JP2002239333A - Gas-liquid separation apparatus - Google Patents

Gas-liquid separation apparatus

Info

Publication number
JP2002239333A
JP2002239333A JP2001038207A JP2001038207A JP2002239333A JP 2002239333 A JP2002239333 A JP 2002239333A JP 2001038207 A JP2001038207 A JP 2001038207A JP 2001038207 A JP2001038207 A JP 2001038207A JP 2002239333 A JP2002239333 A JP 2002239333A
Authority
JP
Japan
Prior art keywords
gas
liquid
liquid separation
separation tower
retained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001038207A
Other languages
Japanese (ja)
Inventor
Daiyu Kato
大雄 加藤
Nagafumi Fujimoto
修文 藤本
Kazuyuki Okubo
和行 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2001038207A priority Critical patent/JP2002239333A/en
Publication of JP2002239333A publication Critical patent/JP2002239333A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separating Particles In Gases By Inertia (AREA)
  • Drying Of Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To carry out stable operation by suppressing pressure alteration in a gas-liquid separation apparatus. SOLUTION: An solenoid valve 15 controlled for a prescribed period by a timer 20 and a flow rate resticting orifice 19 are installed in a discharge pipe 16 for discharging a staying liquid 13 of a gas-liquid separation tower 11. The one time discharge amount of the lingering liquid 13 is suppressed to be a prescribed ratio in relation to the inner capacity of the gas-liquid separation tower 11 by setting the continuously opening duration of the solenoid valve 15 and the time intervals between the opening time to the next opening time to be prescribed values, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、気液分離装置に関
し、詳しくは、空気等を多段圧縮して高圧気体を製造す
る際、各圧縮機の吐出側に設置して圧縮空気によって凝
縮する水分等を分離するサイクロン式気液装置に適用し
て好適な気液分離装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas-liquid separation device, and more particularly to a gas-liquid separation device, which is installed on the discharge side of each compressor and is condensed by compressed air when producing high pressure gas by compressing air or the like in multiple stages. The present invention relates to a gas-liquid separation device suitable for being applied to a cyclone-type gas-liquid device for separating a liquid or the like.

【0002】[0002]

【従来の技術】多段式圧縮機で空気を圧縮して高圧空気
を得る場合、空気を圧縮する際に出る水を除去するため
に、各圧縮段の吐出側に気液分離装置を設けている。気
液分離装置によって、吐出側の気液混合ガスから液体を
抜き出し、分離したガスを次の圧縮段の吸入側に供給す
ることによって、所望の乾燥した圧縮空気を得ている。
2. Description of the Related Art When high-pressure air is obtained by compressing air with a multi-stage compressor, a gas-liquid separation device is provided at the discharge side of each compression stage in order to remove water generated when the air is compressed. . Liquid is extracted from the gas-liquid mixture gas on the discharge side by the gas-liquid separation device, and the separated gas is supplied to the suction side of the next compression stage to obtain desired dry compressed air.

【0003】図2は、従来のサイクロン式気液分離装置
の概要を示す系統図である。気液分離装置10には、導
入管11から気液混合ガスが導入される、サイクロン式
セパレータを成す気液分離塔12と、気液混合ガスから
分離し気液分離塔12内の下部に滞留した液体13の量
を差圧によって検出する差圧式液面センサ14と、分離
塔12の下部に接続され、差圧式液面センサ14による
計測値が所定値を越えると開となる電磁弁15を配管途
中に有する液抜出し管16と、気液分離塔12によって
気液分離した乾燥ガスを送出するガス送出管17とを備
える。
FIG. 2 is a system diagram showing an outline of a conventional cyclone type gas-liquid separator. The gas-liquid separator 10 has a gas-liquid mixed gas introduced from an inlet pipe 11 and a gas-liquid separation tower 12 forming a cyclone separator. The gas-liquid separated gas is separated from the gas-liquid mixed gas and stays in a lower part of the gas-liquid separation tower 12. And a solenoid valve 15 connected to a lower portion of the separation tower 12 and opened when a measured value of the differential pressure type liquid level sensor 14 exceeds a predetermined value. The apparatus includes a liquid discharge pipe 16 provided in the middle of the pipe, and a gas delivery pipe 17 for delivering dry gas separated by the gas-liquid separation tower 12.

