP2013502387A (en) * 2009-08-20 2013-01-24 バイエル・クロップサイエンス・アーゲー 3-Triazolylphenyl substituted sulfide derivatives as acaricides and insecticides
JP2015020961A (en) * 2013-07-17 2015-02-02 国立大学法人名古屋大学 Reduction method of arenesulfonamide, production method of arenesulfonic acid and binaphthyldisulfonic acid
CN111892469A (en) * 2020-08-05 2020-11-06 新乡市润宇新材料科技有限公司 Aryl hydrazine and S8Method for synthesizing symmetric disulfide compound by using raw material
CN114853648A (en) * 2022-05-05 2022-08-05 常州大学 Method for preparing asymmetric disulfide by NBS (N-bromosuccinimide) to promote breakage of thioether C-S bond

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040758A (en) * 2007-08-06 2009-02-26 Toyo Kasei Kogyo Co Ltd Method for producing 2-(4-vinylarylsulfanyl)tetrahydropyran compound and aromatic hydrocarbon solution of the same
JP2012505921A (en) * 2008-10-16 2012-03-08 イカリア,インコーポレイテッド Compositions and methods for treating or preventing hypoxic or ischemic injury
JP2013502386A (en) * 2009-08-20 2013-01-24 バイエル・クロップサイエンス・アーゲー 3- [1- (3-haloalkyl) -triazolyl] -phenyl-sulfide derivatives for use as acaricides and insecticides
JP2013502387A (en) * 2009-08-20 2013-01-24 バイエル・クロップサイエンス・アーゲー 3-Triazolylphenyl substituted sulfide derivatives as acaricides and insecticides
JP2011153094A (en) * 2010-01-27 2011-08-11 Ube Industries Ltd Method for producing diaryl disulfide compound
JP2015020961A (en) * 2013-07-17 2015-02-02 国立大学法人名古屋大学 Reduction method of arenesulfonamide, production method of arenesulfonic acid and binaphthyldisulfonic acid
CN111892469A (en) * 2020-08-05 2020-11-06 新乡市润宇新材料科技有限公司 Aryl hydrazine and S8Method for synthesizing symmetric disulfide compound by using raw material
CN114853648A (en) * 2022-05-05 2022-08-05 常州大学 Method for preparing asymmetric disulfide by NBS (N-bromosuccinimide) to promote breakage of thioether C-S bond

Also Published As

Publication number Publication date
JP4407062B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP2002241361A (en) Method for producing diphenyl disulfide derivative
JP3310459B2 (en) Process for producing difluoromethoxyarene and difluoromethylthioarene
JP3337728B2 (en) Method for producing 2-acetylbenzo [b] thiophene
JP3626500B2 (en) “Production of bis (4-alkylthiophenyl) disulfide”
JP3535210B2 (en) Method for producing alkylphenyl sulfide
KR100259791B1 (en) Process for production of thioaryl compounds
JPH08143533A (en) Production of halothiophenols
US6376716B1 (en) Process for the preparation of aromatic sulfur compounds
JP3787791B2 (en) A method for producing dicyclohexyl disulfide.
EP0731083A1 (en) Process for the producing of alkylcyclopentanone derivatives
JP3794858B2 (en) Method for producing aromatic sulfur compound
JPH08245558A (en) Production of aromatic or heteroaromatic sulfide compound
JP3309202B2 (en) Method for producing nitrobenzenesulfonyl halides
JP4465674B2 (en) Method for producing benzyl (difluoromethyl) sulfide compound
JPH08143534A (en) Production of alkyl phenyl sulfone
JP3741403B2 (en) Method for producing aromatic sulfur compound
JP3174968B2 (en) Method for producing 2-halogeno-6-substituted thiobenzonitrile
KR910003635B1 (en) Process for the preparation of 2-(2-naphthyloxy)propion anilide derivatives
JP3826033B2 (en) Process for producing aromatic disulfides
CA1269994A (en) Method for producing cyclopropanecarboxylic acid derivatives
US6706917B1 (en) Preparing method of 2-phenylalkanoic acid derivatives
JPH0318617B2 (en)
JP2003064051A (en) Method for producing sulfonyl compound
SU1625866A1 (en) Method of producing 5-chloropentanoic acid
JP2000007649A (en) Production of aromatic sulfur compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees