JP2002239538A - Treatment method for anaerobically digested liquid - Google Patents

Treatment method for anaerobically digested liquid

Info

Publication number
JP2002239538A
JP2002239538A JP2001036518A JP2001036518A JP2002239538A JP 2002239538 A JP2002239538 A JP 2002239538A JP 2001036518 A JP2001036518 A JP 2001036518A JP 2001036518 A JP2001036518 A JP 2001036518A JP 2002239538 A JP2002239538 A JP 2002239538A
Authority
JP
Japan
Prior art keywords
gas
ammonia
liquid
digested
digested liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001036518A
Other languages
Japanese (ja)
Inventor
Kazumi Fukuda
一美 福田
Katsuo Kumazaki
勝雄 隈崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001036518A priority Critical patent/JP2002239538A/en
Publication of JP2002239538A publication Critical patent/JP2002239538A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treatment Of Sludge (AREA)
  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a treatment method for an anaerobically digested liquid capable of removing ammonia inexpensively without adding a large amount of heat energy in the anaerobically digested liquid from the outside nor adding alkali. SOLUTION: A liquid to be treated containing an organic substance is anaerobically digested to be separated into digestion gas and the digested liquid and ammonia contained in the digested liquid is subsequently removed. In this case, the digested liquid is introduced into a diffusion column and gas containing ammonia is volatilized under reduced pressure and subsequently introduced into a catalytic reactor to oxidize ammonia and diffused into the atmosphere as nitrogen gas and the digested liquid in the diffusion column is heated by hot wastewater used in the cooling of the high temperature gas of a dynamo utilizing the digestion gas. The volatilized gas containing ammonia is heated by the high temperature gas of the dynamo utilizing the digestion gas and subsequently diluted with air to be supplied to the catalytic reactor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、嫌気性消化済み液
の処理方法に係わり、詳しくは、有機性汚泥を嫌気性消
化した後の高濃度のアンモニアを含有する消化済み液か
らアンモニアを除去する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating an anaerobic digested liquor, and more particularly, to removing ammonia from a digested liquor containing a high concentration of ammonia after anaerobic digestion of organic sludge. About technology.

【0002】[0002]

【従来の技術】近年、生活環境の改善要求が高まり、都
市ゴミ、産業廃棄物、有機性廃液、有機性汚泥等の適切
な処理が重要な課題となっている。そのうち、有機性廃
液や汚泥の処理は、嫌気性消化法(メタン発酵法ともい
う)を利用して行われることが多い。この嫌気性消化法
とは、例えば図2に示すように、有機性汚泥等の被処理
液を槽(消化槽という)内である温度(例えば、30〜
40℃)に保持すると共に、メタン生成菌を添加して、
該被処理液中の有機性物質をメタンガス及び炭酸ガス
(これらガスを消化ガスという)に分解し、無害化する
技術である。処理された消化済み液(消化液ともいう)
は、引き続き種々の工程を経て固形分を肥料等にして回
収したり、無害化のための生物処理が行われて工業水と
して再利用される。一方、前記消化ガスは、通常発電設
備を設けてその熱源に利用される。この発電において
は、発電機器の冷却に多量の冷却水が使用されるため、
必然的に80〜90℃の温水が得られる。この温水は、
前記被処理液の加温に一部用いられるが、それはごく一
部であり、大半の温水は未利用のままである。消化処理
工場周囲の地域に熱を供給する事業を起こし、該温水を
有効利用できる場合ならばともかく、現実には、有効利
用の方途はなく、冷却塔等によって強制的に70℃程度
以下にまで冷却した後に、前記発電設備の冷却水として
循環利用されているのが通例である。
2. Description of the Related Art In recent years, there has been an increasing demand for improving the living environment, and proper treatment of municipal waste, industrial waste, organic waste liquid, organic sludge, and the like has become an important issue. Of these, the treatment of organic waste liquid and sludge is often performed using an anaerobic digestion method (also called a methane fermentation method). The anaerobic digestion method refers to, for example, as shown in FIG.
40 ° C) and adding methanogens,
This is a technique of decomposing organic substances in the liquid to be treated into methane gas and carbon dioxide gas (these gases are called digestion gases) to make them harmless. Treated digested fluid (also called digestive fluid)
Is continuously recovered through various processes as a fertilizer or the like, or subjected to biological treatment for detoxification and reused as industrial water. On the other hand, the digestion gas is usually used as a heat source by providing a power generation facility. In this power generation, a large amount of cooling water is used to cool the power generation equipment,
Inevitably, 80-90 ° C. hot water is obtained. This hot water is
Although partly used for heating the liquid to be treated, it is only a small part and most of the hot water remains unused. Regardless of the case where a business that supplies heat to the area around the digestion treatment plant and the hot water can be used effectively, in reality there is no way to use it effectively, and the temperature is forcibly reduced to about 70 ° C or less by a cooling tower or the like. After cooling, the water is usually circulated and used as cooling water for the power generation equipment.