【0004】気液混合ガスは、導入管11によってサイ
クロン式気液分離塔12内に導かれ、気液分離塔12内
において遠心力によってガス中の液が分離されて、気液
分離塔12の底部に滞留液13として滞留する。気液分
離した乾燥ガスは、ガス抜出し管17によって次の圧縮
段に供給される。気液分離塔12内で滞留液13の液面
が所定値以上になると、その旨が差圧式液面センサ14
によって検出され、差圧式液面センサ14からの信号に
よって電磁弁15が開となる。これにより、気液分離塔
12内部の滞留液13が抜出し管16を経由してドレイ
ン貯槽18に排出される。次いで、気液分離塔12内の
滞留液13の液面が所定値以下になると、その旨が差圧
式液面センサ14によって検出されるので、電磁弁15
が閉となり、再び気液分離した液が滞留する先の状態に
移行する。
The gas-liquid mixed gas is introduced into a cyclone-type gas-liquid separation tower 12 by an inlet pipe 11, and liquid in the gas is separated by centrifugal force in the gas-liquid separation tower 12. The stagnant liquid 13 stays at the bottom. The dried gas that has undergone gas-liquid separation is supplied to the next compression stage by a gas extraction pipe 17. When the liquid level of the stagnant liquid 13 in the gas-liquid separation tower 12 exceeds a predetermined value, this is indicated by a differential pressure type liquid level sensor 14.
The solenoid valve 15 is opened by a signal from the differential pressure type liquid level sensor 14. Thereby, the stagnant liquid 13 inside the gas-liquid separation tower 12 is discharged to the drain storage tank 18 via the extraction pipe 16. Next, when the liquid level of the stagnant liquid 13 in the gas-liquid separation tower 12 becomes equal to or less than a predetermined value, the fact is detected by the differential pressure type liquid level sensor 14.
Is closed, and the state again shifts to the state where the gas-liquid separated liquid stays.

【0005】[0005]

【発明が解決しようとする課題】気液分離塔12に供給
された気液混合ガスは、気液分離塔内で一旦高速とな
る。このため、気液分離塔12内側面近傍での流速は高
速となり、側面から取り出している差圧計14用のパイ
プ内の圧力が動圧の影響で大きく変動し、液面センサの
誤指示の原因となっていた。従って、液面センサ14の
作動開始液面をある程度高い位置に設定し、滞留液13
がある程度耐量に溜まった時点で電磁弁15を解放して
滞留液を一気に排出することが行われていた。
The gas-liquid mixed gas supplied to the gas-liquid separation tower 12 once becomes high-speed in the gas-liquid separation tower. For this reason, the flow velocity near the inner side surface of the gas-liquid separation tower 12 becomes high, and the pressure in the pipe for the differential pressure gauge 14 taken out from the side surface largely fluctuates due to the effect of the dynamic pressure. Had become. Therefore, the operation start liquid level of the liquid level sensor 14 is set to a relatively high position,
When the liquid has accumulated to a certain amount, the solenoid valve 15 is opened to discharge the stagnant liquid at a stretch.

【0006】この方法では、滞留液13の滞留している
容量が比較的大量となり、気液分離塔の気液分離容積を
縮小することになったり、排出に際してのみならず、気
体までも排出される場合がある等、気液分離塔12の容
積変動、圧力変動が大きく、圧縮ガスの製造、供給が安
定しない原因となっていた。
[0006] In this method, the volume of the retained liquid 13 is relatively large, so that the gas-liquid separation volume of the gas-liquid separation tower is reduced. For example, the fluctuations in the volume and pressure of the gas-liquid separation tower 12 are large, which causes unstable production and supply of the compressed gas.

【0007】また、滞留液の量があまり多くなると、滞
留液がガスに同伴して次の圧縮段に流入する問題があ
り、また、滞留液の抜出し中に滞留液の量が減りすぎる
と、系外へ圧縮ガスを放出して圧縮機による圧縮効率を
低下させ、かつ、対応する圧縮段の吐出側の圧力変動を
更に大きくする問題もある。
If the amount of the stagnant liquid is too large, there is a problem that the stagnant liquid flows into the next compression stage together with the gas, and if the amount of the stagnant liquid decreases too much during the withdrawal of the stagnant liquid, There is also a problem that the compressed gas is discharged to the outside of the system to reduce the compression efficiency of the compressor, and that the pressure fluctuation on the discharge side of the corresponding compression stage is further increased.

