JP2002239537A - Excess gas separation tank - Google Patents

Excess gas separation tank

Info

Publication number
JP2002239537A
JP2002239537A JP2001036987A JP2001036987A JP2002239537A JP 2002239537 A JP2002239537 A JP 2002239537A JP 2001036987 A JP2001036987 A JP 2001036987A JP 2001036987 A JP2001036987 A JP 2001036987A JP 2002239537 A JP2002239537 A JP 2002239537A
Authority
JP
Japan
Prior art keywords
gas
separation tank
pressurized
dissolved
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001036987A
Other languages
Japanese (ja)
Inventor
Takeshi Nagai
豪 長井
Hajime Takagi
一 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Araco Co Ltd
Original Assignee
Araco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Araco Co Ltd filed Critical Araco Co Ltd
Priority to JP2001036987A priority Critical patent/JP2002239537A/en
Publication of JP2002239537A publication Critical patent/JP2002239537A/en
Pending legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an excess gas separation tank capable of effectively floating flocs. SOLUTION: The excess gas separation tank 27 is equipped with a hermetically sealed easing 28, which has a semispherical ceiling wall 28A and is formed into an almost cylindrical shape as a whole, and the jet pipe 29 vertically arranged in the casing 28 to communicate with a water guide pipe 26. Further, the excess gas separation tank 27 is constituted so that the opening part 29A of the jet pipe 29 is extended up to the vicinity of the ceiling wall 28A of the casing 28 and pressurized air dissolved water is forcibly discharged upwardly from the opening part 29A and the pressurized air dissolved water forcibly discharged from the opening part 29A impinges against the ceiling wall 28A to disperse and comes into contact with excess air to dissolve excess air in the pressurized air dissolved water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、余剰気体分離槽に
関する。
TECHNICAL FIELD The present invention relates to a surplus gas separation tank.

【0002】[0002]

【従来の技術】上水処理、廃水処理、下水処理等の分野
において、水中に存在する浮遊物質やコロイド状物質等
を除去する方法として、一般的に浮遊物質やコロイド状
物質等を凝集させて凝集物を形成した後、これらに微細
気泡を付着させ、水面に浮上させて固液分離を行う方法
が知られている。
2. Description of the Related Art In the fields of water treatment, wastewater treatment, sewage treatment and the like, as a method of removing suspended substances and colloidal substances, etc., present in water, generally, suspended substances and colloidal substances are aggregated. A method is known in which after forming aggregates, fine bubbles are adhered to these and floated on the water surface to perform solid-liquid separation.

