JP2002235990A - Method for fixing heat pipe to thermal transmittance member - Google Patents

Method for fixing heat pipe to thermal transmittance member

Info

Publication number
JP2002235990A
JP2002235990A JP2001177638A JP2001177638A JP2002235990A JP 2002235990 A JP2002235990 A JP 2002235990A JP 2001177638 A JP2001177638 A JP 2001177638A JP 2001177638 A JP2001177638 A JP 2001177638A JP 2002235990 A JP2002235990 A JP 2002235990A
Authority
JP
Japan
Prior art keywords
heat pipe
insertion hole
heat
transfer member
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001177638A
Other languages
Japanese (ja)
Inventor
Seizo Ueno
誠三 上野
Yoshiya Eda
義弥 枝
Akira Hideno
晃 秀野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2001177638A priority Critical patent/JP2002235990A/en
Publication of JP2002235990A publication Critical patent/JP2002235990A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To fix a heat pipe rigidly to a thermal transmittance member without producing any deformation (strain) in it. SOLUTION: A heat pipe 5 having working liquid sealingly enclosed therein is inserted into and passed through a heat pipe insertion hole 1 of the thermal transmittance member 4 with a part of the heat pipe 5 being exposed. When the heat pipe 5 is thermoplastically deformed in its diametrically expanding direction, an exposed portion 6 of the heat pipe 5 is arranged at a heat pipe fixing hole 8 of a fixing jig 7, and the heat pipe 5 is heated to cause a thermoplastic deformation to be attained in a diametrically expanding direction. Since the exposed portion 6 of the heat pipe is fixed at the heat pipe fixing hole 8, the exposed portion 6 of the heat pipe is prevented from being deformed (strained). When the heat pipe fixing hole 8 is machined in a high precision, a size accuracy of the exposed portion 6 of the heat pipe is improved. Since the expanded diameter of the exposed portion 6 is restricted by the fixing hole 8, the heat pipe 5 is well expanded in its diameter within the heat pipe insertion hole 1, and an anti-pulling characteristic of the heat pipe 5 from within the insertion hole 1 is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、伝熱部材へのヒー
トパイプの取付方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for attaching a heat pipe to a heat transfer member.

【0002】[0002]

【従来の技術】金属基板または前記金属基板に放熱フィ
ンを取付けた伝熱部材は、放熱性を向上させるために前
記金属基板にヒートパイプを埋設して用いることが多
い。前記ヒートパイプを伝熱部材に埋設する方法には、
伝熱部材のヒートパイプ挿通孔にヒートパイプを焼きば
める方法、伝熱部材のヒートパイプ挿通孔にヒートパイ
プを半田付けする方法などがある。しかし、前者は高度
の寸法精度を要し、後者は半田濡れ性を良くするために
双方の接触面にめっきを施す必要がある上、半田付けに
手間を要し、いずれの方法もコスト高になるという問題
があった。
2. Description of the Related Art In many cases, a metal substrate or a heat transfer member having a radiating fin mounted on the metal substrate is used by burying a heat pipe in the metal substrate in order to improve heat dissipation. The method of embedding the heat pipe in a heat transfer member,
There are a method of shrinking the heat pipe into the heat pipe insertion hole of the heat transfer member, and a method of soldering the heat pipe to the heat pipe insertion hole of the heat transfer member. However, the former requires a high degree of dimensional accuracy, and the latter requires plating on both contact surfaces in order to improve solder wettability, and requires time and effort in soldering, and both methods are costly. There was a problem of becoming.

【0003】このため、図10に示すように、ヒートパ
イプ挿通孔1を有するアルミ基板2の表面に放熱フィン
3がろう付けされた伝熱部材4の前記ヒートパイプ挿通
孔1に、ヒートパイプ5を、蒸発部または凝縮部となる
部分を露出させて挿通し、これを加熱炉13内に入れて
加熱して、ヒートパイプ5内の作動液の蒸気圧によりヒ
ートパイプ5を拡径方向に塑性変形して、ヒートパイプ
5を前記挿通孔1に埋設する方法が提案された(特許2
793978)。
For this reason, as shown in FIG. 10, a heat pipe 5 is inserted into the heat pipe insertion hole 1 of the heat transfer member 4 in which the radiation fins 3 are brazed to the surface of the aluminum substrate 2 having the heat pipe insertion hole 1. The heat pipe 5 is inserted into the heating furnace 13 by heating while exposing a part to be an evaporating part or a condensing part, and is heated in the heating furnace 13. A method of deforming and embedding the heat pipe 5 in the insertion hole 1 has been proposed (Patent Document 2).
793978).

【0004】[0004]

【発明が解決しようとする課題】しかし、この方法は、
ヒートパイプの露出部分6が加熱中に不均一に変形(ゆ
がみ)したり、破裂したりして製造歩留まりが低く、ま
た使用中にヒートパイプ5が前記挿通孔1から抜け出て
しまうことがあった。本発明は、このような状況に鑑み
なされたもので、その目的とするところは、伝熱部材へ
ヒートパイプを変形(ゆがみ)などを生じさせずに強固
に取付ける方法を提供することにある。
However, this method is
The exposed portion 6 of the heat pipe may be unevenly deformed (warped) during heating or burst, resulting in a low production yield, and the heat pipe 5 may fall out of the insertion hole 1 during use. . The present invention has been made in view of such a situation, and an object of the present invention is to provide a method for firmly attaching a heat pipe to a heat transfer member without causing deformation (distortion) or the like.

【0005】[0005]

【課題を解決するための手段】請求項1記載の発明は、
内部に作動液が封入されたヒートパイプを伝熱部材のヒ
ートパイプ挿通孔に前記ヒートパイプの一部を露出させ
て挿通し、前記ヒートパイプを拡径方向に塑性変形して
前記ヒートパイプを前記伝熱部材のヒートパイプ挿通孔
に埋設する伝熱部材へのヒートパイプの取付方法におい
て、前記ヒートパイプの露出部分を固定治具のヒートパ
イプ固定孔に配し、次いで前記ヒートパイプを加熱して
拡径方向に塑性変形させることを特徴とする伝熱部材へ
のヒートパイプの取付方法である。
According to the first aspect of the present invention,
A part of the heat pipe is exposed and inserted into a heat pipe insertion hole of a heat transfer member through which a heat pipe filled with a working fluid is inserted, and the heat pipe is plastically deformed in a radially expanding direction, thereby forming the heat pipe. In the method of attaching a heat pipe to the heat transfer member embedded in the heat pipe insertion hole of the heat transfer member, the exposed portion of the heat pipe is arranged in a heat pipe fixing hole of a fixing jig, and then the heat pipe is heated. This is a method of attaching a heat pipe to a heat transfer member, wherein the heat pipe is plastically deformed in a diameter increasing direction.

【0006】請求項2記載の発明は、前記ヒートパイプ
を前記固定治具に具備された発熱体により加熱して拡径
方向に塑性変形させることを特徴とする請求項1記載の
伝熱部材へのヒートパイプの取付方法である。
The invention according to claim 2 is characterized in that the heat pipe is heated by a heating element provided in the fixing jig and is plastically deformed in a radially expanding direction. This is the method of mounting the heat pipe.

【0007】請求項3記載の発明は、前記伝熱部材のヒ
ートパイプ挿通孔内面の少なくとも一部を表面粗度Ra
が0.1〜40μmになるように粗面化してヒートパイ
プと前記挿通孔内面との摩擦抵抗を増加させ、ヒートパ
イプが前記挿通孔から抜け難くしたことを特徴とする請
求項1または2記載の伝熱部材へのヒートパイプの取付
方法である。
According to a third aspect of the present invention, at least a part of the inner surface of the heat pipe insertion hole of the heat transfer member has a surface roughness Ra.
3. The surface of the heat pipe is roughened so as to have a thickness of 0.1 to 40 μm to increase the frictional resistance between the heat pipe and the inner surface of the insertion hole, thereby making it difficult for the heat pipe to fall out of the insertion hole. This is a method of attaching a heat pipe to the heat transfer member.