【0008】本発明は、上記に鑑み、気液分離塔内の圧
力変動を低く抑え、かつ、良好な滞留液の抜出しを行う
ことが出来る気液分離装置を提供することを目的とす
る。
[0008] In view of the above, it is an object of the present invention to provide a gas-liquid separation device capable of suppressing pressure fluctuations in a gas-liquid separation tower to a low level and extracting a retained liquid satisfactorily.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するた
め、本発明の気液分離装置は、加圧状態の気液混合ガス
を気液分離塔内に導入し、気液混合ガスから分離した液
体を前記気液分離塔の下部に滞留させ、該滞留させた液
体を抜き出す気液分離装置において、滞留した液体を排
出する排出管に開口径1〜5mmの流量制限オリフィス
を設け、該流量制限オリフィスを間欠的に開閉すること
により液体を抜き出すにあたり、気液分離塔内の液体滞
留量が気液分離塔の内容量の10%を越えず、また流量
制限オリフィスから、実質的に気体が排出されない条件
下に流量制限オリフィスを開閉することを特徴とする。
In order to achieve the above object, a gas-liquid separation device according to the present invention introduces a gas-liquid mixed gas in a pressurized state into a gas-liquid separation tower to separate the gas-liquid mixed gas from the gas-liquid mixed gas. In the gas-liquid separation device for retaining the liquid in the lower part of the gas-liquid separation tower and extracting the retained liquid, a discharge pipe for discharging the retained liquid is provided with a flow restriction orifice having an opening diameter of 1 to 5 mm, When extracting liquid by opening and closing the orifice intermittently, the amount of liquid retained in the gas-liquid separation tower does not exceed 10% of the internal capacity of the gas-liquid separation tower, and gas is substantially discharged from the flow restriction orifice. The flow restricting orifice is opened and closed under conditions not performed.

【0010】本発明の気液分離装置によると、分離塔内
に滞留する液体を特定の小径とされた流量制限オリフィ
スの機能によってゆっくりと排出、すなわち、小径のオ
リフィスからある程度長い時間を掛けて滞留液を排出す
ることによって滞留液の急速排出時におけるような大幅
な分離塔12内の容積変化をもたらさないようにすると
共に、常に少しづつ排出することにより分離塔内に滞留
液を大量に溜めないようにして気液分離効率の低下を防
止するものである。更に、その排出時間の制御をタイマ
によって定期的に行うことにより、滞留液の1回の排出
量を所定範囲に定めることができ、滞留液がガスに同伴
して次の圧縮段に流入したり、或いは、滞留液の排出時
にガスが抜けて圧縮機の圧力変動を大きくしたりする事
態が防止できる。
According to the gas-liquid separation device of the present invention, the liquid remaining in the separation tower is slowly discharged by the function of the flow restricting orifice having a specific small diameter. By discharging the liquid, it is possible to prevent a large change in the volume in the separation tower 12 such as at the time of rapid discharge of the retained liquid, and to discharge the liquid little by little so that a large amount of the retained liquid is not stored in the separation tower. In this way, a decrease in the gas-liquid separation efficiency is prevented. Furthermore, by periodically controlling the discharge time using a timer, the amount of one discharge of the stagnant liquid can be set within a predetermined range, and the stagnant liquid flows into the next compression stage along with the gas. Alternatively, it is possible to prevent a situation in which the gas escapes at the time of discharging the retained liquid and the pressure fluctuation of the compressor is increased.

【0011】本発明の気液分離装置の好ましい例では、
加圧状態の前記気液混合ガスの圧力が0.2〜10MP
aであり、前記流量制限オリフィスの開口径を1〜5m
m、前記タイマによる排出継続時間を1〜10秒と設定
し、気液分離塔12内の液体滞留量が気液分離塔内の容
量の10%を越えないように排出時間を設定する。実験
の結果、これら開口径及びタイマの設定範囲において、
上記圧力範囲の気液混合ガスに対して、良好な滞留液の
排出制御が得られた。
In a preferred example of the gas-liquid separation device of the present invention,
The pressure of the gas-liquid mixed gas in a pressurized state is 0.2 to 10MP
a, the opening diameter of the flow restricting orifice is 1 to 5 m
m, the discharge continuation time by the timer is set to 1 to 10 seconds, and the discharge time is set so that the amount of retained liquid in the gas-liquid separation tower 12 does not exceed 10% of the capacity in the gas-liquid separation tower. As a result of the experiment, in the setting range of these aperture diameter and timer,
Good discharge control of the stagnant liquid was obtained for the gas-liquid mixed gas in the above pressure range.