【0003】この一例の概略図を図3に示すが、このよ
うな処理方法では、例えば、加圧ポンプ2において加圧
状態で水に対して空気を溶解させて加圧空気溶解水を生
成し、この加圧空気溶解水を減圧弁4で減圧してから固
液分離を行う浮上槽1へ注入する。このとき、加圧空気
溶解水は減圧弁4で大気圧まで減圧されると、加圧空気
溶解水中に溶解されていた空気が放出されて微細気泡と
して発生し、この微細気泡が浮上槽1中の凝集物に対し
て付着するので、凝集物を浮上させ分離することが可能
となるのである。ただし、加圧ポンプ2から得られる加
圧空気溶解水には、加圧空気溶解水に溶解されなかった
余剰空気が混在しているので、加圧ポンプ2から直接浮
上槽1へ注入しても余剰空気が大きな気泡となってしま
い、凝集物に対する微細気泡の付着を妨害する虞がある
ので、浮上槽1へ注入する前工程として余剰空気と加圧
空気溶解水とを分離する余剰気体分離槽3に一旦蓄積
し、余剰空気を取り除いていた。
FIG. 3 shows a schematic diagram of this example. In such a processing method, for example, air is dissolved in water in a pressurized state by a pressurizing pump 2 to generate pressurized air-dissolved water. Then, the pressurized air-dissolved water is depressurized by the pressure reducing valve 4 and then injected into the floating tank 1 for performing solid-liquid separation. At this time, when the pressurized air-dissolved water is depressurized to the atmospheric pressure by the pressure reducing valve 4, the air dissolved in the pressurized air-dissolved water is released and is generated as fine bubbles. This makes it possible to float and separate the aggregates. However, since the pressurized air-dissolved water obtained from the pressurized pump 2 contains surplus air that has not been dissolved in the pressurized air-dissolved water, it can be directly injected from the pressurized pump 2 into the floating tank 1. Since the excess air becomes large bubbles, which may hinder the attachment of the fine bubbles to the aggregates, a surplus gas separation tank that separates the excess air and the pressurized air dissolved water as a pre-step of injecting into the floating tank 1 No. 3 was once accumulated and excess air was removed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
余剰気体分離槽では、単に余剰空気(余剰気体)と加圧
空気溶解水(加圧気体溶解液)とを分離するのみであ
り、たとえ、加圧空気溶解水に十分空気が溶解されてい
ない場合でもそのまま浮上槽に注入するのみであった。
ところが、加圧空気溶解水中にはその温度、気圧での飽
和状態まで空気を溶解させることが望ましい。本発明は
上記のような事情に基づいて完成されたものであって、
その温度、気圧での飽和状態まで気体を溶解させた加圧
気体溶解液を浮上槽に注入し、効果的に凝集物を浮上さ
せ得る余剰気体分離槽を提供することを目的とする。
However, the conventional surplus gas separation tank merely separates surplus air (excess gas) and pressurized air dissolved water (pressurized gas solution). Even when air was not sufficiently dissolved in the compressed air dissolved water, it was only injected into the floating tank as it was.
However, it is desirable to dissolve air in the pressurized air-dissolved water to a saturated state at the temperature and the atmospheric pressure. The present invention has been completed based on the above circumstances,
It is an object of the present invention to provide a surplus gas separation tank capable of injecting a pressurized gas solution in which a gas is dissolved to a saturated state at the temperature and the atmospheric pressure into a floating tank and effectively floating aggregates.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めの手段として、請求項1の発明は、加圧状態で液体と
気体とを混合して前記気体を前記液体に溶解させて生成
された加圧気体溶解液を一時的に密閉された本体の内部
に貯溜して、混合した前記気体のうち前記液体に溶解さ
れなかった余剰気体を前記加圧気体溶解液の液面の上方
に分離する余剰気体分離槽であって、前記余剰気体の溜
まっている上部から前記加圧気体溶解液を前記本体内に
貯留している前記加圧気体溶解液の液面へ落下させると
ころに特徴を有する。
Means for Solving the Problems As means for achieving the above object, a first aspect of the present invention is a method of mixing a liquid and a gas in a pressurized state and dissolving the gas in the liquid. The pressurized gas solution is temporarily stored inside the sealed main body, and the excess gas that is not dissolved in the liquid among the mixed gases is separated above the level of the pressurized gas solution. A surplus gas separation tank, wherein the pressurized gas solution is dropped from the upper portion where the surplus gas is stored onto the surface of the pressurized gas solution stored in the main body. .

【0006】請求項2の発明は、請求項1に記載のもの
において、前記本体の天井壁はドーム状に形成されると
共に、前記加圧気体溶解液を前記本体内に注入する挿通
管を前記本体内部に挿通させ、かつ、前記挿通管の先端
開口部を前記天井壁に臨ませるようにして備え、前記先
端開口部から噴射した前記加圧気体溶解水を前記天井壁
に衝突させて分散させるところに特徴を有する。
According to a second aspect of the present invention, in the first aspect, the ceiling wall of the main body is formed in a dome shape, and the insertion pipe for injecting the pressurized gas solution into the main body is provided. It is inserted into the main body, and the front end opening of the insertion tube is provided so as to face the ceiling wall, and the pressurized gas dissolved water jetted from the front end opening collides with the ceiling wall to be dispersed. However, it has features.

【0007】[0007]

【発明の作用及び効果】<請求項1の発明>余剰気体分
離槽の本体内に貯溜された加圧気体溶解液の液面を乱し
て余剰気体を取り込ませて、より多量に気体を溶解させ
た加圧気体溶解液を生成することができる。従って、浮
上槽により多くの微細気泡を発生させて、効果的に凝集
物を浮上させることが可能となる。
<Operation and effect of the present invention><Invention of claim 1> Disturbing the level of the pressurized gas dissolving liquid stored in the main body of the surplus gas separation tank to take in the surplus gas and dissolve more gas A pressurized gaseous solution can be produced. Therefore, it is possible to generate more fine bubbles in the floating tank and to effectively float the aggregates.