【0003】ところで、前記消化済み液は、通常100
0〜2000mg/リットル(0.1〜0.2質量%)
程度と比較的高濃度のアンモニアを含んでいるので、そ
のままでは周囲の大気にアンモニアが放散され、環境保
全上好ましくない。そこで、前記生物処理を行うにして
もアンモニアを除去することが望まれる。
[0003] By the way, the digested liquid is usually 100
0 to 2000 mg / liter (0.1 to 0.2% by mass)
Since it contains a relatively high concentration of ammonia, ammonia is radiated to the surrounding air as it is, which is not preferable in terms of environmental protection. Therefore, it is desired to remove ammonia even when performing the biological treatment.

【0004】一般に、コークス炉の排ガス処理等では、
アンモニア濃度の高い液を、ストリッピングと称し、そ
の含有するアンモニアを後述の「放散塔」を用いて揮散
させ、その後に揮散アンモニアを「触媒反応器」内でア
ンモニア酸化触媒等を用いて窒素ガスに酸化してから除
去することが行われている。この場合、特開昭60−1
14389号公報に開示されたように、アンモニア含有
液に水蒸気を吹き込み、該水蒸気にアンモニアを同伴さ
せて揮散する「蒸気ストリッピング」と、アンモニア含
有液を一旦アルカリ性とした後に大量の空気を吹き込
み、該空気でアンモニアを揮散する「空気ストリッピン
グ」とがある。
Generally, in the treatment of exhaust gas from a coke oven,
The liquid with a high ammonia concentration is called stripping, and the contained ammonia is volatilized using a “dissipation tower” described later, and then the volatilized ammonia is gasified in a “catalytic reactor” using an ammonia oxidation catalyst or the like. It is oxidized and then removed. In this case, JP-A-60-1
As disclosed in Japanese Patent No. 14389, steam is blown into an ammonia-containing liquid, and “steam stripping” is performed by volatilizing the steam with entraining ammonia. There is "air stripping" in which ammonia is stripped by the air.

【0005】しかしながら、前者の「蒸気ストリッピン
グ」は、水蒸気を製造したり、純水を得るために大掛か
りな設備が必要であるばかりでなく、別途工程外から熱
エネルギーを大量に供給しなければならないという経済
上の問題がある。一方、後者の「空気ストリッピング」
は、アンモニアを遊離アンモニア化して揮散し易くする
ために、アルカリを添加する必要があり、処理費用が高
くなるという問題がある。また、アルカリ源として安価
な石灰を使用すると、機器や配管にスケールが付着し、
操業が円滑に行えないという問題もある。従って、かか
る「ストリッピング」技術をそのまま有機性汚泥等の嫌
気性消化済み液に適用し難い。
[0005] However, the former “steam stripping” requires not only large-scale facilities for producing steam and pure water, but also the necessity of supplying a large amount of thermal energy from outside the process. There is an economic problem of not becoming. On the other hand, the latter "air stripping"
However, there is a problem that an alkali needs to be added in order to make ammonia easy to volatilize by free ammonia conversion, which increases the processing cost. Also, if inexpensive lime is used as an alkali source, scale will adhere to equipment and piping,
There is also a problem that the operation cannot be performed smoothly. Therefore, it is difficult to apply such a “stripping” technique to anaerobic digested liquid such as organic sludge as it is.