【0012】特に、サイクロン式の気液分離塔を有する
気液分離装置について、気液分離塔の内容積が0.01
〜2m3の場合に、滞留する液体の容積最大値が気液分
離塔の内容積の10%以下、好ましくは5%以下となる
ように良好に制御することが出来るので、気液分離装置
の効率的な運転が可能である。
In particular, in a gas-liquid separation device having a cyclone-type gas-liquid separation tower, the internal volume of the gas-liquid separation tower is 0.01%.
In the case of 22 m 3 , it is possible to satisfactorily control the maximum volume of the retained liquid to be 10% or less, preferably 5% or less of the internal volume of the gas-liquid separation tower. Efficient operation is possible.

【0013】[0013]

【発明の実施の形態】図面を参照して本発明の実施形態
例に基づいて本発明を更に詳細に説明する。図1は、本
発明の一実施形態例に係る気液分離装置の構成を示す系
統図である。気液分離装置10は、気液混合ガス導入管
11と、サイクロン式セパレータを成す気液分離塔12
と、タイマ20によって動作が制御されるオン−オフ電
磁弁15及び流量制限オリフィス19が配管途中に付属
する液抜出し管16と、気液分離塔12内の滞留液の液
面を計測する静電容量式液面センサ21と、液面センサ
21に付属する制御部22と、気液分離塔12から気液
分離した乾燥ガスを送出するガス送出管17とを有す
る。抜出し管16には、バイパス弁23を有するバイパ
ス管24が付属している。抜出し管16の出口は、ドレ
イン貯槽18に終端している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail based on embodiments of the present invention with reference to the drawings. FIG. 1 is a system diagram showing a configuration of a gas-liquid separation device according to an embodiment of the present invention. The gas-liquid separator 10 includes a gas-liquid mixed gas introduction pipe 11 and a gas-liquid separation tower 12 forming a cyclone separator.
An on-off solenoid valve 15 and a flow restricting orifice 19 whose operations are controlled by a timer 20 are connected to a liquid extraction pipe 16 provided in the middle of the pipe, and an electrostatic sensor for measuring the liquid level of the stagnant liquid in the gas-liquid separation tower 12. It has a capacitive liquid level sensor 21, a control unit 22 attached to the liquid level sensor 21, and a gas delivery pipe 17 for delivering dry gas separated from the gas-liquid separation tower 12. A bypass pipe 24 having a bypass valve 23 is attached to the extraction pipe 16. The outlet of the extraction pipe 16 terminates in the drain storage tank 18.

【0014】タイマ20は、所定の時間間隔で電磁弁1
5をオンとし、一定時間が経過すると電磁弁15をオフ
とする定時間制御を行う。タイマ20の時間設定は、気
液分離塔12内で分離されるドレイン液の時間当りの発
生量、気液分離塔12の内容積等に基づいて定められ
る。すなわち、気液分離塔12の内容積の10%以内に
ドレイン液(滞留液)が収まるようにタイマ20を設定
する。
The timer 20 operates the solenoid valve 1 at predetermined time intervals.
5 is turned on, and a fixed time control is performed in which the electromagnetic valve 15 is turned off after a certain time has elapsed. The time setting of the timer 20 is determined based on the amount of drain liquid generated in the gas-liquid separation tower 12 per hour, the internal volume of the gas-liquid separation tower 12, and the like. That is, the timer 20 is set so that the drain liquid (retained liquid) falls within 10% of the internal volume of the gas-liquid separation tower 12.

【0015】タイマ20の設定は、ある程度長時間電磁
弁を開き、また閉じてドレインの溜まるのを待つような
開閉よりも、短時間の開閉を繰り返し、ドレイン液を少
量づつ常時排出するような設定が好ましい。
The timer 20 is set such that the solenoid valve is repeatedly opened and closed for a short period of time and the drain liquid is constantly drained little by little, rather than opening and closing the solenoid valve for a certain period of time and closing and waiting for the drain to collect. Is preferred.