【0008】<請求項2の発明>先端開口部から噴射し
た加圧気体溶解液を天井壁に衝突させて本体内部に均一
に分散させることで、本体内に貯溜された加圧気体溶解
液の液面全体の広範囲に亘って余剰気体を取り込ませる
ことができるので、一層余剰気体を溶解させることがで
きる。
<Invention of Claim 2> The pressurized gas solution stored in the main body is uniformly dispersed in the main body by colliding the pressurized gas solution injected from the opening at the tip with the ceiling wall. Since the surplus gas can be taken in over a wide range of the entire liquid surface, the surplus gas can be further dissolved.

【0009】[0009]

【発明の実施の形態】以下、本発明の一実施形態を図1
及び図2に基づいて説明する。10はフロック形成槽で
あり、その前工程として、不純物が含まれた被処理水に
凝集剤を添加して急速撹拌を行い、微細な凝集物を形成
する工程を経る。フロック形成槽10は前工程で生じた
微細な凝集物を塊化させてフロックとし、これを浮上回
収するための槽である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG.
A description will be given based on FIG. Reference numeral 10 denotes a floc forming tank, which undergoes, as a previous step, a step of adding a coagulant to the water to be treated containing impurities and performing rapid stirring to form fine aggregates. The floc forming tank 10 is a tank for agglomerating fine aggregates generated in the previous process to form flocs, and floating and collecting the flocs.

【0010】フロック形成槽10の上流側の側面には流
入管11が接続され、ここからは上記したような微細な
凝集物を含む被処理水が加圧された状態で流入される。
また、これとは反対側の下流側の側面には不純物の処理
が完了した処理水を流出させるための流出管12が接続
されている。
An inflow pipe 11 is connected to the upstream side surface of the floc forming tank 10, from which water to be treated containing fine aggregates as described above flows in under pressure.
Further, an outflow pipe 12 for discharging the treated water after the treatment of the impurities is connected to the downstream side surface on the opposite side.

【0011】また、フロック形成槽10の内部は上流側
から下流側にかけて並列する複数の区画板13によって
複数室a〜hに分画されている。各区画板13は、先端
がフロック形成槽10の開口縁側、底面側に交互に隙間
が保有されるように配されている。具体的には、最上流
にあるa室は底面側が閉じ開口縁側に隙間が保有される
ようにしてあり、隣接するb室は逆に開口縁側が閉じ、
底面側に隙間が保有されるようにしてあり、この順で繰
り返しながら最下流に至っている。したがって、流入管
11からフロック形成槽10内に流入した被処理水は上
昇・下降を繰り返すという迂回流を形成しつつ流下して
ゆく。つまり、フロック形成槽10内には長い迂回経路
が形成されることになる。尚、フロック形成槽10の最
下流のh室の側面にはオーバーフロー室14が仕切り形
成されており、フロック形成槽10内の液面レベルが一
定レベルに達したときにはこのオーバーフロー室14へ
流し込んで、フロック形成槽10外へ排水するようにし
ている。
The interior of the floc forming tank 10 is divided into a plurality of chambers a to h by a plurality of partition plates 13 arranged in parallel from the upstream side to the downstream side. Each partition plate 13 is arranged such that a gap is alternately provided on the opening edge side and the bottom side of the floc forming tank 10. Specifically, the uppermost chamber a is closed on the bottom side and a gap is held on the opening edge side, and the adjacent b chamber is closed on the opening edge side on the contrary,
A gap is provided on the bottom side, and the sequence is repeated in this order to reach the lowermost stream. Therefore, the water to be treated that has flowed into the floc forming tank 10 from the inflow pipe 11 flows down while forming a detour flow that repeats ascent and descent. That is, a long bypass path is formed in the floc forming tank 10. An overflow chamber 14 is formed on the side surface of the h-downstream chamber at the most downstream side of the floc forming tank 10. When the liquid level in the floc forming tank 10 reaches a certain level, the overflow chamber 14 flows into the overflow chamber 14. The water is drained out of the floc forming tank 10.