【0008】請求項4記載の発明は、前記伝熱部材のヒ
ートパイプ挿通孔内面に凹部を設け、前記凹部にヒート
パイプの表層を膨出させて、または前記伝熱部材のヒー
トパイプ挿通孔内面に凸部を設け、前記凸部以外の箇所
にヒートパイプの表層を膨出させて、前記ヒートパイプ
が前記挿通孔から抜け難くしたことを特徴とする請求項
1または2記載の伝熱部材へのヒートパイプの取付方法
である。
According to a fourth aspect of the present invention, a concave portion is provided on an inner surface of the heat pipe insertion hole of the heat transfer member, and a surface layer of the heat pipe is expanded in the concave portion, or an inner surface of the heat pipe insertion hole of the heat transfer member. 3. The heat transfer member according to claim 1, wherein a convex portion is provided on the heat transfer member, and a surface layer of the heat pipe is swelled at a portion other than the convex portion, so that the heat pipe is hardly removed from the insertion hole. This is the method of mounting the heat pipe.

【0009】請求項5記載の発明は、内部に作動液が封
入されたヒートパイプを伝熱部材のヒートパイプ挿通孔
に前記ヒートパイプの一部を露出させて挿通し、前記ヒ
ートパイプを拡径方向に塑性変形して前記ヒートパイプ
を前記伝熱部材のヒートパイプ挿通孔に埋設する伝熱部
材へのヒートパイプの取付方法において、前記ヒートパ
イプの露出部分を、穴を開けた複数の放熱フィンの前記
穴に通し、次いで前記ヒートパイプを加熱して拡径方向
に塑性変形させることを特徴とする伝熱部材へのヒート
パイプの取付方法である。
According to a fifth aspect of the present invention, a heat pipe in which a working fluid is sealed is inserted through a heat pipe insertion hole of a heat transfer member by exposing a part of the heat pipe, thereby expanding the diameter of the heat pipe. In a method of attaching a heat pipe to a heat transfer member for plastically deforming the heat pipe in a direction and burying the heat pipe in a heat pipe insertion hole of the heat transfer member, a plurality of radiating fins having holes formed in the exposed portion of the heat pipe are provided. And then heating the heat pipe to plastically deform it in the diameter-enlargement direction.

【0010】請求項6記載の発明は、伝熱部材のヒート
パイプ挿通孔およびヒートパイプの前記挿通孔に埋設す
る部分の断面形状が楕円形であることを特徴とする請求
項1、2、3、4、5のいずれかに記載の伝熱部材への
ヒートパイプの取付方法である。
According to a sixth aspect of the present invention, the sectional shape of the heat pipe insertion hole of the heat transfer member and the portion embedded in the heat pipe insertion hole is elliptical. It is a method of attaching a heat pipe to the heat transfer member according to any one of 4, 4, and 5.

【0011】[0011]

【発明の実施の形態】以下に、本発明を図を参照して具
体的に説明する。請求項1記載の発明は、図1(イ)に
示すようにヒートパイプ挿通孔1を有するアルミ基板2
の表面に放熱フィン3がろう付けされた伝熱部材4の前
記ヒートパイプ挿通孔1に、ヒートパイプ5を、蒸発部
または凝縮部となる部分を露出させて挿通し、次いで図
1(ロ)に示すようにヒートパイプ1の露出部分6を固
定治具7のヒートパイプ固定孔8に配し、これら全体
を、例えば、加熱炉(図示せず)内に入れて加熱してヒ
ートパイプ5を、ヒートパイプ5内部の作動液の蒸気圧
により拡径方向に塑性変形させて伝熱部材4に埋設する
方法である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings. An aluminum substrate 2 having a heat pipe insertion hole 1 as shown in FIG.
The heat pipe 5 is inserted through the heat pipe insertion hole 1 of the heat transfer member 4 to which the radiation fin 3 is brazed on the surface of the heat transfer member 4 while exposing a portion to be an evaporating portion or a condensing portion, and then FIG. The exposed portion 6 of the heat pipe 1 is arranged in a heat pipe fixing hole 8 of a fixing jig 7 as shown in FIG. 1, and the whole is put into a heating furnace (not shown) and heated to heat the heat pipe 5. In this method, the heat pipe 5 is buried in the heat transfer member 4 by being plastically deformed in the radially expanding direction by the vapor pressure of the working fluid.

【0012】この方法では、ヒートパイプ1の露出部分
6を固定治具7の固定孔8に固定して加熱するので、加
熱中に露出部分6が変形(ゆがみ)したり破裂したりす
ることがない。また前記固定孔8内面を高精度に加工し
ておくことによりヒートパイプの露出部分6の外径、真
円度、真直度、配列ピッチなどの寸法精度を向上させる
ことができる。さらに前記固定孔8により露出部分6の
拡径が抑えられるので、伝熱部材4のヒートパイプ挿通
孔1内でのヒートパイプ5の拡径が良好になされ、ヒー
トパイプ5の前記挿通孔1からの耐抜け性が向上する。
なお、実施形態を説明する全図において、同一機能を有
するものは同一符号を付け、その繰り返しの説明は省略
する。
In this method, since the exposed portion 6 of the heat pipe 1 is fixed to the fixing hole 8 of the fixing jig 7 and heated, the exposed portion 6 may be deformed (warped) or burst during heating. Absent. Further, by processing the inner surface of the fixing hole 8 with high precision, it is possible to improve the dimensional accuracy of the exposed portion 6 of the heat pipe, such as the outer diameter, roundness, straightness, and arrangement pitch. Further, since the diameter of the exposed portion 6 is suppressed by the fixing hole 8, the diameter of the heat pipe 5 in the heat pipe insertion hole 1 of the heat transfer member 4 is favorably increased. Has improved anti-pulling resistance.
In all the drawings describing the embodiments, components having the same function are denoted by the same reference numerals, and repeated description thereof will be omitted.

【0013】請求項2記載の発明は、請求項1記載の発
明において、固定治具7に発熱体(図示せず)を具備さ
せておき、ヒートパイプ5の露出部分6のみを前記発熱
体で加熱する伝熱部材へのヒートパイプの取付方法であ
る。この発明では、固定治具7の固定孔8に配されたヒ
ートパイプ5の露出部分のみを固定治具7に具備された
発熱体で加熱するので、ヒートハイプ5を含む伝熱部材
4全体を加熱する方法に較べて、ヒートパイプ5を短時
間で加熱拡径でき、生産性に優れる。また設備費も安
い。さらに加熱温度も高精度に制御できる。
According to a second aspect of the present invention, in the first aspect of the invention, the fixing jig is provided with a heating element (not shown), and only the exposed portion 6 of the heat pipe 5 is formed by the heating element. This is a method of attaching a heat pipe to a heat transfer member to be heated. In the present invention, only the exposed portion of the heat pipe 5 arranged in the fixing hole 8 of the fixing jig 7 is heated by the heating element provided in the fixing jig 7, so that the entire heat transfer member 4 including the heat hype 5 is heated. In comparison with the method, the heat pipe 5 can be heated and expanded in a short time, and the productivity is excellent. Equipment costs are also low. Further, the heating temperature can be controlled with high accuracy.

【0014】固定治具7には、任意の固定治具が使用で
きるが、上型14と下型15からなる割り型(図1参
照)が作業性がよく望ましい。また固定治具7に具備さ
せる発熱体には任意の発熱体が使用できるが、抵抗発熱
体が温度制御がし易く望ましい。
As the fixing jig 7, any fixing jig can be used, but a split mold (see FIG. 1) including an upper mold 14 and a lower mold 15 is preferable because of good workability. Although any heating element can be used as the heating element provided in the fixing jig 7, a resistance heating element is preferable because the temperature can be easily controlled.