【0006】[0006]

【発明が解決しようとする課題】本発明は、かかる事情
に鑑み、嫌気性消化済み液に工程外から熱エネルギーを
大量に別途投入することなく、且つアルカリ剤を添加せ
ずに、アンモニアを従来より安価に除去可能な嫌気性消
化済み液の処理方法を提供することを目的としている。
SUMMARY OF THE INVENTION In view of the foregoing, the present invention provides a method for converting ammonia into a conventional anaerobic digested solution without adding a large amount of thermal energy from outside the process and without adding an alkali agent. It is an object of the present invention to provide a method for treating an anaerobic digested solution that can be removed at a lower cost.

【0007】[0007]

【課題を解決するための手段】発明者は、上記目的を達
成するため鋭意研究し、その成果を本発明に具現化し
た。
Means for Solving the Problems The inventor has conducted intensive studies to achieve the above object and has embodied the results in the present invention.

【0008】すなわち、本発明は、有機性物質を含む被
処理液を嫌気性消化し、消化ガスと消化済み液とに分離
した後、該消化済み液が含有するアンモニアを除去する
に際して、前記消化済み液を放散塔内に導入し、減圧下
でアンモニアを含むガスを揮散させてから、該ガスを触
媒反応器に導入してアンモニアを酸化し、窒素ガスとし
て大気中に放散すると共に、放散塔内の消化済み液を、
前記消化ガスを利用した発電機の高温排ガスの冷却に使
用した温排水で加熱することを特徴とする嫌気性消化済
み液の処理方法である。
That is, according to the present invention, the anaerobic digestion of a liquid to be treated containing an organic substance is performed to separate the digested gas and the digested liquid from each other, and then the ammonia contained in the digested liquid is removed. The spent liquid is introduced into the stripping tower, and the gas containing ammonia is volatilized under reduced pressure. Then, the gas is introduced into the catalytic reactor to oxidize the ammonia, and diffused into the atmosphere as nitrogen gas. The digested liquid in the
A method for treating an anaerobic digested liquid characterized by heating with hot wastewater used for cooling high-temperature exhaust gas of a generator using the digestion gas.

【0009】また、本発明は、前記揮散したアンモニア
を含むガスを、前記消化ガスを利用した発電機の高温排
ガスで加熱してから空気で希釈し、前記触媒反応器へ供
給することを特徴とする嫌気性消化済み液の処理方法で
ある。この場合、前記空気に代え、嫌気性消化の全工程
で発生する臭気ガス又は環境空気を、前記触媒反応器か
らの高温流出ガスで加熱して用いるのが好ましい。
Further, the present invention is characterized in that the gas containing ammonia volatilized is heated with a high-temperature exhaust gas of a generator using the digestion gas, and then diluted with air and supplied to the catalytic reactor. This is a method for treating an anaerobic digested solution. In this case, it is preferable to use, instead of the air, odor gas or environmental air generated in all the steps of anaerobic digestion by heating with the high-temperature effluent gas from the catalytic reactor.

【0010】本発明によれば、ボイラーや純水装置を別
途設けたり、蒸気を発生させないばかりでなく、アルカ
リ剤も使用せずに、嫌気性消化で生じた余剰高温ガスを
効率的に利用することで、嫌気性消化済み液から安価に
アンモニアのストリッピングが行な得るようになる。ま
た、触媒反応器への導入ガスを同様に余剰高温ガスで加
熱することで、水蒸気を凝結させること無く、酸化触媒
によってアンモニアを窒素ガスに酸化し、無害化するこ
とができるようになる。さらに、該触媒反応器への導入
ガスを、嫌気性消化の全工程の臭気発生箇所から吸引し
た悪臭ガス又は環境空気で希釈させるようにしたので、
全工程で脱臭装置が不用になる。
[0010] According to the present invention, not only a separate boiler and a pure water apparatus are not provided, and steam is not generated, but also an excess hot gas generated by anaerobic digestion is efficiently used without using an alkali agent. This makes it possible to strip ammonia from the anaerobic digested solution at low cost. Also, by heating the gas introduced into the catalytic reactor with the excess high-temperature gas, ammonia can be oxidized to nitrogen gas by the oxidation catalyst without condensing water vapor, thereby rendering the gas harmless. Furthermore, since the gas introduced into the catalytic reactor was diluted with the odorous gas or the environmental air sucked from the odor generating point in all the steps of anaerobic digestion,
Deodorizing equipment becomes unnecessary in all processes.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0012】発明者は、嫌気性消化済み液からアンモニ
アを無害化させて除去するのに、アンモニアを放散塔で
揮散してから触媒反応器内で酸化し、窒素ガスとして大
気中に放出する前記「ストリッピング」法を採用するこ
とにした。ただし、従来の「蒸気ストリッピング」法や
「空気ストリッピング」法を単に転用したのでは、経済
的に好ましくないので、改良の必要があった。そこで、
放散塔でのアンモニアを含むガスの揮散と、消化済み液
や揮散したアンモニアを含むガスの加熱に下記のような
工夫を凝らし、本発明を完成させたのである。
In order to detoxify and remove ammonia from the anaerobic digested solution, the inventor volatilizes ammonia in a stripping tower, oxidizes it in a catalytic reactor, and releases it to the atmosphere as nitrogen gas. We decided to use the "stripping" method. However, simply diverting the conventional “steam stripping” method or “air stripping” method is not economically favorable, and therefore needs to be improved. Therefore,
The present inventors have completed the present invention by devising the following measures for volatilizing the gas containing ammonia in the stripping tower and heating the digested liquid and the gas containing the volatilized ammonia.