【0016】このような設定とすることにより気液分離
塔12の容積変化(滞留液の量変化によるガス分離作用
部分の容積変化)が防止される。この排出操作はタイマ
20を用いるのが効果的であるが、気液混合ガス供給量
検知装置等と連動させることも可能である。
With such a setting, a change in the volume of the gas-liquid separation tower 12 (a change in the volume of the gas separating portion due to a change in the amount of the retained liquid) is prevented. It is effective to use the timer 20 for this discharging operation, but it is also possible to link the discharging operation with a gas-liquid mixed gas supply amount detecting device or the like.

【0017】バイパス弁23は気液分離塔12内の異常
を覗き窓等から察した場合に手動で開閉可能とする予備
的な安全用バルブであるが、予期しない事故によって、
流量制限オリフィス15の開口が閉塞する等の事態を想
定し、液面センサ21によって所定量以上の滞留液が滞
留した際に警報を発生し、かつ、バイパス弁23を開と
する制御を行うようにすることも可能である。例えば、
気液分離塔の内容積の10%以上の量の滞留液が滞留す
ると、この警報が発生するようにしてもよい。
The bypass valve 23 is a preliminary safety valve that can be manually opened and closed when an abnormality in the gas-liquid separation tower 12 is detected through a viewing window or the like.
Assuming that the opening of the flow rate limiting orifice 15 is closed or the like, an alarm is generated when a stagnant liquid of a predetermined amount or more is stagnated by the liquid level sensor 21 and control to open the bypass valve 23 is performed. It is also possible to For example,
This alarm may be generated when a stagnant liquid of 10% or more of the internal volume of the gas-liquid separation tower stagnates.

【0018】なお、2個の液面センサ21を設け、液面
設定が低い一方の液面センサによって電磁弁を制御し、
液面設定が高い他方の液面センサによってバイパス弁2
3を制御してもよい。この場合、前記一方の液面センサ
は、タイマ20のバックアップとなる。
It is to be noted that two liquid level sensors 21 are provided, and the solenoid valve is controlled by one of the liquid level sensors having a low liquid level setting.
The bypass valve 2 is set by the other liquid level sensor having a high liquid level setting.
3 may be controlled. In this case, the one liquid level sensor serves as a backup for the timer 20.

【0019】上記実施形態例の気液分離装置は、多段
式、例えば4段式の空気圧縮機の各圧縮段の吐出側に設
けられる。各タイマ20の時間設定は、各気液分離塔1
2の内容積、及び気液分離塔12内で分離されて滞留す
る滞留液の時間当たりの発生量を勘案して以下のように
定められた。
The gas-liquid separator of the above embodiment is provided on the discharge side of each compression stage of a multistage, for example, four stage air compressor. The time setting of each timer 20 is set in each gas-liquid separation tower 1
In consideration of the internal volume of No. 2 and the amount of retained liquid separated and retained in the gas-liquid separation tower 12 per hour, it was determined as follows.

【0020】ここで、圧縮機の各圧縮段の吐出側の圧力
は、1段目から4段目までの順に、例えば2K/cm3G、
9.5K/cm3G、30.0K/cm3G、92.0K/cm3
である。各圧縮段の吸入ガス温度はほぼ40℃前後に調
節してあり、この場合、40℃での飽和水蒸気圧は約
0.075Kg/cm2(atm)である。また、1段目の吸入空
気の飽和水蒸気量は約225Kg/Hrであり、以下、1段
目から4段目の吐出側空気の飽和水蒸気量は、74Kg/
Hr、21Kg/Hr、7.2Kg/Hr2.4Kg/Hrであるとし
た。
Here, the pressure on the discharge side of each compression stage of the compressor is, for example, 2 K / cm 3 G, in order from the first stage to the fourth stage.
9.5K / cm 3 G, 30.0K / cm 3 G, 92.0K / cm 3 G
It is. The suction gas temperature of each compression stage is adjusted to around 40 ° C., in which case the saturated steam pressure at 40 ° C. is about 0.075 kg / cm 2 (atm). The saturated steam amount of the intake air in the first stage is about 225 kg / hr, and the saturated steam amount of the discharge side air in the first to fourth stages is 74 kg / hr.
Hr, 21 Kg / Hr, 7.2 Kg / Hr, and 2.4 Kg / Hr.