【0012】フロック形成槽10におけるc室の底面に
は気泡噴射用のノズル33が配されており、このノズル
33は気泡発生装置20に接続されている。気泡発生装
置20は加圧ポンプ25を有しており、同ポンプ25に
はフロック形成槽10の最下流に位置するh室の底面に
接続された環流管21と流量調整弁22を介して接続さ
れ、併せて流量調整弁22を介して大気を吸引する吸気
管24が接続されている。かくして、加圧ポンプ25は
h室内から導入された被処理水(処理水)内にエアーが
混入されて加圧空気溶解水(加圧気体溶解液)を生成す
ることとなる。さらに、加圧ポンプ25の吐出側は導水
管26を介して余剰空気分離槽27と接続されている。
A nozzle 33 for injecting bubbles is disposed on the bottom surface of the chamber c in the floc forming tank 10. The nozzle 33 is connected to the bubble generator 20. The bubble generator 20 has a pressurizing pump 25, and is connected to the pump 25 via a flow control valve 22 and a reflux pipe 21 connected to the bottom surface of the h chamber located at the most downstream of the floc forming tank 10. In addition, an intake pipe 24 that sucks in the atmosphere via a flow control valve 22 is connected. Thus, the pressurizing pump 25 mixes the air into the water to be treated (treated water) introduced from the inside of the chamber and generates pressurized air-dissolved water (pressurized gas-dissolved liquid). Further, the discharge side of the pressurizing pump 25 is connected to a surplus air separation tank 27 via a water pipe 26.

【0013】余剰空気分離槽27は溶解しきれなかった
余剰空気(余剰気体)を抜くための槽である。この余剰
空気分離槽27は、図2に示すように、天井壁28Aが
半球状で全体が略円筒形状をなす、密封されたケーシン
グ28と、このケーシング28内に縦向きに配され前記
導水管26と連通する噴出管29とを備えてなる。ま
た、ケーシング28の頂上部に貯溜している余剰空気は
リリーフバルブ30を介して大気に開放可能となってい
る。さらに、余剰空気分離槽27の下側部には供給管3
1の一端が接続され、他端側は減圧弁32を介して前記
ノズル33と接続されている。
The excess air separation tank 27 is a tank for removing excess air (excess gas) that has not been completely dissolved. As shown in FIG. 2, the excess air separation tank 27 includes a sealed casing 28 having a ceiling wall 28A having a hemispherical shape and a substantially cylindrical shape as a whole, and a vertically disposed inside of the casing 28, 26 and an ejection pipe 29 communicating with the ejection pipe 26. Excess air stored at the top of the casing 28 can be released to the atmosphere via a relief valve 30. Further, a supply pipe 3 is provided below the excess air separation tank 27.
One end is connected, and the other end is connected to the nozzle 33 via a pressure reducing valve 32.

【0014】ここで、本実施形態に係る余剰空気分離槽
27では、加圧空気溶解水をケーシング28内に流入さ
せる噴出管29の開口部29Aを、ケーシング28の天
井壁28A頂上部(中心部)付近まで延設してあり、か
つ、開口部29Aから加圧空気溶解水が上方に勢い良く
飛び出すようになっている。そして、開口部29Aから
勢い良く噴出した加圧空気溶解水は、天井壁28Aに衝
突して分散し、頂上部にたまっている余剰空気に降り注
ぐようになっている。
Here, in the surplus air separation tank 27 according to the present embodiment, the opening 29A of the ejection pipe 29 through which the pressurized air dissolving water flows into the casing 28 is formed at the top of the ceiling wall 28A of the casing 28 (central portion). ), And the pressurized air-dissolved water rushes upward from the opening 29A. Then, the pressurized air-dissolved water spouted vigorously from the opening 29A collides with the ceiling wall 28A, is dispersed, and flows down into excess air accumulated at the top.