【0015】請求項3記載の発明は、図2(イ)に示す
ように、伝熱部材4のヒートパイプ挿通孔1内面の少な
くとも一部を粗面化した粗面化部分16を設けておき、
この挿通孔1にヒートパイプ5を挿通し、ヒートパイプ
5を加熱して、図2(ロ)に示すようにヒートパイプを
拡径方向に塑性変形させる方法であり、この方法によれ
ば、前記挿通孔1内面の粗面化部分16とヒートパイプ
5との間の摩擦抵抗が増加するためヒートパイプ5は前
記挿通孔1から、より抜け難くなる。
According to a third aspect of the present invention, as shown in FIG. 2A, a roughened portion 16 is formed in which at least a part of the inner surface of the heat pipe insertion hole 1 of the heat transfer member 4 is roughened. ,
A heat pipe 5 is inserted through the insertion hole 1, the heat pipe 5 is heated, and the heat pipe is plastically deformed in a radially expanding direction as shown in FIG. 2 (b). Since the frictional resistance between the roughened portion 16 on the inner surface of the insertion hole 1 and the heat pipe 5 increases, the heat pipe 5 is harder to come out of the insertion hole 1.

【0016】この発明において、前記挿通孔内面の少な
くとも一部に設ける粗面化部分16の表面粗さRaを
0.1〜40μmに規定する理由は、Raが0.1μm
未満ではその効果が十分に得られず、Raが40μmを
超えるとその効果が飽和して粗面化のための手間が余計
に掛かるだけとなるためである。前記挿通孔内面の粗面
化部分16の長さは長い方がヒートパイプは抜け難い
が、粗面化部分16は2mm程度の長さがあれば充分な
耐抜け性が得られる。また粗面化のための手間を考えて
も粗面化部分16の長さは短い方が良い。
In the present invention, the reason why the surface roughness Ra of the roughened portion 16 provided on at least a part of the inner surface of the insertion hole is defined to be 0.1 to 40 μm is that Ra is 0.1 μm.
If it is less than 40 μm, the effect cannot be obtained sufficiently, and if Ra exceeds 40 μm, the effect will be saturated, and additional work will be required for roughening. The longer the length of the roughened portion 16 on the inner surface of the insertion hole, the more difficult it is for the heat pipe to come off. However, if the length of the roughened portion 16 is about 2 mm, sufficient release resistance can be obtained. In addition, it is preferable that the length of the roughened portion 16 is shorter even in consideration of the labor for roughening.

【0017】この発明では前記挿通孔内面を粗面化して
ヒートパイプ表面との摩擦抵抗を増加させてあるので、
目的とする耐抜け性(耐抜け力)が同じ場合は、本発明
の方が、挿通孔内面が粗面化されていない従来法より加
熱時間を短くできる。粗面化には、エッチング法、機械
的加工法(例えば、旋盤加工、ヤスリがけ)などの任意
の方法が適用できる。粗面化位置は加工のし易さから挿
通孔の入口近傍が良い。
In the present invention, the inner surface of the insertion hole is roughened to increase the frictional resistance with the heat pipe surface.
In the case where the intended pull-out resistance (pull-out resistance) is the same, the present invention can shorten the heating time as compared with the conventional method in which the inner surface of the insertion hole is not roughened. An arbitrary method such as an etching method and a mechanical processing method (for example, lathe processing and sanding) can be applied to the surface roughening. The roughening position is preferably near the entrance of the insertion hole for ease of processing.

【0018】請求項4記載の発明は、図3に示すよう
に、伝熱部材4のヒートパイプ挿通孔1内面の両端に開
放型凹部9を設け、ヒートパイプ5を加熱拡径する際に
前記凹部9にヒートパイプ5の表層を膨出させ、ヒート
パイプ5を伝熱部材4の挿通孔1に係合させてヒートパ
イプ5が挿通孔1から抜け難いようにした取付方法であ
る。
As shown in FIG. 3, the invention according to claim 4 has open recesses 9 at both ends of the inner surface of the heat pipe insertion hole 1 of the heat transfer member 4 so that when the heat pipe 5 is heated and expanded in diameter, This is a mounting method in which the surface layer of the heat pipe 5 is swelled in the concave portion 9 and the heat pipe 5 is engaged with the insertion hole 1 of the heat transfer member 4 so that the heat pipe 5 is hard to come out of the insertion hole 1.

【0019】または請求項4記載の発明は、図4に示す
ように、伝熱部材4のヒートパイプ挿通孔1内面の所要
箇所に閉鎖型凹部10を設け、前記凹部10にヒートパ
イプ5の表層を膨出させ、ヒートパイプ5を伝熱部材4
の挿通孔1に係合させてヒートパイプ5が挿通孔1から
抜け難いようにした取付方法である。
According to a fourth aspect of the present invention, as shown in FIG. 4, a closed recess 10 is provided at a required position on the inner surface of the heat pipe insertion hole 1 of the heat transfer member 4, and the surface of the heat pipe 5 is provided in the recess 10. And the heat pipe 5 is connected to the heat transfer member 4.
This is an attachment method in which the heat pipe 5 is hardly pulled out of the insertion hole 1 by being engaged with the insertion hole 1.

【0020】または請求項4記載の発明は、図5に示す
ように、伝熱部材4のヒートパイプ挿通孔1の一端に開
放型凹部9を設け、前記挿通孔1の他端側の固定治具7
の固定孔8の伝熱部材4側端部内面に開放型凹部11を
設け、前記凹部9、11にヒートパイプ5の表層を膨出
させ、ヒートパイプ5を伝熱部材4の挿通孔1に係合さ
せてヒートパイプ5が挿通孔1から抜け難いようにした
取付方法である。
According to a fourth aspect of the present invention, as shown in FIG. 5, an open recess 9 is provided at one end of the heat pipe insertion hole 1 of the heat transfer member 4, and a fixing jig at the other end of the insertion hole 1 is provided. Tool 7
An open recess 11 is provided on the inner surface of the end of the fixing hole 8 on the heat transfer member 4 side, and the surface layer of the heat pipe 5 is swelled in the recesses 9 and 11, and the heat pipe 5 is inserted into the insertion hole 1 of the heat transfer member 4. This is a mounting method in which the heat pipe 5 is prevented from coming out of the insertion hole 1 by being engaged.

【0021】前記凹部9、10、11は切削加工、押圧
加工、エッチングなどの任意の方法により形成できる。
前記凹部10を設ける箇所は任意であるが、前記挿通孔
1の入口近傍が加工し易く望ましい。
The recesses 9, 10, and 11 can be formed by any method such as cutting, pressing, and etching.
The location where the concave portion 10 is provided is arbitrary, but it is desirable that the vicinity of the entrance of the insertion hole 1 is easily processed.

【0022】または請求項4記載の発明は、図6に示す
ように、伝熱部材4の所要箇所をプレスなどで押圧して
挿通孔1の内面に凸部12を設けておき、この伝熱部材
4のヒートパイプ挿通孔1にヒートパイプ5を挿通し、
前記ヒートパイプ5を加熱拡径して前記凸部12以外の
箇所を膨出させ、ヒートパイプ5を伝熱部材4の挿通孔
1に係合させてヒートパイプ5が挿通孔1から抜け難い
ようにした取付方法である。
According to a fourth aspect of the present invention, as shown in FIG. 6, a predetermined portion of the heat transfer member 4 is pressed by a press or the like to provide a convex portion 12 on the inner surface of the insertion hole 1 and the heat transfer member The heat pipe 5 is inserted into the heat pipe insertion hole 1 of the member 4,
The heat pipe 5 is heated and expanded to expand portions other than the protrusions 12, and the heat pipe 5 is engaged with the insertion hole 1 of the heat transfer member 4 so that the heat pipe 5 is hard to be pulled out of the insertion hole 1. This is the mounting method.

【0023】この他、前記固定治具の固定孔内面に凹部
を設けておき、前記凹部にヒートパイプの露出部分を膨
出させ、この膨出部分を伝熱部材の位置決めなどに利用
することもできる。
In addition, a concave portion may be provided on the inner surface of the fixing hole of the fixing jig, and the exposed portion of the heat pipe may be expanded in the concave portion, and the expanded portion may be used for positioning the heat transfer member. it can.