【0021】上記圧縮機側の条件、及び、1段目から4
段目までの各気液分離塔の寸法に基づいて、滞留液の時
間当りの発生量を計算した。その液量及びそれに基づい
て選定した流量制限オリフィスの径から、電磁弁の開時
間(秒)及び閉時間(作動間隔)を計算し、実際の空気
圧縮機に適用した。その結果を各気液分離塔毎に下記表
1に示す。
The conditions on the compressor side, and 4 from the first stage
Based on the dimensions of each gas-liquid separation tower up to the stage, the amount of retained liquid generated per hour was calculated. The opening time (second) and closing time (operating interval) of the solenoid valve were calculated from the liquid amount and the diameter of the flow restricting orifice selected based on the liquid amount and applied to an actual air compressor. The results are shown in Table 1 below for each gas-liquid separation tower.

【0022】[0022]

【表1】 なお、比率は、滞留液量/気液分離塔内容積であり、気
液分離装置の効率の面から10%以下が望ましい。より
好ましい比率は5%以下である。
[Table 1] The ratio is the amount of retained liquid / volume in the gas-liquid separation tower, and is preferably 10% or less from the viewpoint of the efficiency of the gas-liquid separation device. A more desirable ratio is 5% or less.

【0023】流量制限オリフィスの径は、1〜5mmが
適当である。この範囲よりも小さいとゴミ等によってオ
リフィスが目詰まりを起こし、また、この範囲よりも大
きいと気液分離塔内の圧力変動が大きくなる不都合があ
る。より好ましいオリフィスの径は2〜4mmである。
The diameter of the flow restricting orifice is suitably from 1 to 5 mm. If it is smaller than this range, the orifice may be clogged by dust or the like, and if it is larger than this range, the pressure fluctuation in the gas-liquid separation tower may be increased. A more preferable diameter of the orifice is 2 to 4 mm.

【0024】上記のように、タイマによる滞留液の1回
の排出時間は2〜3秒間に、排出間隔は20〜600秒
間に納めた。ここで、1回の排出時間は1〜10秒の範
囲に抑えることが好ましい。1回の排出時間が、この範
囲よりも短いと電磁弁(又は調整弁)の作動回数の増加
に伴い弁が損傷しやすくなり、この範囲よりも長いとオ
リフィスの径との関係で滞留液の残量が零になって圧縮
空気が系外へ放出される場合があり、気液分離装置内の
圧力変動が大きくなりすぎる。
As described above, the time for discharging the stagnant liquid by the timer once was set to 2 to 3 seconds, and the interval between discharges was set to 20 to 600 seconds. Here, it is preferable that one discharge time is suppressed in a range of 1 to 10 seconds. If the single discharge time is shorter than this range, the valve tends to be damaged with an increase in the number of times of operation of the solenoid valve (or the regulating valve), and if longer than this range, the accumulated liquid may be reduced in relation to the diameter of the orifice. In some cases, the remaining amount becomes zero and the compressed air is discharged out of the system, and the pressure fluctuation in the gas-liquid separator becomes too large.

【0025】上記のように設定した気液分離装置を、多
段式圧縮機の各段の吐出側に設置し、滞留液の排出の様
子を確かめた。その結果、滞留液がガスに混じって次の
圧縮段に流れ込むこともなく、また、滞留液の残量が零
になって系外に圧縮ガスが放出されることもなかった。
これによって、気液分離塔内の圧力変動が大幅に低下
し、気液分離装置及び圧縮において安定な運転が得られ
た。
The gas-liquid separation device set as described above was installed on the discharge side of each stage of the multi-stage compressor, and the state of discharging the retained liquid was confirmed. As a result, the retained liquid was not mixed with the gas and flowed to the next compression stage, and the residual gas of the retained liquid was not reduced to zero and the compressed gas was not released out of the system.
As a result, the pressure fluctuation in the gas-liquid separation tower was significantly reduced, and a stable operation was obtained in the gas-liquid separation device and the compression.

【0026】上記安定な運転は、滞留液の1回の排出量
を流量制限オリフィスの開口径及びタイマの設定時間に
よって制限し、比較的少量を長い時間をかけて徐々に排
出する、すなわち、オリフィスからの排出量を気液分離
塔内に滞留する液を一定以上の量としないように設定し
たことによって得られたものである。
In the above-mentioned stable operation, one discharge of the stagnant liquid is limited by the opening diameter of the flow restricting orifice and the set time of the timer, and a relatively small amount is gradually discharged over a long time. This is obtained by setting the amount of liquid discharged from the column so that the amount of liquid remaining in the gas-liquid separation tower does not exceed a certain amount.