【0015】次に、上記のように構成された本実施形態
の作用効果を具体的に説明する。前記したように、フロ
ック形成槽10へ流入される前に、被処理水は凝集剤が
混入されかつ急速撹拌される工程を経る。そして、図示
しないポンプによって被処理水は流入管11を介してフ
ロック形成槽10内のa室へ所定圧力をもって流入され
る。すると、水中の凝集物は上流のa室から最下流のh
室まで各隙間を通りながら上昇・下降を繰り返しながら
流下するが、この間に、微小な凝集物同士が集合して徐
々により大きな塊であるフロックと化してゆく。
Next, the operation and effect of this embodiment configured as described above will be specifically described. As described above, before flowing into the floc forming tank 10, the water to be treated undergoes a process in which the flocculant is mixed and rapidly stirred. Then, the water to be treated flows into the chamber a in the floc forming tank 10 through the inflow pipe 11 at a predetermined pressure by a pump (not shown). Then, the aggregates in the water are transferred from the upper chamber a to the lowermost h.
It flows down while repeating ascending and descending while passing through each gap to the chamber. During this time, fine aggregates gather and gradually form flocs as larger lumps.

【0016】そして、上記フロック形成過程の比較的初
期の段階に位置するc室において、ノズル33から気泡
が噴出される。気泡発生装置20では、加圧ポンプ25
でもってh室から取り込まれた処理水に対してエアーを
混入させて加圧空気溶解水を生成する。その後、加圧空
気溶解水は余剰空気分離槽27へ送られる。
In the chamber c located at a relatively early stage of the floc forming process, air bubbles are ejected from the nozzle 33. In the bubble generator 20, the pressure pump 25
Then, air is mixed with the treated water taken in from the chamber h to generate pressurized air-dissolved water. Thereafter, the pressurized air dissolved water is sent to the surplus air separation tank 27.

【0017】余剰気体分離槽27へ送られた加圧空気溶
解水はケーシング28内部で余剰空気を頂上部付近に分
離される。このとき、ケーシング28内に貯溜された余
剰空気が一定圧力以上に達したら、リリーフバルブ30
を開放してケーシング28内部の圧力を一定に保持す
る。このようにして、余剰空気と分離された加圧空気溶
解水は、供給管31を経由して、減圧弁32で大気圧に
まで減圧された状態でノズル33へ供給されるため、加
圧空気溶解水中に溶解していた空気が微細気泡として発
生し、ノズル33からは気泡としてフロック形成槽10
内に噴出される。
The pressurized air-dissolved water sent to the surplus gas separation tank 27 separates the surplus air inside the casing 28 near the top. At this time, when the excess air stored in the casing 28 reaches a certain pressure or more, the relief valve 30
To keep the pressure inside the casing 28 constant. The pressurized air-dissolved water separated from the excess air in this way is supplied to the nozzle 33 via the supply pipe 31 in a state where the pressure is reduced to the atmospheric pressure by the pressure reducing valve 32. The air dissolved in the dissolving water is generated as fine bubbles, and the bubbles form the floc forming tank 10 from the nozzle 33 as bubbles.
Squirted into.

【0018】そして、ノズル33から噴出された気泡は
凝集物に付着して槽の表面に浮上させる。ところで、気
泡が供給されるc室においては、まだフロック形成槽1
0内の流速も比較的速く、かつ流入管11からの経路長
さも短いため、凝集物同士の凝集も進んでおらず、フロ
ックとしてまだ未成熟の段階である。したがって、気泡
はこの未成熟状態の小さな凝集物の表面に付着する。こ
のような気泡を付着させた凝集物同士が集合して形成さ
れたフロックは、表面のみならず内部にまで気泡を取り
込んだものとなり、大きな浮力を持つため、フロック形
成槽10内の途中で浮遊することなく表面にまで確実に
浮上することができる。そして、大半のものはc室から
f室に至るまでの上昇・下降を繰り返す間に、気泡を取
り込んだフロックを形成して水面に浮上する。かくし
て、浮上したフロックを回収してやれば、h室に流下し
た段階では所望の処理水として流出管12より排水され
る。
The bubbles ejected from the nozzle 33 adhere to the aggregates and float on the surface of the tank. By the way, in the chamber c to which the bubbles are supplied, the floc forming tank 1
Since the flow velocity in 0 is relatively high and the path length from the inflow pipe 11 is short, the aggregation of the aggregates has not progressed yet, and it is still in an immature stage as a floc. Thus, air bubbles adhere to the surface of the small immature aggregates. The floc formed by aggregating aggregates having such bubbles adhered to the surface as well as the inside of the floc has a large buoyancy, so that the floc floats in the middle of the floc forming tank 10. It is possible to reliably ascend to the surface without performing. Most of them rise and float on the water surface while forming a flock containing air bubbles during repeated ascent and descent from the chamber c to the chamber f. Thus, if the floating flocs are collected, they are drained from the outflow pipe 12 as desired treated water at the stage where they flow down into the chamber h.