【0013】まず、アンモニアの揮散については、図1
に示す放散塔1内を真空ポンプ17を用いて20000
〜35000Paを超える程度の減圧状態におくことに
した。そのようにすると、放散塔1内に導入した消化済
み液(原液ともいう)2を60〜70℃で沸騰させるこ
とができ、別途蒸気を導入しなくても、発生する水蒸気
だけでアンモニアを容易に揮散できると考えたからであ
る。なお、減圧状態を20000〜35000Paとし
たのは、35000Paを超えると、アンモニアの揮散
が不十分であり、20000Pa未満では、揮散程度が
飽和し、それ以上に減圧状態を高める必要がないからで
ある。
First, regarding the volatilization of ammonia, FIG.
The inside of the stripping tower 1 shown in FIG.
The pressure was reduced to about 35,000 Pa or more. By doing so, the digested liquid (also referred to as undiluted liquid) 2 introduced into the stripping tower 1 can be boiled at 60 to 70 ° C., and ammonia can be easily generated only by generated steam without separately introducing steam. It was thought that it could be volatilized. The reason why the reduced pressure state is set to 20000 to 35000 Pa is that if it exceeds 35000 Pa, the volatilization of ammonia is insufficient, and if it is less than 20,000 Pa, the volatilization degree is saturated, and it is not necessary to further increase the reduced pressure state. .

【0014】次に、消化済み液2は、消化液槽(図2参
照)内に通常20〜30℃程度の温度で保持されてい
る。これを放散塔1に導入して、そのアンモニア分を揮
散させるには、前記したように60〜70℃まで昇温す
る必要がある。そのためには、工程の外部から別途熱エ
ネルギーを導入することも考えられる。しかしながら、
高濃度の有機性物質を含むスラリーを嫌気性消化(メタ
ン発酵)する場合には、図2に示したように、発生した
メタンガスを利用した発電設備が設けられるので、必然
的に発電設備の冷却に用いた排水として100℃未満
(80〜90℃)の温水が得られる。この温水は、嫌気
性消化処理に際して被処理液を加温するためにそのほん
の一部を用いているが、大半の温水は未利用のままであ
る。そこで、発明者は、この温水を有効利用することに
し、次に示すような熱交換を行うことを加え、本発明と
した。
Next, the digested liquid 2 is usually kept at a temperature of about 20 to 30 ° C. in a digestive liquid tank (see FIG. 2). In order to introduce this into the stripping tower 1 and volatilize the ammonia component, it is necessary to raise the temperature to 60 to 70 ° C. as described above. For this purpose, it is conceivable to separately introduce thermal energy from outside the process. However,
In the case of performing anaerobic digestion (methane fermentation) of a slurry containing a high concentration of organic substances, as shown in FIG. 2, a power generation facility using the generated methane gas is provided, so that the cooling of the power generation facility is inevitable. Hot water of less than 100 ° C. (80 to 90 ° C.) is obtained as waste water used in the above. Although only a small part of this warm water is used to heat the liquid to be treated during anaerobic digestion, most of the warm water remains unused. Therefore, the inventor has determined that the hot water is effectively used, and performs heat exchange as described below, which is the present invention.