【0027】なお、気候等の環境変化によりよく対応す
るために、静電容量式液面センサをタイマのバックアッ
プに用いてもよい。この場合、許容最高液面を検出し、
これによって電磁弁のオン−オフを補助的に制御する。
In order to better cope with environmental changes such as climate, a capacitance type liquid level sensor may be used as a backup for the timer. In this case, detect the maximum allowable liquid level,
Thus, the on / off of the solenoid valve is controlled in an auxiliary manner.

【0028】以上、本発明をその好適な実施形態例に基
づいて詳細に説明したが、本発明は上記実施形態例の構
成にのみ限定されるものではなく、上記実施形態例の構
成から種々の修正及び変更を施したものも本発明の範囲
に含まれる。例えば、抜出し管に接続するオン−オフ弁
は電磁弁に限るものではなく、種々の形式のバルブが利
用できる。
As described above, the present invention has been described in detail based on the preferred embodiments. However, the present invention is not limited to the configuration of the above-described embodiment, and various modifications may be made from the configuration of the above-described embodiment. Modifications and changes are also included in the scope of the present invention. For example, the on-off valve connected to the extraction pipe is not limited to the solenoid valve, and various types of valves can be used.

【0029】[0029]

【発明の効果】以上説明したように、本発明の気液分離
装置によると、制限流量オリフィス及びタイマによって
気液分離塔内で滞留する滞留液の排出を制御することに
よって、系外への圧縮ガスの放出や滞留液のガスへの同
伴という事態を防止して、気液分離装置の安定な運転を
可能にした顕著な効果を奏する。
As described above, according to the gas-liquid separation device of the present invention, by controlling the discharge of the stagnant liquid remaining in the gas-liquid separation tower by the limited flow rate orifice and the timer, the compression to the outside of the system is achieved. The present invention has a remarkable effect of preventing a situation in which gas is released or entrained liquid is entrained in the gas, thereby enabling stable operation of the gas-liquid separation device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態例に係る気液分離装置の系
統図。
FIG. 1 is a system diagram of a gas-liquid separation device according to an embodiment of the present invention.

【図2】従来の気液分離装置の系統図。FIG. 2 is a system diagram of a conventional gas-liquid separation device.

【符号の説明】[Explanation of symbols]