【0019】さて、本実施形態では、余剰空気分離槽2
7へ注入された加圧空気溶解水が、噴出管29の開口部
29Aからケーシング28内部へ注入される。このと
き、開口部29Aから勢い良く飛び出した加圧空気溶解
水が、天井壁28Aへ衝突して分散されてケーシング2
8頂上部付近の余剰空気層に降り注がれる。このとき、
既にケーシング内部に蓄積されていた加圧空気溶解水の
表層付近でも開口部29Aから降り注がれた加圧空気溶
解水により表層が乱れることで余剰空気が巻き込まれる
ことにより、余剰空気を加圧空気溶解水に溶解させるこ
とができる。
In this embodiment, the surplus air separation tank 2
The pressurized air-dissolved water injected into 7 is injected into the casing 28 through the opening 29A of the ejection pipe 29. At this time, the pressurized air-dissolved water that vigorously jumps out of the opening 29A collides with the ceiling wall 28A and is dispersed to form the casing 2.
8 Drops into the surplus air layer near the top. At this time,
The surface of the pressurized air dissolving water that has already been accumulated inside the casing is disturbed by the pressurized air dissolving water poured down from the opening 29A near the surface layer of the dissolving water. It can be dissolved in air-dissolved water.

【0020】このように、本実施形態の余剰空気分離槽
によれば、ケーシング28内で加圧空気溶解水に対して
余剰空気を溶解させ、空気の溶解度を向上させることが
できる。従って、フロック形成槽10内に噴出される気
泡の量を増加させ、効果的に凝集物を浮上させることが
可能となる。また、噴出管29の開口部29Aから噴出
した加圧空気溶解水は、半球状に形成された天井壁28
Aに衝突されるので、ケーシング28内に均一に分散で
きて余剰空気を溶解させ易い。
As described above, according to the surplus air separation tank of the present embodiment, the surplus air can be dissolved in the pressurized air dissolved water in the casing 28, and the solubility of air can be improved. Therefore, it is possible to increase the amount of bubbles ejected into the floc forming tank 10 and to effectively float aggregates. The pressurized air-dissolved water spouted from the opening 29A of the spouting pipe 29 forms a hemispherical ceiling wall 28.
Since it collides with A, it can be uniformly dispersed in the casing 28 and the excess air is easily dissolved.