【0015】つまり、放散塔1内の雰囲気を100℃未
満で水が沸騰するレベルまで(例えば,20000Pa
であれば約60℃で沸騰する)減圧し、嫌気性消化済み
液2中の水から蒸発する水蒸気によってアンモニアを放
散させる。その際、放散塔1の上部から流入した消化済
み液2は、該塔1の内部に設けられた充填材層3を通過
した後、塔下部に液層4を形成する。この液層4から循
環ポンプ5で液を塔外に抜き出すが、その液の一部を、
100℃未満の温水を利用した熱交換器A(図1では記
号6で示す)によって加熱し、再び液層4に戻すこと
で、消化済み液2の温度を減圧下での沸点に保つように
した。本発明では、この温水7として、嫌気性消化時に
発生するメタンガスやバイオガス(有機汚泥の消化ガ
ス)を利用した発電機の冷却用温排水を用いるのであ
る。なお、塔下部から抜き出された液のうち熱交換器A
6に導かれなかった部分は、処理済み液8として排出さ
れる。必要があれば、該処理済み液8は60℃程度の熱
を持っているので、放散塔1の入側に熱交換器B(図1
では、記号9で示す)を設け、嫌気性消化済み液2を予
熱する熱媒体に用いても良い。
That is, the atmosphere in the stripping tower 1 is reduced to a level at which water boils below 100 ° C. (for example, 20,000 Pa.).
Then, the pressure is reduced at about 60 ° C.), and ammonia is diffused by water vapor evaporating from water in the anaerobic digested liquid 2. At that time, the digested liquid 2 flowing from the upper part of the stripping tower 1 passes through the filler layer 3 provided inside the tower 1, and then forms a liquid layer 4 at the lower part of the tower. The liquid is extracted from the liquid layer 4 to the outside of the tower by the circulation pump 5, and a part of the liquid is
By heating with a heat exchanger A using hot water of less than 100 ° C. (indicated by reference numeral 6 in FIG. 1) and returning to the liquid layer 4 again, the temperature of the digested liquid 2 is maintained at the boiling point under reduced pressure. did. In the present invention, as the hot water 7, hot effluent for cooling a generator using methane gas or biogas (digestion gas of organic sludge) generated during anaerobic digestion is used. In addition, the heat exchanger A
The portion not guided to 6 is discharged as a processed liquid 8. If necessary, since the treated liquid 8 has heat of about 60 ° C., the heat exchanger B (FIG.
In this case, the anaerobic digested liquid 2 may be used as a heat medium for preheating the anaerobic digested liquid 2.

【0016】また、放散塔1で揮散したアンモニアを含
むガス10(揮散ガスともいう)は、上記原液2の1/
10程度の水蒸気とアンモニアとからなるが、これをそ
のまま常圧に戻すと、水蒸気が凝結して水となる。アン
モニアは水溶性を持つので、せっかく揮散させたアンモ
ニアが再度水に溶けてしまう恐れがある。原液のアンモ
ニア濃度にもよるが、発明者の試算によれば、水蒸気が
凝結し水になると、ほとんど全量のアンモニアが再溶解
してしまう。この凝結したアンモニア水を再利用する用
途を発見できれば良いが、現実にはそれは難しい。従っ
て、再溶解前に、アンモニアを窒素ガスに酸化して無害
化する必要がある。
The gas 10 containing ammonia volatilized in the stripping tower 1 (also referred to as a volatilized gas) is 1/1 of the stock solution 2.
It consists of about 10 water vapor and ammonia, but if this is returned to normal pressure, the water vapor condenses to water. Since ammonia has water solubility, the ammonia volatilized with great care may be dissolved in water again. Although it depends on the concentration of ammonia in the undiluted solution, according to the inventor's calculation, almost all of the ammonia is redissolved when water vapor condenses into water. It would be good if we could find a use to reuse this condensed ammonia water, but in reality it is difficult. Therefore, before redissolving, it is necessary to oxidize ammonia to nitrogen gas to make it harmless.