【0024】本発明において、伝熱部材とは、ヒートパ
イプ挿通孔を有する金属基板、ヒートパイプ挿通孔を有
する金属基板に放熱フィンを設けた部材などのヒートパ
イプ挿通孔を有する任意の熱伝導性部材を言う。
In the present invention, a heat transfer member is any heat conductive member having a heat pipe insertion hole such as a metal substrate having a heat pipe insertion hole, a member having a heat radiating fin provided on a metal substrate having a heat pipe insertion hole. Refers to members.

【0025】本発明では、請求項3と請求項4記載の発
明を組み合わせることにより、ヒートパイプを前記挿通
孔により強固に埋設させることができる。
According to the present invention, by combining the inventions of the third and fourth aspects, the heat pipe can be buried more firmly in the insertion hole.

【0026】請求項5記載の発明は、図7に示すよう
に、ヒートパイプ5の露出部分6を、放熱フィン23に
開けた穴24に通して、ヒートパイプ5の露出部分6が
拡径方向に塑性変形するのを放熱フィン23に開けた穴
24の内面で抑え、ヒートパイプ5の露出部分6の加熱
時の変形(ゆがみ)や破裂を防止する伝熱部材4へのヒ
ートパイプ5の取付方法である。
According to a fifth aspect of the present invention, as shown in FIG. 7, the exposed portion 6 of the heat pipe 5 is passed through a hole 24 formed in the radiation fin 23 so that the exposed portion 6 of the heat pipe 5 is expanded in the radial direction. Mounting of the heat pipe 5 to the heat transfer member 4 for suppressing the plastic deformation of the heat pipe 5 at the inner surface of the hole 24 formed in the heat radiation fin 23 and preventing the exposed portion 6 of the heat pipe 5 from being deformed (distorted) or ruptured upon heating. Is the way.

【0027】この発明において、放熱フィン23の穴径
はヒートパイプ5の外径より僅かだけ大きくしておい
て、加熱前は放熱フィン23に開けた穴24にヒートパ
イプ5の露出部分6を挿通し易くし、加熱時にはヒート
パイプ5の露出部分の変形(ゆがみ)などを早めに抑え
られるようにするのが良い。
In the present invention, the hole diameter of the heat radiating fin 23 is made slightly larger than the outer diameter of the heat pipe 5, and the exposed portion 6 of the heat pipe 5 is inserted into the hole 24 formed in the heat radiating fin 23 before heating. It is preferable to make it easy to suppress the deformation (distortion) of the exposed portion of the heat pipe 5 at the time of heating.

【0028】この発明において、ヒートパイプ5の露出
部分の変形(ゆがみ)や破裂をより確実に防止するに
は、放熱フィン23の配置間隔を狭める、厚さの厚い放
熱フィンを用いる、図9に示すように穴25をバーリン
グ加工した放熱フィン23を用いる、放熱フィン23間
に金属パイプを配置する、などの方法が採用される。
In the present invention, in order to more reliably prevent the deformation (distortion) and rupture of the exposed portion of the heat pipe 5, the arrangement interval of the radiating fins 23 is narrowed and a thick radiating fin is used. As shown in the figure, a method of using the heat radiation fins 23 in which the holes 25 are burred, a method of disposing a metal pipe between the heat radiation fins 23, and the like are employed.

【0029】この方法は、ヒートパイプ5の露出部分6
の変形(ゆがみ)などを放熱フィン23を用いて防止す
るので前記固定治具が不要である。またこの放熱フィン
23はそのまま使用できるので、後工程で放熱フィンを
圧入機を用いて取り付ける必要がなく設備的にも生産性
からも有利である。この方法では、別途加熱手段を要す
るが、放熱フィン23は、通常、薄板からなり熱容量が
小さいので加熱を迅速に行うことができ、生産性が妨げ
られるようなことがない。
In this method, the exposed portion 6 of the heat pipe 5
Since the heat dissipating fins 23 are used to prevent deformation (distortion) or the like, the fixing jig is not required. Further, since the radiation fins 23 can be used as they are, there is no need to attach the radiation fins using a press-fitting machine in a later process, which is advantageous in terms of equipment and productivity. In this method, a separate heating means is required. However, the radiating fins 23 are usually made of a thin plate and have a small heat capacity, so that the heating can be performed quickly and the productivity is not hindered.

【0030】本発明において、ヒートパイプの形状は任
意であるが、伝熱部材のヒートパイプ挿通孔およびヒー
トパイプの前記挿通孔に埋設する部分の断面形状を楕円
形とすることにより、断面円形の場合に較べて、ヒート
パイプの外周長さおよび肉厚が同じ場合、(1)伝熱部
材の厚さを薄くすることができ省スペースが図れる、ま
た(2)ヒートパイプが拡径方向に塑性変形し易くなり
ヒートパイプを膨張させる際の加熱温度を低くできる。
In the present invention, the shape of the heat pipe is arbitrary, but the cross section of the heat pipe insertion hole of the heat transfer member and the portion embedded in the insertion hole of the heat pipe is made elliptical so that the heat pipe has a circular cross section. When the outer peripheral length and the wall thickness of the heat pipe are the same as compared with the case, (1) the thickness of the heat transfer member can be reduced to save space, and (2) the heat pipe becomes plastic in the radially expanding direction. It becomes easy to deform, and the heating temperature when expanding the heat pipe can be lowered.

【0031】[0031]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)図1に示すように、内径が6.7mmφの
ヒートパイプ挿通孔を6個有するアルミ板(JISA1
100、幅200mm、厚さ10mm)を押出成形し、
このアルミ板を長さ110mmに切断してアルミ基板と
し、このアルミ基板表面に高さ15mmのコルゲート状
フィンをろう付けして伝熱部材とした。次に、前記挿通
孔6の各々に外径6.35mm、長さ220mmのヒー
トパイプ5を挿通して組付体とし、この組付体のヒート
パイプ5の露出部分(長さ110mm)6を2分割式固
定治具7の固定孔(内径6.50mm)8に固定し、こ
れを加熱炉に入れて300℃で20分間加熱しヒートパ
イプ5を拡径方向に塑性変形させてヒートシンクを製造
した。
The present invention will be described below in detail with reference to examples. (Example 1) As shown in FIG. 1, an aluminum plate (JISA1) having six heat pipe insertion holes having an inner diameter of 6.7 mm.
100, width 200 mm, thickness 10 mm)
This aluminum plate was cut into a length of 110 mm to form an aluminum substrate, and a corrugated fin having a height of 15 mm was brazed to the surface of the aluminum substrate to form a heat transfer member. Next, a heat pipe 5 having an outer diameter of 6.35 mm and a length of 220 mm is inserted into each of the insertion holes 6 to form an assembly. The exposed portion (length 110 mm) 6 of the heat pipe 5 of the assembly is removed. It is fixed to the fixing hole (inner diameter 6.50 mm) 8 of the two-part fixing jig 7, put into a heating furnace, heated at 300 ° C. for 20 minutes, and plastically deforms the heat pipe 5 in the radial direction to manufacture a heat sink. did.

【0032】(比較例1)図10に示したように、固定
治具7を使用せずに組付体を加熱炉に入れ300℃で2
0分間加熱してヒートパイプ5を拡径方向に塑性変形さ
せた他は、実施例1と同じ方法によりヒートシンクを製
造した。
COMPARATIVE EXAMPLE 1 As shown in FIG. 10, the assembly was placed in a heating furnace without using the fixing jig 7 and heated at 300.degree.
A heat sink was manufactured in the same manner as in Example 1, except that the heat pipe 5 was plastically deformed in the radial direction by heating for 0 minutes.