【0021】<他の実施形態>本発明は上記記述及び図
面によって説明した実施形態に限定されるものではな
く、例えば次のような実施形態も本発明の技術的範囲に
含まれ、さらに、下記以外にも要旨を逸脱しない範囲内
で種々変更して実施することができる。 (1)上記実施形態では、ケーシング28の内部を挿通
する噴出管29であったが、ケーシングの外部に配管を
取り回して天井壁に開口部を設け、この開口部から内部
に加圧空気溶解水を注入する噴出管であっても良い。 (2)上記実施形態では、ケーシング28の天井壁28
Aは半球状であったが、例えば天井壁に波状板を配設し
て、加圧空気溶解水の分散を促すようにしたものであっ
ても良い。 (3)上記実施形態において、噴出管29の開口部29
Aがノズル状となったものであっても良い。 (4)上記実施形態におけるフロック形成槽10ではc
層にノズル33を配設してあったが、他の層にノズルを
配設するものであっても良く、また、c層1箇所に限ら
ず複数の層にノズルを配設するものであっても良い。 (5)上記実施形態では、フロック形成槽10は複数の
室に分割されていたが1つの室で構成されるものであっ
ても良い。
<Other Embodiments> The present invention is not limited to the embodiments described above and illustrated in the drawings. For example, the following embodiments are also included in the technical scope of the present invention. In addition, various changes can be made without departing from the scope of the invention. (1) In the above-described embodiment, the ejection pipe 29 penetrates the inside of the casing 28. However, the pipe is routed outside the casing to provide an opening in the ceiling wall, and the pressurized air-dissolved water enters the inside from the opening. It may be a jet tube for injecting. (2) In the above embodiment, the ceiling wall 28 of the casing 28
Although A is a hemisphere, it may be one in which, for example, a corrugated plate is provided on the ceiling wall to disperse the pressurized air-dissolved water. (3) In the above embodiment, the opening 29 of the ejection pipe 29
A may be a nozzle. (4) In the floc forming tank 10 in the above embodiment, c
Although the nozzles 33 are provided in the layer, the nozzles may be provided in other layers. Alternatively, the nozzles may be provided in a plurality of layers, not limited to one c layer. May be. (5) In the above embodiment, the floc forming tank 10 is divided into a plurality of chambers, but may be constituted by one chamber.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施形態における浄水システムの要部を示す
概要図
FIG. 1 is a schematic diagram showing a main part of a water purification system according to an embodiment.

【図2】余剰空気分離槽の概略図FIG. 2 is a schematic diagram of a surplus air separation tank.

【図3】従来例における水処理方法の工程を説明する概
念図
FIG. 3 is a conceptual diagram illustrating steps of a conventional water treatment method.

【符号の説明】[Explanation of symbols]

27…余剰空気分離槽 28…ケーシング(本体) 28A…天井壁 29…噴出管(挿通管) 29A…開口部(先端開口部) 27: Surplus air separation tank 28: Casing (main body) 28A: Ceiling wall 29: Spout tube (insertion tube) 29A: Opening (tip opening)

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D011 AA01 AB10 AC01 4D037 AA11 AB02 BA03 BA23 CA06 CA08 4G035 AA01 AB22 AE13 AE19  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D011 AA01 AB10 AC01 4D037 AA11 AB02 BA03 BA23 CA06 CA08 4G035 AA01 AB22 AE13 AE19

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加圧状態で液体と気体とを混合して前記
気体を前記液体に溶解させて生成された加圧気体溶解液
を一時的に密閉された本体の内部に貯溜して、混合した
前記気体のうち前記液体に溶解されなかった余剰気体を
前記加圧気体溶解液の液面の上方に分離する余剰気体分
離槽であって、 前記余剰気体の溜まっている上部から前記加圧気体溶解
液を前記本体内に貯留している前記加圧気体溶解液の液
面へ落下させることを特徴とする余剰気体分離槽。
1. A pressurized gas-dissolved liquid produced by mixing a liquid and a gas in a pressurized state and dissolving the gas in the liquid is temporarily stored in a hermetically sealed body and mixed. A surplus gas separation tank for separating surplus gas not dissolved in the liquid from the gas above the liquid level of the pressurized gas dissolved liquid, wherein the pressurized gas is separated from an upper part where the surplus gas is stored. An excess gas separation tank, wherein the solution is dropped onto the surface of the pressurized gas solution stored in the main body.
【請求項2】 前記本体の天井壁はドーム状に形成され
ると共に、 前記加圧気体溶解液を前記本体内に注入する挿通管を前
記本体内部に挿通させ、かつ、前記挿通管の先端開口部
を前記天井壁に臨ませるようにして備え、 前記先端開口部から噴射した前記加圧気体溶解水を前記
天井壁に衝突させて分散させることを特徴とする請求項
1記載の余剰気体分離槽。
2. A ceiling wall of the main body is formed in a dome shape, and an insertion pipe for injecting the pressurized gas solution into the main body is inserted into the main body, and a distal end opening of the insertion pipe is provided. 2. A surplus gas separation tank according to claim 1, wherein a portion is provided so as to face the ceiling wall, and the pressurized gas-dissolved water injected from the front end opening collides with the ceiling wall to be dispersed. .
JP2001036987A 2001-02-14 2001-02-14 Excess gas separation tank Pending JP2002239537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001036987A JP2002239537A (en) 2001-02-14 2001-02-14 Excess gas separation tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001036987A JP2002239537A (en) 2001-02-14 2001-02-14 Excess gas separation tank