【0017】そこで、常圧に戻る前に(具体的には、放
散塔を減圧状態に置くために設置される真空ポンプの上
流側で)揮散ガス10を常圧に戻しても水が凝結しない
温度にまで加熱し、それを常圧に戻してからアンモニア
を酸化することを考えた。酸化方法としては、直接燃焼
もあるが、それでは窒素酸化物が高濃度で発生し、大気
汚染上の問題が生じるので、300〜400℃における
触媒酸化によって処理するようにした。
Therefore, before returning to normal pressure (specifically, on the upstream side of a vacuum pump installed to put the stripping tower in a reduced pressure state), water does not condense even if the volatile gas 10 is returned to normal pressure. We considered heating to temperature, returning it to normal pressure and then oxidizing ammonia. As an oxidation method, there is direct combustion. However, in this case, a high concentration of nitrogen oxides is generated, which causes a problem of air pollution. Therefore, the treatment is performed by catalytic oxidation at 300 to 400 ° C.

【0018】つまり、図1に記号11で示す熱交換器C
を用い、放散塔1の上部から抜き出した減圧状態で、且
つアンモニア混じりの揮散ガス10を、100℃以上に
(常圧に戻しても水蒸気が凝結しないレベルに)加熱し
た後、空気12で酸化触媒の許容レベルにまでアンモニ
ア濃度を希釈する。なお、この許容レベルは、触媒の種
類によって異なるが、例えばアンモニア濃度を1%以下
にする。その後、温度をさらに上昇させてから(通常3
00℃付近)、触媒反応器13に通し、アンモニアを窒
素ガスに酸化し、大気に放出する。
That is, the heat exchanger C shown by reference numeral 11 in FIG.
After heating the volatile gas 10 mixed with ammonia to a temperature of 100 ° C. or more (to a level at which water vapor does not condense even when the pressure is returned to normal pressure) under reduced pressure extracted from the upper part of the stripping tower 1 by using Dilute the ammonia concentration to an acceptable level for the catalyst. The allowable level varies depending on the type of the catalyst, but for example, the ammonia concentration is set to 1% or less. Thereafter, the temperature is further increased (usually 3
Around 00 ° C.), the ammonia is oxidized into nitrogen gas through the catalytic reactor 13 and released to the atmosphere.

【0019】本発明では、上記の100℃以上への加熱
に、消化ガスを利用した発電機の排ガス14を用いるよ
うにすることが好ましい。また、触媒反応器13への導
入前に行う300℃程度までの加熱は、該触媒反応器1
3からの高温の流出ガス15の一部を、図1に示すよう
に、別途設けた熱風炉(バーナー)16に導き、そこ
で、例えば600℃程度にまで加熱し、それを触媒反応
器13の導入ガスに混ぜるようにすることが好ましい。
このようにすれば、熱風炉16で使用する燃料が非常に
少なくてすむからである。
In the present invention, it is preferable to use the exhaust gas 14 of the generator using the digestion gas for the above heating to 100 ° C. or more. In addition, heating to about 300 ° C. performed before introduction into the catalyst reactor 13
As shown in FIG. 1, part of the high-temperature effluent gas 15 from FIG. 3 is led to a separately provided hot blast stove (burner) 16, where it is heated to, for example, about 600 ° C. It is preferable to mix with the introduced gas.
This is because the amount of fuel used in the hot blast stove 16 can be very small.

【0020】さらに、本発明では、該触媒反応器13へ
の導入ガスを希釈する前記空気12に、嫌気性消化の全
工程の臭気発生箇所から吸引した悪臭ガス又は環境空気
を,触媒反応器13からの流出ガス15を熱媒体とした
熱交換器D18で加熱して用いるようにすることが好ま
しい。これによって、嫌気性消化の全工程に脱臭装置を
設けなくても、作業環境が良好に維持できるからであ
る。
Further, according to the present invention, the air 12 for diluting the gas introduced into the catalytic reactor 13 is supplied with an odorous gas or environmental air sucked from an odor generating point in all the processes of anaerobic digestion. It is preferable to use the effluent gas 15 by heating it with a heat exchanger D18 using a heat medium. This is because a good working environment can be maintained without providing a deodorizing device in all the processes of anaerobic digestion.

【0021】[0021]

【実施例】図2に示した嫌気性消化設備を用いて、畜産
ふん尿を消化(メタン発酵)させた後に、消化済み液2
を固液分離して、残った液(脱離液という)に本発明に
係る消化済み液の処理方法を適用した。適用した処理工
程は、図1に示した通りであり、脱離液の量は、100
トン/日とした。主な操業条件を表1に一括して示す。
EXAMPLE After digestion of livestock manure (methane fermentation) using the anaerobic digestion equipment shown in FIG.
Was subjected to solid-liquid separation, and the method for treating a digested solution according to the present invention was applied to the remaining solution (referred to as desorbed solution). The applied processing steps are as shown in FIG. 1, and the amount of the desorbed liquid is 100
Tons / day. Table 1 shows the main operating conditions.