【0033】実施例1および比較例1で得られた各20
個のヒートシンクについて、ヒートパイプの露出部分の
外観(曲がりの有無)および寸法精度(外径のバラツ
キ)を調べた。その結果、実施例1(本発明例)のヒー
トシンクはいずれも耐抜け性が一定の基準を満足し、外
観および寸法精度にも優れていた。即ち、ヒートパイプ
の露出部分は、固定治具の固定孔(高精度に加工)に配
して加熱したため、熱による変形(ゆがみ)がなく、外
観(真直性)は加熱前より良くなった。外径は固定孔の
形状にならって6.50mmに拡径されたが、露出部分
の寸法精度は、前記固定孔の内径を高精度に仕上げたた
め極めて良好であった。これに対し、比較例1(従来
法)のヒートシンクは外観に劣るものが2個、寸法精度
に劣るものが3個、外観と寸法精度の両方に劣るものが
1個あり、製造歩留まりは70%に低下した。
Each of the 20 obtained in Example 1 and Comparative Example 1
For each of the heat sinks, the appearance (existence of bending) and the dimensional accuracy (variation in outer diameter) of the exposed portion of the heat pipe were examined. As a result, each of the heat sinks of Example 1 (Example of the present invention) had a certain resistance to detachment, and was excellent in appearance and dimensional accuracy. That is, since the exposed part of the heat pipe was arranged and heated in the fixing hole (processed with high precision) of the fixing jig, there was no deformation (distortion) due to heat, and the appearance (straightness) was better than before heating. The outer diameter was increased to 6.50 mm in accordance with the shape of the fixing hole, but the dimensional accuracy of the exposed portion was extremely good because the inner diameter of the fixing hole was finished with high accuracy. On the other hand, the heat sinks of Comparative Example 1 (conventional method) had two inferior appearance, three inferior in dimensional accuracy, and one inferior in both appearance and dimensional accuracy, and the manufacturing yield was 70%. Has dropped.

【0034】(実施例2)図1に示すように、内径が
6.7mmφのヒートパイプ挿通孔を6個有するアルミ
板(JISA1100、幅200mm、厚さ10mm)
を押出成形し、このアルミ板を長さ110mmに切断し
てアルミ基板とし、このアルミ基板表面に高さ15mm
のコルゲート状フィンをろう付けして伝熱部材とした。
次に、前記挿通孔6の各々に外径6.35mm、長さ2
20mmのヒートパイプ5を挿通し、前記ヒートパイプ
5の露出部分(長さ110mm)6を2分割式固定治具
7の固定孔8に固定し、前記露出部分6を固定治具7に
具備された抵抗発熱体により300℃で20分間加熱し
ヒートパイプ5を拡径方向に塑性変形させてヒートシン
クを製造した。
Example 2 As shown in FIG. 1, an aluminum plate having six heat pipe insertion holes having an inner diameter of 6.7 mmφ (JISA1100, width 200 mm, thickness 10 mm)
Is extruded, and this aluminum plate is cut into a length of 110 mm to form an aluminum substrate.
Was brazed to form a heat transfer member.
Next, each of the insertion holes 6 has an outer diameter of 6.35 mm and a length of 2 mm.
The exposed part (length 110 mm) 6 of the heat pipe 5 is fixed to the fixing hole 8 of the two-part fixing jig 7 by inserting the 20 mm heat pipe 5, and the exposed part 6 is provided in the fixing jig 7. The heat pipe 5 was heated at 300 ° C. for 20 minutes by the resistance heating element, and the heat pipe 5 was plastically deformed in the radially expanding direction to produce a heat sink.

【0035】実施例2で得られた20個のヒートシンク
について、ヒートパイプの露出部分の外観および寸法精
度を調べたがいずれも良好であり、耐抜け性も一定の基
準を満足していた。この方法は、ヒートパイプの露出部
分のみを加熱するので、実施例1の加熱炉を用いる方法
に較べて経済的であり、加熱温度の制御が容易であり、
さらに加熱時間が短縮できた。
With respect to the 20 heat sinks obtained in Example 2, the appearance and dimensional accuracy of the exposed portions of the heat pipe were examined. All of them were good, and the pull-out resistance satisfied certain criteria. Since this method heats only the exposed portion of the heat pipe, it is more economical than the method using the heating furnace of Example 1, and the heating temperature can be easily controlled.
Further, the heating time could be shortened.

【0036】(実施例3)伝熱部材のヒートパイプ挿通
孔の入口近傍の内周面をヤスリがけして長さ2mmに渡
り粗面化した他は、実施例1と同じ方法によりヒートシ
ンクを製造した。粗面化部分の表面粗度(長さ方向の粗
度)Raは0.1〜40μmの範囲内で種々に変化させ
た。
(Example 3) A heat sink is manufactured by the same method as in Example 1, except that the inner peripheral surface near the entrance of the heat pipe insertion hole of the heat transfer member is sanded and roughened to a length of 2 mm. did. The surface roughness (roughness in the length direction) Ra of the roughened portion was variously changed within the range of 0.1 to 40 μm.

【0037】(比較例2)表面粗度(長さ方向の粗度)
Raを0.1μm未満または40μm超とした他は、実
施例2と同じ方法によりヒートシンクを製造した。
(Comparative Example 2) Surface roughness (lengthwise roughness)
A heat sink was manufactured in the same manner as in Example 2 except that Ra was less than 0.1 μm or more than 40 μm.

【0038】実施例2および比較例2で製造した各々の
ヒートシンクについて、アルミ基板挿通孔からのヒート
パイプの耐抜け力を調べた。耐抜け力は引張試験機の一
方のチャックに前記ヒートシンクのアルミ基板を固定
し、他方のチャックにヒートパイプを1本挟んで引張試
験を行い、ヒートパイプが抜ける時の最大荷重で表し
た。各3個のヒートシンクについて試験し、その平均値
を表1に示した。表1には前記表面粗度Raを併記し
た。なお、挿通孔内面の粗度(ヤスリ掛けをしない場合
の粗度)は、通常、0.08〜0.1μm程度である。
With respect to each of the heat sinks manufactured in Example 2 and Comparative Example 2, the resistance of the heat pipe to the heat pipe through the aluminum substrate insertion hole was examined. The pull-out resistance was measured by fixing the aluminum substrate of the heat sink to one chuck of the tensile tester, performing a tensile test with one heat pipe sandwiched between the other chucks, and expressing the maximum load when the heat pipe comes off. Each of the three heat sinks was tested, and the average value is shown in Table 1. Table 1 also shows the surface roughness Ra. In addition, the roughness of the inner surface of the insertion hole (the roughness when the file is not filed) is usually about 0.08 to 0.1 μm.

【0039】[0039]

【表1】 [Table 1]

【0040】表1から明らかなように、本発明例のN
o.1〜6はいずれも高い耐抜け力を示した。これは挿
通孔内面の表面粗度Raが適切で、ヒートパイプと挿通
孔内面との間に十分な摩擦抵抗が生じたためである。こ
れに対し、比較例のNo.7は表面粗度が小さかったた
め耐抜け力が低下した。No.8は挿通孔内面を粗面化
する効果が飽和している。
As is clear from Table 1, N of the present invention example
o. All of Nos. 1 to 6 showed high pull-out resistance. This is because the surface roughness Ra of the inner surface of the insertion hole was appropriate, and sufficient frictional resistance occurred between the heat pipe and the inner surface of the insertion hole. On the other hand, in Comparative Example No. Sample No. 7 had a low surface roughness and thus had a low pull-out resistance. No. In No. 8, the effect of roughening the inner surface of the insertion hole is saturated.

【0041】(実施例4)伝熱部材のヒートパイプ挿通
孔内面に図3に示した開放型凹部9を挿通孔1の両方の
入口部分に設けた他は、実施例2と同じ方法によりヒー
トシンクを製造した。前記凹部9は長さを2mm、径を
6.9mmとした。このものの耐抜け力は1330Nで
極めて高かった。
Example 4 A heat sink was formed in the same manner as in Example 2 except that the open-type recess 9 shown in FIG. 3 was provided at both entrances of the insertion hole 1 on the inner surface of the heat pipe insertion hole of the heat transfer member. Was manufactured. The recess 9 had a length of 2 mm and a diameter of 6.9 mm. The anti-peeling power of this product was extremely high at 1330N.