11:気液混合ガス導入管 12:気液分離塔 13:滞留液 14:差圧式液面センサ 15:電磁弁 16:液抜出し管 17:ガス送出管 18:ドレイン貯槽 19:流量制限オリフィス 20:タイマ 21:液面センサ 22:液面制御部 23:バイパス弁 24:バイパス管 11: Gas-liquid mixed gas introduction pipe 12: Gas-liquid separation tower 13: Retentive liquid 14: Differential pressure type liquid level sensor 15: Solenoid valve 16: Liquid extraction pipe 17: Gas delivery pipe 18: Drain storage tank 19: Flow rate limiting orifice 20: Timer 21: Liquid level sensor 22: Liquid level control unit 23: Bypass valve 24: Bypass pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大久保 和行 三重県四日市市東邦町1番地 三菱化学株 式会社四日市事業所内 Fターム(参考) 4D031 AC04 4D052 AA05 BA05  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuyuki Okubo 1 Toho-cho, Yokkaichi-shi, Mie Mitsubishi Chemical Corporation Yokkaichi Office F-term (reference) 4D031 AC04 4D052 AA05 BA05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 加圧状態の気液混合ガスを気液分離塔内
に導入し、気液混合ガスから分離した液体を前記気液分
離塔の下部に滞留させ、該滞留させた液体を抜き出す気
液分離装置において、 滞留した液体を排出する排出管に開口径1〜5mmの流
量制限オリフィスを設け、該流量制限オリフィスを間欠
的に開閉することにより液体を抜き出すにあたり、気液
分離塔内の液体滞留量が気液分離塔の内容量の10%を
越えず、また流量制限オリフィスから、実質的に気体が
排出されない条件下に流量制限オリフィスを開閉するこ
とを特徴とする気液分離装置。
1. A gas-liquid mixed gas in a pressurized state is introduced into a gas-liquid separation tower, a liquid separated from the gas-liquid mixed gas is retained at a lower portion of the gas-liquid separation tower, and the retained liquid is extracted. In the gas-liquid separation device, a flow restricting orifice having an opening diameter of 1 to 5 mm is provided in a discharge pipe for discharging the retained liquid, and when the liquid is extracted by opening and closing the flow restricting orifice intermittently, the gas in the gas-liquid separation tower A gas-liquid separator characterized by opening and closing the flow restricting orifice under conditions that the liquid retention amount does not exceed 10% of the internal capacity of the gas-liquid separating tower, and substantially no gas is discharged from the flow restricting orifice.
【請求項2】 加圧状態の前記気液混合ガスの圧力が
0.2〜10MPaであり、前記流量制限オリフィスの
開閉を、タイマによる排出継続時間を1〜10秒と設定
することを特徴とする、請求項1に記載の気液分離装
置。
2. The pressure of the gas-liquid mixed gas in a pressurized state is 0.2 to 10 MPa, and the opening and closing of the flow rate limiting orifice is set to a discharge duration of 1 to 10 seconds by a timer. The gas-liquid separation device according to claim 1, wherein:
【請求項3】 前記気液分離塔が、0.01〜2m3
内容積を有するサイクロン式分離塔として構成され、滞
留する液体の容積最大値を該気液分離塔の内容積の10
%以下に制御することを特徴とする、請求項2に記載の
気液分離装置。
3. The gas-liquid separation tower is configured as a cyclone type separation tower having an internal volume of 0.01 to 2 m 3 , and the maximum value of the volume of the retained liquid is set at 10 times the internal volume of the gas-liquid separation tower.
%.
JP2001038207A 2001-02-15 2001-02-15 Gas-liquid separation apparatus Pending JP2002239333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001038207A JP2002239333A (en) 2001-02-15 2001-02-15 Gas-liquid separation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001038207A JP2002239333A (en) 2001-02-15 2001-02-15 Gas-liquid separation apparatus

Publications (1)

Publication Number Publication Date
JP2002239333A true JP2002239333A (en) 2002-08-27

Family

ID=18901228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001038207A Pending JP2002239333A (en) 2001-02-15 2001-02-15 Gas-liquid separation apparatus

Country Status (1)

Country Link
JP (1) JP2002239333A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133034A1 (en) * 2013-02-26 2014-09-04 ナブテスコオートモーティブ 株式会社 Oil separator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133034A1 (en) * 2013-02-26 2014-09-04 ナブテスコオートモーティブ 株式会社 Oil separator
JP2014163325A (en) * 2013-02-26 2014-09-08 Nabtesco Automotive Corp Oil separator
US9568352B2 (en) 2013-02-26 2017-02-14 Nabtesco Automotive Corporation Oil separator

Similar Documents

Publication Publication Date Title
US3850009A (en) Cleaning of pressurized condensable gas
US5749711A (en) Automatic pneumatic pump including a tank with inlet and outlet and a pump connected to the inlet
US5024061A (en) Recovery processing and storage unit
JPH08208206A (en) Air compression equipment and nitrogen extractor from compressed air
WO2002099249A1 (en) Discharging sand from a vessel at elevated pressure
RU2113635C1 (en) Method of operation of liquid-gas ejector
US20130011274A1 (en) Compressed air supply for the operation of moving bed filters
JP2002239333A (en) Gas-liquid separation apparatus
US5400606A (en) Apparatus for recovering refrigerant
JPH0239533Y2 (en)
JP4129703B2 (en) Dedusting device
US3147920A (en) Deaerating steam trap
US5246633A (en) Device for collecting used steam
JP3477583B2 (en) Oil separation device for oil-filled compressor and method for measuring oil content in discharged gas
JP2623434B2 (en) Air compressor
US5447193A (en) Apparatus for injecting a volume of liquid into a liquid-conducting system
JP3509954B2 (en) Condensate discharge device
JPS5560174A (en) Vacuum adjuster for condenser
JP3032118B2 (en) Drain discharge device
JP2510981B2 (en) Drain system of moisture separation heater
JPS56124698A (en) Volume controller for compressor
JP2544050B2 (en) Drain tank water level control device
US2848010A (en) Gas washer overflow apparatus
SU866363A1 (en) Method of automatic control of process of low-temperature separation of gas mixture
WO2004058376A1 (en) Extractor using co2 gas