【0022】一方、本発明の効果を確認するため、同一
の脱離液に対して、従来の「蒸気ストリッピング」法や
「空気ストリッピング」法による処理も行なった。
On the other hand, in order to confirm the effect of the present invention, the same desorbed liquid was also subjected to a conventional "steam stripping" or "air stripping" treatment.

【0023】これらの操業結果を運転に係る系外からの
水蒸気、薬剤等の導入量で評価して表2に示すが、本発
明が非常に優れていることが明らかである。
The results of these operations are shown in Table 2 based on the amounts of steam, chemicals and the like introduced from outside the system for the operation. Table 2 shows that the present invention is very excellent.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】以上述べたように、本発明により、ボイ
ラーや純水装置を別途設けたり、蒸気を発生させないば
かりでなく、アルカリ剤も使用せずに、嫌気性消化で生
じた余剰温水を効率的に利用することで、嫌気性消化済
み液から安価にアンモニアのストリッピングが行なえる
ようになる。その結果、消化済み液のその後の処理(生
物処理)が簡素化できる。また、副次的な効果として、
触媒反応器用の希釈用空気として悪臭混じり空気を使用
することで、嫌気性消化設備全体の脱臭装置を省略する
ことができるようになる。
As described above, according to the present invention, not only a separate boiler and a pure water apparatus are provided, but also steam is not generated, and excess hot water generated by anaerobic digestion can be obtained without using an alkali agent. Efficient use allows stripping of ammonia from anaerobic digested liquids at low cost. As a result, the subsequent processing (biological processing) of the digested liquid can be simplified. As a side effect,
By using the air having a bad odor as the dilution air for the catalytic reactor, the deodorizing device of the entire anaerobic digestion equipment can be omitted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る嫌気性消化済み液の処理方法を示
すフロー・シートである。
FIG. 1 is a flow sheet showing a method for treating an anaerobic digested solution according to the present invention.

【図2】嫌気性消化全工程の一例を示す図であるFIG. 2 is a diagram showing an example of the entire anaerobic digestion process.

【符号の説明】[Explanation of symbols]

1 放散塔 2 消化済み液(消化液) 3 充填材層 4 液層 5 循環ポンプ 6 熱交換器A 7 温水 8 処理済み液 9 熱交換器B 10 揮散したアンモニアを含むガス(揮散ガス) 11 熱交換器C 12 空気 13 触媒反応器 14 発電機の排ガス 15 触媒反応器からの流出ガス 16 熱風炉(バーナ) 17 真空ポンプ 18 熱交換器D DESCRIPTION OF SYMBOLS 1 Stripping tower 2 Digested liquid (digested liquid) 3 Filler layer 4 Liquid layer 5 Circulation pump 6 Heat exchanger A 7 Hot water 8 Treated liquid 9 Heat exchanger B 10 Gas containing volatilized ammonia (volatilized gas) 11 Heat Exchanger C 12 Air 13 Catalytic reactor 14 Exhaust gas from generator 15 Outflow gas from catalytic reactor 16 Hot blast stove (burner) 17 Vacuum pump 18 Heat exchanger D