【0042】なお、前記挿通孔内面の粗面化または凹部
(凸部)形成による耐抜け性の向上効果は、ヒートパイ
プの加熱拡径を加熱炉で行う場合にも得られることは言
うまでもない。
It is needless to say that the effect of improving the penetration resistance by roughening the inner surface of the insertion hole or forming the concave portion (convex portion) can also be obtained when the heat pipe is expanded by heating in a heating furnace.

【0043】(実施例5)実施例1と同じ方法で作製し
た組付体のヒートパイプ5の露出部分(長さ110m
m)6に、バーリング加工により6.50mm径の穴を
開けたアルミ放熱フィン(JISA1050、板厚さ
0.2mm)を8枚3mm間隔で挿通し、これを加熱炉
に入れて300℃で20分間加熱しヒートパイプ5を拡
径方向に塑性変形させてヒートシンクを製造した。
(Example 5) An exposed portion (110 m in length) of the heat pipe 5 of an assembled body manufactured in the same manner as in Example 1
m) Eight aluminum radiating fins (JISA1050, plate thickness: 0.2 mm) each having a 6.50 mm diameter hole formed by burring are inserted through 6 at intervals of 3 mm. The heat pipe 5 was plastically deformed in the diameter-expanding direction by heating for one minute to produce a heat sink.

【0044】実施例5で得られた20個のヒートシンク
について、ヒートパイプの変形(ゆがみ)有無、ヒート
パイプと放熱フィンの接合部の外観(放熱フィンの変形
の有無)および寸法精度(外径寸法のバラツキ)を調べ
た。その結果、ヒートパイプには変形(ゆがみ)が認め
られず、またヒートパイプと放熱フィンの接合部の外観
および寸法精度も良好であった。またアルミ基板挿通孔
からの耐抜け力も一定の基準を満足した。
For the twenty heat sinks obtained in Example 5, the presence or absence of deformation (distortion) of the heat pipe, the appearance of the joint between the heat pipe and the radiation fin (the presence or absence of deformation of the radiation fin), and the dimensional accuracy (outer diameter dimension) Was examined. As a result, no deformation (distortion) was observed in the heat pipe, and the appearance and dimensional accuracy of the joint between the heat pipe and the radiation fin were good. In addition, the pull-out resistance from the aluminum substrate insertion hole also satisfied a certain standard.

【0045】(実施例6)図8に示すように、断面楕円
形(短径3.2mm、長径8.7mm)のヒートパイプ
挿通孔17を6個有するアルミ板を押出成形し、このア
ルミ板を長さ110mmに切断してアルミ基板18と
し、このアルミ基板18表面に高さ15mmのコルゲー
ト状フィン3をろう付けして伝熱部材19とした。次
に、断面円形のヒートパイプ(外径6.35mm)の挿
通孔17に配する部分を上下方向に押圧して断面楕円形
(短径3.0mm、長径8.5mm)に成形し、このヒ
ートパイプ20の断面楕円形部分21を前記挿通孔17
に挿通して組付体とし、この組付体のヒートパイプ20
の露出部分(長さ110mm)6に、バーリング加工に
より6.50mm径の穴を開けたアルミ放熱フィン(J
ISA1050、板厚さ0.2mm)を8枚3mm間隔
で挿通し、これを加熱炉に入れて270℃で20分間加
熱しヒートパイプ5を拡径方向に塑性変形させてヒート
シンクを製造した。なお、アルミ基板18の厚さは、前
記挿通孔17の短径が断面円形の挿通孔の直径より小さ
いため実施例5のアルミ基板より3.3mm薄くした。
Example 6 As shown in FIG. 8, an aluminum plate having six heat pipe insertion holes 17 having an elliptical cross section (a short diameter of 3.2 mm and a long diameter of 8.7 mm) was extruded. Was cut into a length of 110 mm to form an aluminum substrate 18, and a corrugated fin 3 having a height of 15 mm was brazed to the surface of the aluminum substrate 18 to form a heat transfer member 19. Next, the portion arranged in the insertion hole 17 of the heat pipe having a circular cross section (outer diameter 6.35 mm) is pressed vertically to form an elliptical cross section (short diameter 3.0 mm, long diameter 8.5 mm). The elliptical section 21 of the heat pipe 20 is inserted into the insertion hole 17.
Through the heat pipe 20 of this assembly.
Aluminum radiating fins (J) with a 6.50 mm diameter hole formed by burring on the exposed part (length 110 mm)
ISA1050, plate thickness 0.2 mm) were inserted at an interval of 3 mm, placed in a heating furnace and heated at 270 ° C. for 20 minutes, and the heat pipe 5 was plastically deformed in the radial direction to produce a heat sink. The thickness of the aluminum substrate 18 was 3.3 mm thinner than the aluminum substrate of Example 5 because the short diameter of the through hole 17 was smaller than the diameter of the circular insertion hole.

【0046】実施例6で得られた20個のヒートシンク
について、ヒートパイプの変形(ゆがみ)有無、ヒート
パイプと放熱フィンの接合部の外観(放熱フィンの変形
の有無)、寸法精度(外径寸法のバラツキ)、伝熱部材
の挿通孔からのヒートパイプの耐抜け力を実施例5の場
合と同じ方法により調べた。
For the twenty heat sinks obtained in Example 6, the presence or absence of deformation (distortion) of the heat pipe, the appearance of the joint between the heat pipe and the radiation fin (the presence or absence of deformation of the radiation fin), and the dimensional accuracy (outer diameter dimension) And the resistance of the heat pipe to the heat transfer member from the insertion hole was examined by the same method as in Example 5.

【0047】その結果、ヒートパイプには変形(ゆが
み)が認められず、またヒートパイプと放熱フィンの接
合部の外観および寸法精度も良好であった。またアルミ
基板挿通孔からの耐抜け力も実施例5の場合と同様に一
定の基準を満足した。このことから、伝熱部材のヒート
パイプ挿通孔にヒートパイプを断面楕円形状に埋設した
ものは、断面円形状に配する場合(実施例1)に較べ
て、伝熱部材(アルミ板)の厚さを薄くでき、しかもヒ
ートパイプを拡径方向に塑性変形させるときの加熱温度
を低くできることが分かる。なお、本実施例6では、ヒ
ートパイプ挿通孔17に埋設する部分のみを楕円形とし
たが、ヒートパイプ全体を楕円形としても同様の効果が
得られる。
As a result, no deformation (distortion) was observed in the heat pipe, and the appearance and dimensional accuracy of the joint between the heat pipe and the radiation fin were good. Also, the withstand force from the aluminum substrate insertion hole satisfies a certain standard similarly to the case of the fifth embodiment. Thus, the heat transfer member (aluminum plate) having the heat pipe inserted into the heat pipe insertion hole with the elliptical cross section in comparison with the case of disposing the heat pipe in the circular cross section (Example 1) has a larger thickness. It can be seen that the heating temperature can be reduced when the heat pipe is plastically deformed in the radially expanding direction. In the sixth embodiment, only the portion embedded in the heat pipe insertion hole 17 has an elliptical shape, but the same effect can be obtained by making the entire heat pipe elliptical.

【0048】[0048]

【発明の効果】以上に述べたように、本発明では、前記
ヒートパイプの露出部分を固定治具のヒートパイプ固定
孔に配し固定して加熱拡径するのでヒートパイプの露出
部分の変形(ゆがみ)が防止される。前記固定治具のヒ
ートパイプ固定孔を高精度に加工しておくとヒートパイ
プの露出部分の寸法精度が向上する。また前記露出部分
の拡径が固定孔により抑制されるので、伝熱部材のヒー
トパイプ挿通孔内でのヒートパイプが良好に拡径され、
前記挿通孔からのヒートパイプの耐抜け性が向上する。
前記ヒートパイプの加熱を、前記固定治具に具備した発
熱体により行うことにより、ヒートパイプ5の加熱拡径
時間が短縮され生産性が上がり、加熱設備も安くなり、
温度制御も高精度にできる。
As described above, according to the present invention, the exposed portion of the heat pipe is arranged in the heat pipe fixing hole of the fixing jig and fixed to expand the diameter of the heat pipe. (Distortion) is prevented. If the heat pipe fixing hole of the fixing jig is processed with high precision, the dimensional accuracy of the exposed portion of the heat pipe is improved. Also, since the diameter expansion of the exposed portion is suppressed by the fixing hole, the heat pipe in the heat pipe insertion hole of the heat transfer member is satisfactorily expanded,
The heat resistance of the heat pipe from the insertion hole is improved.
By performing the heating of the heat pipe by a heating element provided in the fixing jig, the time required for expanding the heat pipe 5 by heating is shortened, the productivity is increased, and the heating equipment is also reduced.
Temperature control can be performed with high accuracy.