Publications (1)

Publication Number Publication Date
JP2002239537A true JP2002239537A (en) 2002-08-27

Family

ID=18900180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001036987A Pending JP2002239537A (en) 2001-02-14 2001-02-14 Excess gas separation tank

Country Status (1)

Country Link
JP (1) JP2002239537A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313464A (en) * 2006-05-26 2007-12-06 Matsushita Electric Works Ltd Gas dissolving apparatus
JP2008207099A (en) * 2007-02-27 2008-09-11 Meidensha Corp Apparatus for generating micro bubble and micro bubble development system
JP2009082906A (en) * 2007-09-12 2009-04-23 Yamaha Motor Co Ltd Bubble generator and bubble generation device
JP2009112909A (en) * 2007-11-02 2009-05-28 Sanso Electric Co Ltd Gas-liquid dissolving tank in apparatus for generating microbubble
JP2011235200A (en) * 2010-04-30 2011-11-24 Sanso Electric Co Ltd Gas-liquid dissolution tank
US8128741B2 (en) 2006-05-26 2012-03-06 Panasonic Electric Works Co., Ltd. Gas dissolving apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313464A (en) * 2006-05-26 2007-12-06 Matsushita Electric Works Ltd Gas dissolving apparatus
US8128741B2 (en) 2006-05-26 2012-03-06 Panasonic Electric Works Co., Ltd. Gas dissolving apparatus
JP2008207099A (en) * 2007-02-27 2008-09-11 Meidensha Corp Apparatus for generating micro bubble and micro bubble development system
JP2009082906A (en) * 2007-09-12 2009-04-23 Yamaha Motor Co Ltd Bubble generator and bubble generation device
JP2009112909A (en) * 2007-11-02 2009-05-28 Sanso Electric Co Ltd Gas-liquid dissolving tank in apparatus for generating microbubble
KR101053489B1 (en) * 2007-11-02 2011-08-03 산소덴키 가부시키가이샤 Gas-liquid dissolution tank in micro bubble generator
JP2011235200A (en) * 2010-04-30 2011-11-24 Sanso Electric Co Ltd Gas-liquid dissolution tank

Similar Documents

Publication Publication Date Title
SU997603A3 (en) Process and apparatus for purifying effluents
US4277347A (en) Method for making flotable, particles suspended in a liquid by means of gas bubbles
JPS5810160B2 (en) water biological purification equipment
KR101437816B1 (en) Method for Treating Wastewater, System for Treating Wastewater and BENZENE&#39;s Separating and Eliminating Apparatus used for the same
JP6104399B2 (en) Contaminated water purification system provided with fine bubble generating device and fine bubble generating device
WO2016147229A1 (en) Settling tank
JP2002239537A (en) Excess gas separation tank
KR20110017394A (en) Fluid treatment apparatus
AU2004296266B2 (en) Flotation separator
KR100310673B1 (en) Method and apparatus for water treatment
JP2003190750A (en) Gas dissolution apparatus
KR101715564B1 (en) Flotation device using high efficiency tank for dissolving a gases into liquids
EP0826404B1 (en) Tank for deaeration of water
JPS5818495A (en) Used paper regenerating apparatus
CN116249585B (en) Bubble generating device and liquid filtering device
EP0523498A1 (en) Sewage treatment apparatus
JP6176689B2 (en) Float collection ship
KR101162909B1 (en) Floatation tank for removing algae
JPH09299930A (en) Gas-liquid contacting device
CN208218448U (en) A kind of spraying waste water air-floating processing apparatus
CN116194201A (en) Bubble generating device and liquid filtering device
JP4369804B2 (en) Floating separation method for organic wastewater
JPH11309446A (en) Composite water purifying device
JP2004209459A (en) Gas dissolving apparatus
CN113195104A (en) Oil drop flotation unit with weir and hydraulic mechanism

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100107