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 有機性物質を含む被処理液を嫌気性消化
し、消化ガスと消化済み液とに分離した後、該消化済み
液が含有するアンモニアを除去するに際して前記消化済
み液を放散塔内に導入し、減圧下でアンモニアを含むガ
スを揮散させてから、該ガスを触媒反応器に導入してア
ンモニアを酸化し、窒素ガスとして大気中に放散すると
共に、放散塔内の消化済み液を、前記消化ガスを利用し
た発電機の高温排ガスの冷却に使用した温排水で加熱す
ることを特徴とする嫌気性消化済み液の処理方法。
1. A liquid to be treated containing an organic substance is anaerobically digested and separated into a digested gas and a digested liquid, and then the digested liquid is stripped off when removing the ammonia contained in the digested liquid. And evaporates the gas containing ammonia under reduced pressure, and then introduces the gas into the catalytic reactor to oxidize the ammonia and emit it into the atmosphere as nitrogen gas, and the digested liquid in the stripping tower. Is heated with hot waste water used for cooling high-temperature exhaust gas of a generator using the digestion gas.
【請求項2】 前記揮散したアンモニアを含むガスを、
前記消化ガスを利用した発電機の高温排ガスで加熱して
から空気で希釈し、前記触媒反応器へ供給することを特
徴とする請求項1記載の嫌気性消化済み液の処理方法。
2. A gas containing the volatilized ammonia,
2. The method for treating an anaerobic digested liquid according to claim 1, wherein the digested gas is heated with a high-temperature exhaust gas from a generator, diluted with air, and supplied to the catalytic reactor.
【請求項3】 前記空気に代え、嫌気性消化の全工程で
発生する臭気ガス又は環境空気を、前記触媒反応器から
の高温流出ガスで加熱して用いることを特徴とする請求
項2記載の嫌気性消化済み液の処理方法。
3. The method according to claim 2, wherein, instead of the air, odor gas or environmental air generated in all the steps of anaerobic digestion is heated and used with a high-temperature effluent gas from the catalytic reactor. How to treat anaerobic digested liquid.
JP2001036518A 2001-02-14 2001-02-14 Treatment method for anaerobically digested liquid Pending JP2002239538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001036518A JP2002239538A (en) 2001-02-14 2001-02-14 Treatment method for anaerobically digested liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001036518A JP2002239538A (en) 2001-02-14 2001-02-14 Treatment method for anaerobically digested liquid

Publications (1)

Publication Number Publication Date
JP2002239538A true JP2002239538A (en) 2002-08-27

Family

ID=18899782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001036518A Pending JP2002239538A (en) 2001-02-14 2001-02-14 Treatment method for anaerobically digested liquid

Country Status (1)

Country Link
JP (1) JP2002239538A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104230081A (en) * 2014-07-16 2014-12-24 湖北仙隆化工股份有限公司 Paraquat pesticide wastewater treatment process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104230081A (en) * 2014-07-16 2014-12-24 湖北仙隆化工股份有限公司 Paraquat pesticide wastewater treatment process
CN104230081B (en) * 2014-07-16 2016-08-31 湖北仙隆化工股份有限公司 A kind of N,N'-dimethyl-.gamma..gamma.'-dipyridylium pesticides waste water treatment process

Similar Documents

Publication Publication Date Title
JP5394340B2 (en) Ammonia removal equipment
JP5311528B2 (en) Organic waste processing method and organic waste processing system
JP2002239538A (en) Treatment method for anaerobically digested liquid
CN105836884B (en) Denitrification dephosphorization removes N2The device and method of O
JP5773381B2 (en) Ammonia removing apparatus, organic waste processing apparatus and processing method using the same
JP2002079299A (en) Method for treating ammonia-containing waste
JP4834942B2 (en) Organic waste processing method and processing apparatus
JP2014097457A (en) Treatment method and treatment apparatus of effluent
JP2003117593A (en) Method for treating organic waste and equipment therefor
JP2006218429A (en) Solid organic waste treatment method and its apparatus
JP2002113494A (en) Method and apparatus for treating livestock waste
JPS61185399A (en) Apparatus for treating organic waste water
JP2001137888A (en) Method for treating organic waste water
JP4686163B2 (en) Organic waste treatment methods
JP2005040667A (en) Cleaning treatment method for methane fermentation digestive supernatant liquor
JP4283949B2 (en) Method for treating waste water containing ammonia, hydrazine and methyl ethyl ketone
JP2890043B1 (en) Anaerobic digestion method and apparatus for organic sludge
JPH0694029B2 (en) Ammonia-containing wastewater treatment method
JP5284323B2 (en) Ammonia removal equipment
CN217636932U (en) Waste gas treatment system of protein drying tower
JP4230617B2 (en) Wastewater treatment equipment containing organic solids
JP2006055761A (en) Method for separating heavy metal from organic waste, and its device
JP2003154387A (en) Wastewater treatment apparatus
JP2002153899A (en) Methane fermentation treating method and treating apparatus
JP2000350993A (en) Treatment apparatus of dmso-containing water and treatment equipment of waste water of semiconductor factory

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050315