【0049】前記伝熱部材のヒートパイプ挿通孔内面の
少なくとも1部を粗面化すると、ヒートパイプと前記粗
面化部分との間に摩擦抵抗が生じヒートパイプの耐抜け
性がより向上する。前記伝熱部材のヒートパイプ挿通孔
内面に凹部または凸部を設けると、ヒートパイプが加熱
拡径により膨出したヒートパイプの表層部が前記凹部ま
たは凸部に係合してヒートパイプの耐抜け性が一層向上
する。このため露出部分の形状および寸法が優れ、かつ
使用中にヒートパイプが前記挿通孔から抜け出てしまう
ようなことのないヒートシンクを製造することができ
る。さらに前記固定治具に代えて、ヒートパイプの露出
部分を放熱フィンに開けた穴の内面で抑えるようにして
もヒートパイプの変形(ゆがみ)を防止でき、この方法
は、後工程で放熱フィンを圧入機を用いて取り付ける必
要がなく設備的にも生産性からも有利である。
When at least a part of the inner surface of the heat pipe insertion hole of the heat transfer member is roughened, frictional resistance is generated between the heat pipe and the roughened portion, so that the heat pipe can be more easily pulled out. When a concave portion or a convex portion is provided on the inner surface of the heat pipe insertion hole of the heat transfer member, the surface layer portion of the heat pipe that swells due to the heat expansion is engaged with the concave portion or the convex portion, and the heat pipe is resistant to slipping out. The properties are further improved. Therefore, it is possible to manufacture a heat sink in which the shape and dimensions of the exposed portion are excellent and the heat pipe does not come out of the insertion hole during use. Further, instead of the fixing jig, the heat pipe can be prevented from being deformed (distorted) even if the exposed portion of the heat pipe is suppressed by the inner surface of the hole formed in the heat radiating fin. There is no need to use a press-fitting machine, which is advantageous in terms of equipment and productivity.

【0050】また伝熱部材のヒートパイプ挿通孔にヒー
トパイプを断面楕円形状に埋設すると、断面円形に埋設
する場合に較べて、(1)伝熱部材の厚さを薄くするこ
とができ省スペースが図れる、(2)ヒートパイプが拡
径方向に塑性変形し易くなりヒートパイプを塑性変形さ
せる際の加熱温度を低くできる。依って、工業上顕著な
効果を奏する。
When the heat pipe is embedded in the heat pipe insertion hole of the heat transfer member with an elliptical cross section, (1) the thickness of the heat transfer member can be reduced and the space can be saved as compared with the case where the heat pipe is embedded in a circular cross section. (2) The heat pipe is easily plastically deformed in the radially expanding direction, and the heating temperature when the heat pipe is plastically deformed can be lowered. Therefore, an industrially remarkable effect is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(イ)、(ロ)は本発明の第1の実施形態を示
すそれぞれ斜視説明図および縦断面説明図である。
FIGS. 1A and 1B are an explanatory perspective view and an explanatory longitudinal sectional view, respectively, showing a first embodiment of the present invention.

【図2】(イ)、(ロ)は本発明の第2の実施形態を示
す縦断面説明図である。
FIGS. 2 (a) and 2 (b) are longitudinal sectional views showing a second embodiment of the present invention.

【図3】本発明の第3の実施形態を示す縦断面図であ
る。
FIG. 3 is a longitudinal sectional view showing a third embodiment of the present invention.

【図4】本発明の第4の実施形態を示す縦断面図であ
る。
FIG. 4 is a longitudinal sectional view showing a fourth embodiment of the present invention.

【図5】本発明の第5の実施形態を示す縦断面図であ
る。
FIG. 5 is a longitudinal sectional view showing a fifth embodiment of the present invention.

【図6】本発明の第6の実施形態を示す縦断面図であ
る。
FIG. 6 is a longitudinal sectional view showing a sixth embodiment of the present invention.

【図7】本発明の第7の実施形態を示す縦断面図であ
る。
FIG. 7 is a longitudinal sectional view showing a seventh embodiment of the present invention.

【図8】本発明の第8の実施形態を示す縦断面図、a−
a断面図およびb−b端面図である。
FIG. 8 is a longitudinal sectional view showing an eighth embodiment of the present invention,
It is sectional drawing a and bb end view.

【図9】バーリング加工した穴の形状を示す斜視図であ
る。
FIG. 9 is a perspective view showing the shape of a hole subjected to burring.

【図10】従来の伝熱部材へのヒートパイプの取付方法
の斜視説明図である。
FIG. 10 is a perspective view illustrating a conventional method of attaching a heat pipe to a heat transfer member.

【符号の説明】[Explanation of symbols]

1 ヒートパイプ挿通孔 2 アルミ基板 3 放熱フィン 4 伝熱部材 5 ヒートパイプ 6 ヒートパイプの露出部分 7 固定治具 8 ヒートパイプ固定孔 9 伝熱部材の挿通孔内面に設けた開放型凹部 10 伝熱部材の挿通孔内面に設けた閉鎖型凹部 11 固定治具の固定孔内面に設けた開放型凹部 12 伝熱部材の挿通孔内面に設けた凸部 13 加熱炉 14 固定治具の上型 15 固定治具の下型 16 粗面化部分 17 断面楕円形のヒートパイプ挿通孔 18 断面楕円形のヒートパイプ挿通孔を有するアルミ
基板 19 断面楕円形のヒートパイプ挿通孔を有するアルミ
基板からなる伝熱部材 20 断面楕円形部分を有するヒートパイプ 21 ヒートパイプの断面楕円形部分 23 放熱フィン 24 放熱フィンに開けた穴 25 放熱フィンにバーリング加工により開けた穴
REFERENCE SIGNS LIST 1 heat pipe insertion hole 2 aluminum substrate 3 radiating fin 4 heat transfer member 5 heat pipe 6 exposed portion of heat pipe 7 fixing jig 8 heat pipe fixing hole 9 open concave portion provided on inner surface of insertion hole of heat transfer member 10 heat transfer Closed recess provided on the inner surface of the insertion hole of the member 11 Open recess provided on the inner surface of the fixing hole of the fixing jig 12 Projection provided on the inner surface of the insertion hole of the heat transfer member 13 Heating furnace 14 Upper mold 15 of the fixing jig 15 Fixed Lower mold of jig 16 Roughened portion 17 Heat pipe insertion hole with elliptical cross section 18 Aluminum substrate with heat pipe insertion hole with elliptical cross section 19 Heat transfer member made of aluminum substrate with heat pipe insertion hole with elliptical cross section Reference Signs List 20 heat pipe having elliptical cross section 21 elliptical cross section of heat pipe 23 radiating fin 24 hole formed in radiating fin 25 burring processing on radiating fin More drilled holes

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 内部に作動液が封入されたヒートパイプ
を伝熱部材のヒートパイプ挿通孔に前記ヒートパイプの
一部を露出させて挿通し、前記ヒートパイプを拡径方向
に塑性変形して前記ヒートパイプを前記伝熱部材のヒー
トパイプ挿通孔に埋設する伝熱部材へのヒートパイプの
取付方法において、前記ヒートパイプの露出部分を固定
治具のヒートパイプ固定孔に配し、次いで前記ヒートパ
イプを加熱して拡径方向に塑性変形させることを特徴と
する伝熱部材へのヒートパイプの取付方法。
1. A heat pipe in which a working fluid is sealed is inserted through a heat pipe insertion hole of a heat transfer member by exposing a part of the heat pipe, and the heat pipe is plastically deformed in a radially expanding direction. In the method of attaching a heat pipe to a heat transfer member in which the heat pipe is embedded in a heat pipe insertion hole of the heat transfer member, an exposed portion of the heat pipe is arranged in a heat pipe fixing hole of a fixing jig, and then the heat A method for attaching a heat pipe to a heat transfer member, wherein the heat pipe is heated and plastically deformed in a radially expanding direction.
【請求項2】 前記ヒートパイプを前記固定治具に具備
された発熱体により加熱して拡径方向に塑性変形させる
ことを特徴とする請求項1記載の伝熱部材へのヒートパ
イプの取付方法。
2. The method according to claim 1, wherein the heat pipe is heated by a heating element provided on the fixing jig and is plastically deformed in a radially expanding direction. .
【請求項3】 前記伝熱部材のヒートパイプ挿通孔内面
の少なくとも一部を表面粗度Raが0.1〜40μmに
なるように粗面化してヒートパイプと前記挿通孔内面と
の摩擦抵抗を増加させ、ヒートパイプが前記挿通孔から
抜け難くしたことを特徴とする請求項1または2記載の
伝熱部材へのヒートパイプの取付方法。
3. A friction resistance between the heat pipe and the inner surface of the insertion hole by roughening at least a part of the inner surface of the insertion hole of the heat pipe so that the surface roughness Ra is 0.1 to 40 μm. The method for mounting a heat pipe on a heat transfer member according to claim 1, wherein the heat pipe is hardly removed from the insertion hole.
【請求項4】 前記伝熱部材のヒートパイプ挿通孔内面
に凹部を設け、前記凹部にヒートパイプの表層を膨出さ
せて、または前記伝熱部材のヒートパイプ挿通孔内面に
凸部を設け、前記凸部以外の箇所にヒートパイプの表層
を膨出させて、前記ヒートパイプが前記挿通孔から抜け
難くしたことを特徴とする請求項1または2記載の伝熱
部材へのヒートパイプの取付方法。
4. A concave portion is provided on the inner surface of the heat pipe insertion hole of the heat transfer member, and a surface layer of the heat pipe is bulged in the concave portion, or a convex portion is provided on the inner surface of the heat pipe insertion hole of the heat transfer member. The method according to claim 1, wherein a surface layer of the heat pipe is swelled at a portion other than the convex portion, so that the heat pipe is hardly removed from the insertion hole. .
【請求項5】 内部に作動液が封入されたヒートパイプ
を伝熱部材のヒートパイプ挿通孔に前記ヒートパイプの
一部を露出させて挿通し、前記ヒートパイプを拡径方向
に塑性変形して前記ヒートパイプを前記伝熱部材のヒー
トパイプ挿通孔に埋設する伝熱部材へのヒートパイプの
取付方法において、前記ヒートパイプの露出部分を、穴
を開けた複数の放熱フィンの前記穴に通し、次いで前記
ヒートパイプを加熱して拡径方向に塑性変形させること
を特徴とする伝熱部材へのヒートパイプの取付方法。
5. A heat pipe in which a working fluid is sealed is inserted through a heat pipe insertion hole of a heat transfer member by exposing a part of the heat pipe, and the heat pipe is plastically deformed in a radially expanding direction. In the method for attaching a heat pipe to a heat transfer member, wherein the heat pipe is embedded in a heat pipe insertion hole of the heat transfer member, the exposed portion of the heat pipe is passed through the holes of a plurality of perforated radiation fins, Then, the heat pipe is heated and plastically deformed in a radially expanding direction.
【請求項6】 伝熱部材のヒートパイプ挿通孔およびヒ
ートパイプの前記挿通孔に埋設する部分の断面形状が楕
円形であることを特徴とする請求項1、2、3、4、5
のいずれかに記載の伝熱部材へのヒートパイプの取付方
法。
6. The heat pipe insertion hole of the heat transfer member and a cross-sectional shape of a portion embedded in the insertion hole of the heat pipe are elliptical.
The method for attaching a heat pipe to the heat transfer member according to any one of the above.
JP2001177638A 2000-12-08 2001-06-12 Method for fixing heat pipe to thermal transmittance member Pending JP2002235990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001177638A JP2002235990A (en) 2000-12-08 2001-06-12 Method for fixing heat pipe to thermal transmittance member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-375118 2000-12-08
JP2000375118 2000-12-08
JP2001177638A JP2002235990A (en) 2000-12-08 2001-06-12 Method for fixing heat pipe to thermal transmittance member

Publications (1)

Publication Number Publication Date
JP2002235990A true JP2002235990A (en) 2002-08-23

Family

ID=26605545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001177638A Pending JP2002235990A (en) 2000-12-08 2001-06-12 Method for fixing heat pipe to thermal transmittance member

Country Status (1)

Country Link
JP (1) JP2002235990A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308240A (en) * 2005-04-28 2006-11-09 Hitachi Cable Ltd Heat pipe type heat exchanger and its manufacturing method
KR101423302B1 (en) * 2013-02-08 2014-07-24 (주)현성테크노 Latent heat removal apparatus of press metallic mold for vehicle panel
KR20180017647A (en) * 2016-08-10 2018-02-21 (주)월드이엔씨 Pipe expanding apparatus and pipe expanding method using it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308240A (en) * 2005-04-28 2006-11-09 Hitachi Cable Ltd Heat pipe type heat exchanger and its manufacturing method
JP4556759B2 (en) * 2005-04-28 2010-10-06 日立電線株式会社 Heat pipe heat exchanger and method for manufacturing the same
KR101423302B1 (en) * 2013-02-08 2014-07-24 (주)현성테크노 Latent heat removal apparatus of press metallic mold for vehicle panel
KR20180017647A (en) * 2016-08-10 2018-02-21 (주)월드이엔씨 Pipe expanding apparatus and pipe expanding method using it

Similar Documents

Publication Publication Date Title
JP6745904B2 (en) Semiconductor device and manufacturing method thereof
JP6000132B2 (en) Metal fixing material bush and method of manufacturing core material of metal fixing material bush
EP3088829A1 (en) Heat receiving structure and heat sink
JP2002235990A (en) Method for fixing heat pipe to thermal transmittance member
US6442990B1 (en) Method of manufacturing a plate-shaped member having a recess and press die for forming recesses
JP3885197B2 (en) Heat exchange component having long hole in substrate and method for manufacturing the same
CN110114160B (en) Method for processing flat hole with flanging on metal plate
JP2009248138A (en) Heat exchanger and its manufacturing method, and outdoor machine of air conditioner using heat exchanger
JP5080760B2 (en) A crimped assembly of a plate-like body made of magnesium or a magnesium alloy and a columnar body, a manufacturing method thereof, and a manufacturing apparatus.
TW201407326A (en) Heat sink structure and manufacturing method thereof
JP2519505B2 (en) Method for manufacturing metal member for heat dissipation
US20230320037A1 (en) Heatsink, method for manufacturing heatsink, and electronic component package using said heatsink
JP3517559B2 (en) Method of forming ring groove for resistance welding by coining
JP2006114567A (en) Heat sink equipped with fin and its manufacturing method
JPH0773742B2 (en) Punch punch
JPS58176035A (en) Manufacture of hose mouthpiece
JP2010027998A (en) Heat transmission surface structure having flat coil-like fin member and manufacturing method of the structure
JP7156677B2 (en) Laminated plate material structure manufacturing method
WO2022074856A1 (en) Heatsink, method for manufacturing heatsink, and electronic component package using said heatsink
JPH0732938B2 (en) Fin for heat exchanger and manufacturing method thereof
JP2541755Y2 (en) Pipe for refrigerant condenser
JPH10277679A (en) Plate fin tube heat exchanger and production of the same
JP5582769B2 (en) Manufacturing method of annular parts
JP4429519B2 (en) heatsink
JP2002280504A (en) Method for manufacturing heat sink by thermal pipe enlarging process